1
|
Li B, Xing F, Wang J, Wang X, Zhou C, Fan G, Zhuo Q, Ji S, Yu X, Xu X, Qin Y, Li Z. YBX1 as a therapeutic target to suppress the LRP1-β-catenin-RRM1 axis and overcome gemcitabine resistance in pancreatic cancer. Cancer Lett 2024; 602:217197. [PMID: 39216548 DOI: 10.1016/j.canlet.2024.217197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly malignant and has a poor prognosis, without effective therapeutic targets in common gene mutations. Gemcitabine, a first-line chemotherapeutic for PDAC, confers <10 % 5-year survival rate because of drug resistance. Y-box binding protein 1 (YBX1), associated with multidrug-resistance gene activation, remains unelucidated in PDAC gemcitabine resistance. In vivo and in vitro, we verified YBX1's promotional effects, especially gemcitabine resistance, in pancreatic cancer cells. YBX1-induced LRP1 transcription by binding to the LRP1 promoter region significantly altered the concentration and distribution of β-catenin in pancreatic cancer cells. Through TCF3, β-catenin bound to the promoter region of RRM1, a key gene for gemcitabine resistance, that promotes RRM1 expression. Combination therapy with the YBX1 inhibitor SU056 and gemcitabine effectively reduced gemcitabine resistance in in vivo and in vitro experiments. High YBX1 expression promoted pathogenesis and gemcitabine resistance in pancreatic cancer through the YBX1-LRP1-β-catenin-RRM1 axis. Combining YBX1 inhibitors with gemcitabine may provide a new direction for combination chemotherapy to overcome gemcitabine resistance, which frequently occurs during chemotherapy for pancreatic cancer.
Collapse
Affiliation(s)
- Borui Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Faliang Xing
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jingyi Wang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4067, Australia
| | - Xiaohong Wang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Chenjie Zhou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Guixiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qifeng Zhuo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Zheng Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
HuangFu R, Li H, Luo Y, He F, Huan C, Ahmed Z, Zhang B, Lei C, Yi K. Illuminating Genetic Diversity and Selection Signatures in Matou Goats through Whole-Genome Sequencing Analysis. Genes (Basel) 2024; 15:909. [PMID: 39062688 PMCID: PMC11275394 DOI: 10.3390/genes15070909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Matou goats, native to Hunan and Hubei provinces in China, are renowned for their exceptional meat and skin quality. However, a comprehensive whole-genome-based exploration of the genetic architecture of this breed is scant in the literature. (2) Methods: To address this substantial gap, we used whole-genome sequences of 20 Matou goats and compared them with published genomic data of 133 goats of different breeds across China. This comprehensive investigation sought to assess genetic diversity, population structure, and the presence of genomic selection signals. (3) Results: The whole genome of Matou goat populations yielded a substantial catalog of over 19 million single nucleotide polymorphisms (SNPs), primarily distributed within intergenic and intron regions. The phylogenetic tree analysis revealed distinct clades corresponding to each goat population within the dataset. Notably, this analysis positioned Matou goats in a closer genetic affinity with Guizhou White goats, compared to other recognized goat breeds. This observation was corroborated by principal component analysis (PCA) and admixture analysis. Remarkably, Matou goats exhibited diminished genetic diversity and a notable degree of inbreeding, signifying a reduced effective population size. Moreover, the study employed five selective sweep detection methods (including PI, CLR, PI-Ratio, Fst, and XP-EHH) to screen top signal genes associated with critical biological functions, encompassing cardiomyocytes, immunity, coat color, and meat quality. (4) Conclusions: In conclusion, this study significantly advances our understanding of the current genetic landscape and evolutionary dynamics of Matou goats. These findings underscore the importance of concerted efforts in resource conservation and genetic enhancement for this invaluable breed.
