1
|
Lu HJ, Guo D, Wei QQ. Potential of Neuroinflammation-Modulating Strategies in Tuberculous Meningitis: Targeting Microglia. Aging Dis 2024; 15:1255-1276. [PMID: 37196131 PMCID: PMC11081169 DOI: 10.14336/ad.2023.0311] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/11/2023] [Indexed: 05/19/2023] Open
Abstract
Tuberculous meningitis (TBM) is the most severe complication of tuberculosis (TB) and is associated with high rates of disability and mortality. Mycobacterium tuberculosis (M. tb), the infectious agent of TB, disseminates from the respiratory epithelium, breaks through the blood-brain barrier, and establishes a primary infection in the meninges. Microglia are the core of the immune network in the central nervous system (CNS) and interact with glial cells and neurons to fight against harmful pathogens and maintain homeostasis in the brain through pleiotropic functions. However, M. tb directly infects microglia and resides in them as the primary host for bacillus infections. Largely, microglial activation slows disease progression. The non-productive inflammatory response that initiates the secretion of pro-inflammatory cytokines and chemokines may be neurotoxic and aggravate tissue injuries based on damages caused by M. tb. Host-directed therapy (HDT) is an emerging strategy for modulating host immune responses against diverse diseases. Recent studies have shown that HDT can control neuroinflammation in TBM and act as an adjunct therapy to antibiotic treatment. In this review, we discuss the diverse roles of microglia in TBM and potential host-directed TB therapies that target microglia to treat TBM. We also discuss the limitations of applying each HDT and suggest a course of action for the near future.
Collapse
Affiliation(s)
- Huan-Jun Lu
- Institute of Special Environmental Medicine, Nantong University, Jiangsu, China
| | - Daji Guo
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian-Qi Wei
- Department of Infectious Diseases, General Hospital of Tibet Military Command, Xizang, China
| |
Collapse
|
2
|
AlRuwaili R, Al-Kuraishy HM, Alruwaili M, Khalifa AK, Alexiou A, Papadakis M, Saad HM, Batiha GES. The potential therapeutic effect of phosphodiesterase 5 inhibitors in the acute ischemic stroke (AIS). Mol Cell Biochem 2024; 479:1267-1278. [PMID: 37395897 PMCID: PMC11116240 DOI: 10.1007/s11010-023-04793-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
Acute ischemic stroke (AIS) is a focal neurological disorder that accounts for 85% of all stroke types, due to occlusion of cerebral arteries by thrombosis and emboli. AIS is also developed due to cerebral hemodynamic abnormality. AIS is associated with the development of neuroinflammation which increases the severity of AIS. Phosphodiesterase enzyme (PDEs) inhibitors have neuro-restorative and neuroprotective effects against the development of AIS through modulation of the cerebral cyclic adenosine monophosphate (cAMP)/cyclic guanosine monophosphate (cGMP)/nitric oxide (NO) pathway. PDE5 inhibitors through mitigation of neuroinflammation may decrease the risk of long-term AIS-induced complications. PDE5 inhibitors may affect the hemodynamic properties and coagulation pathway which are associated with thrombotic complications in AIS. PDE5 inhibitors reduce activation of the pro-coagulant pathway and improve the microcirculatory level in patients with hemodynamic disturbances in AIS. PDE5 inhibitors mainly tadalafil and sildenafil improve clinical outcomes in AIS patients through the regulation of cerebral perfusion and cerebral blood flow (CBF). PDE5 inhibitors reduced thrombomodulin, P-selectin, and tissue plasminogen activator. Herein, PDE5 inhibitors may reduce activation of the pro-coagulant pathway and improve the microcirculatory level in patients with hemodynamic disturbances in AIS. In conclusion, PDE5 inhibitors may have potential roles in the management of AIS through modulation of CBF, cAMP/cGMP/NO pathway, neuroinflammation, and inflammatory signaling pathways. Preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Raed AlRuwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Amira Karam Khalifa
- Department of Medical Pharmacology, Kasr El-Ainy School of Medicine, Cairo University, El Manial, Cairo, 11562, Egypt
- Lecturer of Medical Pharmacology, Nahda Faculty of Medicine, Beni Suef, Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, 51744, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
3
|
Zhu Z, Tang W, Qiu X, Xin X, Zhang J. Advances in targeting Phosphodiesterase 1: From mechanisms to potential therapeutics. Eur J Med Chem 2024; 263:115967. [PMID: 38000211 DOI: 10.1016/j.ejmech.2023.115967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Phosphodiesterase 1 (PDE1) is an enzyme entrusted with the hydrolysis of the second messengers cAMP and cGMP, thereby governing a plethora of metabolic processes, encompassing ion channel modulation and cellular apoptosis. Recent advancements in the realm of small molecule structural variations have greatly facilitated the exploration of innovative applications for PDE1. Remarkably, a recent series of PDE1 inhibitors (PDE1i) have been meticulously formulated and devised, showcasing enhanced selectivity and potency. Among them, ITI-214 has entered Phase II clinical trials, holding promise for the treatment of Parkinson's disease and heart failure. Nevertheless, the majority of current PDE1 inhibitors have encountered substantial side effects in clinical trials attributable to their limited selectivity, this predicament presents a formidable obstacle in the development of specific small molecule inhibitors targeting PDE1. This Perspective endeavors to illuminate the potential design approaches, structure-activity relationships, and biological activities of current PDE1i, aiming to offer support and insights for clinical practice and the development of novel PDE1i.
