1
|
Czaja AJ. Cellular senescence and its pathogenic and therapeutic implications in autoimmune hepatitis. Expert Rev Gastroenterol Hepatol 2024; 18:725-743. [PMID: 39575891 DOI: 10.1080/17474124.2024.2432480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION Senescent cells are characterized by replicative arrest and phenotypes that produce diverse pro-inflammatory and pro-oxidant mediators. The senescence of diverse hepatic cell types could constitute an unrecognized pathogenic mechanism and prognostic determinant in autoimmune hepatitis. The impact of cellular senescence in autoimmune hepatitis is unknown, and it may suggest adjunctive management strategies. AREAS COVERED This review describes the molecular mechanisms of cellular senescence, indicates its diagnostic features, suggests its consequences, presents possible therapeutic interventions, and encourages investigations of its pathogenic role and management in autoimmune hepatitis. Treatment prospects include elimination or reversal of senescent cells, generation of ectopic telomerase, reactivation of dormant telomerase, neutralization of specific pro-inflammatory secretory products, and mitigation of the effects of mitochondrial dysfunction. EXPERT OPINION The occurrence, nature, and consequences of cellular senescence in autoimmune hepatitis must be determined. The senescence of diverse hepatic cell types could affect the outcome of autoimmune hepatitis by impairing hepatic regeneration, intensifying liver inflammation, and worsening hepatic fibrosis. Cellular senescence could contribute to suboptimal responses during conventional glucocorticoid-based therapy. Interventions that target specific pro-inflammatory products of the senescent phenotype or selectively promote apoptosis of senescent cells may be preferred adjunctive treatments for autoimmune hepatitis depending on the cancer risk.
Collapse
Affiliation(s)
- Albert J Czaja
- Mayo Clinic, Department of Medicine, Division of Gastroenterology and Hepatology, Rochester, MN, USA
| |
Collapse
|
2
|
Wu Y, Yang Y, Lin Y, Ding Y, Liu Z, Xiang L, Picardo M, Zhang C. Emerging Role of Fibroblasts in Vitiligo: A Formerly Underestimated Rising Star. J Invest Dermatol 2024; 144:1696-1706. [PMID: 38493384 DOI: 10.1016/j.jid.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 03/18/2024]
Abstract
Vitiligo is a disfiguring depigmentation disorder characterized by loss of melanocytes. Although numerous studies have been conducted on the pathogenesis of vitiligo, the underlying mechanisms remain unclear. Although most studies have focused on melanocytes and keratinocytes, growing evidence suggests the involvement of dermal fibroblasts, residing deeper in the skin. This review aims to elucidate the role of fibroblasts in both the physiological regulation of skin pigmentation and their pathological contribution to depigmentation, with the goal of shedding light on the involvement of fibroblasts in vitiligo. The topics covered in this review include alterations in the secretome, premature senescence, autophagy dysfunction, abnormal extracellular matrix, autoimmunity, and metabolic changes.
Collapse
Affiliation(s)
- Yue Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yiwen Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yi Lin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yuecen Ding
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Ziqi Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Mauro Picardo
- Istituto Dermopatico Immacolata (IDI)- Istituto di Ricovero e Cura a Carattere Scientifico (RCCS), Rome, Italy.
| | - Chengfeng Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
3
|
Sui J, Boatz JC, Shi J, Hu Q, Li X, Zhang Y, Königshoff M, Kliment CR. Loss of ANT1 Increases Fibrosis and Epithelial Cell Senescence in Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2023; 69:556-569. [PMID: 37487137 PMCID: PMC10633847 DOI: 10.1165/rcmb.2022-0315oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 07/24/2023] [Indexed: 07/26/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by progressive lung scarring and remodeling. Although treatments exist that slow disease progression, IPF is irreversible, and there is no cure. Cellular senescence, a major hallmark of aging, has been implicated in IPF pathogenesis, and mitochondrial dysfunction is increasingly recognized as a driver of senescence. Adenine nucleotide translocases (ANTs) are abundant mitochondrial ATP-ADP transporters critical for regulating cell fate and maintaining mitochondrial function. We sought to determine how alterations in ANTs influence cellular senescence in pulmonary fibrosis. We found that SLC25A4 (solute carrier family 25 member 4) (ANT1) and SLC25A5 (ANT2) expression is reduced in the lungs of patients with IPF, particularly within alveolar type II (AT2) cells, by single-cell RNA sequencing and tissue staining. Loss of ANT1 by siRNA in lung epithelial cells resulted in increased senescence markers such as β-galactosidase and p21, with a reduction in the ratio of nicotinamide adenine dinucleotide to reduced nicotinamide adenine dinucleotide. Bleomycin-treated ANT1 knockdown cells also had increased senescence markers compared with bleomycin-treated control cells. Loss of ANT1 in AT2 cells resulted in a reduction in alveolar organoid growth, with an increase in p21 by staining. Global loss of ANT1 resulted in worse lung fibrosis and increased senescence in the bleomycin- and asbestos-induced mouse models of pulmonary fibrosis. In summary, loss of ANT1 contributes to IPF pathogenesis through mitochondrial dysfunction, increased senescence, and decreased regenerative capacity of AT2 cells, resulting in enhanced lung fibrosis. Modulation of ANTs presents a new therapeutic avenue that may alter cellular senescence pathways and limit pulmonary fibrosis.
Collapse
Affiliation(s)
- Justin Sui
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jennifer C Boatz
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jian Shi
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Qianjiang Hu
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiaoyun Li
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yingze Zhang
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Melanie Königshoff
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Corrine R Kliment
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
4
|
Chen W, Chiang J, Shang Z, Palchik G, Newman C, Zhang Y, Davis AJ, Lee H, Chen BPC. DNA-PKcs and ATM modulate mitochondrial ADP-ATP exchange as an oxidative stress checkpoint mechanism. EMBO J 2023; 42:e112094. [PMID: 36727301 PMCID: PMC10015379 DOI: 10.15252/embj.2022112094] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 02/03/2023] Open
Abstract
DNA-PKcs is a key regulator of DNA double-strand break repair. Apart from its canonical role in the DNA damage response, DNA-PKcs is involved in the cellular response to oxidative stress (OS), but its exact role remains unclear. Here, we report that DNA-PKcs-deficient human cells display depolarized mitochondria membrane potential (MMP) and reoriented metabolism, supporting a role for DNA-PKcs in oxidative phosphorylation (OXPHOS). DNA-PKcs directly interacts with mitochondria proteins ANT2 and VDAC2, and formation of the DNA-PKcs/ANT2/VDAC2 (DAV) complex supports optimal exchange of ADP and ATP across mitochondrial membranes to energize the cell via OXPHOS and to maintain MMP. Moreover, we demonstrate that the DAV complex temporarily dissociates in response to oxidative stress to attenuate ADP-ATP exchange, a rate-limiting step for OXPHOS. Finally, we found that dissociation of the DAV complex is mediated by phosphorylation of DNA-PKcs at its Thr2609 cluster by ATM kinase. Based on these findings, we propose that the coordination between the DAV complex and ATM serves as a novel oxidative stress checkpoint to decrease ROS production from mitochondrial OXPHOS and to hasten cellular recovery from OS.