Collapse
Affiliation(s)
- Ruiyao HuangFu
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712000, China;
| | - Haobang Li
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| | - Yang Luo
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| | - Fang He
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| | - Cheng Huan
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot 12350, Pakistan;
| | - Baizhong Zhang
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712000, China;
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| |
Collapse
|
3
|
Immune Milieu and Genomic Alterations Set the Triple-Negative Breast Cancer Immunomodulatory Subtype Tumor Behavior. Cancers (Basel) 2021; 13:cancers13246256. [PMID: 34944876 PMCID: PMC8699570 DOI: 10.3390/cancers13246256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Triple-negative breast cancer (TNBC) is an aggressive and highly heterogeneous breast cancer subtype, both molecular and transcriptomic. Gene expression patterns identified seven TNBC subtypes; basal-like 1 (BL1), basal-like 2 (BL2), immunomodulatory (IM), mesenchymal (M), mesenchymal stem-like (MSL), luminal androgen receptor (LAR), and unstable (UNS). Herein, we contrasted the IM subtype with non-IM TNBC, including clinical, histopathological, and molecular variables. Our results showed that the IM subtype featured an increased FOXP3+ TILs infiltration and a higher CTLA-4 and PD-L1 expression compared with non-IM tumors. Long intergenic non-coding RNAs associated with the immune response through transcriptomic and enrichment analyses characterized the IM-subtype enriched by the β-catenin signaling pathway. Additionally, DNA sequencing identified differences in mutation rates as well as some specific mutations. These results should motivate the design of future clinical trials in which the benefit of immune-based therapy in this subgroup of patients could be evaluated. Abstract Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous disease. Seven subtypes have been described based on gene expression patterns. Herein, we characterized the tumor biology and clinical behavior of the immunomodulatory (IM) subtype. Methods: Formalin-fixed paraffin-embedded tumor samples from 68 high-risk (stage III-IV) TNBC patients were analyzed through microarrays, immunohistochemistry, and DNA sequencing. Results: The IM subtype was identified in 24% of TNBC tumor samples and characterized by a higher intratumoral (intT) and stromal (strml) infiltration of FOXP3+ TILs (Treg) compared with non-IM subtypes. Further, PD-L1+ (>1%) expression was significantly higher, as well as CTLA-4+ intT and strml expression in the IM subtype. Differential expression and gene set enrichment analysis identified biological processes associated with the immune system. Pathway analysis revealed enrichment of the β-catenin signaling pathway. The non-coding analysis led to seven Long Intergenic Non-Protein Coding RNAs (lincRNAs) (6 up-regulated and 1 down-regulated) that were associated with a favorable prognosis in the TNBC-IM subtype. The DNA sequencing highlighted two genes relevant to immune system responses: CTNNB1 (Catenin β-1) and IDH1. Conclusion: the IM subtype showed a distinct immune microenvironment, as well as subtype-specific genomic alterations. Characterizing TNBC at a molecular and transcriptomic level might guide immune-based therapy in this subgroup of patients.
Collapse
|
4
|
Common molecular pathways targeted by nintedanib in cancer and IPF: A bioinformatic study. Pulm Pharmacol Ther 2020; 64:101941. [DOI: 10.1016/j.pupt.2020.101941] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/29/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
|
5
|
Varone A, Spano D, Corda D. Shp1 in Solid Cancers and Their Therapy. Front Oncol 2020; 10:935. [PMID: 32596156 PMCID: PMC7300250 DOI: 10.3389/fonc.2020.00935] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Shp1 is a cytosolic tyrosine phosphatase that regulates a broad range of cellular functions and targets, modulating the flow of information from the cell membrane to the nucleus. While initially studied in the hematopoietic system, research conducted over the past years has expanded our understanding of the biological role of Shp1 to other tissues, proposing it as a novel tumor suppressor gene functionally involved in different hallmarks of cancer. The main mechanism by which Shp1 curbs cancer development and progression is the ability to attenuate and/or terminate signaling pathways controlling cell proliferation, survival, migration, and invasion. Thus, alterations in Shp1 function or expression can contribute to several human diseases, particularly cancer. In cancer cells, Shp1 activity can indeed be affected by mutations or epigenetic silencing that cause failure of Shp1-mediated homeostatic maintenance. This review will discuss the current knowledge of the cellular functions controlled by Shp1 in non-hematopoietic tissues and solid tumors, the mechanisms that regulate Shp1 expression, the role of its mutation/expression status in cancer and its value as potential target for cancer treatment. In addition, we report information gathered from the public available data from The Cancer Genome Atlas (TCGA) database on Shp1 genomic alterations and correlation with survival in solid cancers patients.
