1
|
Carruthers ER, Grimsey NL. Cannabinoid CB 2 receptor orthologues; in vitro function and perspectives for preclinical to clinical translation. Br J Pharmacol 2024; 181:2247-2269. [PMID: 37349984 DOI: 10.1111/bph.16172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Cannabinoid CB2 receptor agonists are in development as therapeutic agents, including for immune modulation and pain relief. Despite promising results in rodent preclinical studies, efficacy in human clinical trials has been marginal to date. Fundamental differences in ligand engagement and signalling responses between the human CB2 receptor and preclinical model species orthologues may contribute to mismatches in functional outcomes. This is a tangible possibility for the CB2 receptor in that there is a relatively large degree of primary amino acid sequence divergence between human and rodent. Here, we summarise CB2 receptor gene and protein structure, assess comparative molecular pharmacology between CB2 receptor orthologues, and review the current status of preclinical to clinical translation for drugs targeted at the CB2 receptor, focusing on comparisons between human, mouse and rat receptors. We hope that raising wider awareness of, and proposing strategies to address, this additional challenge in drug development will assist in ongoing efforts toward successful therapeutic translation of drugs targeted at the CB2 receptor. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Emma R Carruthers
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
2
|
Barker H, Ferraro MJ. Exploring the versatile roles of the endocannabinoid system and phytocannabinoids in modulating bacterial infections. Infect Immun 2024; 92:e0002024. [PMID: 38775488 PMCID: PMC11237442 DOI: 10.1128/iai.00020-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
The endocannabinoid system (ECS), initially identified for its role in maintaining homeostasis, particularly in regulating brain function, has evolved into a complex orchestrator influencing various physiological processes beyond its original association with the nervous system. Notably, an expanding body of evidence emphasizes the ECS's crucial involvement in regulating immune responses. While the specific role of the ECS in bacterial infections remains under ongoing investigation, compelling indications suggest its active participation in host-pathogen interactions. Incorporating the ECS into the framework of bacterial pathogen infections introduces a layer of complexity to our understanding of its functions. While some studies propose the potential of cannabinoids to modulate bacterial function and immune responses, the outcomes inherently hinge on the specific infection and cannabinoid under consideration. Moreover, the bidirectional relationship between the ECS and the gut microbiota underscores the intricate interplay among diverse physiological processes. The ECS extends its influence far beyond its initial discovery, emerging as a promising therapeutic target across a spectrum of medical conditions, encompassing bacterial infections, dysbiosis, and sepsis. This review comprehensively explores the complex roles of the ECS in the modulation of bacteria, the host's response to bacterial infections, and the dynamics of the microbiome. Special emphasis is placed on the roles of cannabinoid receptor types 1 and 2, whose signaling intricately influences immune cell function in microbe-host interactions.
Collapse
Affiliation(s)
- Hailey Barker
- Microbiology and Cell Science Department, IFAS, University of Florida, Gainesville, Florida, USA
| | - Mariola J. Ferraro
- Microbiology and Cell Science Department, IFAS, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Hassan Kalantar Neyestanaki M, Gholizadeh O, Hosseini Tabatabaie F, Akbarzadeh S, Yasamineh S, Afkhami H, Sedighi S. Immunomodulatory effects of cannabinoids against viral infections: a review of its potential use in SARS-CoV2 infection. Virusdisease 2024; 35:342-356. [PMID: 39071880 PMCID: PMC11269557 DOI: 10.1007/s13337-024-00871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/11/2024] [Indexed: 07/30/2024] Open
Abstract
The COVID-19 pandemic is a global health crisis affecting millions of people worldwide. Along with vaccine development, there is also a priority to discover new drugs and treatments. One approach involves modulating the immune system to manage inflammation and cytokine storms. Patients with a high severity of complications exhibit a high level of inflammatory cytokines, particularly IL-6, in the airways and other infected tissues. Several studies have reported the function of the endocannabinoid system in regulating inflammation and different immune responses. Cannabinoids are a class of natural chemicals found in the Cannabis plant. Recently, the anti-inflammatory properties of cannabinoids and their mediatory immunosuppression mechanisms through the endocannabinoid system have engrossed scientists in the health field for infectious conditions. Research suggests that the immune system can regulate cytokine activation through cannabinoid receptors, particularly with Cannabidiol (CBD), the second most prevalent compound in cannabis. While CBD has been deemed safe by the World Health Organization and shows no signs of abuse potential, excessive CBD use may lead to respiratory depression. CBD shows promise in reducing immune cell recruitment and cytokine storms in organs affected by SARS-CoV2. However, before clinical use, it's crucial to evaluate cannabinoid-based medications' active ingredient concentrations and potential interactions with other drugs, along with associated side effects. Indication-based dosing, consistent formulations, and ensuring purity and potency are essential. This review highlights cannabinoids' effects on COVID-19 management and prognosis, drawing from preclinical and clinical studies.