Collapse
Affiliation(s)
- Wei‐Min Chen
- Division of Molecular Radiation Biology, Department of Radiation OncologyUniversity of Texas Southwestern Medical Center at DallasDallasTXUSA
- Department of Life ScienceNational Taiwan UniversityTaipeiTaiwan
| | - Jui‐Chung Chiang
- Division of Molecular Radiation Biology, Department of Radiation OncologyUniversity of Texas Southwestern Medical Center at DallasDallasTXUSA
- Department of Life ScienceNational Taiwan UniversityTaipeiTaiwan
| | - Zengfu Shang
- Division of Molecular Radiation Biology, Department of Radiation OncologyUniversity of Texas Southwestern Medical Center at DallasDallasTXUSA
| | - Guillermo Palchik
- Division of Molecular Radiation Biology, Department of Radiation OncologyUniversity of Texas Southwestern Medical Center at DallasDallasTXUSA
| | - Ciara Newman
- Division of Molecular Radiation Biology, Department of Radiation OncologyUniversity of Texas Southwestern Medical Center at DallasDallasTXUSA
| | - Yuanyuan Zhang
- Division of Molecular Radiation Biology, Department of Radiation OncologyUniversity of Texas Southwestern Medical Center at DallasDallasTXUSA
| | - Anthony J Davis
- Division of Molecular Radiation Biology, Department of Radiation OncologyUniversity of Texas Southwestern Medical Center at DallasDallasTXUSA
| | - Hsinyu Lee
- Department of Life ScienceNational Taiwan UniversityTaipeiTaiwan
| | - Benjamin PC Chen
- Division of Molecular Radiation Biology, Department of Radiation OncologyUniversity of Texas Southwestern Medical Center at DallasDallasTXUSA
| |
Collapse
|
5
|
Fujita Y, Iketani M, Ito M, Ohsawa I. Temporal changes in mitochondrial function and reactive oxygen species generation during the development of replicative senescence in human fibroblasts. Exp Gerontol 2022; 165:111866. [DOI: 10.1016/j.exger.2022.111866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/12/2022] [Accepted: 06/01/2022] [Indexed: 11/04/2022]
|
6
|
Mikuła-Pietrasik J, Rutecki S, Książek K. The functional multipotency of transforming growth factor β signaling at the intersection of senescence and cancer. Cell Mol Life Sci 2022; 79:196. [PMID: 35305149 PMCID: PMC11073081 DOI: 10.1007/s00018-022-04236-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
The transforming growth factor β (TGF-β) family of cytokines comprises a group of proteins, their receptors, and effector molecules that, in a coordinated manner, modulate a plethora of physiological and pathophysiological processes. TGF-β1 is the best known and plausibly most active representative of this group. It acts as an immunosuppressant, contributes to extracellular matrix remodeling, and stimulates tissue fibrosis, differentiation, angiogenesis, and epithelial-mesenchymal transition. In recent years, this cytokine has been established as a vital regulator of organismal aging and cellular senescence. Finally, the role of TGF-β1 in cancer progression is no longer in question. Because this protein is involved in so many, often overlapping phenomena, the question arises whether it can be considered a molecular bridge linking some of these phenomena together and governing their reciprocal interactions. In this study, we reviewed the literature from the perspective of the role of various TGF-β family members as regulators of a complex mutual interplay between senescence and cancer. These aspects are then considered in a broader context of remaining TGF-β-related functions and coexisting processes. The main narrative axis in this work is centered around the interaction between the senescence of normal peritoneal cells and ovarian cancer cells. The discussion also includes examples of TGF-β activity at the interface of other normal and cancer cell types.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Długa ½ Str, Poznań University of Medical Sciences, 61-848, Poznań, Poland
| | - Szymon Rutecki
- Department of Pathophysiology of Ageing and Civilization Diseases, Długa ½ Str, Poznań University of Medical Sciences, 61-848, Poznań, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Długa ½ Str, Poznań University of Medical Sciences, 61-848, Poznań, Poland.
| |
Collapse
|
7
|
Ritzenthaler JD, Torres-Gonzalez E, Zheng Y, Zelko IN, van Berkel V, Nunley DR, Kidane B, Halayko AJ, Summer R, Watson WH, Roman J. The profibrotic and senescence phenotype of old lung fibroblasts is reversed or ameliorated by genetic and pharmacological manipulation of Slc7a11 expression. Am J Physiol Lung Cell Mol Physiol 2022; 322:L449-L461. [PMID: 34984918 PMCID: PMC8917919 DOI: 10.1152/ajplung.00593.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Increased senescence and expression of profibrotic genes in old lung fibroblasts contribute to disrepair responses. We reported that primary lung fibroblasts from old mice have lower expression and activity of the cystine transporter Slc7a11/xCT than cells from young mice, resulting in changes in both the intracellular and extracellular redox environments. This study examines the hypothesis that low Slc7a11 expression in old lung fibroblasts promotes senescence and profibrotic gene expression. The levels of mRNA and protein of Slc7a11, senescence markers, and profibrotic genes were measured in primary fibroblasts from the lungs of old (24 mo) and young (3 mo) mice. In addition, the effects of genetic and pharmacological manipulation of Slc7a11 were investigated. We found that decreased expression of Slc7a11 in old cells was associated with elevated markers of senescence (p21, p16, p53, and β-galactosidase) and increased expression of profibrotic genes (Tgfb1, Smad3, Acta2, Fn1, Col1a1, and Col5a1). Silencing of Slc7a11 in young cells replicated the aging phenotype, whereas overexpression of Slc7a11 in old cells decreased expression of senescence and profibrotic genes. Young cells were induced to express the senescence and profibrotic phenotype by sulfasalazine, a Slc7a11 inhibitor, whereas treatment of old cells with sulforaphane, a Slc7a11 inducer, decreased senescence without affecting profibrotic genes. Like aging cells, idiopathic pulmonary fibrosis fibroblasts show decreased Slc7a11 expression and increased profibrotic markers. In short, old lung fibroblasts manifest a profibrotic and senescence phenotype that is modulated by genetic or pharmacological manipulation of Slc7a11.
Collapse
Affiliation(s)
- Jeffrey D. Ritzenthaler
- 1Division of Pulmonary, Allergy & Critical Care, Department of
Medicine, Center for Translational Medicine, The Jane & Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania
| | - Edilson Torres-Gonzalez
- 1Division of Pulmonary, Allergy & Critical Care, Department of
Medicine, Center for Translational Medicine, The Jane & Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania
| | - Yuxuan Zheng
- 2Department of Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky
| | - Igor N. Zelko
- 3Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Victor van Berkel
- 4Department of Thoracic Surgery, Lung Transplantation Program, University of Louisville, Louisville, Kentucky
| | - David R. Nunley
- 5Department of Medicine, Lung Transplantation Program, Ohio State University, Columbus, Ohio
| | - Biniam Kidane
- 6Section of Thoracic Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew J. Halayko
- 7Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ross Summer
- 1Division of Pulmonary, Allergy & Critical Care, Department of
Medicine, Center for Translational Medicine, The Jane & Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania
| | - Walter H. Watson
- 2Department of Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky,8Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Jesse Roman
- 1Division of Pulmonary, Allergy & Critical Care, Department of
Medicine, Center for Translational Medicine, The Jane & Leonard Korman Respiratory Institute, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Fu R, Dou Z, Li N, Zhang J, Li Z, Yang P. Avenanthramide C induces cellular senescence in colorectal cancer cells via suppressing β-catenin-mediated the transcription of miR-183/96/182 cluster. Biochem Pharmacol 2022; 199:115021. [DOI: 10.1016/j.bcp.2022.115021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/06/2022] [Accepted: 03/23/2022] [Indexed: 12/13/2022]
|
9
|
Zhong R, He H, Jin M, Lu Z, Deng Y, Liu C, Shen N, Li J, Wang H, Ying P, Li B, Zeng Q, Lu Q, Cheng L, Zhu Y, Miao X, Tian J. Genome-wide gene-bisphenol A, F and triclosan interaction analyses on urinary oxidative stress markers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150753. [PMID: 34619205 DOI: 10.1016/j.scitotenv.2021.150753] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Bisphenols and triclosan (TCS) are common endocrine disrupters (EDCs) that may induce oxidative stress. However, there is limited information as to whether these EDCs interact with genetic variants to modify the levels of oxidative stress on a genome-wide scale. METHODS We first performed a genome-wide scan among a Chinese population and also measured three urinary EDCs, including bisphenol A (BPA), bisphenol F (BPF) and TCS, and three urinary oxidative stress markers [4-hydroxy-2-nonenal-mercapturic acid (HNE-MA), 8-iso-prostaglandin-F2α (8-isoPGF2α) and 8-hydroxy-deoxyguanosine (8-OHdG)]. Subsequently, we examined interactions between three urinary EDCs and nearly 4.6 million genetic variants for three urinary oxidative stress markers by the general linear model. RESULTS Urinary BPA, BPF and TCS were positively associated with HNE-MA, 8-isoPGF2α and 8-OHdG. Significant rs6855040 (4p15.32/between SNORA75B and QDPR)-BPA, rs1112943 (4q35.1/SNX25)-TCS interactions were associated with the 8-isoPGF2α levels (all P < 5 × 10-8). In addition, rs4656116 (1p22.3/CACL1), rs16958760 (17p11.2/between USP43 and DHRS7C) and rs11651078 (17p11.2/LOC339260) showed significant gene-TCS interactions with 8-OHdG (all P < 5 × 10-8). The gene-level analysis found significant interaction between SNX25 and TCS for 8-isoPGF2α levels (P < 2.12 × 10-6). CONCLUSION Our results identify several gene-EDCs interactions for oxidative stress, highlighting that EDCs may modify the effect of genetic variants on oxidative stress.
Collapse
Affiliation(s)
- Rong Zhong
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng He
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Jin
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Deng
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| | - Chong Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoxue Wang
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pingting Ying
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Li
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Zeng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Xiaoping Miao
- School of Health Sciences, Wuhan University, Wuhan 430071, China
| | - Jianbo Tian
- School of Health Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
10
|
Cecchi AC, Haidar A, Marin I, Kwartler CS, Prakash SK, Milewicz DM. Aortic root dilatation and dilated cardiomyopathy in an adult with Tatton-Brown-Rahman syndrome. Am J Med Genet A 2022; 188:628-634. [PMID: 34644003 PMCID: PMC9175539 DOI: 10.1002/ajmg.a.62541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/01/2021] [Accepted: 09/21/2021] [Indexed: 02/03/2023]
Abstract
Tatton-Brown-Rahman syndrome is an autosomal dominant overgrowth syndrome caused by pathogenic DNMT3A variants in the germline. Clinical findings of tall stature due to postnatal overgrowth, intellectual disability, and characteristic facial features, are the most consistent findings observed in patients with Tatton-Brown-Rahman syndrome (TBRS). Since the syndrome was first described in 2014, an expanding spectrum of neuropsychiatric, musculoskeletal, neurological, and cardiovascular manifestations have been reported. However, most TBRS cases described in the literature are children with de novo DNMT3A variants, signaling a need to better characterize the phenotypes in adults. In this report, we describe a 34 year old referred to genetics for possible Marfan syndrome with aortic root dilatation, mitral valve prolapse, and dilated cardiomyopathy, who was diagnosed with TBRS due to a heterozygous de novo DNMT3A variant. This represents the third reported TBRS case with aortic root dilation and the second with cardiomyopathy. Collectively, these data provide evidence for an association with aortic disease and cardiomyopathy, highlight the clinical overlap with Marfan syndrome, and suggest that cardiovascular surveillance into adulthood is indicated.
