1
|
Arachchi UPE, Madushani KP, Shanaka KASN, Kim G, Lim C, Yang H, Jayamali BPMV, Kodagoda YK, Warnakula WADLR, Jung S, Wan Q, Lee J. Characterization of tripartite motif containing 59 (TRIM59) in Epinephelus akaara: Insights into its immune involvement and functional properties in viral pathogenesis, macrophage polarization, and apoptosis regulation. FISH & SHELLFISH IMMUNOLOGY 2024; 157:110082. [PMID: 39645217 DOI: 10.1016/j.fsi.2024.110082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The tripartite motif-containing (TRIM) superfamily is the largest family of RING-type E3 ubiquitin ligases that is conserved across the metazoan kingdom. Previous studies in mammals have demonstrated that TRIM59 possesses ubiquitin-protein ligase activity and acts as a negative regulator of NF-κB signaling. However, TRIM59 has rarely been characterized in fish. This study aimed to characterize TRIM59 from Epinephelus akaara (Eatrim59) and elucidate its structural features, expression patterns, and functional properties in innate immune responses and in the regulation of apoptosis. Eatrim59 is composed of 406 amino acids with a molecular weight of 45.84 kDa and a theoretical isoelectric point of 5.25. It comprises a conserved RING domain, a B-box motif, and a coiled-coil region. Subcellular localization analysis revealed that Eatrim59 was localized in the endoplasmic reticulum. Eatrim59 was ubiquitously expressed in all tissues examined, with the highest relative expression detected in the blood, followed by the brain and spleen. Temporal expression of Eatrim59 was dynamically regulated in response to in vivo immune stimulation by Toll-like receptor ligands and nervous necrosis virus infection. In FHM cells overexpressing Eatrim59, an increase in viral replication was observed upon infection with the Viral hemorrhagic septicemia virus. This phenomenon is attributed to Eatrim59-mediated downregulation of interferon, pro-inflammatory cytokines, and other antiviral pathways. Moreover, macrophages stably overexpressing Eatrim59 exhibited a decrease in nitric oxide production and the formation of a filamentous actin structure upon lipopolysaccharide stimulation, indicating dampened M1 polarization. Furthermore, a decrease in apoptosis was observed in Eatrim59-overexpressing FHM cells under oxidative stress induced by H2O2. In conclusion, these findings demonstrate the multifaceted role of Eatrim59 as a regulator of innate immune response and apoptosis in E. akaara.
Collapse
Affiliation(s)
- U P E Arachchi
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - K P Madushani
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - K A S N Shanaka
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Gaeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Chaehyeon Lim
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Republic of Korea
| | - Hyerim Yang
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje, 53334, Republic of Korea
| | - B P M Vileka Jayamali
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yasara Kavindi Kodagoda
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - W A D L R Warnakula
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
2
|
Wu T, Zhou H, Wang L, Tan J, Gao W, Wu Y, Zhao D, Shen C, Zheng B, Huang X, Shao B. TRIM59 is required for mouse GC-1 cell maintenance through modulating the ubiquitination of AXIN1. Heliyon 2024; 10:e36744. [PMID: 39263074 PMCID: PMC11387378 DOI: 10.1016/j.heliyon.2024.e36744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
Tripartite motif-containing protein 59 (TRIM59) is a biomarker for multiple tumors with crucial roles. However, the specific role of TRIM59 in germ cells remains largely unknown. Here, we investigated the effects and underlying regulatory mechanisms of TRIM59 on germ cells using the mouse spermatogonial cell line GC-1. Our results demonstrated that TRIM59 promoted proliferation and inhibited apoptosis of GC-1 cells. Mechanistically, TRIM59 maintained GC-1 cell behaviors through ubiquitination of AXIN1 to activate β-catenin signaling. Furthermore, activation of β-catenin signaling reversed the effects mediated by Trim59 knockdown in GC-1 cells. Collectively, our study revealed a major role and regulatory mechanism of TRIM59 in GC-1 cells, which sheds new light on the molecular pathogenesis of defects in spermatogenesis and may provide therapeutic targets for treatment of male infertility.
Collapse
Affiliation(s)
- Tiantian Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215002, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Hui Zhou
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Lulu Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Jianxin Tan
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Wenxin Gao
- Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Yibo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Dan Zhao
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215002, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215002, China
| | - Xiaoyan Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Binbin Shao
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| |
Collapse
|
3
|
Simats A, Zhang S, Messerer D, Chong F, Beşkardeş S, Chivukula AS, Cao J, Besson-Girard S, Montellano FA, Morbach C, Carofiglio O, Ricci A, Roth S, Llovera G, Singh R, Chen Y, Filser S, Plesnila N, Braun C, Spitzer H, Gokce O, Dichgans M, Heuschmann PU, Hatakeyama K, Beltrán E, Clauss S, Bonev B, Schulz C, Liesz A. Innate immune memory after brain injury drives inflammatory cardiac dysfunction. Cell 2024; 187:4637-4655.e26. [PMID: 39043180 DOI: 10.1016/j.cell.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 04/22/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024]
Abstract
The medical burden of stroke extends beyond the brain injury itself and is largely determined by chronic comorbidities that develop secondarily. We hypothesized that these comorbidities might share a common immunological cause, yet chronic effects post-stroke on systemic immunity are underexplored. Here, we identify myeloid innate immune memory as a cause of remote organ dysfunction after stroke. Single-cell sequencing revealed persistent pro-inflammatory changes in monocytes/macrophages in multiple organs up to 3 months after brain injury, notably in the heart, leading to cardiac fibrosis and dysfunction in both mice and stroke patients. IL-1β was identified as a key driver of epigenetic changes in innate immune memory. These changes could be transplanted to naive mice, inducing cardiac dysfunction. By neutralizing post-stroke IL-1β or blocking pro-inflammatory monocyte trafficking with a CCR2/5 inhibitor, we prevented post-stroke cardiac dysfunction. Such immune-targeted therapies could potentially prevent various IL-1β-mediated comorbidities, offering a framework for secondary prevention immunotherapy.