Collapse
Affiliation(s)
| | | | - Fatemeh Hosseini Tabatabaie
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sama Akbarzadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Science, Tehran, Iran
| | - Somayeh Sedighi
- Department of Immunology, Faculty of Medicine, Medical Science of Mashhad, Mashhad, Iran
| |
Collapse
|
4
|
Holmes J, Islam SM, Milligan KA. Exploring Cannabinoids as Potential Inhibitors of SARS-CoV-2 Papain-like Protease: Insights from Computational Analysis and Molecular Dynamics Simulations. Viruses 2024; 16:878. [PMID: 38932170 PMCID: PMC11209085 DOI: 10.3390/v16060878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a global COVID-19 pandemic, challenging healthcare systems worldwide. Effective therapeutic strategies against this novel coronavirus remain limited, underscoring the urgent need for innovative approaches. The present research investigates the potential of cannabis compounds as therapeutic agents against SARS-CoV-2 through their interaction with the virus's papain-like protease (PLpro) protein, a crucial element in viral replication and immune evasion. Computational methods, including molecular docking and molecular dynamics (MD) simulations, were employed to screen cannabis compounds against PLpro and analyze their binding mechanisms and interaction patterns. The results showed cannabinoids with binding affinities ranging from -6.1 kcal/mol to -4.6 kcal/mol, forming interactions with PLpro. Notably, Cannabigerolic and Cannabidiolic acids exhibited strong binding contacts with critical residues in PLpro's active region, indicating their potential as viral replication inhibitors. MD simulations revealed the dynamic behavior of cannabinoid-PLpro complexes, highlighting stable binding conformations and conformational changes over time. These findings shed light on the mechanisms underlying cannabis interaction with SARS-CoV-2 PLpro, aiding in the rational design of antiviral therapies. Future research will focus on experimental validation, optimizing binding affinity and selectivity, and preclinical assessments to develop effective treatments against COVID-19.
Collapse
Affiliation(s)
| | - Shahidul M. Islam
- Department of Chemistry, Delaware State University, 1200 N. DuPont Hwy, Dover, DE 19901, USA; (J.H.); (K.A.M.)
| | | |
Collapse
|
5
|
Cui Sun M, Otálora-Alcaraz A, Prenderville JA, Downer EJ. Toll-like receptor signalling as a cannabinoid target. Biochem Pharmacol 2024; 222:116082. [PMID: 38438052 DOI: 10.1016/j.bcp.2024.116082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 03/06/2024]
Abstract
Toll-like receptors (TLRs) have become a focus in biomedicine and biomedical research given the roles of this unique family of innate immune proteins in immune activation, infection, and autoimmunity. It is evident that TLR dysregulation, and subsequent alterations in TLR-mediated inflammatory signalling, can contribute to disease pathogenesis, and TLR targeted therapies are in development. This review highlights evidence that cannabinoids are key regulators of TLR signalling. Cannabinoids include component of the plant Cannabis sativa L. (C. sativa), synthetic and endogenous ligands, and overall represent a class of compounds whose therapeutic potential and mechanism of action continues to be elucidated. Cannabinoid-based medicines are in the clinic, and are furthermore under intense investigation for broad clinical development to manage symptoms of a range of disorders. In this review, we present an overview of research evidence that signalling linked to a range of TLRs is targeted by cannabinoids, and such cannabinoid mediated effects represent therapeutic avenues for further investigation. First, we provide an overview of TLRs, adaptors and key signalling events, alongside a summary of evidence that TLRs are linked to disease pathologies. Next, we discuss the cannabinoids system and the development of cannabinoid-based therapeutics. Finally, for the bulk of this review, we systematically outline the evidence that cannabinoids (plant-derived cannabinoids, synthetic cannabinoids, and endogenous cannabinoid ligands) can cross-talk with innate immune signalling governed by TLRs, focusing specifically on each member of the TLR family. Cannabinoids should be considered as key regulators of signalling controlled by TLRs, and such regulation should be a major focus in terms of the anti-inflammatory propensity of the cannabinoid system.