Collapse
Affiliation(s)
- Alessia Varone
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Spano
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Corda
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy.,Department of Biomedical Sciences, National Research Council, Rome, Italy
| |
Collapse
|
6
|
Boutchueng-Djidjou M, Faure RL. Network medicine-travelling with the insulin receptor: Encounter of the second type. EClinicalMedicine 2019; 13:14-20. [PMID: 31517259 PMCID: PMC6734015 DOI: 10.1016/j.eclinm.2019.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/08/2019] [Accepted: 07/18/2019] [Indexed: 01/21/2023] Open
Abstract
Important progress has been made in understanding many aspects of insulin action in the last 10 years. Attention will be focused here on the physical protein interaction network of the internalized insulin receptor (IR) and its relationships with the genetic architecture of type 2 diabetes mellitus (T2D). The IR recognizes signals from the outside (circulating insulin) and engages the insulin signaling response. Within seconds, the IR is also involved in insulin internalization and its subsequent degradation in endosomes (physiological clearance of insulin). A T2D disease module sharing functional similarities with insulin secretion in pancreatic islets was recently identified in the close neighborhood of the internalized IR in liver. This module brought a new light on the apparent functional heterogeneity of numerous genes at risk to T2D by linking them to a few noncanonical layers of signaling feedback loops. These findings should be translated into a better understanding of the primary mechanisms of the disease and consequently a more precise sub-classification of T2D, ultimately leading to precision medicine and the development of new therapeutical drugs.
Collapse
Affiliation(s)
- Martial Boutchueng-Djidjou
- Départment of Pediatrics, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec City G1V4G2, Canada
| | - Robert L. Faure
- Centre de Recherche du CHU de Québec, Laboratoire de Biologie Cellulaire, local T3-55 2705, Boulevard Laurier Québec, QC, G1V4G2
| |
Collapse
|
7
|
Balusamy SR, Ramani S, Natarajan S, Kim YJ, Perumalsamy H. Integrated transcriptome and in vitro analysis revealed anti-proliferative effect of citral in human stomach cancer through apoptosis. Sci Rep 2019; 9:4883. [PMID: 30890753 PMCID: PMC6425008 DOI: 10.1038/s41598-019-41406-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer is the second leading cause of death globally, particularly stomach cancer is third most common causes of cancer death worldwide. Citral possesses anti-tumor activity in various cancer cell lines, However its effect toward stomach cancer and its mechanism of action is have yet to be elucidated. The goal of the present study is to elucidate the role of citral in stomach cancer using transcriptome and in vitro approaches. We performed transcriptome analysis using RNA-seq and explored its capability to persuade apoptosis in AGS human stomach cancer cell lines in vitro. Furthermore, the enrichment and KEGG pathway results suggested that there are several genes involved to induce apoptosis pathway. Furthermore, our study also demonstrated that citral arrested colony formation and migration of cancer cells significantly than that of untreated cells. RNA-seq revealed a total of 125 million trimmed reads obtained from both control and citral treated groups respectively. A total number of 612 differentially expressed genes (DEGs) were identified which includes 216 genes up-regulated and 396 genes down-regulated genes after treatment. The enrichment analysis identified DEGs genes from transcriptome libraries including cell death, cell cycle, apoptosis and cell growth. The present study showed the significant inhibition effect upon citral by regulating various genes involved in signaling pathways, inhibits metastasis, colony formation and induced apoptosis both in silico and in vitro.
Collapse
Affiliation(s)
- Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology Sejong University, Gwangjin-gu, Seoul, Republic of Korea.
| | - Sivasubramanian Ramani
- Department of Food Science and Biotechnology Sejong University, Gwangjin-gu, Seoul, Republic of Korea
| | | | - Yeon Ju Kim
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446- 701, Republic of Korea.
| | - Haribalan Perumalsamy
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin, 446- 701, Republic of Korea.