Collapse
Affiliation(s)
- Alana C. Cecchi
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School University of Texas Health Science Center at Houston Texas USA
| | - Amier Haidar
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School University of Texas Health Science Center at Houston Texas USA
| | - Isabella Marin
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School University of Texas Health Science Center at Houston Texas USA
| | - Callie S. Kwartler
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School University of Texas Health Science Center at Houston Texas USA
| | - Siddharth K. Prakash
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School University of Texas Health Science Center at Houston Texas USA
| | - Dianna M. Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School University of Texas Health Science Center at Houston Texas USA
| |
Collapse
|
11
|
Roger I, Milara J, Belhadj N, Cortijo J. Senescence Alterations in Pulmonary Hypertension. Cells 2021; 10:3456. [PMID: 34943963 PMCID: PMC8700581 DOI: 10.3390/cells10123456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is the arrest of normal cell division and is commonly associated with aging. The interest in the role of cellular senescence in lung diseases derives from the observation of markers of senescence in chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (IPF), and pulmonary hypertension (PH). Accumulation of senescent cells and the senescence-associated secretory phenotype in the lung of aged patients may lead to mild persistent inflammation, which results in tissue damage. Oxidative stress due to environmental exposures such as cigarette smoke also promotes cellular senescence, together with additional forms of cellular stress such as mitochondrial dysfunction and endoplasmic reticulum stress. Growing recent evidence indicate that senescent cell phenotypes are observed in pulmonary artery smooth muscle cells and endothelial cells of patients with PH, contributing to pulmonary artery remodeling and PH development. In this review, we analyze the role of different senescence cell phenotypes contributing to the pulmonary artery remodeling process in different PH clinical entities. Different molecular pathway activation and cellular functions derived from senescence activation will be analyzed and discussed as promising targets to develop future senotherapies as promising treatments to attenuate pulmonary artery remodeling in PH.
Collapse
Affiliation(s)
- Inés Roger
- Centro de Investigación en Red Enfermedades Respiratorias CIBERES, Health Institute Carlos III, 28029 Valencia, Spain;
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Javier Milara
- Centro de Investigación en Red Enfermedades Respiratorias CIBERES, Health Institute Carlos III, 28029 Valencia, Spain;
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain;
- Pharmacy Unit, University General Hospital Consortium of Valencia, 46014 Valencia, Spain
| | - Nada Belhadj
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Julio Cortijo
- Centro de Investigación en Red Enfermedades Respiratorias CIBERES, Health Institute Carlos III, 28029 Valencia, Spain;
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain;
- Research and Teaching Unit, University General Hospital Consortium, 46014 Valencia, Spain
| |
Collapse
|
12
|
Gao Y, Li Y, Li S, Liang X, Ren Z, Yang X, Zhang B, Hu Y, Yang X. Systematic discovery of signaling pathways linking immune activation to schizophrenia. iScience 2021; 24:103209. [PMID: 34746692 PMCID: PMC8551081 DOI: 10.1016/j.isci.2021.103209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/21/2021] [Accepted: 09/29/2021] [Indexed: 11/06/2022] Open
Abstract
Immune activation has been shown to play a critical role in the development of schizophrenia; however its underlying mechanism remains unknown. Our report demonstrates a high-quality protein interaction network for schizophrenia (SCZ Network), constructed using our “neighborhood walk” approach in combination with “random walk with restart”. The spatiotemporal expression pattern of the genes in this disease network revealed two developmental stages sensitive to perturbation by immune activation: mid-to late gestation, and adolescence. Furthermore, we induced immune activation at these stages in mice, carried out transcriptome sequencing on the mouse brains, and illustrated clear potential molecular pathways and key regulators correlating maternal immune activation during gestation and an increased risk for schizophrenia after a second immune activation at puberty. This work provides not only valuable resources for the study on molecular mechanisms underlying schizophrenia, but also a systematic strategy for the discovery of molecular pathways of complex mental disorders. A high-quality molecular network for schizophrenia (SCZ Network) A landscape of molecular pathways linking immune activation and schizophrenia The spatiotemporal network dynamics revealing stages susceptible to immune activation Identification of the molecular pathways and regulators in the immune-activated brain
Collapse
Affiliation(s)
- Yue Gao
- Center for Genetics and Developmental Systems Biology, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence and Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanjun Li
- Center for Genetics and Developmental Systems Biology, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence and Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - ShuangYan Li
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaozhen Liang
- Center for Genetics and Developmental Systems Biology, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhonglu Ren
- Center for Genetics and Developmental Systems Biology, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoxue Yang
- Center for Genetics and Developmental Systems Biology, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bin Zhang
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Xinping Yang
- Center for Genetics and Developmental Systems Biology, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence and Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
13
|
Hung CC, Huang HI, Hung CM, Moi SH. Identification of Candidate Genes in Early-Stage Invasive Ductal Carcinoma Patients with High-Risk Mortality Using Genes Commonly Involved in Breast Cancer: A Retrospective Study. Public Health Genomics 2021; 25:1-10. [PMID: 34634790 DOI: 10.1159/000519140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 08/09/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Invasive ductal carcinoma (IDC) of the breast is a heterogeneous disease characterized by multiple subtypes. IDC survival is highly impacted by tumor burden, molecular subtypes, and gene profiles. Gene mutation is a type of genomic instability regarded as having a considerable effect on IDC prognosis. Using integrated survival analysis, this study identified candidate genes and a high-risk group of patients with early-stage IDC to provide further understanding of the genetic characteristics associated with poor survival. METHODS The gene mutation profiles, baseline demographics, clinicopathologic variables, and treatment characteristics of the early-stage IDC subpopulation were downloaded from an open access data platform. These data were analyzed for a total of 444 patients. In total, 40 genes commonly involved in IDC were listed, and the genes exhibiting significant differences (as estimated using the log-rank test) were selected as the candidate genes. RESULTS The patients were divided into control, low-risk, and high-risk groups according to their gene mutation profiles. The 5-year overall survival rates of low-risk, control, and high-risk patients were 97.4%, 96.1%, and 73.0%, respectively. The high-risk group had a significantly higher risk of poor overall -survival (adjusted hazard ratio = 6.57, 95% confidence interval = 1.51-28.7, p = 0.012) than that of the control group, and the low-risk group did not have a significant survival difference compared with control group. CONCLUSIONS This study proposed an integrative approach for the identification of candidate genes for risk assessment of overall survival in these patients through typical survival analysis methods. The 14 candidate genes selected are particularly involved in cell-cycle processes, deoxyribonucleic acid repair, and drug resistance; their mutations were found to be generally associated with disease progression or therapeutic resistance, which is commonly associated with poor overall survival outcomes in IDC.