Collapse
Affiliation(s)
- Melody Cui Sun
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Almudena Otálora-Alcaraz
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Jack A Prenderville
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Transpharmation Ireland Limited, Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Eric J Downer
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
6
|
Zhang J, Zhu Y, Chen S, Xu Z, Zhang B, Liu A, He Q, Zhan J. Activation of cannabinoid receptors 2 alleviates myocardial damage in cecal ligation and puncture-induced sepsis by inhibiting pyroptosis. Immunol Lett 2023; 264:17-24. [PMID: 37918639 DOI: 10.1016/j.imlet.2023.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/15/2023] [Accepted: 10/28/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND It has been reported that cannabinoid receptors 2 (CB2 receptors) play an important role in the pathophysiological process of sepsis, which may also be associated with the regulation of pyroptosis, an inflammatory programmed cell death. The present study aimed to investigate the protective effect of CB2 receptors on myocardial damage in a model of septic mice by inhibiting pyroptosis. METHODS The C57BL/6 mice underwent cecal ligation and puncture (CLP) to induce sepsis. All mice were randomly divided into the sham, CLP, or CLP+HU308 group. Blood and heart tissue samples were collected 12 h after surgery. Hematoxylin and eosin staining was used for analyzing histopathological results. Creatine kinase isoenzymes (CK-MB) and IL-1β were measured using ELISA, while lactate dehydrogenase (LDH) level was determined using photoelectric colorimetry. The expression levels of CB2 receptors and pyroptosis-associated proteins (NLRP3, caspase-1, and GSDMD) were measured using western blotting. The location and distribution of CB2 receptors and caspase-1 in myocardial tissues were assessed by immunofluorescence. TUNEL staining was used to quantify the number of dead cells in myocardial tissues. RESULTS The CLP procedure increased CB2 receptor expression in mice. CB2 receptors were located in myocardial macrophages. Activating CB2 receptors decreased the levels of myocardial damage mediator LDH, CK-MB, and inflammatory cytokine IL-1β. The results also showed that CLP increased the pyroptosis in myocardial tissues, while CB2 agonist HU308 inhibited pyroptosis by decreasing the level of NLRP3 and activating caspase-1 and GSDMD. CONCLUSIONS CB2 receptor activation has a protective effect on the myocardium of mice with sepsis by inhibiting pyroptosis.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Yali Zhu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Shuxian Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Zujin Xu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Bin Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Anpeng Liu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Qianwen He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China.
| | - Jia Zhan
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China.
| |
Collapse
|
7
|
Souza CF, Borges LB, Oliveira FRMB, Silva PCDS, Patricio DO, Rosales TO, Souza NF, Spiller F, Mansur DS, Assreuy J, Sordi R. Cannabinoid CB 2 receptor agonist reduces local and systemic inflammation associated with pneumonia-induced sepsis in mice. Eur J Pharmacol 2023; 959:176092. [PMID: 37797676 DOI: 10.1016/j.ejphar.2023.176092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
Sepsis is a severe condition secondary to dysregulated host response to infection leading to tissue damage and organ dysfunction. Cannabinoid CB2 receptor has modulatory effects on the immune response. Therefore, this study investigated the effects of a cannabinoid CB2 receptor agonist on the local and systemic inflammatory process associated with pneumonia-induced sepsis. Pneumonia-induced sepsis was induced in mice by intratracheal inoculation of Klebsiella pneumoniae. Tissue and bronchoalveolar lavage (BAL) were collected 6, 24, or 48 h after surgery. Mice were treated with CB2 agonist (AM1241, 0.3 and 3 mg/kg, i.p.) and several parameters of inflammation were evaluated 24 h after sepsis induction. Polymorphonuclear cell migration to the infectious focus peaked 24 h after pneumonia-induced sepsis induction in male and female animals. Septic male mice presented a significant reduction of cannabinoid CB2 receptor density in the lung tissue after 24 h, which was not observed in females. CB2 expression in BAL macrophages was also reduced in septic animals. Treatment of septic mice with AM1241 reduced cell migration, local infection, myeloperoxidase activity, protein extravasation, and NOS-2 expression in the lungs. In addition, the treatment reduced plasma IL-1β, increased IL-10 and reduced the severity and mortality of septic animals. These results suggest that AM1241 promotes an interesting balance in the inflammatory response, maintaining lung function and preventing organ injury. Therefore, cannabinoid CB2 receptors are potential targets to control the excessive inflammatory process that occurs in severe conditions, and agonists of these receptors can be considered promising adjuvants in pneumonia-induced sepsis treatment.