| |
Collapse
|
8
|
Horst AK, Najjar SM, Wagener C, Tiegs G. CEACAM1 in Liver Injury, Metabolic and Immune Regulation. Int J Mol Sci 2018; 19:ijms19103110. [PMID: 30314283 PMCID: PMC6213298 DOI: 10.3390/ijms19103110] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a transmembrane glycoprotein that is expressed on epithelial, endothelial and immune cells. CEACAM1 is a differentiation antigen involved in the maintenance of epithelial polarity that is induced during hepatocyte differentiation and liver regeneration. CEACAM1 regulates insulin sensitivity by promoting hepatic insulin clearance, and controls liver tolerance and mucosal immunity. Obese insulin-resistant humans with non-alcoholic fatty liver disease manifest loss of hepatic CEACAM1. In mice, deletion or functional inactivation of CEACAM1 impairs insulin clearance and compromises metabolic homeostasis which initiates the development of obesity and hepatic steatosis and fibrosis with other features of non-alcoholic steatohepatitis, and adipogenesis in white adipose depot. This is followed by inflammation and endothelial and cardiovascular dysfunctions. In obstructive and inflammatory liver diseases, soluble CEACAM1 is shed into human bile where it can serve as an indicator of liver disease. On immune cells, CEACAM1 acts as an immune checkpoint regulator, and deletion of Ceacam1 gene in mice causes exacerbation of inflammation and hyperactivation of myeloid cells and lymphocytes. Hence, hepatic CEACAM1 resides at the central hub of immune and metabolic homeostasis in both humans and mice. This review focuses on the regulatory role of CEACAM1 in liver and biliary tract architecture in health and disease, and on its metabolic role and function as an immune checkpoint regulator of hepatic inflammation.
Collapse
Affiliation(s)
- Andrea Kristina Horst
- Institute of Experimental Immunology and Hepatology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany.
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Irvine Hall, 1 Ohio University, Athens, OH 45701-2979, USA.
- The Diabetes Institute, Heritage College of Osteopathic Medicine, Irvine Hall, 1 Ohio University, Athens, OH 45701-2979, USA.
| | - Christoph Wagener
- University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany.
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany.
| |
Collapse
|
9
|
Boutchueng-Djidjou M, Belleau P, Bilodeau N, Fortier S, Bourassa S, Droit A, Elowe S, Faure RL. A type 2 diabetes disease module with a high collective influence for Cdk2 and PTPLAD1 is localized in endosomes. PLoS One 2018; 13:e0205180. [PMID: 30300385 PMCID: PMC6177195 DOI: 10.1371/journal.pone.0205180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/20/2018] [Indexed: 01/19/2023] Open
Abstract
Despite the identification of many susceptibility genes our knowledge of the underlying mechanisms responsible for complex disease remains limited. Here, we identified a type 2 diabetes disease module in endosomes, and validate it for functional relevance on selected nodes. Using hepatic Golgi/endosomes fractions, we established a proteome of insulin receptor-containing endosomes that allowed the study of physical protein interaction networks on a type 2 diabetes background. The resulting collated network is formed by 313 nodes and 1147 edges with a topology organized around a few major hubs with Cdk2 displaying the highest collective influence. Overall, 88% of the nodes are associated with the type 2 diabetes genetic risk, including 101 new candidates. The Type 2 diabetes module is enriched with cytoskeleton and luminal acidification–dependent processes that are shared with secretion-related mechanisms. We identified new signaling pathways driven by Cdk2 and PTPLAD1 whose expression affects the association of the insulin receptor with TUBA, TUBB, the actin component ACTB and the endosomal sorting markers Rab5c and Rab11a. Therefore, the interactome of internalized insulin receptors reveals the presence of a type 2 diabetes disease module enriched in new layers of feedback loops required for insulin signaling, clearance and islet biology.