Collapse
Affiliation(s)
- Ziyu Zhu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wentao Tang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xuemei Qiu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xin Xin
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
4
|
Wang W, Cheng W, Wang X, Li Z, Gao J. CircFKBP3 absence alleviates oxygen glucose deprivation-induced function loss of human brain microvascular endothelial cells in vitro via governing the miR-766-3p/TRAF3 axis. Int J Neurosci 2023:1-12. [PMID: 37982234 DOI: 10.1080/00207454.2023.2279506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Brain microvascular endothelial cell (BMEC) functions loss is a key event in the development of ischemic stroke, which may be affected by the dysregulation of circular RNAs (circRNAs). We aimed to unveil the role of circRNA FKBP Prolyl Isomerase 3 (circFKBP3) in cell models of ischemic stroke. METHODS Cell models of ischemic stroke were constructed in human BEMCs (HBMECs) with the treatment of oxygen glucose deprivation (OGD). Quantitative real-time PCR (qPCR) and western blotting were conducted for expression analysis of circFKBP3, miR-766-3p and TNF receptor associated factor 3 (TRAF3). CCK-8, transwell, wound healing, flow cytometry, tube formation and ELISA assays were implemented to monitor cell viability, migration, apoptosis, angiogenesis and inflammation production. The putative binding relationship between miR-766-3p and circFKBP3 or TRAF3 was validated by dual-luciferase, RIP and pull-down assays. RESULTS CircFKBP3 expression was elevated in OGD-treated HBMECs. OGD suppressed HBMEC viability, migration, angiogenesis, and provoked cell apoptosis and inflammation production, while knockdown of circFKBP3 attenuated these effects. CircFKBP3 interacted with miR-766-3p, and circFKBP3 absence-repressed HBMEC function loss and inflammation were recovered by miR-766-3p inhibition. CircFKBP3 targeted miR-766-3p to regulate TRAF3 expression. MiR-766-3p enrichment-repressed HBMEC function loss and inflammation were recovered by TRAF3 overexpression. CONCLUSION CircFKBP3 absence alleviated OGD-induced function loss and inflammatory responses of HBMECs via governing the miR-766-3p/TRAF3 axis.
Collapse
Affiliation(s)
- Wenyan Wang
- Department of Neurology, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Wei Cheng
- Department of Neurology, Wuhan Puren Hospital affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Xudong Wang
- Department of Neurology, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Zhixin Li
- Department of Neurology, Wuhan Puren Hospital affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jinli Gao
- Department of Neurology, Wuhan Puren Hospital affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
5
|
Zhou Q, Zhang Y, Lu L, Shi W, Zhang H, Qin W, Wang Y, Pu Y, Yin L. Upregulation of postsynaptic cAMP/PKA/CREB signaling alleviates copper(Ⅱ)-induced oxidative stress and pyroptosis in MN9D cells. Toxicology 2023:153582. [PMID: 37353053 DOI: 10.1016/j.tox.2023.153582] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
It has been widely reported that long-term exposure to copper increases the prevalence and mortality of Parkinson's disease. Our previous study showed that CuSO4 exposure induced a significant increase in the expression of cleaved Caspase1 proteins and the loss of dopaminergic neurons in the SNpc of mice. In this study, the effects of copper(Ⅱ) on cAMP/PKA/CREB pathway and pyroptosis-related proteins in MN9D cells were investigated by setting up copper(Ⅱ) exposure groups with different concentration gradients, to provide possible molecular evidence for studying the mechanism of copper(Ⅱ)-induced degeneration of dopaminergic neurons. We found that after 48hours of copper(Ⅱ) exposure, the cu content in MN9D cells increased in a dose-dependent manner, and the proliferation activity decreased significantly. In addition, copper(Ⅱ) exposure caused up-regulation of PDE4D and down-regulation of D1R, cAMP, PKA and p-CREB/CREB. Simultaneously, we proved that copper(Ⅱ) exposure induced oxidative stress in MN9D cells, including decreased GSH-Px content, Keap1 expression and mitochondrial membrane potential, increased malondialdehyde content, ROS intensity, and Nrf2, NQO1, HO-1, HSP-70 expression, further causing up-regulation of inflammasome and GSDMD protein. After pretreatment with Roflupram, the level of copper(Ⅱ)-induced oxidative damage decreased, the expression of inflammasome and GSDMD proteins were down-regulated. However, the protective effects of ROF were blocked by H-89. In summary, copper(Ⅱ) treatment induced oxidative stress and inflammasome-mediated pyroptosis in MN9D cells, which may be related to copper(Ⅱ)-induced postsynaptic cAMP, PKA, and CREB signal transduction disorders.
Collapse
Affiliation(s)
- Qian Zhou
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Lu Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Wei Shi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Weizhuo Qin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Yucheng Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
6
|
Nakagawa K, Kobayashi F, Kamei Y, Tawa M, Ohkita M. Acute Kynurenine Exposure of Rat Thoracic Aorta Induces Vascular Dysfunction <i>via</i> Superoxide Anion Production. Biol Pharm Bull 2022; 45:522-527. [DOI: 10.1248/bpb.b21-01079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Keisuke Nakagawa
- Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| | - Fumika Kobayashi
- Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| | - Yoshiki Kamei
- Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| | - Masashi Tawa
- Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| | - Mamoru Ohkita
- Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| |
Collapse
|
7
|
Wang WJ, Ma YM, He MT, Zhang DH, Wang R, Jing L, Zhang JZ. Oxymatrine Alleviates Hyperglycemic Cerebral Ischemia/Reperfusion Injury via Protecting Microvessel. Neurochem Res 2022; 47:1369-1382. [DOI: 10.1007/s11064-022-03535-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
|
8
|
Shi J, Ma W, Tang H. Research progress of phosphodiesterase inhibitors in inflammatory bowel disease treatment. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:659-665. [PMID: 34986542 DOI: 10.3724/zdxbyxb-2021-0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Inflammatory bowel disease is a recurrent chronic intestinal inflammatory disease with unknown etiology and no effective treatment. Phosphodiesterase (PDE) regulates a variety of physiological and pathophysiological processes by mediating the hydrolysis of intracellular second messengers cyclic adenosine monophosphate and cyclic guanosine monophosphate. In recent years, a series of researches suggest that PDE inhibitors such as several PDE4 inhibitors, PDE5 inhibitors (sildenafil, tadalafil and vardenafil), PDE3 inhibitors (cilostazol), PDE9 inhibitor (PF-04447943) and PDE3/PDE4 double inhibitor (pumafentrine) have ameliorating effect on experimental colitis in animals. In clinical trials, PDE4 inhibitor apremilast showed more therapeutic advantage than tetomilast. This article reviews the recent research progress of PDE inhibitors in treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Jianrong Shi
- 3. Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wangqian Ma
- 3. Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huifang Tang
- 3. Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Yang D, Yang R, Shen J, Huang L, Men S, Wang T. Sinensetin attenuates oxygen-glucose deprivation/reperfusion-induced neurotoxicity by MAPK pathway in human cerebral microvascular endothelial cells. J Appl Toxicol 2021; 42:683-693. [PMID: 34664717 DOI: 10.1002/jat.4250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 11/10/2022]
Abstract
Sinensetin is a polymethoxylated flavone with anti-inflammatory and anti-oxidative activities. This work aimed to explore the function and mechanism of sinensetin in oxygen and glucose deprivation/reperfusion (OGD/R)-induced neurotoxicity. The overlapping target genes of cerebral stroke and sinensetin were determined according to GeneCards and ParmMapper tools and were subjected to Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Human cerebral microvascular endothelial cells (HCMECs) were stimulated with OGD/R. Neurotoxicity was investigated by Cell Counting Kit-8, lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) level, qRT-PCR, and TUNEL analysis. The proteins (p38, JNK, and ERK) in mitogen-activated protein kinase (MAPK) signaling were measured using Western blotting. Total of 50 overlapping target genes of cerebral stroke and sinensetin were predicted. Pathway analysis showed they might be involved in the MAPK pathway. Sinensetin attenuated OGD/R-induced neurotoxicity by mitigating viability reduction, LDH release, ROS generation, inflammatory response, and apoptosis in HCMECs. Sinensetin weakened OGD/R-induced activation of the MAPK pathway via decreasing the phosphorylation of p38, JNK, and ERK. The pathway inhibitors mitigated the activation of the MAPK signaling, and sinensetin exacerbated this effect. The inhibitors reversed OGD/R-induced neurotoxicity in HCMECs, and sinensetin contributed to this role. Overall, sinensetin prevents OGD/R-induced neurotoxicity through decreasing the activation of MAPK pathway.