Collapse
Affiliation(s)
- Alba Simats
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany; Cerebrovascular Research Laboratory, Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Sijia Zhang
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Denise Messerer
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany
| | - Faye Chong
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Sude Beşkardeş
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Jiayu Cao
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Simon Besson-Girard
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Felipe A Montellano
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany; Institute of Clinical Epidemiology and Biometry, Julius-Maximilian-University Würzburg, Würzburg, Germany
| | - Caroline Morbach
- Department Clinical Research & Epidemiology, Comprehensive Heart Failure Center, and Department Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Olga Carofiglio
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Alessio Ricci
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Stefan Roth
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Gemma Llovera
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Rashween Singh
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Yiming Chen
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Severin Filser
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christian Braun
- Institute of Legal Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Hannah Spitzer
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Ozgun Gokce
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Partner Sites Munich and Bonn, Germany; Department of Old Age Psychiatry and cognitive Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Partner Sites Munich and Bonn, Germany
| | - Peter U Heuschmann
- Institute of Clinical Epidemiology and Biometry, Julius-Maximilian-University Würzburg, Würzburg, Germany; Institute for Medical Data Sciences, University Hospital Würzburg, Würzburg, Germany; Clinical Trial Centre Würzburg, University Hospital Würzburg, Würzburg, Germany
| | - Kinta Hatakeyama
- Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Eduardo Beltrán
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Sebastian Clauss
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Boyan Bonev
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany; Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, University Hospital, LMU Munich, Munich, Germany; Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Department of Immunopharmacology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
4
|
Cao X, Chen Y, Chen Y, Jiang M. The Role of Tripartite Motif Family Proteins in Chronic Liver Diseases: Molecular Mechanisms and Therapeutic Potential. Biomolecules 2024; 14:1038. [PMID: 39199424 PMCID: PMC11352684 DOI: 10.3390/biom14081038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
The worldwide impact of liver diseases is increasing steadily, with a consistent upswing evidenced in incidence and mortality rates. Chronic liver diseases (CLDs) refer to the liver function's progressive deterioration exceeding six months, which includes abnormal clotting factors, detoxification failure, and hepatic cholestasis. The most common etiologies of CLDs are mainly composed of chronic viral hepatitis, MAFLD/MASH, alcoholic liver disease, and genetic factors, which induce inflammation and harm to the liver, ultimately resulting in cirrhosis, the irreversible final stage of CLDs. The latest research has shown that tripartite motif family proteins (TRIMs) function as E3 ligases, which participate in the progression of CLDs by regulating gene and protein expression levels through post-translational modification. In this review, our objective is to clarify the molecular mechanisms and potential therapeutic targets of TRIMs in CLDs and provide insights for therapy guidelines and future research.
Collapse
Affiliation(s)
- Xiwen Cao
- The Queen Mary School, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang 330031, China;
| | - Yinni Chen
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang 330031, China;
| | - Yuanli Chen
- Key Laboratory of Major Metabolic Diseases, Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei 230002, China;
| | - Meixiu Jiang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang 330031, China;
| |
Collapse
|
5
|
Li X, Pan M, Tian X, Yang LZ, Zhang J, Yan D, Xu B, Zhao L, Fang W. Myeloid Cell Trim59 Deficiency Worsens Experimental Ischemic Stroke and Alters Cerebral Proteomic Profile. J Inflamm Res 2024; 17:4827-4843. [PMID: 39051047 PMCID: PMC11268786 DOI: 10.2147/jir.s469651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Background Tripartite motif containing 59 (TRIM59) is a ubiquitin ligase and is involved in the pathogenesis of various diseases, including cancers, sepsis, and other immune-related diseases. However, it has not been defined whether TRIM59 plays a role in ischemic stroke in mice. Methods This study determined the influence of Trim59 deficiency on experimental stroke outcomes and the cerebral proteomic profile using myeloid cell Trim59 conditional knockout (Trim59-cKO) mice and a label-free quantitative proteomic profiling technique. The possible mechanisms by which TRIM59 affected stroke onset were elucidated by in vivo and in vitro experiments. Results Immunofluorescence staining results showed that TRIM59 expression was up-regulated after cerebral ischemia and co-localized with macrophages. Myeloid cell Trim59 deficiency exacerbated ischemic injury on day 3 after experimental stroke. In proteomic analysis, 23 differentially expressed proteins were identified in ischemic brain of Trim59-cKO mice as compared to Trim59flox/flox mice. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the differentially expressed proteins were enriched in complement and coagulation cascades. Protein-protein interaction analysis suggested the central role of clusterin in the interaction network. ELISA and Western blot assays confirmed the reduced levels of clusterin protein in the ischemic brains of Trim59-cKO mice. Further experimental results showed that clusterin was expressed in neurons. Conditional co-culture experiments of primary neurons and bone marrow-derived macrophages demonstrated that LPS stimulated macrophages to secrete complement C3. In addition, TRIM59 may affect the changes in clusterin expression in an indirect manner by influencing the secretion of complement C3 in macrophages. In vivo experiments also proved a significant increase in C3 levels in the brains of Trim59-cKO mice after ischemia. Conclusion Myeloid cell Trim59 deficiency aggravated ischemic stroke outcomes in conjunction with a distinct cerebral proteomic profile, and the underlying mechanism may be related to the regulation of macrophage C3 expression by TRIM59.
Collapse
Affiliation(s)
- Xiang Li
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Mengtian Pan
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Xinjuan Tian
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Lele Zixin Yang
- The Pennsylvania State University, Eberly College of Science, State College, PA, USA
| | - Jingjing Zhang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Li Zhao
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Weirong Fang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
6
|
Zhou ZX, Ma XF, Xiong WH, Ren Z, Jiang M, Deng NH, Zhou BB, Liu HT, Zhou K, Hu HJ, Tang HF, Zheng H, Jiang ZS. TRIM65 promotes vascular smooth muscle cell phenotypic transformation by activating PI3K/Akt/mTOR signaling during atherogenesis. Atherosclerosis 2024; 390:117430. [PMID: 38301602 DOI: 10.1016/j.atherosclerosis.2023.117430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND AND AIMS Tripartite motif (TRIM65) is an important member of the TRIM protein family, which is a newly discovered E3 ligase that interacts with and ubiquitinates various substrates and is involved in diverse pathological processes. However, the function of TRIM65 in atherosclerosis remains unarticulated. In this study, we investigated the role of TRIM65 in the pathogenesis of atherosclerosis, specifically in vascular smooth muscle cells (VSMCs) phenotype transformation, which plays a crucial role in formation of atherosclerotic lesions. METHODS AND RESULTS Both non-atherosclerotic and atherosclerotic lesions during autopsy were collected singly or pairwise from each individual (n = 16) to investigate the relationship between TRIM65 and the development of atherosclerosis. In vivo, Western diet-fed ApoE-/- mice overexpressing or lacking TRIM65 were used to assess the physiological function of TRIM65 on VSMCs phenotype, proliferation and atherosclerotic lesion formation. In vitro, VSMCs phenotypic transformation was induced by platelet-derived growth factor-BB (PDGF-BB). TRIM65-overexpressing or TRIM65-abrogated primary mouse aortic smooth muscle cells (MOASMCs) and human aortic smooth muscle cells (HASMCs) were used to investigate the mechanisms underlying the progression of VSMCs phenotypic transformation, proliferation and migration. Increased TRIM65 expression was detected in α-SMA-positive cells in the medial and atherosclerotic lesions of autopsy specimens. TRIM65 overexpression increased, whereas genetic knockdown of TRIM65 remarkably inhibited, atherosclerotic plaque development. Mechanistically, TRIM65 overexpression activated PI3K/Akt/mTOR signaling, resulting in the loss of the VSMCs contractile phenotype, including calponin, α-SMA, and SM22α, as well as cell proliferation and migration. However, opposite phenomena were observed when TRIM65 was deficient in vivo or in vitro. Moreover, in cultured PDGF-BB-induced TRIM65-overexpressing VSMCs, inhibition of PI3K by treatment with the inhibitor LY-294002 for 24 h markedly attenuated PI3K/Akt/mTOR activation, regained the VSMCs contractile phenotype, and blocked the progression of cell proliferation and migration. CONCLUSIONS TRIM65 overexpression enhances atherosclerosis development by promoting phenotypic transformation of VSMCs from contractile to synthetic state through activation of the PI3K/Akt/mTOR signal pathway.