Collapse
Affiliation(s)
- Martial Boutchueng-Djidjou
- Départment of Pediatrics, Faculty of Medicine, Université Laval, Centre de Recherche du CHU de Québec, Québec city, Canada
| | - Pascal Belleau
- Plateforme Protéomique de l’Est du Québec, Université Laval. Université Laval, Québec, QC, Canada
| | - Nicolas Bilodeau
- Départment of Pediatrics, Faculty of Medicine, Université Laval, Centre de Recherche du CHU de Québec, Québec city, Canada
| | - Suzanne Fortier
- Départment of Pediatrics, Faculty of Medicine, Université Laval, Centre de Recherche du CHU de Québec, Québec city, Canada
| | - Sylvie Bourassa
- Plateforme Protéomique de l’Est du Québec, Université Laval. Université Laval, Québec, QC, Canada
| | - Arnaud Droit
- Plateforme Protéomique de l’Est du Québec, Université Laval. Université Laval, Québec, QC, Canada
| | - Sabine Elowe
- Départment of Pediatrics, Faculty of Medicine, Université Laval, Centre de Recherche du CHU de Québec, Québec city, Canada
| | - Robert L. Faure
- Départment of Pediatrics, Faculty of Medicine, Université Laval, Centre de Recherche du CHU de Québec, Québec city, Canada
- * E-mail:
| |
Collapse
|
10
|
Wang J, Yang T, Xu G, Liu H, Ren C, Xie W, Wang M. Cyclin-Dependent Kinase 2 Promotes Tumor Proliferation and Induces Radio Resistance in Glioblastoma. Transl Oncol 2016; 9:548-556. [PMID: 27863310 PMCID: PMC5118617 DOI: 10.1016/j.tranon.2016.08.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 11/03/2022] Open
Abstract
Accumulating evidence indicates that CDK2 promotes hyperproliferation and is associated to poor prognosis in multiple cancer cells. However, the physiological role of CDK2 in GBM and the biological mechanism still remains unclear. In this study, we identified that CDK2 expression was significantly enriched in GBM tumors compared with normal brain. Additionally, CDK2 was functionally required for tumor proliferation and its expression was associated to poor prognosis in GBM patients. Mechanically, CDK2 induced radio resistance in GBM cells and CDK2 knock down increased cell apoptosis when combined with radiotherapy. Therapeutically, we found that CDK2 inhibitor attenuated tumor growth both in vitro and in vivo. Collectively, CDK2 promotes proliferation, induces radio resistance in GBM, and could become a therapeutic target for GBM.
Collapse
Affiliation(s)
- Jia Wang
- Department of Neurosurgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Tong Yang
- Department of Neurosurgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Gaofeng Xu
- Department of Neurosurgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Hao Liu
- Department of Neurosurgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chunying Ren
- Department of Neurosurgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wanfu Xie
- Department of Neurosurgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Maode Wang
- Department of Neurosurgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
11
|
Florian W, Lenfert E, Gerstel D, von Ehrenstein L, Einhoff J, Schmidt G, Logsdon M, Brandner J, Tiegs G, Beauchemin N, Wagener C, Deppert W, Horst AK. CEACAM1 controls the EMT switch in murine mammary carcinoma in vitro and in vivo. Oncotarget 2016; 7:63730-63746. [PMID: 27572314 PMCID: PMC5325399 DOI: 10.18632/oncotarget.11650] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 08/08/2016] [Indexed: 12/29/2022] Open
Abstract
We analyzed the molecular basis for carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1)-controlled inhibition of epithelial-mesenchymal transition (EMT) in a mouse model for mammary adenocarcinoma (WAP-T mice). We demonstrate that silencing of CEACAM1 in WAP-T tumor-derived G-2 cells induces epithelial-mesenchymal plasticity (EMP), as evidenced by typical changes of gene expression, morphology and increased invasion. In contrast, reintroduction of CEACAM1 into G-2 cells reversed up-regulation of genes imposing mesenchymal transition, as well as cellular invasion. We identified the Wnt-pathway as target for CEACAM1-mediated repression of EMT. Importantly, β-catenin phosphorylation status and transcriptional activity strongly depend on CEACAM1 expression: CEACAM1high G-2 cells displayed enhanced phosphorylation of β-catenin at S33/S37/T41 and decreased phosphorylation at Y86, thereby inhibiting canonical Wnt/β-catenin signaling. We identified Src-homology 2 domain-containing phosphatase 2 (SHP-2) as a critical binding partner of CEACAM1 that could modulate β-catenin Y86 phosphorylation. Hence, CEACAM1 serves as a scaffold that controls membrane proximal β-catenin signaling. In vivo, mammary tumors of WAP-T/CEACAM1null mice displayed increased nuclear translocation of β-catenin and a dramatically enhanced metastasis rate compared to WAP-T mice. Hence, CEACAM1 controls EMT in vitro and in vivo by site-specific regulation of β-catenin phosphorylation. Survival analyses of human mammary carcinoma patients corroborated these data, indicating that CEACAM1 is a prognostic marker for breast cancer survival.