Collapse
Affiliation(s)
- Dong Yang
- Department of Critical Care Medicine, Nanshi Hospital of Nanyang, Nanyang, China
| | - Ronggang Yang
- Department of Critical Care Medicine, Nanshi Hospital of Nanyang, Nanyang, China
| | - Jiangyi Shen
- Department of Critical Care Medicine, Nanshi Hospital of Nanyang, Nanyang, China
| | - Lu Huang
- Department of Critical Care Medicine, Nanshi Hospital of Nanyang, Nanyang, China
| | - Shuai Men
- Department of Critical Care Medicine, Nanshi Hospital of Nanyang, Nanyang, China
| | - Tiancai Wang
- Department of Critical Care Medicine, Nanshi Hospital of Nanyang, Nanyang, China
| |
Collapse
|
10
|
Thapa K, Singh TG, Kaur A. Cyclic nucleotide phosphodiesterase inhibition as a potential therapeutic target in renal ischemia reperfusion injury. Life Sci 2021; 282:119843. [PMID: 34298037 DOI: 10.1016/j.lfs.2021.119843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022]
Abstract
AIMS Ischemia/reperfusion (I/R) occurs in renal artery stenosis, partial nephrectomy and most commonly during kidney transplantation. It brings serious consequences such as DGF (Delayed Graft Function) or organ dysfunction leading to renal failure and ultimate death. There is no effective therapy to handle the consequences of Renal Ischemia/Reperfusion (I/R) injury. Cyclic nucleotides, cAMP and cGMP are the important second messengers that stimulate intracellular signal transduction for cell survival in response to growth factors and peptide hormones in normal tissues and in kidneys plays significant role that involves vascular tone regulation, inflammation and proliferation of parenchymal cells. Renal ischemia and subsequent reperfusion injury stimulate signal transduction pathways involved in oxidative stress, inflammation, alteration in renal blood flow leading to necrosis and apoptosis of renal cell. MATERIALS AND METHODS An extensive literature review of various search engines like PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out. To understand the functioning of Phosphodiesterases (PDEs) and its pharmacological modulation in Renal Ischemia-Reperfusion Injury. KEY FINDINGS Current therapeutic options may not be enough to treat renal I/R injury in group of patients and therefore, the current review has discussed the general characteristics and physiology of PDEs and preclinical-studies defining the relationship between PDEs expression in renal injury due to I/R and its outcome on renal function. SIGNIFICANCE The role of PDE inhibitors in renal I/R injury and the clinical status of drugs for various renal diseases have been summarized in this review.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India; School of Pharmacy, Himachal Pradesh, India
| | | | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| |
Collapse
|
11
|
Sun J, Xiao Z, Haider A, Gebhard C, Xu H, Luo HB, Zhang HT, Josephson L, Wang L, Liang SH. Advances in Cyclic Nucleotide Phosphodiesterase-Targeted PET Imaging and Drug Discovery. J Med Chem 2021; 64:7083-7109. [PMID: 34042442 DOI: 10.1021/acs.jmedchem.1c00115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) control the intracellular concentrations of cAMP and cGMP in virtually all mammalian cells. Accordingly, the PDE family regulates a myriad of physiological functions, including cell proliferation, differentiation and apoptosis, gene expression, central nervous system function, and muscle contraction. Along this line, dysfunction of PDEs has been implicated in neurodegenerative disorders, coronary artery diseases, chronic obstructive pulmonary disease, and cancer development. To date, 11 PDE families have been identified; however, their distinct roles in the various pathologies are largely unexplored and subject to contemporary research efforts. Indeed, there is growing interest for the development of isoform-selective PDE inhibitors as potential therapeutic agents. Similarly, the evolving knowledge on the various PDE isoforms has channeled the identification of new PET probes, allowing isoform-selective imaging. This review highlights recent advances in PDE-targeted PET tracer development, thereby focusing on efforts to assess disease-related PDE pathophysiology and to support isoform-selective drug discovery.