Collapse
Affiliation(s)
| | | | | | | | - Daniel Oliveira Patricio
- Department of Microbiology, Immunology anda Parasitology, Federal University of Santa Catarina, SC, Brazil
| | | | | | - Fernando Spiller
- Department of Pharmacology, Federal University of Santa Catarina, SC, Brazil
| | - Daniel Santos Mansur
- Department of Microbiology, Immunology anda Parasitology, Federal University of Santa Catarina, SC, Brazil
| | - Jamil Assreuy
- Department of Pharmacology, Federal University of Santa Catarina, SC, Brazil
| | - Regina Sordi
- Department of Pharmacology, Federal University of Santa Catarina, SC, Brazil.
| |
Collapse
|
8
|
Zhao J, Liang Q, Fu C, Cong D, Wang L, Xu X. Autophagy in sepsis-induced acute lung injury: Friend or foe? Cell Signal 2023; 111:110867. [PMID: 37633477 DOI: 10.1016/j.cellsig.2023.110867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Sepsis-induced acute lung injury (ALI) is a life-threatening syndrome with high mortality and morbidity, resulting in a heavy burden on family and society. As a key factor that maintains cellular homeostasis, autophagy is regarded as a self-digesting process by which damaged organelles and useless proteins are recycled for cell metabolism, and it thus plays a crucial role during physiological and pathological processes. Recent studies have indicated that autophagy is involved in the pathophysiological process of sepsis-induced ALI, including cell apoptosis, inflammation, and mitochondrial dysfunction, which indicates that regulating autophagy may be beneficial for this disease. However, the role of autophagy in the etiology and treatment of sepsis-induced ALI is not well characterized. This review summarizes the autophagy-related signaling pathways in sepsis-induced ALI, as well as focuses on the dual role of autophagy and its regulation by non-coding RNAs during disease progression, for the development of potential therapeutic strategies in this disease.
Collapse
Affiliation(s)
- Jiayao Zhao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Qun Liang
- Department of Critical Care Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Chenfei Fu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Didi Cong
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Long Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiaoxin Xu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
9
|
Zhao FZ, Gu WJ, Li LZ, Qu ZK, Xu MY, Liu K, Zhang F, Liu H, Xu J, Yin HY. Cannabinoid receptor 2 alleviates sepsis-associated acute lung injury by modulating maturation of dendritic cells. Int Immunopharmacol 2023; 123:110771. [PMID: 37582314 DOI: 10.1016/j.intimp.2023.110771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND Dendritic cells (DCs) play a key role in a variety of inflammatory lung diseases, but their role in sepsis-associated acute lung injury (SA-ALI) is currently not been illuminated. Cannabinoid receptor 2 (CNR2) has been reported to regulate the DCs maturation. However, whether the CNR2 in DCs contributes to therapeutic therapy for SA-ALI remain unclear. In current study, the role of CNR2 on DCs maturation and inflammatory during SA-ALI is to explored. METHODS First, the CNR2 level was analyzed in isolated Peripheral Blood Mononuclear Cells (PBMCs) and Bronchoalveolar Lavage Fluid (BALF) from patient with SA-ALI by qRT-PCR and flow cytometry. Subsequently, HU308, a specific agonist of CNR2, and SR144528, a specific antagonist of CNR2, were introduced to explore the function of CNR2 on DCs maturation and inflammatory during SA-ALI. Finally, CNR2 conditional knockout mice were generated to further confirm the function of DCs maturation and Inflammation during SA-ALI. RESULTS First, we found that the expression of CNR2 on DCs was decreased in patient with SA-ALI. Besides, the result showed HU308 could decrease the maturation of DCs and the level of inflammatory cytokines, simultaneously reduce pulmonary pathological injury after LPS-induced sepsis in mice. In contrast of HU308, SR144528 exhibits opposite function of DCs maturate, inflammatory cytokines and lung pathological injury. Furthermore, comparing with SR144528 treatment, similar results were obtained in DCs specific CNR2 knockout mice after LPS treatment. CONCLUSION CNR2 could alleviate SA-ALI by modulating maturation of DCs and inflammatory factors levels. Targeting CNR2 signaling specifically in DCs has therapeutic potential for the treatment of SA-ALI.