Collapse
Affiliation(s)
- Zhi-Xiang Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Xiao-Feng Ma
- Department of Cardiology, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Wen-Hao Xiong
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Miao Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Nian-Hua Deng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Bo-Bin Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Hui-Ting Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Kun Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Heng-Jing Hu
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - Hui-Fang Tang
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China
| | - He Zheng
- Department of Hepatobiliary Surgery, The Central Hospital of Shaoyang City and The Affiliated Shaoyang Hospital, Hengyang Medical School, University of South China, No. 360, Baoqing Middle Road, Hongqi Street, Daxiang District, Shaoyang City, 422000, PR China.
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, 421001, PR China.
| |
Collapse
|
7
|
Jiang M, Wang D, Su N, Lou W, Chen Y, Yang H, Chen C, Xi F, Chen Y, Deng L, Tang X. TRIM65 knockout inhibits the development of HCC by polarization tumor-associated macrophages towards M1 phenotype via JAK1/STAT1 signaling pathway. Int Immunopharmacol 2024; 128:111494. [PMID: 38218012 DOI: 10.1016/j.intimp.2024.111494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/04/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
BACKGROUND & AIMS Tumor-associated macrophages (TAMs) are main components of immune cells in tumor microenvironment (TME), and play a crucial role in tumor progression. Tripartite motif-containing protein 65 (TRIM65) has been associated with tumor progression. However, whether TRIM65 regulate the interaction of tumor cell and TAMs in HCC and the underlying mechanisms remain unknown. In this study, we investigated the role of TRIM65 in TME of HCC and explored its underlying mechanisms. METHODS The relation of TRIM65 expression level with tumor grades, TNM stages, and worse prognosis of HCC patients was evaluated by bioinformatics analysis, as well as immune infiltration level of macrophages. TRIM65 shRNA was transfected into HepG2 cells, and TRIM65 overexpression plasmid was transfected into Huh7 cells, and the effect of TRIM65 on cell growth was examined by EdU assay. The mouse subcutaneous Hep1-6 tumor-bearing model with WT and TRIM65-/- mice was established to study the role of TRIM65 in HCC. Immunohistochemistry staining, Immunofluorescence staining, qRT-PCR and western blot were performed to evaluate the effect of TRIM65 on TAM infiltration, TAM polarization and JAK1/STAT1 signaling pathway. RESULTS Bioinformatics analysis revealed that TRIM65 was upregulated in 16 types of cancer especially in HCC, and high level of TRIM65 was strongly correlated with higher tumor grades, TNM stages, and worse prognosis of patients with HCC as well as immune infiltration level of macrophages (M0, M1, and M2). Moreover, we observed that TRIM65 shRNA-mediated TRIM65 knockdown significantly inhibited the HepG2 cells growth while TRIM65 overexpression highly increased the Huh7 cells growth in vitro. TRIM65 knockout significantly inhibited the tumor growth as well as macrophages polarization towards M2 but promoted macrophages polarization towards M1 in vivo. Mechanistically, the results demonstrate that TRIM65 knockout promoted macrophage M1 polarization in conditioned medium-stimulated peritoneal macrophages and in tumor tissues by activating JAK1/STAT1 signaling pathway. CONCLUSIONS Taken together, our study suggests that tumor cells utilize TRIM65-JAK1/STAT1 axis to inhibit macrophage M1 polarization and promote tumor growth, reveals the role of TRIM65 in TAM-targeting tumor immunotherapy.
Collapse
Affiliation(s)
- Meixiu Jiang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Dan Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Ning Su
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Weiming Lou
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Yinni Chen
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Haiyan Yang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Chen Chen
- School of Basic Medical Science, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Feiyang Xi
- The QUEEN MARY School, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Yuanli Chen
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Libin Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China; Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Jiangxi Medical College, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Xiaoli Tang
- School of Basic Medical Science, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
8
|
Kang L, Wang X, Wang J, Guo J, Zhang W, Lei R. NRF1 knockdown alleviates lipopolysaccharide-induced pulmonary inflammatory injury by upregulating DKK3 and inhibiting the GSK-3β/β-catenin pathway. Clin Exp Immunol 2023; 214:120-129. [PMID: 37402316 PMCID: PMC10711350 DOI: 10.1093/cei/uxad071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023] Open
Abstract
Excessive inflammatory injury is the main cause of the incidence of severe neonatal pneumonia (NP) and associated deaths. Although dickkopf-3 (DKK3) exhibits anti-inflammatory activity in numerous pathological processes, its role in NP is still unknown. In this study, human embryonic lung WI-38 and MRC-5 cells were treated with lipopolysaccharide (LPS) to induce inflammatory injury of NP in vitro. The expression of DKK3 was downregulated in LPS-stimulated WI-38 and MRC-5 cells. DKK3 overexpression decreased LPS-induced inhibition of cell viability, and reduced LPS-induced apoptosis of WI-38 and MRC-5 cells. DKK3 overexpression also reduced LPS-induced production of pro-inflammatory factors such as ROS, IL-6, MCP-1, and TNF-α. Nuclear respiratory factors 1 (NRF1) knockdown was found to upregulate DKK3 and inactivate the GSK-3β/β-catenin pathway in LPS-injured WI-38 and MRC-5 cells. NRF1 knockdown also suppressed LPS-induced inhibition on cell viability, repressed LPS-induced apoptosis, and inhibited the accumulation of ROS, IL-6, MCP-1, and TNF-α in LPS-injured WI-38 and MRC-5 cells. DKK3 knockdown or re-activation of the GSK-3β/β-catenin pathway reversed the inhibitory effects of NRF1 knockdown on LPS-induced inflammatory injury. In conclusion, NRF1 knockdown can alleviate LPS-triggered inflammatory injury by regulating DKK3 and the GSK-3β/β-catenin pathway.