Collapse
Affiliation(s)
- Jiyun Sun
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Zhiwei Xiao
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Achi Haider
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, Zurich 8006, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, Schlieren 8952, Switzerland
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Han-Ting Zhang
- Departments of Neuroscience, Behavioral Medicine & Psychiatry, and Physiology & Pharmacology, the Rockefeller Neuroscience Institute, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506, United States
| | - Lee Josephson
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Lu Wang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Steven H Liang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| |
Collapse
|
12
|
Zhao Y, Ye S, Lin J, Liang F, Chen J, Hu J, Chen K, Fang Y, Chen X, Xiong Y, Lin L, Tan X. NmFGF1-Regulated Glucolipid Metabolism and Angiogenesis Improves Functional Recovery in a Mouse Model of Diabetic Stroke and Acts via the AMPK Signaling Pathway. Front Pharmacol 2021; 12:680351. [PMID: 34025437 PMCID: PMC8139577 DOI: 10.3389/fphar.2021.680351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetes increases the risk of stroke, exacerbates neurological deficits, and increases mortality. Non-mitogenic fibroblast growth factor 1 (nmFGF1) is a powerful neuroprotective factor that is also regarded as a metabolic regulator. The present study aimed to investigate the effect of nmFGF1 on the improvement of functional recovery in a mouse model of type 2 diabetic (T2D) stroke. We established a mouse model of T2D stroke by photothrombosis in mice that were fed a high-fat diet and injected with streptozotocin (STZ). We found that nmFGF1 reduced the size of the infarct and attenuated neurobehavioral deficits in our mouse model of T2D stroke. Angiogenesis plays an important role in neuronal survival and functional recovery post-stroke. NmFGF1 promoted angiogenesis in the mouse model of T2D stroke. Furthermore, nmFGF1 reversed the reduction of tube formation and migration in human brain microvascular endothelial cells (HBMECs) cultured in high glucose conditions and treated with oxygen glucose deprivation/re-oxygenation (OGD). Amp-activated protein kinase (AMPK) plays a critical role in the regulation of angiogenesis. Interestingly, we found that nmFGF1 increased the protein expression of phosphorylated AMPK (p-AMPK) both in vivo and in vitro. We found that nmFGF1 promoted tube formation and migration and that this effect was further enhanced by an AMPK agonist (A-769662). In contrast, these processes were inhibited by the application of an AMPK inhibitor (compound C) or siRNA targeting AMPK. Furthermore, nmFGF1 ameliorated neuronal loss in diabetic stroke mice via AMPK-mediated angiogenesis. In addition, nmFGF1 ameliorated glucose and lipid metabolic disorders in our mouse model of T2D stroke without causing significant changes in body weight. These results revealed that nmFGF1-regulated glucolipid metabolism and angiogenesis play a key role in the improvement of functional recovery in a mouse model of T2D stroke and that these effects are mediated by the AMPK signaling pathway.
Collapse
Affiliation(s)
- Yeli Zhao
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shasha Ye
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingjing Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fei Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jun Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jian Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kun Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yani Fang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiongjian Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ye Xiong
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Lin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, China
| | - Xianxi Tan
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Gu SX, Tyagi T, Jain K, Gu VW, Lee SH, Hwa JM, Kwan JM, Krause DS, Lee AI, Halene S, Martin KA, Chun HJ, Hwa J. Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nat Rev Cardiol 2021; 18:194-209. [PMID: 33214651 PMCID: PMC7675396 DOI: 10.1038/s41569-020-00469-1] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
The core pathology of coronavirus disease 2019 (COVID-19) is infection of airway cells by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that results in excessive inflammation and respiratory disease, with cytokine storm and acute respiratory distress syndrome implicated in the most severe cases. Thrombotic complications are a major cause of morbidity and mortality in patients with COVID-19. Patients with pre-existing cardiovascular disease and/or traditional cardiovascular risk factors, including obesity, diabetes mellitus, hypertension and advanced age, are at the highest risk of death from COVID-19. In this Review, we summarize new lines of evidence that point to both platelet and endothelial dysfunction as essential components of COVID-19 pathology and describe the mechanisms that might account for the contribution of cardiovascular risk factors to the most severe outcomes in COVID-19. We highlight the distinct contributions of coagulopathy, thrombocytopathy and endotheliopathy to the pathogenesis of COVID-19 and discuss potential therapeutic strategies in the management of patients with COVD-19. Harnessing the expertise of the biomedical and clinical communities is imperative to expand the available therapeutics beyond anticoagulants and to target both thrombocytopathy and endotheliopathy. Only with such collaborative efforts can we better prepare for further waves and for future coronavirus-related pandemics.
Collapse
Affiliation(s)
- Sean X Gu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Tarun Tyagi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Kanika Jain
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Vivian W Gu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Seung Hee Lee
- Division of Cardiovascular Diseases, Center for Biomedical Sciences, National Institute of Health, Cheongju, Chungbuk, Korea
| | - Jonathan M Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jennifer M Kwan
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Diane S Krause
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Alfred I Lee
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Kathleen A Martin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Hyung J Chun
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
14
|
Li S, Ma Y, Yan Y, Yan M, Wang X, Gong W, Nie S. Phosphodiesterase-5a Knock-out Suppresses Inflammation by Down-Regulating Adhesion Molecules in Cardiac Rupture Following Myocardial Infarction. J Cardiovasc Transl Res 2021; 14:816-823. [PMID: 33496888 DOI: 10.1007/s12265-021-10102-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/11/2021] [Indexed: 11/28/2022]
Abstract
Cardiac rupture is a fatal complication of acute myocardial infarction (MI), associated with increased inflammation and damaged extracellular matrix. C57BL/6 J wild type (WT) and Pde5a knockout (Pde5a-/-) mice were selected to establish MI model. The rupture rate of Pde5a-/- mice was significantly reduced (P < 0.01) within 7 days post MI. The cardiac function of Pde5a-/- mice was better than WT mice both at day 3 and 7 post MI. Immunohistochemical staining and flow cytometry showed neutrophils and macrophages were decreased in Pde5a-/- mouse hearts. Inflammatory factors expression such as IL-1β, IL-6, IL-8, Mcp-1, TNF-α significantly decreased in Pde5a-/- mice post MI. Moreover, western blot showed the inhibition of inflammatory response was accompanied by down-regulation of intercellular adhesion molecule-1(ICAM-1) and vascular cell adhesion molecule-1(VCAM-1) in Pde5a-/- mice. Knockout of Pde5a reduced inflammatory cells infiltration by down-regulating the expression of ICAM-1 and VCAM-1, and prevented early cardiac rupture after MI. All authors declare that they have no conflicts of interest. This article does not contain any studies with human participants performed by any of the authors. All applicable international, national, and institutional guidelines for the care and use of animals were followed.