Collapse
Affiliation(s)
- Chih-Chiang Hung
- Division of Breast Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Applied Cosmetology, College of Human Science and Social Innovation, Hungkuang University, Taichung, Taiwan
| | - Hsin-I Huang
- Center of Cancer Program Development, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chao-Ming Hung
- Department of General Surgery, E-Da Cancer Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Sin-Hua Moi
- Center of Cancer Program Development, E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Kliment CR, Nguyen JMK, Kaltreider MJ, Lu Y, Claypool SM, Radder JE, Sciurba FC, Zhang Y, Gregory AD, Iglesias PA, Sidhaye VK, Robinson DN. Adenine nucleotide translocase regulates airway epithelial metabolism, surface hydration and ciliary function. J Cell Sci 2021; 134:jcs.257162. [PMID: 33526710 DOI: 10.1242/jcs.257162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/13/2021] [Indexed: 01/10/2023] Open
Abstract
Airway hydration and ciliary function are critical to airway homeostasis and dysregulated in chronic obstructive pulmonary disease (COPD), which is impacted by cigarette smoking and has no therapeutic options. We utilized a high-copy cDNA library genetic selection approach in the amoeba Dictyostelium discoideum to identify genetic protectors to cigarette smoke. Members of the mitochondrial ADP/ATP transporter family adenine nucleotide translocase (ANT) are protective against cigarette smoke in Dictyostelium and human bronchial epithelial cells. Gene expression of ANT2 is reduced in lung tissue from COPD patients and in a mouse smoking model, and overexpression of ANT1 and ANT2 resulted in enhanced oxidative respiration and ATP flux. In addition to the presence of ANT proteins in the mitochondria, they reside at the plasma membrane in airway epithelial cells and regulate airway homeostasis. ANT2 overexpression stimulates airway surface hydration by ATP and maintains ciliary beating after exposure to cigarette smoke, both of which are key functions of the airway. Our study highlights a potential for upregulation of ANT proteins and/or of their agonists in the protection from dysfunctional mitochondrial metabolism, airway hydration and ciliary motility in COPD.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Corrine R Kliment
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA .,Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jennifer M K Nguyen
- Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mary Jane Kaltreider
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - YaWen Lu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Josiah E Radder
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Frank C Sciurba
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yingze Zhang
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alyssa D Gregory
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Pablo A Iglesias
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Venkataramana K Sidhaye
- Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Environmental Health Sciences and Engineering, Johns Hopkins University School of Public Health, Baltimore, MD 21205, USA
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA .,Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
15
|
Increased immunosuppression impairs tissue homeostasis with aging and age-related diseases. J Mol Med (Berl) 2020; 99:1-20. [PMID: 33025106 PMCID: PMC7782450 DOI: 10.1007/s00109-020-01988-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 01/10/2023]
Abstract
Abstract Chronic low-grade inflammation is a common hallmark of the aging process and many age-related diseases. There is substantial evidence that persistent inflammation is associated with a compensatory anti-inflammatory response which prevents excessive tissue damage. Interestingly, the inflammatory state encountered with aging, called inflammaging, is associated with the anti-inflammaging process. The age-related activation of immunosuppressive network includes an increase in the numbers of myeloid-derived suppressor cells (MDSC), regulatory T cells (Treg), and macrophages (Mreg/M2c). Immunosuppressive cells secrete several anti-inflammatory cytokines, e.g., TGF-β and IL-10, as well as reactive oxygen and nitrogen species (ROS/RNS). Moreover, immunosuppressive cells suppress the function of effector immune cells by catabolizing l-arginine and tryptophan through the activation of arginase 1 (ARG1) and indoleamine 2,3-dioxygenase (IDO), respectively. Unfortunately, the immunosuppressive armament also induces harmful bystander effects in neighboring cells by impairing host tissue homeostasis. For instance, TGF-β signaling can trigger many age-related degenerative changes, e.g., cellular senescence, fibrosis, osteoporosis, muscle atrophy, and the degeneration of the extracellular matrix. In addition, changes in the levels of ROS, RNS, and the metabolites of the kynurenine pathway can impair tissue homeostasis. This review will examine in detail the harmful effects of the immunosuppressive cells on host tissues. It seems that this age-related immunosuppression prevents inflammatory damage but promotes the tissue degeneration associated with aging and age-related diseases. Key messages • Low-grade inflammation is associated with the aging process and age-related diseases. • Persistent inflammation activates compensatory immunosuppression with aging. • The numbers of immunosuppressive cells increase with aging and age-related diseases. • Immunosuppressive mechanisms evoke harmful bystander effects in host tissues. • Immunosuppression promotes tissue degeneration with aging and age-related diseases.
Collapse
|
16
|
Pellegrino-Coppola D. Regulation of the mitochondrial permeability transition pore and its effects on aging. MICROBIAL CELL (GRAZ, AUSTRIA) 2020; 7:222-233. [PMID: 32904375 PMCID: PMC7453641 DOI: 10.15698/mic2020.09.728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 11/30/2022]
Abstract
Aging is an evolutionarily conserved process and is tightly connected to mitochondria. To uncover the aging molecular mechanisms related to mitochondria, different organisms have been extensively used as model systems. Among these, the budding yeast Saccharomyces cerevisiae has been reported multiple times as a model of choice when studying cellular aging. In particular, yeast provides a quick and trustworthy system to identify shared aging genes and pathway patterns. In this viewpoint on aging and mitochondria, I will focus on the mitochondrial permeability transition pore (mPTP), which has been reported and proposed as a main player in cellular aging. I will make several parallelisms with yeast to highlight how this unicellular organism can be used as a guidance system to understand conserved cellular and molecular events in multicellular organisms such as humans. Overall, a thread connecting the preservation of mitochondrial functionality with the activity of the mPTP emerges in the regulation of cell survival and cell death, which in turn could potentially affect aging and aging-related diseases.
Collapse
|
17
|
Du X, Liu L, Li Q, Zhang L, Pan Z, Li Q. NORFA, long intergenic noncoding RNA, maintains sow fertility by inhibiting granulosa cell death. Commun Biol 2020; 3:131. [PMID: 32188888 PMCID: PMC7080823 DOI: 10.1038/s42003-020-0864-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
Long intergenic non-coding RNAs (lincRNAs) have been proved to be involved in regulating female reproduction. However, to what extent lincRNAs are involved in ovarian functions and fertility is incompletely understood. Here we show that a lincRNA, NORFA is involved in granulosa cell apoptosis, follicular atresia and sow fertility. We found that NORFA was down-regulated during follicular atresia, and inhibited granulosa cell apoptosis. NORFA directly interacted with miR-126 and thereby preventing it from binding to TGFBR2 3'-UTR. miR-126 enhanced granulosa cell apoptosis by attenuating NORFA-induced TGF-β signaling pathway. Importantly, a breed-specific 19-bp duplication was detected in NORFA promoter, which proved association with sow fertility through enhancing transcription activity of NORFA by recruiting transcription factor NFIX. In summary, our findings identified a candidate lincRNA for sow prolificacy, and provided insights into the mechanism of follicular atresia and female fertility.
Collapse
Affiliation(s)
- Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lu Liu
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Qiqi Li
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
18
|
Lin AE, Alali A, Starr LJ, Shah N, Beavis A, Pereira EM, Lindsay ME, Klugman S. Gain-of-function pathogenic variants in SMAD4 are associated with neoplasia in Myhre syndrome. Am J Med Genet A 2019; 182:328-337. [PMID: 31837202 DOI: 10.1002/ajmg.a.61430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 12/16/2022]
Abstract
Myhre syndrome is an increasingly diagnosed rare syndrome that is caused by one of two specific heterozygous gain-of-function pathogenic variants in SMAD4. The phenotype includes short stature, characteristic facial appearance, hearing loss, laryngotracheal stenosis, arthritis, skeletal abnormalities, learning and social challenges, distinctive cardiovascular defects, and a striking fibroproliferative response in the ear canals, airways, and serosal cavities (peritoneum, pleura, pericardium). Confirmation of the clinical diagnosis is usually prompted by the characteristic appearance with developmental delay and autistic-like behavior using targeted gene sequencing or by whole exome sequencing. We describe six patients (two not previously reported) with molecularly confirmed Myhre syndrome and neoplasia. Loss-of-function pathogenic variants in SMAD4 cause juvenile polyposis syndrome and we hypothesize that the gain-of-function pathogenic variants observed in Myhre syndrome may contribute to neoplasia in the patients reported herein. The frequency of neoplasia (9.8%, 6/61) in this series (two new, four reported patients) and endometrial cancer (8.8%, 3/34, mean age 40 years) in patients with Myhre syndrome, raises the possibility of cancer susceptibility in these patients. We alert clinicians to the possibility of detecting this syndrome when cancer screening panels are used. We propose that patients with Myhre syndrome are more susceptible to neoplasia, encourage increased awareness, and suggest enhanced clinical monitoring.
Collapse
Affiliation(s)
- Angela E Lin
- Medical Genetics Unit, MassGeneral Hospital for Children, Boston, Massachusetts
| | - Abdulrazak Alali
- Division of Pediatric Genetics, Department of Pediatrics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York.,Division of Genetics, Department of Pediatrics, Akron Children's Hospital, Akron, Ohio
| | - Lois J Starr
- Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska
| | - Nidhi Shah
- Harvard Medical School Genetics Training Program, Boston, Massachusetts
| | - Anna Beavis
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland
| | - Elaine M Pereira
- Division of Pediatric Genetics, Department of Pediatrics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York.,Division of Clinical Genetics, Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Mark E Lindsay
- Thoracic Aortic and Cardiovascular Genetics Centers, Massachusetts General Hospital, Boston, Massachusetts
| | - Susan Klugman
- Division of Reproductive and Medical Genetics, Department of Obstetrics & Gynecology and Women's Health, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
19
|
Hubackova S, Magalhaes Novais S, Davidova E, Neuzil J, Rohlena J. Mitochondria-driven elimination of cancer and senescent cells. Biol Chem 2019; 400:141-148. [PMID: 30281511 DOI: 10.1515/hsz-2018-0256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/20/2018] [Indexed: 01/07/2023]
Abstract
Mitochondria and oxidative phosphorylation (OXPHOS) are emerging as intriguing targets for the efficient elimination of cancer cells. The specificity of this approach is aided by the capacity of non-proliferating non-cancerous cells to withstand oxidative insult induced by OXPHOS inhibition. Recently we discovered that mitochondrial targeting can also be employed to eliminate senescent cells, where it breaks the interplay between OXPHOS and ATP transporters that appear important for the maintenance of mitochondrial morphology and viability in the senescent setting. Hence, mitochondria/OXPHOS directed pharmacological interventions show promise in several clinically-relevant scenarios that call for selective removal of cancer and senescent cells.