Collapse
Affiliation(s)
- Le Kang
- Department of Pediatrics, Neonatal Intensive Care Unit, Zhumadian Central Hospital, Zhumadian, Henan Province, China
| | - Xinhua Wang
- Department of Pediatrics, Neonatal Intensive Care Unit, Zhumadian Central Hospital, Zhumadian, Henan Province, China
| | - Jianfang Wang
- Department of Clinical Laboratory, Zhumadian Central Hospital, Zhumadian, Henan Province, China
| | - Jing Guo
- Department of Pediatrics, Neonatal Intensive Care Unit, Henan Children’s Hospital, Zhengzhou, Henan Province, China
| | - Wang Zhang
- Department of Pediatrics, Neonatal Intensive Care Unit, Zhumadian Central Hospital, Zhumadian, Henan Province, China
| | - Ruirui Lei
- Department of Neonatology, Zhumadian Central Hospital, Zhumadian, Henan Province, China
| |
Collapse
|
9
|
Liu X, Xu C, Xiao W, Yan N. Unravelling the role of NFE2L1 in stress responses and related diseases. Redox Biol 2023; 65:102819. [PMID: 37473701 PMCID: PMC10404558 DOI: 10.1016/j.redox.2023.102819] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/02/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023] Open
Abstract
The nuclear factor erythroid 2 (NF-E2)-related factor 1 (NFE2L1, also known as Nrf1) is a highly conserved transcription factor that belongs to the CNC-bZIP subfamily. Its significance lies in its control over redox balance, proteasome activity, and organ integrity. Stress responses encompass a series of compensatory adaptations utilized by cells and organisms to cope with extracellular or intracellular stress initiated by stressful stimuli. Recently, extensive evidence has demonstrated that NFE2L1 plays a crucial role in cellular stress adaptation by 1) responding to oxidative stress through the induction of antioxidative responses, and 2) addressing proteotoxic stress or endoplasmic reticulum (ER) stress by regulating the ubiquitin-proteasome system (UPS), unfolded protein response (UPR), and ER-associated degradation (ERAD). It is worth noting that NFE2L1 serves as a core factor in proteotoxic stress adaptation, which has been extensively studied in cancer and neurodegeneration associated with enhanced proteasomal stress. In these contexts, utilization of NFE2L1 inhibitors to attenuate proteasome "bounce-back" response holds tremendous potential for enhancing the efficacy of proteasome inhibitors. Additionally, abnormal stress adaptations of NFE2L1 and disturbances in redox and protein homeostasis contribute to the pathophysiological complications of cardiovascular diseases, inflammatory diseases, and autoimmune diseases. Therefore, a comprehensive exploration of the molecular basis of NFE2L1 and NFE2L1-mediated diseases related to stress responses would not only facilitate the identification of novel diagnostic and prognostic indicators but also enable the identification of specific therapeutic targets for NFE2L1-related diseases.
Collapse
Affiliation(s)
- Xingzhu Liu
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, 330031, China; School of Biological and Biomedical Sciences, Queen Mary University of London, London, United Kingdom
| | - Chang Xu
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, 330031, China; School of Biological and Biomedical Sciences, Queen Mary University of London, London, United Kingdom
| | - Wanglong Xiao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Nianlong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
10
|
Stepanenko E, Bondareva N, Sheremet A, Fedina E, Tikhomirov A, Gerasimova T, Poberezhniy D, Makarova I, Tarantul V, Zigangirova N, Nenasheva V. Identification of Key TRIM Genes Involved in Response to Pseudomonas aeruginosa or Chlamydia spp. Infections in Human Cell Lines and in Mouse Organs. Int J Mol Sci 2023; 24:13290. [PMID: 37686095 PMCID: PMC10487655 DOI: 10.3390/ijms241713290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Bacterial infections represent an unsolved problem today since bacteria can evade antibiotics and suppress the host's immune response. A family of TRIM proteins is known to play a role in antiviral defense. However, the data on the involvement of the corresponding genes in the antibacterial response are limited. Here, we used RT-qPCR to profile the transcript levels of TRIM genes, as well as interferons and inflammatory genes, in human cell lines (in vitro) and in mice (in vivo) after bacterial infections caused by Pseudomonas aeruginosa and Chlamydia spp. As a result, the genes were identified that are involved in the overall immune response and associated primarily with inflammation in human cells and in mouse organs when infected with both pathogens (TRIM7, 8, 14, 16, 17, 18, 19, 20, 21, 47, 68). TRIMs specific to the infection (TRIM59 for P. aeruginosa, TRIM67 for Chlamydia spp.) were revealed. Our findings can serve as a basis for further, more detailed studies on the mechanisms of the immune response to P. aeruginosa and Chlamydia spp. Studying the interaction between bacterial pathogens and the immune system contributes to the search for new ways to successfully fight bacterial infections.
Collapse
Affiliation(s)
- Ekaterina Stepanenko
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (E.S.)
| | - Natalia Bondareva
- Laboratory for Chlamydiosis, National Research Center for Epidemiology and Microbiology Named after N. F. Gamaleya, Russian Health Ministry, Moscow 123098, Russia
| | - Anna Sheremet
- Laboratory for Chlamydiosis, National Research Center for Epidemiology and Microbiology Named after N. F. Gamaleya, Russian Health Ministry, Moscow 123098, Russia
| | - Elena Fedina
- Laboratory for Chlamydiosis, National Research Center for Epidemiology and Microbiology Named after N. F. Gamaleya, Russian Health Ministry, Moscow 123098, Russia
| | - Alexei Tikhomirov
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (E.S.)
- Department of Chemistry and Technology of Biomedical Pharmaceuticals, D. Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russia
| | - Tatiana Gerasimova
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (E.S.)
| | - Daniil Poberezhniy
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (E.S.)
| | - Irina Makarova
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (E.S.)
| | - Vyacheslav Tarantul
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (E.S.)
| | - Nailya Zigangirova
- Laboratory for Chlamydiosis, National Research Center for Epidemiology and Microbiology Named after N. F. Gamaleya, Russian Health Ministry, Moscow 123098, Russia
| | - Valentina Nenasheva
- Laboratory of Molecular Neurogenetics and Innate Immunity, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia; (E.S.)
| |
Collapse
|
11
|
Kamal A, Arnold C, Claringbould A, Moussa R, Servaas NH, Kholmatov M, Daga N, Nogina D, Mueller‐Dott S, Reyes‐Palomares A, Palla G, Sigalova O, Bunina D, Pabst C, Zaugg JB. GRaNIE and GRaNPA: inference and evaluation of enhancer-mediated gene regulatory networks. Mol Syst Biol 2023; 19:e11627. [PMID: 37073532 PMCID: PMC10258561 DOI: 10.15252/msb.202311627] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/20/2023] Open
Abstract
Enhancers play a vital role in gene regulation and are critical in mediating the impact of noncoding genetic variants associated with complex traits. Enhancer activity is a cell-type-specific process regulated by transcription factors (TFs), epigenetic mechanisms and genetic variants. Despite the strong mechanistic link between TFs and enhancers, we currently lack a framework for jointly analysing them in cell-type-specific gene regulatory networks (GRN). Equally important, we lack an unbiased way of assessing the biological significance of inferred GRNs since no complete ground truth exists. To address these gaps, we present GRaNIE (Gene Regulatory Network Inference including Enhancers) and GRaNPA (Gene Regulatory Network Performance Analysis). GRaNIE (https://git.embl.de/grp-zaugg/GRaNIE) builds enhancer-mediated GRNs based on covariation of chromatin accessibility and RNA-seq across samples (e.g. individuals), while GRaNPA (https://git.embl.de/grp-zaugg/GRaNPA) assesses the performance of GRNs for predicting cell-type-specific differential expression. We demonstrate their power by investigating gene regulatory mechanisms underlying the response of macrophages to infection, cancer and common genetic traits including autoimmune diseases. Finally, our methods identify the TF PURA as a putative regulator of pro-inflammatory macrophage polarisation.