Collapse
Affiliation(s)
- Wegwitz Florian
- Clinic for General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Georg-August-University of Göttingen, D-37077 Göttingen, Germany
- Institute for Tumor Biology, University Medical Center-Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Eva Lenfert
- Institute for Tumor Biology, University Medical Center-Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Daniela Gerstel
- Center for Diagnostics, University Medical Center Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Lena von Ehrenstein
- Institute for Tumor Biology, University Medical Center-Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Julia Einhoff
- Institute for Tumor Biology, University Medical Center-Hamburg-Eppendorf, D-20251 Hamburg, Germany
- Pharmaceutical Institute, Christian-Albrechts-University Kiel, D-24118 Kiel, Germany
| | - Geske Schmidt
- Clinic for General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Georg-August-University of Göttingen, D-37077 Göttingen, Germany
| | - Matthew Logsdon
- Clinic for General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Georg-August-University of Göttingen, D-37077 Göttingen, Germany
| | - Johanna Brandner
- Dermatology and Venerology Department and Clinic, University Medical Center Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Gisa Tiegs
- Institute for Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Nicole Beauchemin
- Goodman Cancer Research Centre and Departments of Biochemistry, Medicine and Oncology, McGill University, Montreal, H3G1Y6, Canada
| | - Christoph Wagener
- Center for Diagnostics, University Medical Center Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Wolfgang Deppert
- Institute for Tumor Biology, University Medical Center-Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Andrea Kristina Horst
- Institute for Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, D-20251 Hamburg, Germany
| |
Collapse
|
12
|
Caron D, Boutchueng-Djidjou M, Tanguay RM, Faure RL. Annexin A2 is SUMOylated on its N-terminal domain: regulation by insulin. FEBS Lett 2015; 589:985-91. [PMID: 25775977 DOI: 10.1016/j.febslet.2015.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 01/17/2023]
Abstract
Insulin receptor (IR) endocytosis requires a remodelling of the actin cytoskeleton. We show here that ANXA2 is SUMOylated at the K10 located in a non-consensus SUMOylation motif in the N-terminal domain. The Y24F mutation decreased the SUMOylation signal, whereas insulin stimulation increased ANXA2 SUMOylation. A survey of protein SUMOylation in hepatic Golgi/endosome (G/E) fractions after insulin injections revealed the presence of a SUMOylation pattern and confirmed the SUMOylation of ANXA2. The construction of an IR/ANXA2/SUMO network (IRASGEN) in the G/E context reveals the presence of interacting nodes whereby SUMO1 connects ANXA2 to actin and microtubule-mediated changes in membrane topology. Heritable variants associated with type 2 diabetes represent 41% of the IRASGEN thus pointing out the physio-pathological importance of this subnetwork.
Collapse
Affiliation(s)
- Danielle Caron
- Département de Pédiatrie, Laboratoire de biologie cellulaire Centre de recherche du CHU de Québec, Université Laval, Québec, PQ, Canada
| | - Martial Boutchueng-Djidjou
- Département de Pédiatrie, Laboratoire de biologie cellulaire Centre de recherche du CHU de Québec, Université Laval, Québec, PQ, Canada
| | - Robert M Tanguay
- Institut de Biologie Intégrative et des Système (IBIS), Université Laval, Québec, PQ, Canada; Laboratory of Cellular and Developmental Genetics, Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, PQ, Canada; PROTEO, Université Laval, Québec, PQ, Canada
| | - Robert L Faure
- Département de Pédiatrie, Laboratoire de biologie cellulaire Centre de recherche du CHU de Québec, Université Laval, Québec, PQ, Canada.