Collapse
Affiliation(s)
- Sona Hubackova
- Molecular Therapy Group, Institute of Biotechnology, Czech Academy of Sciences, 252 50 Vestec, Prague-West, Czech Republic
| | - Silvia Magalhaes Novais
- Molecular Therapy Group, Institute of Biotechnology, Czech Academy of Sciences, 252 50 Vestec, Prague-West, Czech Republic
| | - Eliska Davidova
- Molecular Therapy Group, Institute of Biotechnology, Czech Academy of Sciences, 252 50 Vestec, Prague-West, Czech Republic
| | - Jiri Neuzil
- Molecular Therapy Group, Institute of Biotechnology, Czech Academy of Sciences, 252 50 Vestec, Prague-West, Czech Republic.,School of Medical Science, Griffith University, Southport 4222, Qld, Australia
| | - Jakub Rohlena
- Molecular Therapy Group, Institute of Biotechnology, Czech Academy of Sciences, 252 50 Vestec, Prague-West, Czech Republic
| |
Collapse
|
20
|
Mrazkova B, Dzijak R, Imrichova T, Kyjacova L, Barath P, Dzubak P, Holub D, Hajduch M, Nahacka Z, Andera L, Holicek P, Vasicova P, Sapega O, Bartek J, Hodny Z. Induction, regulation and roles of neural adhesion molecule L1CAM in cellular senescence. Aging (Albany NY) 2019; 10:434-462. [PMID: 29615539 PMCID: PMC5892697 DOI: 10.18632/aging.101404] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/22/2018] [Indexed: 12/12/2022]
Abstract
Aging involves tissue accumulation of senescent cells (SC) whose elimination through senolytic approaches may evoke organismal rejuvenation. SC also contribute to aging-associated pathologies including cancer, hence it is imperative to better identify and target SC. Here, we aimed to identify new cell-surface proteins differentially expressed on human SC. Besides previously reported proteins enriched on SC, we identified 78 proteins enriched and 73 proteins underrepresented in replicatively senescent BJ fibroblasts, including L1CAM, whose expression is normally restricted to the neural system and kidneys. L1CAM was: 1) induced in premature forms of cellular senescence triggered chemically and by gamma-radiation, but not in Ras-induced senescence; 2) induced upon inhibition of cyclin-dependent kinases by p16INK4a; 3) induced by TGFbeta and suppressed by RAS/MAPK(Erk) signaling (the latter explaining the lack of L1CAM induction in RAS-induced senescence); and 4) induced upon downregulation of growth-associated gene ANT2, growth in low-glucose medium or inhibition of the mevalonate pathway. These data indicate that L1CAM is controlled by a number of cell growth- and metabolism-related pathways during SC development. Functionally, SC with enhanced surface L1CAM showed increased adhesion to extracellular matrix and migrated faster. Our results provide mechanistic insights into senescence of human cells, with implications for future senolytic strategies.
Collapse
Affiliation(s)
- Blanka Mrazkova
- Department of Genome Integrity, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic
| | - Rastislav Dzijak
- Department of Genome Integrity, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic
| | - Terezie Imrichova
- Department of Genome Integrity, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic
| | - Lenka Kyjacova
- Department of Genome Integrity, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic
| | - Peter Barath
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava 84538, Slovakia
| | - Petr Dzubak
- Institute of Molecular and Translational Medicine, Palacky University, Olomouc 77147, Czech Republic
| | - Dusan Holub
- Institute of Molecular and Translational Medicine, Palacky University, Olomouc 77147, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Palacky University, Olomouc 77147, Czech Republic
| | - Zuzana Nahacka
- Laboratory of Molecular Therapy, Institute of Biotechnology of the ASCR, Prague 14220, Czech Republic
| | - Ladislav Andera
- Laboratory of Molecular Therapy, Institute of Biotechnology of the ASCR, Prague 14220, Czech Republic
| | - Petr Holicek
- Laboratory of Molecular Therapy, Institute of Biotechnology of the ASCR, Prague 14220, Czech Republic
| | - Pavla Vasicova
- Department of Genome Integrity, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic
| | - Olena Sapega
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic
| | - Jiri Bartek
- Department of Genome Integrity, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic.,Danish Cancer Society Research Center, Copenhagen DK-2100, Denmark.,Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics of the ASCR, Prague 14220, Czech Republic
| |
Collapse
|
21
|
Wang Y, Chen S, Yan Z, Pei M. A prospect of cell immortalization combined with matrix microenvironmental optimization strategy for tissue engineering and regeneration. Cell Biosci 2019; 9:7. [PMID: 30627420 PMCID: PMC6321683 DOI: 10.1186/s13578-018-0264-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Cellular senescence is a major hurdle for primary cell-based tissue engineering and regenerative medicine. Telomere erosion, oxidative stress, the expression of oncogenes and the loss of tumor suppressor genes all may account for the cellular senescence process with the involvement of various signaling pathways. To establish immortalized cell lines for research and clinical use, strategies have been applied including internal genomic or external matrix microenvironment modification. Considering the potential risks of malignant transformation and tumorigenesis of genetic manipulation, environmental modification methods, especially the decellularized cell-deposited extracellular matrix (dECM)-based preconditioning strategy, appear to be promising for tissue engineering-aimed cell immortalization. Due to few review articles focusing on this topic, this review provides a summary of cell senescence and immortalization and discusses advantages and limitations of tissue engineering and regeneration with the use of immortalized cells as well as a potential rejuvenation strategy through combination with the dECM approach.
Collapse
Affiliation(s)
- Yiming Wang
- 1Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196 USA.,2Department of Orthopaedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Song Chen
- 3Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, 610083 Sichuan China
| | - Zuoqin Yan
- 2Department of Orthopaedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Ming Pei
- 1Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196 USA.,4WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|
22
|
Malavolta M, Pierpaoli E, Giacconi R, Basso A, Cardelli M, Piacenza F, Provinciali M. Anti-inflammatory Activity of Tocotrienols in Age-related Pathologies: A SASPected Involvement of Cellular Senescence. Biol Proced Online 2018; 20:22. [PMID: 30479579 PMCID: PMC6247629 DOI: 10.1186/s12575-018-0087-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/11/2018] [Indexed: 12/11/2022] Open
Abstract
Tocotrienols (T3) have been shown to represent a very important part of the vitamin E family since they have opened new opportunities to prevent or treat a multitude of age-related chronic diseases. The beneficial effects of T3 include the amelioration of lipid profile, the promotion of Nrf2 mediated cytoprotective activity and the suppression of inflammation. All these effects may be the consequence of the ability of T3 to target multiple pathways. We here propose that these effects may be the result of a single target of T3, namely senescent cells. Indeed, T3 may act by a direct suppression of the senescence-associated secretory phenotype (SASP) produced by senescent cells, mediated by inhibition of NF-kB and mTOR, or may potentially remove the origin of the SASP trough senolysis (selective death of senescent cells). Further studies addressed to investigate the impact of T3 on cellular senescence “in vitro” as well as in experimental models of age-related diseases “in vivo” are clearly encouraged.
Collapse
Affiliation(s)
- Marco Malavolta
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, via Birarelli 8, 60121 Ancona, Italy
| | - Elisa Pierpaoli
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, via Birarelli 8, 60121 Ancona, Italy
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, via Birarelli 8, 60121 Ancona, Italy
| | - Andrea Basso
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, via Birarelli 8, 60121 Ancona, Italy
| | - Maurizio Cardelli
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, via Birarelli 8, 60121 Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, via Birarelli 8, 60121 Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, via Birarelli 8, 60121 Ancona, Italy
| |
Collapse
|
23
|
Richardson L, Dixon CL, Aguilera-Aguirre L, Menon R. Oxidative stress-induced TGF-beta/TAB1-mediated p38MAPK activation in human amnion epithelial cells. Biol Reprod 2018; 99:1100-1112. [PMID: 29893818 PMCID: PMC7190655 DOI: 10.1093/biolre/ioy135] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/04/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023] Open
Abstract
Term and preterm parturition are associated with oxidative stress (OS)-induced p38 mitogen-activated protein kinase (p38MAPK)-mediated fetal tissue (amniochorion) senescence. p38MAPK activation is a complex cell- and stimulant-dependent process. Two independent pathways of OS-induced p38MAPK activation were investigated in amnion epithelial cells (AECs) in response to cigarette smoke extract (CSE: a validated OS inducer in fetal cells): (1) the OS-mediated oxidation of apoptosis signal-regulating kinase (ASK)-1 bound Thioredoxin (Trx[SH]2) dissociates this complex, creating free and activated ASK1-signalosome and (2) transforming growth factor-mediated activation of (TGF)-beta-activated kinase (TAK)1 and TGF-beta-activated kinase 1-binding protein (TAB)1. AECs isolated from normal term, not-in-labor fetal membranes increased p38MAPK in response to CSE and downregulated it in response to antioxidant N-acetylcysteine. In AECs, both Trx and ASK1 were localized; however, they remained dissociated and not complexed, regardless of conditions. Silencing either ASK1 or its downstream effectors (MKK3/6) did not affect OS-induced p38MAPK activation. Conversely, OS increased TGF-beta's release from AECs and increased phosphorylation of both p38MAPK and TAB1. Silencing of TAB1, but not TAK1, prevented p38MAPK activation, which is indicative of TAB1-mediated autophosphorylation of p38MAPK, an activation mechanism seldom seen. OS-induced p38MAPK activation in AECs is ASK1-Trx signalosome-independent and is mediated by the TGF-beta pathway. This knowledge will help to design strategies to reduce p38MAPK activation-associated pregnancy risks.