Collapse
Affiliation(s)
- Feng-Zhi Zhao
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Wan-Jie Gu
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Long-Zhu Li
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zhong-Kai Qu
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Meng-Yuan Xu
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Kai Liu
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Feng Zhang
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Hui Liu
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jun Xu
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| | - Hai-Yan Yin
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Šahinović I, Mandić S, Mihić D, Duvnjak M, Loinjak D, Sabadi D, Majić Z, Perić L, Šerić V. Endocannabinoids, Anandamide and 2-Arachidonoylglycerol, as Prognostic Markers of Sepsis Outcome and Complications. Cannabis Cannabinoid Res 2023; 8:802-811. [PMID: 35649233 PMCID: PMC10589499 DOI: 10.1089/can.2022.0046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: One of the major challenges in improving sepsis care is early prediction of sepsis complications. The endocannabinoid system has been intensely studied in recent years; however, little is known about its role in sepsis in humans. This study aimed to assess the prognostic role of endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), as early predictors of mortality, invasive mechanical ventilation (IMV) requirement, and length of stay (LOS) in patients with sepsis. Materials and Methods: In total, 106 patients with confirmed sepsis were enrolled in this study. The patients were divided into groups according to mortality outcome (survival, N=53; nonsurvival, N=53), IMV requirement (IMV group, N=26; non-IMV group, N=80), and LOS (LOS <10 days, N=59; LOS ≥10 days, N=47). Patients' clinical status was assessed along with laboratory biomarkers as well as AEA and 2-AG concentration measurements early on admission to emergency units. AEA and 2-AG levels were measured by enzyme-linked immunosorbent assay (ELISA) using an ELISA processor, EtiMax 3000 (DiaSorin, Saluggia, Italy). The predictive value of AEA and 2-AG for the studied sepsis outcomes and complications was analyzed using univariate and multivariate analyses and receiver operating characteristic (ROC) curve analysis. Results: Two endocannabinoids showed no significant difference between survivors and nonsurvivors, although an AEA concentration <7.16 μg/L predicted mortality outcome with a sensitivity of 57% (95% confidence interval [CI] 42-71) and specificity of 80% (95% CI 66-91). AEA concentrations ≤17.84 μg/L predicted LOS ≥10 days with sensitivity of 98% (95% CI 89-100) and specificity of 34% (95% CI 22-47). When analyzing IMV requirement, levels of AEA and 2-AG were significantly lower within the IMV group compared with the non-IMV group (5.94 μg/L [2.04-9.44] and 6.70 μg/L [3.50-27.04], p=0.043, and 5.68 μg/L [2.30-8.60] and 9.58 μg/L [4.83-40.05], p=0.002, respectively). The 2-AG showed the best performance for IMV requirement prediction, with both sensitivity and specificity of 69% (p<0.001). Endocannabinoid AEA was an independent risk factor of LOS ≥10 days (odds ratio [OR] 23.59; 95% CI 3.03-183.83; p=0.003) and IMV requirement in sepsis (OR 0.79; 95% CI, 0.67-0.93; p=0.004). Conclusion: Low AEA concentration is a prognostic factor of hospital LOS longer than 10 days. Lower AEA and 2-AG concentrations obtained at the time of admission to the hospital are predictors of IMV requirement.
Collapse
Affiliation(s)
- Ines Šahinović
- Department of Clinical Laboratory Diagnostics, University Hospital Osijek, Osijek, Croatia
- J.J. Strossmayer University of Osijek, Faculty of Medicine Osijek, Osijek, Croatia
| | - Sanja Mandić
- Department of Clinical Laboratory Diagnostics, University Hospital Osijek, Osijek, Croatia
- J.J. Strossmayer University of Osijek, Faculty of Medicine Osijek, Osijek, Croatia
| | - Damir Mihić
- J.J. Strossmayer University of Osijek, Faculty of Medicine Osijek, Osijek, Croatia
- Department of Pulmonology and Intensive Care, Clinic of Internal Medicine, University Hospital Osijek, Osijek, Croatia
| | - Mario Duvnjak
- J.J. Strossmayer University of Osijek, Faculty of Medicine Osijek, Osijek, Croatia
- Clinic of Infective Diseases, University Hospital Osijek, Osijek, Croatia
| | - Domagoj Loinjak
- J.J. Strossmayer University of Osijek, Faculty of Medicine Osijek, Osijek, Croatia
- Department of Pulmonology and Intensive Care, Clinic of Internal Medicine, University Hospital Osijek, Osijek, Croatia
| | - Dario Sabadi
- J.J. Strossmayer University of Osijek, Faculty of Medicine Osijek, Osijek, Croatia
- Clinic of Infective Diseases, University Hospital Osijek, Osijek, Croatia
| | - Zlatko Majić
- Department of Pulmonology and Intensive Care, Clinic of Internal Medicine, University Hospital Osijek, Osijek, Croatia
| | - Ljiljana Perić
- J.J. Strossmayer University of Osijek, Faculty of Medicine Osijek, Osijek, Croatia
- Clinic of Infective Diseases, University Hospital Osijek, Osijek, Croatia
| | - Vatroslav Šerić