| |
Collapse
|
13
|
Boutchueng-Djidjou M, Collard-Simard G, Fortier S, Hébert SS, Kelly I, Landry CR, Faure RL. The last enzyme of the de novo purine synthesis pathway 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC) plays a central role in insulin signaling and the Golgi/endosomes protein network. Mol Cell Proteomics 2015; 14:1079-92. [PMID: 25687571 DOI: 10.1074/mcp.m114.047159] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Indexed: 12/31/2022] Open
Abstract
Insulin is internalized with its cognate receptor into the endosomal apparatus rapidly after binding to hepatocytes. We performed a bioinformatic screen of Golgi/endosome hepatic protein fractions and found that ATIC, which is a rate-limiting enzyme in the de novo purine biosynthesis pathway, and PTPLAD1 are associated with insulin receptor (IR) internalization. The IR interactome (IRGEN) connects ATIC to AMPK within the Golgi/endosome protein network (GEN). Forty-five percent of the IR Golgi/endosome protein network have common heritable variants associated with type 2 diabetes, including ATIC and AMPK. We show that PTPLAD1 and AMPK are rapidly compartmentalized within the plasma membrane (PM) and Golgi/endosome fractions after insulin stimulation and that ATIC later accumulates in the Golgi/endosome fraction. Using an in vitro reconstitution system and siRNA-mediated partial knockdown of ATIC and PTPLAD1 in HEK293 cells, we show that both ATIC and PTPLAD1 affect IR tyrosine phosphorylation and endocytosis. We further show that insulin stimulation and ATIC knockdown readily increase the level of AMPK-Thr172 phosphorylation in IR complexes. We observed that IR internalization was markedly decreased after AMPKα2 knockdown, and treatment with the ATIC substrate AICAR, which is an allosteric activator of AMPK, increased IR endocytosis in cultured cells and in the liver. These results suggest the presence of a signaling mechanism that senses adenylate synthesis, ATP levels, and IR activation states and that acts in regulating IR autophosphorylation and endocytosis.
Collapse
Affiliation(s)
| | | | - Suzanne Fortier
- From the ‡Département de Pédiatrie, Laboratoire de Biologie Cellulaire
| | - Sébastien S Hébert
- §Département de Psychiatrie et Neurosciences, ¶Centre de Recherche du CHU de Québec, Centre-Mère-Enfant
| | - Isabelle Kelly
- ¶Centre de Recherche du CHU de Québec, Centre-Mère-Enfant, ‖Plateforme Protéomique de l'Est du Québec, Université Laval
| | - Christian R Landry
- **Institut de Biologie Intégrative et des Système (IBIS), PROTEO, Département de Biologie, Université Laval, Québec, QC, Canada
| | - Robert L Faure
- From the ‡Département de Pédiatrie, Laboratoire de Biologie Cellulaire, ¶Centre de Recherche du CHU de Québec, Centre-Mère-Enfant,
| |
Collapse
|
14
|
Xu E, Schwab M, Marette A. Role of protein tyrosine phosphatases in the modulation of insulin signaling and their implication in the pathogenesis of obesity-linked insulin resistance. Rev Endocr Metab Disord 2014; 15:79-97. [PMID: 24264858 DOI: 10.1007/s11154-013-9282-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Insulin resistance is a major disorder that links obesity to type 2 diabetes mellitus (T2D). It involves defects in the insulin actions owing to a reduced ability of insulin to trigger key signaling pathways in major metabolic tissues. The pathogenesis of insulin resistance involves several inhibitory molecules that interfere with the tyrosine phosphorylation of the insulin receptor and its downstream effectors. Among those, growing interest has been developed toward the protein tyrosine phosphatases (PTPs), a large family of enzymes that can inactivate crucial signaling effectors in the insulin signaling cascade by dephosphorylating their tyrosine residues. Herein we briefly review the role of several PTPs that have been shown to be implicated in the regulation of insulin action, and then focus on the Src homology 2 (SH2) domain-containing SHP1 and SHP2 enzymes, since recent reports have indicated major roles for these PTPs in the control of insulin action and glucose metabolism. Finally, the therapeutic potential of targeting PTPs for combating insulin resistance and alleviating T2D will be discussed.
Collapse
Affiliation(s)
- Elaine Xu
- Department of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Ste-Foy, Québec, Canada, G1V 4G2
| | | | | |
Collapse
|
15
|
Beauchemin N, Arabzadeh A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev 2013; 32:643-71. [DOI: 10.1007/s10555-013-9444-6] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Pálfy M, Reményi A, Korcsmáros T. Endosomal crosstalk: meeting points for signaling pathways. Trends Cell Biol 2012; 22:447-56. [PMID: 22796207 PMCID: PMC3430897 DOI: 10.1016/j.tcb.2012.06.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 12/30/2022]
Abstract
Endocytosis participates in downregulating incoming signals, but 'signaling endosomes' may also serve as physical platforms for crosstalk between signaling pathways. Here, we briefly review the role of endosomes in signaling crosstalk and suggest that endosome-associated scaffold proteins mediate this crosstalk. In addition, using a proteome-wide in silico approach - in which we analyze endosome-binding properties and the capacity of candidates to recruit signaling proteins from more than one distinct pathway - we extend the list of putative crosstalk-mediating endosomal scaffolds. Because endosomal crosstalk may be an important systems-level regulator of pathway communication, scaffold proteins that mediate this crosstalk could be potential targets for pharmacological intervention and synthetic engineering.