Collapse
Affiliation(s)
- Lauren Richardson
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch, Galveston, Texas, USA
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Tx, 77550
| | - Christopher Luke Dixon
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Leopoldo Aguilera-Aguirre
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Perinatal Research, The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
24
|
Wei W, Ji S. Cellular senescence: Molecular mechanisms and pathogenicity. J Cell Physiol 2018; 233:9121-9135. [PMID: 30078211 DOI: 10.1002/jcp.26956] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
Cellular senescence is the arrest of normal cell division. Oncogenic genes and oxidative stress, which cause genomic DNA damage and generation of reactive oxygen species, lead to cellular senescence. The senescence-associated secretory phenotype is a distinct feature of senescence. Senescence is normally involved in the embryonic development. Senescent cells can communicate with immune cells to invoke an immune response. Senescence emerges during the aging process in several tissues and organs. In fact, increasing evidence shows that cellular senescence is implicated in aging-related diseases, such as nonalcoholic fatty liver disease, obesity and diabetes, pulmonary hypertension, and tumorigenesis. Cellular senescence can also be induced by microbial infection. During cellular senescence, several signaling pathways, including those of p53, nuclear factor-κB (NF-κB), mammalian target of rapamycin, and transforming growth factor-beta, play important roles. Accumulation of senescent cells can trigger chronic inflammation, which may contribute to the pathological changes in the elderly. Given the variety of deleterious effects caused by cellular senescence in humans, strategies have been proposed to control senescence. In this review, we will focus on recent studies to provide a brief introduction to cellular senescence, including associated signaling pathways and pathology.
Collapse
Affiliation(s)
- Wenqiang Wei
- Laboratory of Cell Signal Transduction, Basic Medical School, Henan University, Kaifeng, Henan, China.,Department of Microbiology, Basic Medical School, Henan University, Kaifeng, Henan, China
| | - Shaoping Ji
- Laboratory of Cell Signal Transduction, Basic Medical School, Henan University, Kaifeng, Henan, China
| |
Collapse
|
25
|
Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2. Cell Death Differ 2018; 26:276-290. [PMID: 29786070 PMCID: PMC6329828 DOI: 10.1038/s41418-018-0118-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 02/16/2018] [Accepted: 04/03/2018] [Indexed: 02/05/2023] Open
Abstract
Cellular senescence is a form of cell cycle arrest that limits the proliferative potential of cells, including tumour cells. However, inability of immune cells to subsequently eliminate senescent cells from the organism may lead to tissue damage, inflammation, enhanced carcinogenesis and development of age-related diseases. We found that the anticancer agent mitochondria-targeted tamoxifen (MitoTam), unlike conventional anticancer agents, kills cancer cells without inducing senescence in vitro and in vivo. Surprisingly, it also selectively eliminates both malignant and non-cancerous senescent cells. In naturally aged mice treated with MitoTam for 4 weeks, we observed a significant decrease of senescence markers in all tested organs compared to non-treated animals. Mechanistically, we found that the susceptibility of senescent cells to MitoTam is linked to a very low expression level of adenine nucleotide translocase-2 (ANT2), inherent to the senescent phenotype. Restoration of ANT2 in senescent cells resulted in resistance to MitoTam, while its downregulation in non-senescent cells promoted their MitoTam-triggered elimination. Our study documents a novel, translationally intriguing role for an anticancer agent targeting mitochondria, that may result in a new strategy for the treatment of age-related diseases and senescence-associated pathologies.
Collapse
|
26
|
Qin G, Wang GZ, Guo DD, Bai RX, Wang M, Du SY. Deletion of Smad4 reduces hepatic inflammation and fibrogenesis during nonalcoholic steatohepatitis progression. J Dig Dis 2018; 19:301-313. [PMID: 29696816 DOI: 10.1111/1751-2980.12599] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 03/12/2018] [Accepted: 04/19/2018] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To explore the effects of mothers against decapentaplegic homolog family member 4 (Smad4) deletion on inflammation and fibrogenesis in nonalcoholic steatohepatitis (NASH). METHODS Biopsied liver samples from NASH patients and normal liver tissue samples from patients who had received liver resection for trauma were collected. Smad4Co/Co and wild-type (WT) mice were used to construct the NASH model using a high-fat diet (HFD) or methionine- and choline-deficient diet (MCD). HE staining and TUNEL assay were used to observe the pathological changes and cell apoptosis, respectively. Quantitative real-time polymerase chain reaction was used to detect the expression of inflammatory, fibrogenesis and apoptosis-related genes, and immunohistochemistry to determine the protein expression of SMAD4, MCP-1 and α-SMA. RESULTS SMAD4 protein expression significantly increased in NASH patients than in the control group. Compared with WT mice, HFD- and MCD-fed Smad4Co/Co mice showed decreased hepatic steatosis, inflammation, liver cell apoptosis and nonalcoholic fatty liver activity score, reduced plasma glucose, triglyceride, free fatty acids, alanine aminotransferase and aspartate aminotransferase levels but increased adiponectin. Moreover, Smad4Co/Co decreased the expression of inflammatory markers (TNF-α, MCP-1, IFN-γ), fibrogenetic markers (COL1A1, α-SMA and TGF-β1), lipogenic (Srebp1c, Fas and Acc) and proapoptotic genes (Bax and caspase-3), but increased the expression of β-oxidation (Ppar-α, Cpt1 and Aco) and antiapoptotic genes (Bcl-2). CONCLUSION Smad4 deletion may inhibit lipogenesis, stimulate β-oxidation, improve lipid metabolism and liver function, alleviate inflammation and fibrosis, and reduce cell apoptosis in NASH.
Collapse
Affiliation(s)
- Geng Qin
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Guo Zhen Wang
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Dan Dan Guo
- Department of Ultrasonography, China-Japan Friendship Hospital, Beijing, China
| | - Ru Xue Bai
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Miao Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Shi Yu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
27
|
Qin H, Zhang G, Zhang L. GSK126 (EZH2 inhibitor) interferes with ultraviolet A radiation-induced photoaging of human skin fibroblast cells. Exp Ther Med 2018; 15:3439-3448. [PMID: 29545866 DOI: 10.3892/etm.2018.5863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 03/24/2017] [Indexed: 12/31/2022] Open
Abstract
Polycomb group genes (PcG) encode chromatin modification proteins that are involved in the epigenetic regulation of cell differentiation, proliferation and the aging processes. The key subunit of the PcG complex, enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), has a central role in a variety of mechanisms, such as the formation of chromatin structure, gene expression regulation and DNA damage. In the present study, ultraviolet A (UVA) was used to radiate human dermal fibroblasts in order to construct a photo-aged cell model. Subsequently, the cell viability assay, Hoechst staining, apoptosis detection using flow cytometry, senescence-associated β-galactosidase (SA-β-gal) staining and erythrocyte exclusion experiments were performed. GSK126, a histone methylation enzyme inhibitor of EZH2, was used as an experimental factor. Results suggested that GSK126 downregulated the mRNA expression levels of EZH2 and upregulated the mRNA expression levels of BMI-1. Notably, GSK126 affected the transcription of various photoaging-related genes and thus protected against photoaging induced by UVA radiation.
Collapse
Affiliation(s)
- Haiyan Qin
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Guang Zhang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Lianbo Zhang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
28
|
Lipoamide Inhibits NF1 Deficiency-induced Epithelial-Mesenchymal Transition in Murine Schwann Cells. Arch Med Res 2017; 48:498-505. [PMID: 29198560 DOI: 10.1016/j.arcmed.2017.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/24/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Neurofibromatosis type I (NF1) is one of the most common neurocutaneous syndromes characterized by development of adult neurofibromas which is mainly made up of Schwann cells. The disease is generally accepted to be caused by inactivation mutation of Nf1 gene. And Nf1 deficiency had been reported to lead to ROS overproduction and epithelial-mesenchymal transition (EMT) phenotype. This study was designed to investigate whether excessive ROS conferred to Nf1 deficiency-induced EMT in Schwann cells. METHODS Colony formation, wound healing assay and transwell assay was used to evaluate the effects of stable Nf1 knockdown in SW10 Schwann cells. Western blot and ROS assay was conducted to explore the molecular mechanisms of Nf1 inactivation in tumorigenesis. Animal experiments were performed to assess the inhibitory effects of lipoamide, which is the neutral amide of α-lipoic acid and functions as a potent antioxidant to scavenge ROS, on Nf1-deficiency tumor growth in vivo. RESULTS Nf1 knockdown enhanced the cellular capacities of proliferation, migration and invasion, promoted ROS generation, decreased the expression of epithelial surface marker E-cadherin, and up-regulated several EMT-associated molecules in Schwann cells. Moreover, lipoamide dose-dependently inhibited not only Nf1 deficiency-induced EMT but also spontaneous EMT. Furthermore, lipoamide markedly suppresses tumor growth in a mouse model of NF1-associated neurofibroma. CONCLUSIONS Our results clearly reveal that ROS overproduction is responsible for Nf1 deficiency-induced EMT and plays a crucial role in NF1 tumor growth. The findings presented herein shed light on the potential of antioxidant therapy to prevent the progression of NF1-associated neurofibroma.