- Department of Clinical Laboratory Diagnostics, University Hospital Osijek, Osijek, Croatia
- J.J. Strossmayer University of Osijek, Faculty of Medicine Osijek, Osijek, Croatia
| |
Collapse
|
11
|
Horton KKA, Campanaro CK, Clifford C, Nethery DE, Strohl KP, Jacono FJ, Dick TE. Cannabinoid Receptor mRNA Expression in Central and Peripheral Tissues in a Rodent Model of Peritonitis. Cannabis Cannabinoid Res 2023; 8:510-526. [PMID: 35446129 PMCID: PMC10249742 DOI: 10.1089/can.2021.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Our laboratory investigates changes in the respiratory pattern during systemic inflammation in various rodent models. The endogenous cannabinoid system (ECS) regulates cytokine production and mitigates inflammation. Inflammation not only affects cannabinoid (CB) 1 and CB2 receptor gene expression (Cnr1 and Cnr2), but also increases the predictability of the ventilatory pattern. Objectives: Our primary objective was to track ventilatory pattern variability and transcription of Cnr1 and Cnr2 mRNA, and of Il1b, Il6, and tumor necrosis factor-alpha (Tnfa) mRNAs at multiple time points in central and peripheral tissues during systemic inflammation induced by peritonitis. Methods: In male Sprague Dawley rats (n=24), we caused peritonitis by implanting a fibrin clot containing either 0 or 25×106 Escherichia coli intraperitoneally. We recorded breathing with whole-animal plethysmography at baseline and 1 h before euthanasia. We euthanized the rats at 3, 6, or 12 h after inoculation and harvested the pons, medulla, lung, and heart for gene expression analysis. Results: With peritonitis, Cnr1 mRNA more than Cnr2 mRNA was correlated to Il1b, Il6, and Tnfa mRNAs in medulla, pons, and lung and changed oppositely in the pons, medulla, and lung. These changes were associated with increased predictability of ventilatory pattern. Specifically, nonlinear complexity index correlated with increased Cnr1 mRNA in the pons and medulla, and coefficient of variation for cycle duration correlated with Cnr1 and Cnr2 mRNAs in the lung. Conclusion: The mRNAs for ECS receptors varied with time during the central and peripheral inflammatory response to peritonitis. These changes occurred in the brainstem, which contains the network that generates breathing pattern and thus, may participate in ventilatory pattern changes during systemic inflammation.
Collapse
Affiliation(s)
- Kofi-Kermit A. Horton
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Cara K. Campanaro
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Caitlyn Clifford
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - David E. Nethery
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kingman P. Strohl
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Frank J. Jacono
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Thomas E. Dick
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
12
|
Heng J, Wu D, Zhao Y, Lu S. SZ168 treats LPS-induced acute lung injury by inhibiting the activation of NF-κB and MAPKs pathways. Respir Physiol Neurobiol 2023; 307:103965. [PMID: 36150645 DOI: 10.1016/j.resp.2022.103965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/21/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
|
13
|
Hall S, Faridi S, Trivedi P, Sultana S, Ray B, Myers T, Euodia I, Vlatten D, Castonguay M, Zhou J, Kelly M, Lehmann C. Selective CB 2 Receptor Agonist, HU-308, Reduces Systemic Inflammation in Endotoxin Model of Pneumonia-Induced Acute Lung Injury. Int J Mol Sci 2022; 23:ijms232415857. [PMID: 36555499 PMCID: PMC9779896 DOI: 10.3390/ijms232415857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) and sepsis are risk factors contributing to mortality in patients with pneumonia. In ARDS, also termed acute lung injury (ALI), pulmonary immune responses lead to excessive pro-inflammatory cytokine release and aberrant alveolar neutrophil infiltration. Systemic spread of cytokines is associated with systemic complications including sepsis, multi-organ failure, and death. Thus, dampening pro-inflammatory cytokine release is a viable strategy to improve outcome. Activation of cannabinoid type II receptor (CB2) has been shown to reduce cytokine release in various in vivo and in vitro studies. Herein, we investigated the effect of HU-308, a specific CB2 agonist, on systemic and pulmonary inflammation in a model of pneumonia-induced ALI. C57Bl/6 mice received intranasal endotoxin or saline, followed by intravenous HU-308, dexamethasone, or vehicle. ALI was scored by histology and plasma levels of select inflammatory mediators were assessed by Luminex assay. Intravital microscopy (IVM) was performed to assess leukocyte adhesion and capillary perfusion in intestinal and pulmonary microcirculation. HU-308 and dexamethasone attenuated LPS-induced cytokine release and intestinal microcirculatory impairment. HU-308 modestly reduced ALI score, while dexamethasone abolished it. These results suggest administration of HU-308 can reduce systemic inflammation without suppressing pulmonary immune response in pneumonia-induced ALI and systemic inflammation.