Collapse
Affiliation(s)
- Siyi Li
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Youcai Ma
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Yan Yan
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Mengwen Yan
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Xiao Wang
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Wei Gong
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China. .,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China.
| | - Shaoping Nie
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China. .,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China.
| |
Collapse
|
15
|
Liu L, Zhang H, Shi Y, Pan L. Prostaglandin E1 Improves Cerebral Microcirculation Through Activation of Endothelial NOS and GRPCH1. J Mol Neurosci 2020; 70:2041-2048. [PMID: 32483670 DOI: 10.1007/s12031-020-01610-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/21/2020] [Indexed: 12/26/2022]
Abstract
Endothelial dysfunction greatly contributes to microcirculation disorder. The role of prostaglandin E1 (PGE1) in cerebral microcirculation was explored in vitro. LPS (0.5 or 1 μg/ml) was added to induce injury in human brain microvascular endothelial cells (HCMEC/D3). CCK-8 was applied to check viabilities of HCMEC/D3 before and after LPS treatment. Western blot witnessed the changes in protein expressions of inflammatory cytokines, IL-6 and TNF-α. Caspase-3/7 activity was analyzed and so were the protein expressions of pro-apoptotic gene BAX and anti-apoptotic gene Bcl-2. mRNA expressions of eNOS and GTPCH1 were evaluated by RT-qPCR. After overexpressing eNOS or GTPCH1 in LPS-induced HCMEC/D3 cells, viabilities, inflammatory cytokines, caspase-3/7 activity, and apoptosis-related genes were detected. The modulation of PGE1 in eNOS and GTPCH1 production, viability, inflammation, and apoptosis was investigated. The inhibitor of eNOS or GTPCH1 was introduced to examine impacts of eNOS or GTPCH1 could have on the PGE1 function. LPS decreased cell viabilities, eNOS and GTPCH1 expression, and promoted inflammation and apoptosis in HCMEC/D3 cells. Overexpressed eNOS or GTPCH1 promoted cell viabilities and suppressed inflammation and apoptosis. PGE1 enhanced viability and decreased inflammation and apoptosis in cells treated by LPS. PGE1 activated eNOS and GTPCH1 and inhibition of eNOS or GTPCH1 led to the attenuation of the protective functions of PGE1 in LPS-induced cells. PGE1 protected HCMEC/D3 cells from injuries induced by LPS by activation of eNOS and GTPCH1, suggesting that PGE1 might be used to help maintain cerebral microcirculation in future.
Collapse
Affiliation(s)
- Lei Liu
- Department of Cardiology, Jinshan Hospital of Fudan University, No.1508, Longhang Road, Shanghai, 201508, China
| | - Hexi Zhang
- Department of Cardiology, Jinshan Hospital of Fudan University, No.1508, Longhang Road, Shanghai, 201508, China
| | - Yijun Shi
- Department of Cardiology, Jinshan Hospital of Fudan University, No.1508, Longhang Road, Shanghai, 201508, China
| | - Lijian Pan
- Department of Cardiology, Jinshan Hospital of Fudan University, No.1508, Longhang Road, Shanghai, 201508, China.
| |
Collapse
|
16
|
Indoxyl sulfate induces ROS production via the aryl hydrocarbon receptor-NADPH oxidase pathway and inactivates NO in vascular tissues. Life Sci 2020; 265:118807. [PMID: 33232689 DOI: 10.1016/j.lfs.2020.118807] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022]
Abstract
AIMS The uremic toxin indoxyl sulfate (IS) was reported to be the cause of cardiovascular disease associated with chronic kidney disease. Therefore, we evaluated the direct influences of IS on vascular function, focusing on the superoxide anion (O2-) and nitric oxide (NO)/soluble guanylate cyclase (sGC) pathways. MAIN METHODS Isolated rat thoracic aortas with and without vascular endothelium were incubated with IS for 4 h in a physiological solution. In some experiments, several inhibitors were treated 30 min before the addition of IS. O2- production was measured by the chemiluminescence method, and the vascular reactivity to different vasorelaxants was examined using organ chamber technique. KEY FINDINGS 1) Experiments using endothelium-intact vascular rings: IS significantly increased O2- production. The increase was suppressed by addition of the NADPH oxidase inhibitor apocynin, the antioxidant ascorbic acid and the aryl hydrocarbon receptor (AhR) inhibitor CH223191. Furthermore, IS attenuated the acetylcholine (ACh)-induced vasorelaxantion, which was suppressed by addition of the above drugs. 2) Experiments using endothelium-denuded vascular rings: IS significantly increased O2- production and also attenuated sodium nitroprusside (SNP)-induced vasorelaxation. These influences of IS were normalized only by ascorbic acid addition. On the other hand, IS did not affect the vasorelaxation by the sGC stimulator BAY 41-2272. SIGNIFICANCE This study suggested that IS causes O2- production in vascular tissues, thereby attenuating ACh- and SNP-induced vasorelaxation, probably through NO inactivation. Furthermore, it is reasonable to consider that IS-promoted O2- production in the presence of vascular endothelium is through binding to AhR and the activation of NADPH oxidase.