Collapse
Affiliation(s)
- Máté Pálfy
- Department of Genetics, Eötvös Loránd University, Pázmány P. s. 1/C, Budapest, H-1117, Hungary
| | - Attila Reményi
- Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/C, Budapest, H-1117, Hungary
| | - Tamás Korcsmáros
- Department of Genetics, Eötvös Loránd University, Pázmány P. s. 1/C, Budapest, H-1117, Hungary
- Department of Medical Chemistry, Semmelweis University, Tűzoltó u. 37-47, Budapest, H-1094, Hungary
| |
Collapse
|
17
|
Xu E, Charbonneau A, Rolland Y, Bellmann K, Pao L, Siminovitch KA, Neel BG, Beauchemin N, Marette A. Hepatocyte-specific Ptpn6 deletion protects from obesity-linked hepatic insulin resistance. Diabetes 2012; 61:1949-58. [PMID: 22698917 PMCID: PMC3402325 DOI: 10.2337/db11-1502] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The protein-tyrosine phosphatase Shp1 negatively regulates insulin action on glucose homeostasis in liver and muscle, but its potential role in obesity-linked insulin resistance has not been examined. To investigate the role of Shp1 in hepatic insulin resistance, we generated hepatocyte-specific Shp1 knockout mice (Ptpn6(H-KO)), which were subjected to extensive metabolic monitoring throughout an 8-week standard chow diet (SD) or high-fat diet (HFD) feeding. We report for the first time that Shp1 expression is upregulated in metabolic tissues of HFD-fed obese mice. When compared with their Shp1-expressing Ptpn6(f/f) littermates, Ptpn6(H-KO) mice exhibited significantly lowered fasting glycemia and heightened hepatic insulin sensitivity. After HFD feeding, Ptpn6(H-KO) mice developed comparable levels of obesity as Ptpn6(f/f) mice, but they were remarkably protected from liver insulin resistance, as revealed by euglycemic clamps and hepatic insulin signaling determinations. Although Ptpn6(H-KO) mice still acquired diet-induced peripheral insulin resistance, they were less hyperinsulinemic during a glucose tolerance test because of reduced insulin secretion. Ptpn6(H-KO) mice also exhibited increased insulin clearance in line with enhanced CC1 tyrosine phosphorylation in liver. These results show that hepatocyte Shp1 plays a critical role in the development of hepatic insulin resistance and represents a novel therapeutic target for obesity-linked diabetes.
Collapse
Affiliation(s)
- Elaine Xu
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Québec, Québec, Canada
- Department of Metabolism, Vascular and Renal Health Axis, Laval University Hospital Research Center, Québec, Québec, Canada
| | - Alexandre Charbonneau
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Québec, Québec, Canada
- Department of Metabolism, Vascular and Renal Health Axis, Laval University Hospital Research Center, Québec, Québec, Canada
| | - Yannève Rolland
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Québec, Québec, Canada
- Department of Metabolism, Vascular and Renal Health Axis, Laval University Hospital Research Center, Québec, Québec, Canada
| | - Kerstin Bellmann
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Québec, Québec, Canada
- Department of Metabolism, Vascular and Renal Health Axis, Laval University Hospital Research Center, Québec, Québec, Canada
| | - Lily Pao
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Katherine A. Siminovitch
- Department of Medicine, University of Toronto, Mount Sinai Hospital Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
| | - Benjamin G. Neel
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Beauchemin
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada
- Departments of Biochemistry, Medicine, and Oncology, McGill University, Montréal, Québec, Canada
| | - André Marette
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Québec, Québec, Canada
- Department of Metabolism, Vascular and Renal Health Axis, Laval University Hospital Research Center, Québec, Québec, Canada
- Corresponding author: André Marette,
| |
Collapse
|