Collapse
Affiliation(s)
- Stefan Hall
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 1X5, Canada
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Sufyan Faridi
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Purvi Trivedi
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Saki Sultana
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Ophthalmology & Visual Sciences, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Bithika Ray
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Tanya Myers
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Irene Euodia
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - David Vlatten
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Mathieu Castonguay
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Juan Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Melanie Kelly
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Ophthalmology & Visual Sciences, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Christian Lehmann
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 1X5, Canada
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence:
| |
Collapse
|
14
|
Liu C, Xiao K, Xie L. Progress in preclinical studies of macrophage autophagy in the regulation of ALI/ARDS. Front Immunol 2022; 13:922702. [PMID: 36059534 PMCID: PMC9433910 DOI: 10.3389/fimmu.2022.922702] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a critical clinical syndrome with high morbidity and mortality that poses a major challenge in critical care medicine. The development of ALI/ARDS involves excessive inflammatory response, and macrophage autophagy plays an important role in regulating the inflammatory response in ALI/ARDS. In this paper, we review the effects of autophagy in regulating macrophage function, discuss the roles of macrophage autophagy in ALI/ARDS, and highlight drugs and other interventions that can modulate macrophage autophagy in ALI/ARDS to improve the understanding of the mechanism of macrophage autophagy in ALI/ARDS and provide new ideas and further research directions for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Chang Liu
- School of Medicine, Nankai University, Tianjin, China
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Kun Xiao
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
- *Correspondence: Kun Xiao, ; Lixin Xie,
| | - Lixin Xie
- School of Medicine, Nankai University, Tianjin, China
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
- *Correspondence: Kun Xiao, ; Lixin Xie,
| |
Collapse
|
15
|
Differential Effects of D9 Tetrahydrocannabinol (THC)- and Cannabidiol (CBD)-Based Cannabinoid Treatments on Macrophage Immune Function In Vitro and on Gastrointestinal Inflammation in a Murine Model. Biomedicines 2022; 10:biomedicines10081793. [PMID: 35892693 PMCID: PMC9332744 DOI: 10.3390/biomedicines10081793] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 12/28/2022] Open
Abstract
Phytocannabinoids possess a wide range of immune regulatory properties, mediated by the endocannabinoid system. Monocyte/macrophage innate immune cells express endocannabinoid receptors. Dysregulation of macrophage function is involved in the pathogenesis of different inflammatory diseases, including inflammatory bowel disease. In our research, we aimed to evaluate the effects of the phytocannabinoids D9 tetrahydrocannabinol (THC) and cannabidiol (CBD) on macrophage activation. Macrophages from young and aged C57BL/6 mice were activated in vitro in the presence of pure cannabinoids or cannabis extracts. The phenotype of the cells, nitric oxide (NO•) secretion, and cytokine secretion were examined. In addition, these treatments were administered to murine colitis model. The clinical statuses of mice, levels of colon infiltrating macrophages, and inflammatory cytokines in the blood, were evaluated. We demonstrated inhibition of macrophage NO• and cytokine secretion and significant effects on expression of cell surface molecules. In the murine model, clinical scores were improved and macrophage colon infiltration reduced following treatment. We identified higher activity of cannabis extracts as compared with pure cannabinoids. Each treatment had a unique effect on cytokine composition. Overall, our results establish that the effects of cannabinoid treatments differ. A better understanding of the reciprocal relationship between cannabinoids and immunity is essential to design targeted treatment strategies.
Collapse
|
16
|
Chen J, Wang F, Zhang S, Lin Q, Xu H, Zhu T, Peng L, Cen F, Li F, Wang Z, Feng CG, Yin Z, Liu Y, Zhang G. Activation of CD4 + T Cell-Derived Cannabinoid Receptor 2 Signaling Exacerbates Sepsis via Inhibiting IL-10. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2515-2522. [PMID: 35534212 DOI: 10.4049/jimmunol.2101015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The cannabinoid receptor 2 (CB2) is a receptor mainly expressed in immune cells and believed to be immunosuppressive in infective or inflammatory models. However, its role in sepsis has not been fully elucidated. In this study, we delineate the function and mechanism of CB2 in the cecal ligation and puncture-induced septic model in mice. The activation of CB2 signaling with HU308 led to decreased survival rates and more severe lung injury in septic mice, and lower IL-10 levels in peritoneal lavage fluid were observed in the CB2 agonist group. The mice with conditional knockout of CB2-encoding gene CNR2 in CD4+ T cells (CD4 Cre CNR2fl/fl) improved survival, enhanced IL-10 production, and ameliorated pulmonary damage in the sepsis model after CB2 activation. In addition, double-knockout of the CNR2 gene (Lyz2 Cre CD4 Cre CNR2fl/fl) decreased the susceptibility to sepsis compared with Lyz2 Cre CNR2fl/fl mice. Mechanistically, the blockade of IL-10 with the anti-IL-10 Ab abolished its protection in CD4 Cre CNR2fl/fl mice. In accordance with the animal study, in vitro results revealed that the lack of CNR2 in CD4+ cells elevated IL-10 production, and CB2 activation inhibited CD4+ T cell-derived IL-10 production. Furthermore, in the clinical environment, septic patients expressed enhanced CB2 mRNA levels compared with healthy donors in PBMCs, and their CB2 expression was inversely correlated with IL-10. These results suggested that the activation of CD4+ T cell-derived CB2 increased susceptibility to sepsis through inhibiting IL-10 production.