Collapse
Affiliation(s)
- Aryan Kamal
- European Molecular Biology Laboratory, Structural and Computational Biology UnitHeidelbergGermany
- Faculty of BiosciencesCollaboration for Joint PhD Degree between EMBL and Heidelberg UniversityHeidelbergGermany
| | - Christian Arnold
- European Molecular Biology Laboratory, Structural and Computational Biology UnitHeidelbergGermany
| | - Annique Claringbould
- European Molecular Biology Laboratory, Structural and Computational Biology UnitHeidelbergGermany
| | - Rim Moussa
- European Molecular Biology Laboratory, Structural and Computational Biology UnitHeidelbergGermany
| | - Nila H Servaas
- European Molecular Biology Laboratory, Structural and Computational Biology UnitHeidelbergGermany
| | - Maksim Kholmatov
- European Molecular Biology Laboratory, Structural and Computational Biology UnitHeidelbergGermany
| | - Neha Daga
- European Molecular Biology Laboratory, Structural and Computational Biology UnitHeidelbergGermany
| | - Daria Nogina
- European Molecular Biology Laboratory, Structural and Computational Biology UnitHeidelbergGermany
| | - Sophia Mueller‐Dott
- European Molecular Biology Laboratory, Structural and Computational Biology UnitHeidelbergGermany
| | - Armando Reyes‐Palomares
- European Molecular Biology Laboratory, Structural and Computational Biology UnitHeidelbergGermany
- Present address:
Department of Biochemistry and Molecular BiologyComplutense University of MadridMadridSpain
| | - Giovanni Palla
- European Molecular Biology Laboratory, Structural and Computational Biology UnitHeidelbergGermany
- Present address:
Institute of Computational BiologyHelmholtz Center MunichOberschleißheimGermany
| | - Olga Sigalova
- European Molecular Biology Laboratory, Structural and Computational Biology UnitHeidelbergGermany
- Faculty of BiosciencesCollaboration for Joint PhD Degree between EMBL and Heidelberg UniversityHeidelbergGermany
| | - Daria Bunina
- European Molecular Biology Laboratory, Structural and Computational Biology UnitHeidelbergGermany
| | - Caroline Pabst
- Department of Medicine V, Hematology, Oncology and RheumatologyUniversity Hospital HeidelbergHeidelbergGermany
- Molecular Medicine Partnership UnitUniversity of HeidelbergHeidelbergGermany
| | - Judith B Zaugg
- European Molecular Biology Laboratory, Structural and Computational Biology UnitHeidelbergGermany
- Molecular Medicine Partnership UnitUniversity of HeidelbergHeidelbergGermany
| |
Collapse
|
12
|
Xu Z, Xi F, Deng X, Ni Y, Pu C, Wang D, Lou W, Zeng X, Su N, Chen C, Zeng Z, Deng L, Jiang M. Osteopontin Promotes Macrophage M1 Polarization by Activation of the JAK1/STAT1/HMGB1 Signaling Pathway in Nonalcoholic Fatty Liver Disease. J Clin Transl Hepatol 2023; 11:273-283. [PMID: 36643029 PMCID: PMC9817049 DOI: 10.14218/jcth.2021.00474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 04/12/2022] [Accepted: 05/05/2022] [Indexed: 01/18/2023] Open
Abstract
Background and Aims Osteopontin (OPN) is reported to be associated with the pathogenesis of nonalcoholic fatty liver disease (NAFLD). However, the function of OPN in NAFLD is still inconclusive. Therefore, our aim in this study was to evaluate the role of OPN in NAFLD and clarify the involved mechanisms. Methods We analyzed the expression change of OPN in NAFLD by bioinformatic analysis, qRT-PCR, western blotting and immunofluorescence staining. To clarify the role of OPN in NAFLD, the effect of OPN from HepG2 cells on macrophage polarization and the involved mechanisms were examined by FACS and western blotting. Results OPN was significantly upregulated in NAFLD patients compared with normal volunteers by microarray data, and the high expression of OPN was related with disease stage and progression. OPN level was also significantly increased in liver tissue samples of NAFLD from human and mouse, and in HepG2 cells treated with oleic acid (OA). Furthermore, the supernatants of OPN-treated HepG2 cells promoted the macrophage M1 polarization. Mechanistically, OPN activated the janus kinase 1(JAK1)/signal transducers and activators of transcription 1 (STAT1) signaling pathway in HepG2 cells, and consequently HepG2 cells secreted more high-mobility group box 1 (HMGB1), thereby promoting macrophage M1 polarization. Conclusions OPN promoted macrophage M1 polarization by increasing JAK1/STAT1-induced HMGB1 secretion in hepatocytes.
Collapse
Affiliation(s)
- Zhihao Xu
- The Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Feiyang Xi
- The Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Xinxin Deng
- The Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Yuqi Ni
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Changqin Pu
- The Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Dan Wang
- The Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Weiming Lou
- The Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Xufang Zeng
- The Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Ning Su
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Chen Chen
- School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi, China
| | - Ziqiang Zeng
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Libin Deng
- The Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Meixiu Jiang
- The Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
13
|
Liu S, Bi H, Jiang M, Chen Y, Jiang M. An update on the role of TRIM/NLRP3 signaling pathway in atherosclerosis. Biomed Pharmacother 2023; 160:114321. [PMID: 36736278 DOI: 10.1016/j.biopha.2023.114321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of large and medium arteries that includes lipid metabolism disorder and recruitment of immune cells to the artery wall. An increasing number of studies have confirmed that inflammasome over-activation is associated with the onset and progression of atherosclerosis. The NLRP3 inflammasome, in particular, has been proven to increase the incidence rate of cardiovascular diseases (CVD) by promoting pro-inflammatory cytokine release and reducing plaque stability. The strict control of inflammasome and prevention of excessive inflammatory reactions have been the research focus of inflammatory diseases. Tripartite motif (TRIM) is a protein family with a conservative structure and rapid evolution. Several studies have demonstrated the TRIM family's regulatory role in mediating inflammation. This review aims to clarify the relationship between TRIMs and NLRP3 inflammasome and provide insights for future research and treatment discovery.