Collapse
|
29
|
MiR125b-5p protects endothelial cells from apoptosis under oxidative stress. Biomed Pharmacother 2017; 95:453-460. [PMID: 28865365 DOI: 10.1016/j.biopha.2017.08.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/31/2017] [Accepted: 08/14/2017] [Indexed: 12/15/2022] Open
Abstract
Endothelial cell damage, such as apoptosis and necrosis, is involved in many cardiovascular diseases. In recent years, the crucial role of microRNAs in controlling tissue homeostasis and disease in the epithelium has become widely recognized. In the present study, human umbilical vein endothelial cells were transfected with a miRNA agomir and a SMAD4 expression vector. The expression of miR125b-5p was determined by using quantitative real-time polymerase chain reaction. Cell apoptosis and necrosis were measured with flow cytometry. The expression of SMAD4 was evaluated with Western blotting. Here, we demonstrated that the rates of apoptosis and necrosis were significantly decreased in the miR125b-5p agomir group of HUVECs under H2O2-induced oxidative stress compared with the miR125b-5p antagomir group. Further experiments revealed that the expression of SMAD4 is negatively regulated by miR125b-5p. Moreover, we identified that the rates of apoptosis and necrosis were increased when SMAD4 and miR125b-5p were both overexpressed compared with miR125b-5p overexpression alone. The present study demonstrates for the first time that the overexpression of miR125b-5p can reduce H2O2-induced oxidative damage via SMAD4, suggesting that miR125b-5p has therapeutic potential for preventing oxidative stress-related diseases.
Collapse
|
30
|
Polycomb group proteins: Novel molecules associated with ultraviolet A-induced photoaging of human skin. Exp Ther Med 2017; 14:2554-2562. [PMID: 28962194 PMCID: PMC5609303 DOI: 10.3892/etm.2017.4807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 04/13/2017] [Indexed: 12/21/2022] Open
Abstract
Epigenetic repressor polycomb group (PcG) proteins are thought to serve a role in a number of cellular processes, including carcinogenesis, senescence, apoptosis and DNA repair. In the present study, long-wave ultraviolet A (UVA) was used to irradiate human skin fibroblasts (HSFs) and embryonic skin fibroblasts (ESFs) in order to simulate photoaging of the skin. The results of cell proliferation, apoptosis, hyaluronic acid (HA) content and reverse transcription-quantitative polymerase chain reaction assays revealed that the expression levels of genes encoding key PcG proteins (BMI-1 and EZH2) were altered. In addition, the expression levels of these genes were associated with the expression of enzymes that regulate HA synthesis. Furthermore, the expression levels of PcG proteins differed between HSFs and ESFs, suggesting that PcG proteins serve a role in altering HA synthesis during the UVA-induced fibroblast aging process. This signaling pathway may represent a novel molecular mechanism regulating the photoaging of the skin. The findings of the present study provide important insights into the underlying mechanisms of photoaging of the human skin. Further studies are required to clarify the molecular mechanisms underling skin aging and to identify targets for the clinical treatment of photoaging.
Collapse
|
31
|
Talhaoui I, Matkarimov BT, Tchenio T, Zharkov DO, Saparbaev MK. Aberrant base excision repair pathway of oxidatively damaged DNA: Implications for degenerative diseases. Free Radic Biol Med 2017; 107:266-277. [PMID: 27890638 DOI: 10.1016/j.freeradbiomed.2016.11.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 02/06/2023]
Abstract
In cellular organisms composition of DNA is constrained to only four nucleobases A, G, T and C, except for minor DNA base modifications such as methylation which serves for defence against foreign DNA or gene expression regulation. Interestingly, this severe evolutionary constraint among other things demands DNA repair systems to discriminate between regular and modified bases. DNA glycosylases specifically recognize and excise damaged bases among vast majority of regular bases in the base excision repair (BER) pathway. However, the mismatched base pairs in DNA can occur from a spontaneous conversion of 5-methylcytosine to thymine and DNA polymerase errors during replication. To counteract these mutagenic threats to genome stability, cells evolved special DNA repair systems that target the non-damaged DNA strand in a duplex to remove mismatched regular DNA bases. Mismatch-specific adenine- and thymine-DNA glycosylases (MutY/MUTYH and TDG/MBD4, respectively) initiated BER and mismatch repair (MMR) pathways can recognize and remove normal DNA bases in mismatched DNA duplexes. Importantly, in DNA repair deficient cells bacterial MutY, human TDG and mammalian MMR can act in the aberrant manner: MutY and TDG removes adenine and thymine opposite misincorporated 8-oxoguanine and damaged adenine, respectively, whereas MMR removes thymine opposite to O6-methylguanine. These unusual activities lead either to mutations or futile DNA repair, thus indicating that the DNA repair pathways which target non-damaged DNA strand can act in aberrant manner and introduce genome instability in the presence of unrepaired DNA lesions. Evidences accumulated showing that in addition to the accumulation of oxidatively damaged DNA in cells, the aberrant DNA repair can also contribute to cancer, brain disorders and premature senescence. For example, the aberrant BER and MMR pathways for oxidized guanine residues can lead to trinucleotide expansion that underlies Huntington's disease, a severe hereditary neurodegenerative syndrome. This review summarises the present knowledge about the aberrant DNA repair pathways for oxidized base modifications and their possible role in age-related diseases.
Collapse
Affiliation(s)
- Ibtissam Talhaoui
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France
| | - Bakhyt T Matkarimov
- National laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Thierry Tchenio
- LBPA, UMR8113 ENSC - CNRS, Ecole Normale Supérieure de Cachan, Cachan, France
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Murat K Saparbaev
- Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France.
| |
Collapse
|
32
|
Bui AT, Huang ME, Havard M, Laurent-Tchenio F, Dautry F, Tchenio T. Transient exposure to androgens induces a remarkable self-sustained quiescent state in dispersed prostate cancer cells. Cell Cycle 2017; 16:879-893. [PMID: 28426320 DOI: 10.1080/15384101.2017.1310345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Cellular quiescence is a reversible cell growth arrest that is often assumed to require a persistence of non-permissive external growth conditions for its maintenance. In this work, we showed that androgen could induce a quiescent state that is self-sustained in a cell-autonomous manner through a "hit and run" mechanism in androgen receptor-expressing prostate cancer cells. This phenomenon required the set-up of a sustained redox imbalance and TGFβ/BMP signaling that were dependent on culturing cells at low density. At medium cell density, androgens failed to induce such a self-sustained quiescent state, which correlated with a lesser induction of cell redox imbalance and oxidative stress markers like CDKN1A. These effects of androgens could be mimicked by transient overexpression of CDKN1A that triggered its own expression and a sustained SMAD phosphorylation in cells cultured at low cell density. Overall, our data suggest that self-sustained but fully reversible quiescent states might constitute a general response of dispersed cancer cells to stress conditions.