Collapse
|
17
|
Li LL, Liu YR, Sun C, Yan YG, Tang ZS, Sun J, Li LH, Song ZX, Wang DY, Li XH, Chang AB, Yan YF, Gao J, Peng L. Taoren-dahuang herb pair reduces eicosanoid metabolite shifts by regulating ADORA2A degradation activity in ischaemia/reperfusion injury rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:113014. [PMID: 32473369 DOI: 10.1016/j.jep.2020.113014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Peach kernel (taoren: TR) is the dried mature seed of peach, Prunus persica (L.) Batsch, which belongs to the Rosaceae family. Rhubarb (dahuang: DH) is the dried root and rhizome of rhubarb (Rheum palmatum L., Rheum officinale Baill., or Rheum tanguticum Maxim. ex Balf.). TR-DH (TD) is a traditional Chinese medicine herb pair that promotes blood circulation and removes blood stasis. In recent years, TD has shown definite benefits in the cardio-cerebrovascular system, but its specific mechanism is not very clear. AIM OF STUDY The purpose of this study was to explore the mechanism by which TD affects cerebral ischaemia/reperfusion (I/R) injury and to optimize the mixture ratio. METHODS The affected metabolic pathways in rat brain tissues after I/R were analysed by network pharmacology and verified with animal pharmacological experiments. RESULTS TD had a certain therapeutic effect on cerebral I/R injury. TD with a TR:DH ratio of 1:1 had the best therapeutic effect. Metabolic pathway analysis showed that the protective mechanism of TD against I/R injury involves mainly regulation of brain tissue ADORA2A protein levels and action on the arachidonic acid (AA) pathway. CONCLUSION TD can ameliorate cerebral I/R injury by regulating ADORA2A degradation in the AA metabolic pathway to attenuate AA metabolic dysfunction and the inflammatory response.
Collapse
Affiliation(s)
- Liu-Liu Li
- Shaanxi University of Chinese Medicine/Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization/State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation)/Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, 712083, Xianyang, PR China
| | - Yan-Ru Liu
- Shaanxi University of Chinese Medicine/Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization/State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation)/Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, 712083, Xianyang, PR China
| | - Chen Sun
- Shaanxi University of Chinese Medicine/Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization/State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation)/Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, 712083, Xianyang, PR China
| | - Yong-Gang Yan
- College of Pharmacy, Department of Identification of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, 712046, Xianyang, PR China.
| | - Zhi-Shu Tang
- Shaanxi University of Chinese Medicine/Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization/State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation)/Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, 712083, Xianyang, PR China.
| | - Jing Sun
- Shaanxi University of Chinese Medicine/Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization/State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation)/Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, 712083, Xianyang, PR China
| | - Lu-Han Li
- College of Pharmacy, Department of Identification of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, 712046, Xianyang, PR China
| | - Zhong-Xing Song
- Shaanxi University of Chinese Medicine/Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization/State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation)/Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, 712083, Xianyang, PR China
| | - Dan-Yang Wang
- Shaanxi University of Chinese Medicine/Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization/State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation)/Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, 712083, Xianyang, PR China
| | - Xiao-Hong Li
- Shaanxi University of Chinese Medicine/Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization/State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation)/Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, 712083, Xianyang, PR China
| | - Ai-Bing Chang
- Shaanxi University of Chinese Medicine/Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization/State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation)/Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, 712083, Xianyang, PR China
| | - Ya-Feng Yan
- Shaanxi University of Chinese Medicine/Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization/State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation)/Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, 712083, Xianyang, PR China
| | - Jing Gao
- College of Pharmacy, Department of Identification of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, 712046, Xianyang, PR China
| | - Liang Peng
- College of Pharmacy, Department of Identification of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, 712046, Xianyang, PR China
| |
Collapse
|
18
|
McDonough W, Rich J, Aragon IV, Abou Saleh L, Boyd A, Richter A, Koloteva A, Richter W. Inhibition of type 4 cAMP-phosphodiesterases (PDE4s) in mice induces hypothermia via effects on behavioral and central autonomous thermoregulation. Biochem Pharmacol 2020; 180:114158. [PMID: 32702371 PMCID: PMC7606724 DOI: 10.1016/j.bcp.2020.114158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023]
Abstract
Inhibitors of Type 4 cAMP-phosphodiesterases (PDE4s) exert a number of promising therapeutic benefits, including potent anti-inflammatory, memory- and cognition-enhancing, metabolic, and antineoplastic effects. We report here that treatment with a number of distinct PDE4 inhibitors, including Rolipram, Piclamilast, Roflumilast and RS25344, but not treatment with the PDE3-selective inhibitor Cilostamide, induces a rapid (10-30 min), substantial (-5 °C) and long-lasting (up to 5 h) decrease in core body temperature of C57BL/6 mice; thus, identifying a critical role of PDE4 also in the regulation of body temperature. As little as 0.04 mg/kg of the archetypal PDE4 inhibitor Rolipram induces hypothermia. As similar or higher doses of Rolipram were used in a majority of published animal studies, most of the reported findings are likely paralleled by, or potentially impacted by hypothermia induced by these drugs. We further show that PDE4 inhibition affects central body temperature regulation and acts by lowering the cold-defense balance point of behavioral (including posture and locomotion) and autonomous (including cutaneous tail vasodilation) cold-defense mechanisms. In line with the idea of an effect on central body temperature regulation, hypothermia is induced by moderate doses of various brain-penetrant PDE4 inhibitors, but not by similar doses of YM976, a PDE4 inhibitor that does not efficiently cross the blood-brain barrier. Finally, to begin delineating the mechanism of drug-induced hypothermia, we show that blockade of D2/3-type dopaminergic, but not β-adrenergic, H1-histaminergic or opiate receptors, can alleviate PDE4 inhibitor-induced hypothermia. We thus propose that increased D2/3-type dopaminergic signaling, triggered by PDE4 inhibitor-induced and cAMP-mediated dopamine release in the thermoregulatory centers of the hypothalamus, is a significant contributor to PDE4 inhibitor-induced hypothermia.
Collapse
Affiliation(s)
- Will McDonough
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Justin Rich
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Ileana V Aragon
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Lina Abou Saleh
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Abigail Boyd
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Aris Richter
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Anna Koloteva
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Wito Richter
- Department of Biochemistry & Molecular Biology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, United States.