Collapse
Affiliation(s)
- Sibo Liu
- The QUEEN MARY school, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Hongfeng Bi
- Medical Equipment Department, Dongying Shengli Oilfield Central Hospital, Dongying, Shandong 257034, China
| | - Meiling Jiang
- Department of obstetrics, Dongying Shengli Oilfield Central Hospital, Dongying, Shandong 257034, China
| | - Yuanli Chen
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Meixiu Jiang
- The Institute of Translational Medicine, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
14
|
Zeng Q, Xie J, Li F. TRIM59 attenuates ox-LDL-induced endothelial cell inflammation, apoptosis, and monocyte adhesion through AnxA2. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:42. [PMID: 36819529 PMCID: PMC9929822 DOI: 10.21037/atm-22-6044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
Background Atherosclerosis (AS), a chronic inflammatory vascular disease, is a cause of heart attack and ischemic stroke. Tripartite motif-containing protein 59 (TRIM59), a member of the tripartite motif family, has been reported to be involved in inflammatory diseases. This study was to investigate the role of TRIM59 in oxidized low-density lipoprotein (ox-LDL)-induced endothelial cells and examine the mechanism of TRIM59. Methods To simulate a cellular model of AS in vitro, varying concentrations of ox-LDL (i.e., 20, 40, 60, 80, and 100 µg/mL) were used to treat the human umbilical vein endothelial cells (HUVECs) for 24 h. The messenger ribonucleic acid (RNA) and protein levels of TRIM59, lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), and annexin 2 (AnxA2) were examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot. The transfection efficacy of overexpression (Ov)-TRIM59 and small-interfering RNA-AnxA2 was examined by RT-qPCR and western blot. Cell counting kit-8 assays, lactate dehydrogenase (LDH) assays, enzyme-linked immunosorbent assays, and terminal-deoxynucleotidyl transferase mediated nick end labeling staining were used to examine viability, LDH expression, inflammation, and apoptosis in HUVECs. The protein levels of B-cell lymphoma 2, Bcl-2-associated X (BAX), cleaved caspase3, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 were assessed by western blot. Additionally, the adhesion of THP-1 to ox-LDL-induced HUVECs was detected using monocyte adhesion assays and the binding of TRIM59 and AnxA2 was verified by co-immunoprecipitation. Results This study showed that TRIM59 expression was decreased in the ox-LDL-induced HUVECs while LOX-1 expression was increased. After transfection with Ov-TRIM59, TRIM59 in ox-LDL-induced HUVECs was increased, and TRIM59 overexpression alleviated the viability damage, inflammation, and apoptosis of the ox-LDL-induced HUVECs. In addition, THP-1 adhesion to the ox-LDL-induced HUVECs was also suppressed by TRIM59 overexpression. This study also showed that TRIM59 could bind to AnxA2 and promote AnxA2 expression in ox-LDL-stimulated HUVECs. Moreover, the rescue experiments revealed that TRIM59 suppressed the viability damage, inflammation, apoptosis, and monocyte adhesion of the ox-LDL-induced HUVECs via AnxA2. Conclusions TRIM59 protected against ox-LDL-induced AS by binding to AnxA2.
Collapse
Affiliation(s)
- Qilin Zeng
- General Practice, Fifth Clinical Medical College, Xinjiang Medical University, Urumqi, China
| | - Jingli Xie
- Department of Cardiovascular Medicine, Fifth Clinical Medical College, Xinjiang Medical University, Urumqi, China
| | - Fang Li
- Leshan People’s Hospital ICU, Leshan, China
| |
Collapse
|
15
|
Jiang JF, Zhou ZY, Liu YZ, Wu L, Nie BB, Huang L, Zhang C. Role of Sp1 in atherosclerosis. Mol Biol Rep 2022; 49:9893-9902. [PMID: 35715606 DOI: 10.1007/s11033-022-07516-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/12/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
Specificity protein (Sp) is a famous family of transcription factors including Sp1, Sp2 and Sp3. Sp1 is the first one of Sp family proteins to be characterized and cloned in mammalian. It has been proposed that Sp1 acts as a modulator of the expression of target gene through interacting with a series of proteins, especially with transcriptional factors, and thereby contributes to the regulation of diverse biological processes. Notably, growing evidence indicates that Sp1 is involved in the main events in the development of atherosclerosis (AS), such as inflammation, lipid metabolism, plaque stability, vascular smooth muscle cells (VSMCs) proliferation and endothelial dysfunction. This review is designed to provide useful clues to further understanding roles of Sp1 in the pathogenesis of AS, and may be helpful for the design of novel efficacious therapeutics agents targeting Sp1.
Collapse
Affiliation(s)
- Jie-Feng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Zheng-Yang Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Yi-Zhang Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Li Wu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Bin-Bin Nie
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China
| | - Liang Huang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, People's Republic of China.
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, 421001, Hengyang, Hunan, People's Republic of China.
| |
Collapse
|
16
|
Jin Z, Chen T, Zhu Z, Xu B, Yan D. The role of TRIM59 in immunity and immune-related diseases. Int Rev Immunol 2022; 43:33-40. [PMID: 35975813 DOI: 10.1080/08830185.2022.2102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/09/2022] [Indexed: 10/15/2022]
Abstract
TRIM59 is a member of the tripartite motif containing (TRIM) protein family. It functions as an E3 ubiquitin ligase through its RING domain and is expressed by multiple types of cells. Physiogically, TRIM59 is involved in development, immune response, and the invasion and metastasis of tumors. In this review, we first describe the structure, expression, and subcellular location of TRIM59. Then, we summarize emerging evidence for TRIM59 in immunological diseases including infection, vascular diseases, autoimmunity, and tumor immunity. Additionally, we discuss important molecular signaling pathways that mediate TRIM59 activity. Altogether, the accumulating evidence suggests that manipulating TRIM59 levels and activity may open an avenue for innovative therapies for immune diseases and tumors.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| | - Tiffany Chen
- Divison of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Zhenhua Zhu
- Department of Orthopaedic Trauma, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Baohui Xu
- Divison of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun City, Jilin Province, China
| |
Collapse
|
17
|
Chen Y, Wu Y, Zhu L, Chen C, Xu S, Tang D, Jiao Y, Yu W. METTL3-Mediated N6-Methyladenosine Modification of Trim59 mRNA Protects Against Sepsis-Induced Acute Respiratory Distress Syndrome. Front Immunol 2022; 13:897487. [PMID: 35693774 PMCID: PMC9174697 DOI: 10.3389/fimmu.2022.897487] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022] Open
Abstract
N6-methyladenosine (m6A) RNA modification is a fundamental determinant of mRNA metabolism in eukaryotic cells and is involved in numerous physiological and pathological processes. However, the specific role of m6A modification in sepsis-induced acute respiratory distress syndrome(ARDS) remains unknown. Here, we show that the levels of m6A RNA were significantly decreased in septic lungs and that METTL3 was the main regulator involved in the absence of m6A RNA modification. Pulmonary endothelial barrier damage is a critical process in the pathogenesis of acute lung injury during sepsis. METTL3 regulated endothelial barrier dysfunction and inflammatory responses in sepsis-induced ARDS in vivo and in vitro. Furthermore, we identified tripartite motif-containing (Trim)59 as a key m6A effector and Trim59 deficiency exacerbated lung injury. Mechanistically, METTL3 inhibited endothelial injury in sepsis-induced ARDS through Trim59-associated NF-κB inactivation. Our findings revealed novel insights into epitranscriptional mechanisms in sepsis-induced ARDS via m6A modifications, which has important application value in the diagnosis, prognosis, and molecular-targeted therapy of sepsis-associated lung injury.