Collapse
Affiliation(s)
- Anh Thu Bui
- a LBPA , UMR8113 ENS Cachan - CNRS, Ecole Normale Supérieure de Cachan , Cachan, Cedex , France
| | - Meng-Er Huang
- b Institut Curie, PSL Research University, CNRS UMR3348, Université Paris-Saclay , Orsay , France
| | - Maryline Havard
- a LBPA , UMR8113 ENS Cachan - CNRS, Ecole Normale Supérieure de Cachan , Cachan, Cedex , France
| | - Fanny Laurent-Tchenio
- a LBPA , UMR8113 ENS Cachan - CNRS, Ecole Normale Supérieure de Cachan , Cachan, Cedex , France
| | - François Dautry
- a LBPA , UMR8113 ENS Cachan - CNRS, Ecole Normale Supérieure de Cachan , Cachan, Cedex , France
| | - Thierry Tchenio
- a LBPA , UMR8113 ENS Cachan - CNRS, Ecole Normale Supérieure de Cachan , Cachan, Cedex , France
| |
Collapse
|
33
|
Matkarimov BT, Saparbaev MK. Aberrant DNA glycosylase-initiated repair pathway of free radicals in-duced DNA damage: implications for age-related diseases and natural aging. ACTA ACUST UNITED AC 2017. [DOI: 10.7124/bc.000943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Xu Z, Wang F, Fan F, Gu Y, Shan N, Meng X, Cheng S, Liu Y, Wang C, Song Y, Xu R. Quantitative Proteomics Reveals That the Inhibition of Na+/K+-ATPase Activity Affects S-Phase Progression Leading to a Chromosome Segregation Disorder by Attenuating the Aurora A Function in Hepatocellular Carcinoma Cells. J Proteome Res 2015; 14:4594-602. [PMID: 26491887 DOI: 10.1021/acs.jproteome.5b00724] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhongwei Xu
- Central
Laboratory, Logistics University of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Fengmei Wang
- Department
of Gastroenterology and Hepatology, The Third Central Hospital of Tianjin, Tianjin 300170, China
| | - Fengxu Fan
- Central
Laboratory, Logistics University of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Yanjun Gu
- Affiliated Hospital of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Nana Shan
- Central
Laboratory, Logistics University of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Xiangyan Meng
- Department
of Physiology and Pathophysiology, Logistics University of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Shixiang Cheng
- Affiliated Hospital of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Yingfu Liu
- Central
Laboratory, Logistics University of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Chengyan Wang
- Central
Laboratory, Logistics University of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Yueying Song
- Central
Laboratory, Logistics University of Chinese People’s Armed Police Force, Tianjin 300162, China
| | - Ruicheng Xu
- Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard, No. 1 Huizhi Huan Road, DongLi District, Tianjin 300309, China
| |
Collapse
|
35
|
Liu SY, Yuan Q, Li XH, Hu CP, Hu R, Zhang GG, Li D, Li YJ. Role of vascular peroxidase 1 in senescence of endothelial cells in diabetes rats. Int J Cardiol 2015; 197:182-91. [DOI: 10.1016/j.ijcard.2015.06.098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 06/06/2015] [Accepted: 06/23/2015] [Indexed: 01/22/2023]
|
36
|
Ramatchandirin B, Sadasivam M, Kannan A, Prahalathan C. Sirtuin 4 Regulates Lipopolysaccharide Mediated Leydig Cell Dysfunction. J Cell Biochem 2015; 117:904-16. [PMID: 26365714 DOI: 10.1002/jcb.25374] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/10/2015] [Indexed: 12/28/2022]
Abstract
Bacterial lipopolysaccharide (LPS) is the most important contributing factor in pathogenesis of bacterial infection in male accessory glands; and it has shown to inhibit testicular steroidogenesis and induce apoptosis. The present study demonstrates that LPS causes mitochondrial dysfunction via suppression of sirtuin 4 (SIRT4); which in turn affects Leydig cell function by modulating steroidogenesis and apoptosis. LC-540 Leydig cells treated with LPS (10 µg/ml) showed impaired steroidogenesis and increased cellular apoptosis. The mRNA and protein expression of SIRT4 were decreased in LPS treated cells when compared to controls. The obtained data suggest that the c-Jun N-terminal kinase (JNK) activation suppresses SIRT4 expression in LPS treated Leydig cells. Furthermore, the overexpression of SIRT4 prevented LPS induced impaired steroidogenesis and cellular apoptosis by improving mitochondrial function. These findings provide valuable information that SIRT4 regulates LPS mediated Leydig cell dysfunction.
Collapse
Affiliation(s)
| | - Mohanraj Sadasivam
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli, India
| | - Arun Kannan
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli, India
| | | |
Collapse
|
37
|
Transforming Growth Factor-Beta and Oxidative Stress Interplay: Implications in Tumorigenesis and Cancer Progression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:654594. [PMID: 26078812 PMCID: PMC4452864 DOI: 10.1155/2015/654594] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/20/2015] [Accepted: 04/13/2015] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-beta (TGF-β) and oxidative stress/Reactive Oxygen Species (ROS) both have pivotal roles in health and disease. In this review we are analyzing the interplay between TGF-β and ROS in tumorigenesis and cancer progression. They have contradictory roles in cancer progression since both can have antitumor effects, through the induction of cell death, senescence and cell cycle arrest, and protumor effects by contributing to cancer cell spreading, proliferation, survival, and metastasis. TGF-β can control ROS production directly or by downregulating antioxidative systems. Meanwhile, ROS can influence TGF-β signaling and increase its expression as well as its activation from the latent complex. This way, both are building a strong interplay which can be taken as an advantage by cancer cells in order to increment their malignancy. In addition, both TGF-β and ROS are able to induce cell senescence, which in one way protects damaged cells from neoplastic transformation but also may collaborate in cancer progression. The mutual collaboration of TGF-β and ROS in tumorigenesis is highly complex, and, due to their differential roles in tumor progression, careful consideration should be taken when thinking of combinatorial targeting in cancer therapies.
Collapse
|
38
|
Hubackova S, Kucerova A, Michlits G, Kyjacova L, Reinis M, Korolov O, Bartek J, Hodny Z. IFNγ induces oxidative stress, DNA damage and tumor cell senescence via TGFβ/SMAD signaling-dependent induction of Nox4 and suppression of ANT2. Oncogene 2015; 35:1236-49. [PMID: 25982278 DOI: 10.1038/onc.2015.162] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/23/2015] [Indexed: 02/06/2023]
Abstract
Cellular senescence provides a biological barrier against tumor progression, often associated with oncogene-induced replication and/or oxidative stress, cytokine production and DNA damage response (DDR), leading to persistent cell-cycle arrest. While cytokines such as tumor necrosis factor-alpha (TNFα) and interferon gamma (IFNγ) are important components of senescence-associated secretome and induce senescence in, for example, mouse pancreatic β-cancer cell model, their downstream signaling pathway(s) and links with oxidative stress and DDR are mechanistically unclear. Using human and mouse normal and cancer cell models, we now show that TNFα and IFNγ induce NADPH oxidases Nox4 and Nox1, reactive oxygen species (ROS), DDR signaling and premature senescence. Unlike mouse tumor cells that required concomitant presence of IFNγ and TNFα, short exposure to IFNγ alone was sufficient to induce Nox4, Nox1 and DDR in human cells. siRNA-mediated knockdown of Nox4 but not Nox1 decreased IFNγ-induced DDR. The expression of Nox4/Nox1 required Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signaling and the effect was mediated by downstream activation of transforming growth factor-beta (TGFβ) secretion and consequent autocrine/paracrine activation of the TGFβ/Smad pathway. Furthermore, the expression of adenine nucleotide translocase 2 (ANT2) was suppressed by IFNγ contributing to elevation of ROS and DNA damage. In contrast to mouse B16 cells, inability of TC-1 cells to respond to IFNγ/TNFα by DDR and senescence correlated with the lack of TGFβ and Nox4 response, supporting the role of ROS induced by NADPH oxidases in cytokine-induced senescence. Overall, our data reveal differences between cytokine effects in mouse and human cells, and mechanistically implicate the TGFβ/SMAD pathway, via induction of NADPH oxidases and suppression of ANT2, as key mediators of IFNγ/TNFα-evoked genotoxicity and cellular senescence.
Collapse
Affiliation(s)
- S Hubackova
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - A Kucerova
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - G Michlits
- Department of Tumour Immunology, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - L Kyjacova
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - M Reinis
- Department of Tumour Immunology, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - O Korolov
- Department of Tumour Immunology, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - J Bartek
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic.,Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Z Hodny
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
39
|
Pei X, Ma K, Xu J, Wang N, Liu N. Inhibition of cell proliferation and migration after HTRA1 knockdown in retinal pigment epithelial cells. Graefes Arch Clin Exp Ophthalmol 2015; 253:565-72. [PMID: 25550099 DOI: 10.1007/s00417-014-2901-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/06/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022] Open
Abstract
PURPOSE The purpose of this study was to investigate the role of HtrA serine peptidase 1 (HTRA1) in the proliferation and migration of cells of the human retinal pigment epithelial cell line ARPE-19, and the possible mechanisms involved. METHODS ARPE-19 cells were transduced by a recombinant lentiviral vector carrying HTRA1-shRNA to knockdown HTRA1 expression. Subsequent HTRA1 gene and HTRA1 protein levels in these cells and control cells were detected by quantitative real-time PCR and Western blot, respectively. Changes in cell proliferation and migration associated with the inhibition of HTRA1 expression were assessed, as well as changes in the mRNA levels of transforming growth factor beta 1 (TGFB1), bone morphogenetic protein 4 (BMP4), and bone morphogenetic protein 2 (BMP2). RESULTS The recombinant lentivirus carrying HTRA1-shRNA was successfully generated, as evidenced by reduced levels of HTRA1 mRNA and HTRA1 protein in ARPE-19 cells. The knockdown of HTRA1 in ARPE-19 cells was associated with reduced cellular proliferation and migration, and increased mRNA levels of TGF-β1, BMP4, and BMP2. CONCLUSIONS Silence of the HTRA1 gene was associated with significantly higher levels of TGF-β1, BMP4, and BMP2 mRNA and reduction in the proliferation and migration of ARPE-19 cells.
Collapse
Affiliation(s)
- Xueting Pei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Science Key Laboratory, No. 1 Dongjiaominxiang, Dongcheng District, Beijing, China,
| | | | | | | | | |
Collapse
|