| |
Collapse
|
19
|
McDonough W, Aragon IV, Rich J, Murphy JM, Abou Saleh L, Boyd A, Koloteva A, Richter W. PAN-selective inhibition of cAMP-phosphodiesterase 4 (PDE4) induces gastroparesis in mice. FASEB J 2020; 34:12533-12548. [PMID: 32738081 DOI: 10.1096/fj.202001016rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Inhibitors of cAMP-phosphodiesterase 4 (PDE4) exert a number of promising therapeutic benefits, but adverse effects, in particular emesis and nausea, have curbed their clinical utility. Here, we show that PAN-selective inhibition of PDE4, but not inhibition of PDE3, causes a time- and dose-dependent accumulation of chow in the stomachs of mice fed ad libitum without changing the animals' food intake or the weight of their intestines, suggesting that PDE4 inhibition impairs gastric emptying. Indeed, PDE4 inhibition induced gastric retention in an acute model of gastric motility that traces the passage of a food bolus through the stomach over a 30 minutes time period. In humans, abnormal gastric retention of food is known as gastroparesis, a syndrome predominated by nausea (>90% of cases) and vomiting (>80% of cases). We thus explored the abnormal gastric retention induced by PDE4 inhibition in mice under the premise that it may represent a useful correlate of emesis and nausea. Delayed gastric emptying was produced by structurally distinct PAN-PDE4 inhibitors including Rolipram, Piclamilast, Roflumilast, and RS25344, suggesting that it is a class effect. PDE4 inhibitors induced gastric retention at similar or below doses commonly used to induce therapeutic benefits (e.g., 0.04 mg/kg Rolipram), thus mirroring the narrow therapeutic window of PDE4 inhibitors in humans. YM976, a PAN-PDE4 inhibitor that does not efficiently cross the blood-brain barrier, induced gastroparesis only at significantly higher doses (≥1 mg/kg). This suggests that PDE4 inhibition may act in part through effects on the autonomic nervous system regulation of gastric emptying and that PDE4 inhibitors that are not brain-penetrant may have an improved safety profile. The PDE4 family comprises four subtypes, PDE4A, B, C, and D. Selective ablation of any of these subtypes in mice did not induce gastroparesis per se, nor did it protect from PAN-PDE4 inhibitor-induced gastroparesis, indicating that gastric retention may result from the concurrent inhibition of multiple PDE4s. Thus, potentially, any of the four PDE4 subtypes may be targeted individually for therapeutic benefits without inducing nausea or emesis. Acute gastric retention induced by PDE4 inhibition is alleviated by treatment with the widely used prokinetic Metoclopramide, suggesting a potential of this drug to alleviate the side effects of PDE4 inhibitors. Finally, given that the cause of gastroparesis remains largely idiopathic, our findings open the possibility that a physiologic or pathophysiologic downregulation of PDE4 activity/expression may be causative in a subset of patients.
Collapse
Affiliation(s)
- Will McDonough
- Department of Biochemistry & Molecular Biology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Ileana V Aragon
- Department of Biochemistry & Molecular Biology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Justin Rich
- Department of Biochemistry & Molecular Biology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - James M Murphy
- Department of Biochemistry & Molecular Biology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Lina Abou Saleh
- Department of Biochemistry & Molecular Biology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Abigail Boyd
- Department of Biochemistry & Molecular Biology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Anna Koloteva
- Department of Biochemistry & Molecular Biology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Wito Richter
- Department of Biochemistry & Molecular Biology, Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| |
Collapse
|
20
|
Goshua G, Pine AB, Meizlish ML, Chang CH, Zhang H, Bahel P, Baluha A, Bar N, Bona RD, Burns AJ, Dela Cruz CS, Dumont A, Halene S, Hwa J, Koff J, Menninger H, Neparidze N, Price C, Siner JM, Tormey C, Rinder HM, Chun HJ, Lee AI. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. LANCET HAEMATOLOGY 2020; 7:e575-e582. [PMID: 32619411 PMCID: PMC7326446 DOI: 10.1016/s2352-3026(20)30216-7] [Citation(s) in RCA: 758] [Impact Index Per Article: 151.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND An important feature of severe acute respiratory syndrome coronavirus 2 pathogenesis is COVID-19-associated coagulopathy, characterised by increased thrombotic and microvascular complications. Previous studies have suggested a role for endothelial cell injury in COVID-19-associated coagulopathy. To determine whether endotheliopathy is involved in COVID-19-associated coagulopathy pathogenesis, we assessed markers of endothelial cell and platelet activation in critically and non-critically ill patients admitted to the hospital with COVID-19. METHODS In this single-centre cross-sectional study, hospitalised adult (≥18 years) patients with laboratory-confirmed COVID-19 were identified in the medical intensive care unit (ICU) or a specialised non-ICU COVID-19 floor in our hospital. Asymptomatic, non-hospitalised controls were recruited as a comparator group for biomarkers that did not have a reference range. We assessed markers of endothelial cell and platelet activation, including von Willebrand Factor (VWF) antigen, soluble thrombomodulin, soluble P-selectin, and soluble CD40 ligand, as well as coagulation factors, endogenous anticoagulants, and fibrinolytic enzymes. We compared the level of each marker in ICU patients, non-ICU patients, and controls, where applicable. We assessed correlations between these laboratory results with clinical outcomes, including hospital discharge and mortality. Kaplan-Meier analysis was used to further explore the association between biochemical markers and survival. FINDINGS 68 patients with COVID-19 were included in the study from April 13 to April 24, 2020, including 48 ICU and 20 non-ICU patients, as well as 13 non-hospitalised, asymptomatic controls. Markers of endothelial cell and platelet activation were significantly elevated in ICU patients compared with non-ICU patients, including VWF antigen (mean 565% [SD 199] in ICU patients vs 278% [133] in non-ICU patients; p<0·0001) and soluble P-selectin (15·9 ng/mL [4·8] vs 11·2 ng/mL [3·1]; p=0·0014). VWF antigen concentrations were also elevated above the normal range in 16 (80%) of 20 non-ICU patients. We found mortality to be significantly correlated with VWF antigen (r = 0·38; p=0·0022) and soluble thrombomodulin (r = 0·38; p=0·0078) among all patients. In all patients, soluble thrombomodulin concentrations greater than 3·26 ng/mL were associated with lower rates of hospital discharge (22 [88%] of 25 patients with low concentrations vs 13 [52%] of 25 patients with high concentrations; p=0·0050) and lower likelihood of survival on Kaplan-Meier analysis (hazard ratio 5·9, 95% CI 1·9-18·4; p=0·0087). INTERPRETATION Our findings show that endotheliopathy is present in COVID-19 and is likely to be associated with critical illness and death. Early identification of endotheliopathy and strategies to mitigate its progression might improve outcomes in COVID-19. FUNDING This work was supported by a gift donation from Jack Levin to the Benign Hematology programme at Yale, and the National Institutes of Health.