Collapse
Affiliation(s)
- Yi Chen
- Department of Anesthesiology, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yuling Wu
- Department of Anesthesiology, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Linjie Zhu
- Department of Anesthesiology, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Caiyang Chen
- Department of Anesthesiology, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Saihong Xu
- Department of Anesthesiology, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Dan Tang
- Department of Anesthesiology, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Crinum latifolium extract inhibits lipopolysaccharide-induced inflammation in human macrophages. REV ROMANA MED LAB 2022. [DOI: 10.2478/rrlm-2022-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Introduction: Crinum latifolium is a natural plant showing the anti-inflammatory effects. We aimed to evaluate the effects of Crinum latifolium extract on proinflammatory cytokine production and maturation of early and late endosomes in the lipopolysaccharide (LPS)-induced human macrophages at light microscopic and biochemical levels.
Material and Methods: The effects of Crinum latifolium extract in human macrophages stimulated with LPS was evaluated to optic densities of the lysosome-associated membrane protein-1 (LAMP-1) and early endo-some antigen 1 (EEA1) by immunohistochemistry staining and to level of the proinflammatory cytokine interleukin (IL)-6 by enzyme-linked immunosorbent assay (ELISA).
Results: Crinum latifolium group exhibited a significant decreased in the levels of IL-6 in the supernatant as compared to the LPS group for 2 and 72 hours (p<0.0001). Crinum latifolium group exhibited a significant increased in the optic density of the EEA1 and LAMP-1 in coverslips as compared to the control and lipopolysaccharide groups after 2 and 72 hours (p<0.0001).
Conclusions: Crinum latifolium may a therapeutic plant in the inflammatory diseases, such as sepsis, through anti-inflammatory effects, such as decrease in production of the proinflammatory cytokine and increase in maturations of the early and late endosomes in macrophages.
Collapse
|
19
|
Liu ZM, Wang X, Li CX, Liu XY, Guo XJ, Li Y, Chen YL, Ye HX, Chen HS. SP1 Promotes HDAC4 Expression and Inhibits HMGB1 Expression to Reduce Intestinal Barrier Dysfunction, Oxidative Stress, and Inflammatory Response after Sepsis. J Innate Immun 2022; 14:366-379. [PMID: 35780770 PMCID: PMC9274949 DOI: 10.1159/000518277] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022] Open
Abstract
As a serious and elusive syndrome caused by infection, sepsis causes a high rate of mortality around the world. Our investigation aims at exploring the role and possible mechanism of specificity protein-1 (SP1) in the development of sepsis. A mouse model of sepsis was established by cecal ligation perforation, and a cellular model was stimulated by lipopolysaccharide (LPS), followed by determination of the SP1 expression. It was determined that SP1 was poorly expressed in the intestinal tissues of septic mice and LPS-treated cells. Next, we examined the interactions among SP1, histone deacetylase 4 (HDAC4), and high mobility group box 1 (HMGB1) and found that SP1 bound to the HDAC4 promoter to upregulate its expression, thereby promoting the deacetylation of HMGB1. Meanwhile, gain- or loss-of-function approaches were applied to evaluate the intestinal barrier dysfunction, oxidative stress, and inflammatory response. Overexpression of SP1 or underexpression of HMGB1 was observed to reduce intestinal barrier dysfunction, oxidative stress, and inflammatory injury. Collectively, these experimental data provide evidence reporting that SP1 could promote the HDAC4-mediated HMGB1 deacetylation to reduce intestinal barrier dysfunction, oxidative stress, and inflammatory response induced by sepsis, providing a novel therapeutic target for sepsis prevention and treatment.
Collapse
Affiliation(s)
- Zhen-Mi Liu
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, Shenzhen, China
| | - Xi Wang
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, Shenzhen, China
| | - Chen-Xi Li
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, Shenzhen, China
| | - Xue-Yan Liu
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, Shenzhen, China
| | - Xiao-Jing Guo
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, Shenzhen, China
| | - Yang Li
- Department of Gastrointestinal Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, Shenzhen, China
| | - You-Lian Chen
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, Shenzhen, China
| | - Hong-Xing Ye
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, Shenzhen, China
| | - Huai-Sheng Chen
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, Shenzhen, China
- *Huai-Sheng Chen,
| |
Collapse
|
20
|
Wang QL, Yang L, Liu ZL, Peng Y, Gao M, Deng LT, Liu X, Xing W. Sirtuin 6 regulates macrophage polarization to alleviate sepsis-induced acute respiratory distress syndrome via dual mechanisms dependent on and independent of autophagy. Cytotherapy 2021; 24:149-160. [PMID: 34920961 DOI: 10.1016/j.jcyt.2021.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/11/2021] [Accepted: 09/04/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND AIMS Sepsis-induced acute respiratory distress syndrome (ARDS) can be mediated by an imbalance in macrophage polarization; however, the underlying mechanisms remain poorly understood. This study aimed to investigate the modulatory role of sirtuin 6 (SIRT6) in macrophage polarization during sepsis-induced ARDS. METHODS A mouse ARDS model was established using cecal ligation and puncture. Isolated alveolar macrophages (AMs) and lipopolysaccharide (LPS)-stimulated bone marrow-derived macrophages (BMDMs) were adopted as in vitro models. Macrophage polarization was evaluated by measuring M1 and M2 macrophage percentages via flow cytometry and expression of specific markers. The expression of microtubule-associated light chain protein 3I/II and beclin-1 was detected for assessing macrophage autophagy. Binding between specificity protein 1 (SP1) and the target gene promoter was evaluated using a chromatin immunoprecipitation assay. RNA expression was analyzed by quantitative reverse transcription polymerase chain reaction and western blotting. RESULTS Treatment with the SIRT6 activator UBCS039 significantly alleviated lung injury in the mouse ARDS model and enhanced autophagy and M2 polarization in isolated AMs. M2 polarization and autophagy in LPS-challenged BMDMs were also effectively promoted by UBCS039 treatment or SIRT6 overexpression. An adenosine monophosphate-activated protein kinase inhibitor (Compound C) or autophagy inhibitor (3-methyladenine) partially abrogated M2 polarization mediated by SIRT6 overexpression upon LPS exposure. SIRT6 induced autophagy and M2 polarization of BMDMs partially via its deacetylase activity. SIRT6 inhibited mammalian target of rapamycin transcription by modulating SP1 to promote BMDM M2 polarization, which was independent of autophagy. CONCLUSIONS SIRT6 promotes M2 polarization of macrophages to alleviate sepsis-induced ARDS in an autophagy-dependent and -independent manner.