Collapse
Affiliation(s)
| | | | | | - C-Hong Chang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, New Haven, CT, USA
| | - Hanming Zhang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, New Haven, CT, USA
| | - Parveen Bahel
- Department of Laboratory Medicine, New Haven, CT, USA
| | | | - Noffar Bar
- Section of Hematology, New Haven, CT, USA
| | | | | | | | | | | | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, New Haven, CT, USA
| | - Jonathan Koff
- Section of Pulmonary, Critical Care, and Sleep Medicine, New Haven, CT, USA
| | | | | | | | - Jonathan M Siner
- Section of Pulmonary, Critical Care, and Sleep Medicine, New Haven, CT, USA
| | | | | | - Hyung J Chun
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, New Haven, CT, USA
| | | |
Collapse
|
21
|
Blokland A, Heckman P, Vanmierlo T, Schreiber R, Paes D, Prickaerts J. Phosphodiesterase Type 4 Inhibition in CNS Diseases. Trends Pharmacol Sci 2019; 40:971-985. [DOI: 10.1016/j.tips.2019.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022]
|
22
|
Inhibition of PDE4 protects neurons against oxygen-glucose deprivation-induced endoplasmic reticulum stress through activation of the Nrf-2/HO-1 pathway. Redox Biol 2019; 28:101342. [PMID: 31639651 PMCID: PMC6807264 DOI: 10.1016/j.redox.2019.101342] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022] Open
Abstract
Inhibition of phosphodiesterase 4 (PDE4) produces neuroprotective effects against cerebral ischemia. However, the involved mechanism remains unclear. Augmentation of endoplasmic reticulum (ER) stress promotes neuronal apoptosis, and excessive oxidative stress is an inducer of ER stress. The present study aimed to determine whether suppression of ER stress is involved in the protective effects of PDE4 inhibition against cerebral ischemia. We found that exposing HT-22 cells to oxygen-glucose deprivation (OGD) significantly activated ER stress, as evidenced by increased expression of the 78-kDa glucose-regulated protein (GRP78), phosphorylated eukaryotic translation-initiation factor 2α (eIF2α), and C/EBP-homologous protein (CHOP). Overexpression of PDE4B increased ER stress, while knocking down PDE4B or treatment with the PDE4 inhibitor, FCPR03, prevented OGD-induced ER stress in HT-22 cells. Furthermore, FCPR03 promoted the translocation of nuclear factor erythroid 2-related factor 2 (Nrf-2) from the cytoplasm to the nucleus. Importantly, the Nrf-2 inhibitor, ML385, blocked the inhibitory role of FCPR03 on OGD-induced ER stress. ML385 also abolished the protective role of FCPR03 in HT-22 cells subjected to OGD. Knocking down heme oxygenase-1 (HO-1), which is a target of Nrf-2, also blocked the protective role of FCPR03, enhanced the level of reactive oxygen species (ROS), and increased ER stress and cell death. We then found that FCPR03 or the antioxidant, N-Acetyl-l-cysteine, reduced oxidative stress in cells exposed to OGD. This effect was accompanied by increased cell viability and decreased ER stress. In primary cultured neurons, we found that FCPR03 reduced OGD-induced production of ROS and phosphorylation of eIF2α. The neuroprotective effect of FCPR03 against OGD in neurons was blocked by ML385. These results demonstrate that inhibition of PDE4 activates Nrf-2/HO-1, attenuates the production of ROS, and thereby attenuates ER stress in neurons exposed to OGD. Additionally, we conclude that FCPR03 may represent a promising therapeutic agent for the treatment of ER stress-related disorders. Overexpression of PDE4 increased ER stress under both basal and OGD conditions. Inhibition of PDE4 reduced ER stress and neuronal apoptosis in neurons exposed to OGD. PDE4 inhibition activated Nrf-2, and increased the level of antioxidant enzyme HO-1. Inhibition of Nrf-2 attenuated the role of FCPR03 on ER stress and cell viability. HO-1 knockdown abolished the effects of FCPR03 on ER stress and ROS production.
Collapse
|
23
|
Pérez-Pérez D, Reyes-Vidal I, Chávez-Cortez EG, Sotelo J, Magaña-Maldonado R. Methylxanthines: Potential Therapeutic Agents for Glioblastoma. Pharmaceuticals (Basel) 2019; 12:ph12030130. [PMID: 31500285 PMCID: PMC6789489 DOI: 10.3390/ph12030130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/24/2019] [Accepted: 09/01/2019] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor. Currently, treatment is ineffective and the median overall survival is 20.9 months. The poor prognosis of GBM is a consequence of several altered signaling pathways that favor the proliferation and survival of neoplastic cells. One of these pathways is the deregulation of phosphodiesterases (PDEs). These enzymes participate in the development of GBM and may have value as therapeutic targets to treat GBM. Methylxanthines (MXTs) such as caffeine, theophylline, and theobromine are PDE inhibitors and constitute a promising therapeutic anti-cancer agent against GBM. MTXs also regulate various cell processes such as proliferation, migration, cell death, and differentiation; these processes are related to cancer progression, making MXTs potential therapeutic agents in GBM.
Collapse
Affiliation(s)
- Daniel Pérez-Pérez
- PECEM, Faculty of Medicine, National Autonomous University of México, México City 04510, Mexico
- Neuroimmunology and Neuro-oncology Unit, National Institute of Neurology and Neurosurgery, México City 14269, Mexico
| | - Iannel Reyes-Vidal
- Neuroimmunology and Neuro-oncology Unit, National Institute of Neurology and Neurosurgery, México City 14269, Mexico
| | - Elda Georgina Chávez-Cortez
- Neuroimmunology and Neuro-oncology Unit, National Institute of Neurology and Neurosurgery, México City 14269, Mexico
| | - Julio Sotelo
- Neuroimmunology and Neuro-oncology Unit, National Institute of Neurology and Neurosurgery, México City 14269, Mexico
| | - Roxana Magaña-Maldonado
- Neuroimmunology and Neuro-oncology Unit, National Institute of Neurology and Neurosurgery, México City 14269, Mexico.
| |
Collapse
|