Collapse
Affiliation(s)
- Qian-Lu Wang
- Department of Intensive Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Lei Yang
- Department of Preparations, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Zuo-Liang Liu
- Department of Intensive Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yue Peng
- Department of Intensive Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Min Gao
- Department of Intensive Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Long-Tian Deng
- Department of Intensive Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xi Liu
- Department of Intensive Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wei Xing
- Department of Intensive Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
21
|
Jin Z, Zhu Z, Zhang W, Liu L, Tang M, Li D, Yan D, Zhu X. Effects of TRIM59 on RAW264.7 macrophage gene expression and function. Immunobiology 2021; 226:152109. [PMID: 34252840 DOI: 10.1016/j.imbio.2021.152109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 05/12/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
Macrophages have a variety of functions, such as secreting cytokines, phagocytosis, et al. Tripartite motif containing 59 (TRIM59) protein is highly expressed in tumor cells. It can regulate proliferation of tumor cells and promote tumor progression. Recent studies shown that the expression of TRIM59 was different in macrophages when stimulated by different stimuli, however, the effects of TRIM59 on macrophage gene expression profiles and functions are still unknown. In our study, we constructed RAW264.7 macrophages with high and low expression of TRIM59, and used next generation sequencing to explore the effects of TRIM59 on macrophage gene expression profiles. Results showed that TRIM59 affected an abundant number of genes, and may affect phagocytosis and cell cycles. We also examined the expression of surface molecules, secretion of cytokines, phagocytosis, proliferation, and apoptosis of macrophages, and confirmed that TRIM59 increased the expression of FcγRs CD16/32, CD64 and the secretion of TNF-α and IL-10, promoted phagocytosis and proliferation of RAW264.7 cells, inhibited the expression of complement receptor CD11b and antigen presentation related receptors (MHCII, CD80), but TRIM59 had no significant effect on apoptosis. Our study explored the effect of TRIM59 on the gene expression and function of macrophages comprehensively.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Zhenhua Zhu
- Department of Orthopaedic Trauma, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, West of Zhongshan Avenue 183#, Guangzhou, Guangdong Province, China
| | - Wenxin Zhang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Liping Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Mengyan Tang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Dong Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China.
| | - Xun Zhu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
22
|
Su X, Zhang Q, Yue J, Wang Y, Zhang Y, Yang R. TRIM59 suppresses NO production by promoting the binding of PIAS1 and STAT1 in macrophages. Int Immunopharmacol 2020; 89:107030. [PMID: 33045573 DOI: 10.1016/j.intimp.2020.107030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
Macrophages, which can secret various inflammation mediators, have an essential role in tumor growth and metastasis. However, the mechanism(s) to regulate the production of inflammation mediator is not completely clear. Here we found that TRIM 59 could inhibit the production of NO and the expression of inducible nitric oxide synthase (iNOS), cytochrome c oxidase subunit2 (COX2) and TNFα. TRIM59 mediated suppression on nitric oxide (NO) production is through inhibiting the activation of JAK2-STAT1 signal pathway. In response to LPS, TRIM59 in macrophages was translocated from cytoplasm to nucleus and directly bound with STAT1. During this process, TRIM59 could recruit much more PIAS1 to bind with STAT1 to suppress the activation of STAT1. Finally, TRIM59 modified macrophages could promote tumor growth. Thus, TRIM59 mediated suppression on NO production by promoting the binding of PIAS1 and STAT1 in macrophages may regulate tumor growth.
Collapse
Affiliation(s)
- Xiaomin Su
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| | - Qianjing Zhang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Jianmei Yue
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yachen Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yuan Zhang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
23
|
TRIM59 attenuates IL-1β-driven cartilage matrix degradation in osteoarthritis via direct suppression of NF-κB and JAK2/STAT3 signaling pathway. Biochem Biophys Res Commun 2020; 529:28-34. [PMID: 32560815 DOI: 10.1016/j.bbrc.2020.05.130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022]
Abstract
The tripartite motif (TRIM) protein family are implicated in a wide array of cellular processes, including cell growth, differentiation, apoptosis and inflammation. This study aimed to investigate the specific function of TRIM59 in chondrocytes and its association with the pathophysiology of osteoarthritis (OA). We observed the downregulated TRIM59 expression in OA cartilage compared to normal tissues. Overexpression of TRIM59 suppressed interleukin 1 beta (IL-1β)-induced extracellular matrix (ECM) metabolic imbalance, proinflammatory cytokine production, apoptosis and decrease in cell viability. Mechanistic analyses further revealed that IL-1β-induced activation of the NF-κB and JAK2/STAT3 pathway is suppressed upon TRIM59 overexpression. TRIM59 expression was consistently decreased in a rat OA model in vivo, and its overexpression led to inhibition of matrix metallopeptidase-13 (MMP-13) production, proinflammatory cytokine levels and increased collagen type II (collagen II) and aggrecan synthesis. Our data collectively suggest that TRIM59 plays a critical in OA development through regulation of NF-κB and JAK2/STAT3 signaling pathway. Pharmacological upregulation of TRIM59 may therefore present an effective novel therapeutic approach for OA.
Collapse
|
24
|
Liu G, Song J, Zhao Y, Zhang L, Qin J, Cui Y. Tripartite motif containing 59 (TRIM59) promotes esophageal cancer progression via promoting MST4 expression and ERK pathway. J Recept Signal Transduct Res 2020; 40:471-478. [PMID: 32340525 DOI: 10.1080/10799893.2020.1756327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: To detect the expression of tripartite motif containing 59 (TRIM59) in human esophageal cancer (EC) tissues and explore whether TRIM59 could affect the progression of EC.Methods: Quantitative PCR and immunohistochemistry assays were performed to detect the expression of TRIM59 in 40 human EC tissues and corresponding non-tumor tissues. The correlations between TRIM59 expression and clinical pathological features of patients with EC were also investigated. CCK-8, colony formation, wound closure, and transwell assays were performed to detect the effects of TRIM59 on EC cells in vitro., Immunoblotting assays were performed to detect the effects of TRIM59 on the expression of mammalian sterile-20-like kinase 4 (MST4) and ERK pathway.Results: We reported increased expression of TRIM59 in human EC tissues, and its expression was correlated with clinical features, including metastasis (p = .011*) and maximum diameter (p = .027*), in patients with EC. We further found that TRIM59 contributed to the proliferation and invasion of EC cells via regulating mammalian sterile-20-like kinase 4 (MST4) expression and ERK pathway.Conclusion: Our data confirmed the involvement of TRIM59 in EC progression and proposed that TRIM59 could serve as a promising therapeutic target for the treatment of EC.
Collapse
Affiliation(s)
- Guangming Liu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Jinying Song
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Yong Zhao
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Lianjie Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Junjie Qin
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Youbin Cui
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun City, Jilin Province, China
| |
Collapse
|