Collapse
Affiliation(s)
- Jincheng Chen
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Fuxiang Wang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China
| | - Su Zhang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China
| | - Qiao Lin
- Department of Traditional Chinese Medicine, The Baoan People's Hospital of Shenzhen, Shenzhen University, Shenzhen, China
| | - Hui Xu
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China
| | - Tengfei Zhu
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China
| | - Ling Peng
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China
| | - Fulan Cen
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China
| | - Fang Li
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China
| | - Zhaoqin Wang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China
| | - Carl G Feng
- Infectious, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; and
| | - Zhinan Yin
- Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Yingxia Liu
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China;
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China;
| |
Collapse
|
17
|
Yang L, Li Z, Xu Z, Zhang B, Liu A, Zheng F, Zhan J. Protective Effects of Cannabinoid Type 2 Receptor Against Microglia Overactivation and Neuronal Pyroptosis in Sepsis-Associated Encephalopathy. Neuroscience 2022; 493:99-108. [PMID: 35460837 DOI: 10.1016/j.neuroscience.2022.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/22/2022]
Abstract
Sepsis-associated encephalopathy (SAE) has close association with long-term cognitive deficits, resulting in increased mortality. The mechanism of SAE is complicate, including excessive microglial activation and neuroinflammation. Pyroptosis is a type of proinflammatory cell death program. Cannabinoid type 2 receptor (CB2R) has been proved to be effective in neuronal protection and survival promotion. Microglia play a role in CB2R mediated neuronal protection when neurons are exposed to noxious stimuli. However, the underlying mechanisms involved in this process still remain to be explored. Previous studies have demonstrated that CB2R can reduce sepsis-induced lung injury by inhibiting pyroptosis. Here, SAE model was established by cecal ligation and puncture (CLP). Open field test (OFT), novel object recognition test (NORT), and Morris water maze (MWM) test were performed to assess cognitive function. Brain samples were obtained to detect cell injury, cytokine, CB2R and pyroptosis-associated protein expression by Hematoxylin-Eosin (HE) staining, Enzyme-linked immunosorbent assay (ELISA), Western blotting and Immunofluorescence staining. CLP could induce microglia hyperactivation and neuronal pyroptosis, aggravating brain tissue destruction and cognitive dysfunction. The activation of CB2R could have a protective effect against SAE by inhibiting microglia activity and neuronal pyroptosis. This will provide a new therapeutic option for the treatment of SAE.
Collapse
Affiliation(s)
- Liu Yang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, People's Republic of China
| | - Zhen Li
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, People's Republic of China
| | - Zujin Xu
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, People's Republic of China
| | - Bin Zhang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, People's Republic of China
| | - Anpeng Liu
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, People's Republic of China
| | - Feng Zheng
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, People's Republic of China.
| | - Jia Zhan
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, People's Republic of China.
| |
Collapse
|
18
|
Zhang B, Zheng F, Liu A, Li Z, Zheng F, Liu Q, Yang L, Chen K, Wang Y, Zhang Z, He Q, Zhan J. Activation of CB2 receptor inhibits pyroptosis and subsequently ameliorates cecal ligation and puncture-induced sepsis. Int Immunopharmacol 2021; 99:108038. [PMID: 34364304 DOI: 10.1016/j.intimp.2021.108038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/12/2021] [Accepted: 07/29/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND Cannabinoid receptor 2 (CB2), whose activities are upregulated during sepsis, may be related to the regulation of inflammatory programmed cell death called pyroptosis. The aim of this study is to investigate the role of CB2 activation in attenuation of inflammation through inhibiting pyroptosis in cecal ligation puncture (CLP)-induced sepsis andlipopolysaccharide (LPS) + ATP-stimulated macrophages. METHODS C57BL/6 mice were subjected to CLP procedure and treated with CB2 agonist HU308 and CB2 antagonist AM630. Lung tissues were collected for analyses of lung W/D ratio, inflammatory factors levels, and pyroptosis-related protein expression. Murine bone-marrow-derived macrophages (BMDM) were treated with LPS and ATP to construct a septic model in vitro in the presence of HU308 and AM630 for assessment of cell injury, cytokine levels and pyroptosis-related protein expression accordingly. To verify the relationship between CB2 receptors and pyroptosis in the process of inflammatory response, BMDM were transduced with CB2 receptors knockdown lentiviral vectors in the presence of HU308 and AM630 for assessment of pyroptosis-related protein expression. RESULTS CB2 activation ameliorated the release of inflammatory mediators. The results showed that CLP-induced pyroptosis was elevated, and CB2 agonist HU308 treatment inhibited the pyroptosis activity through a decrease of the protein levels of NLRP3 as well as caspase-1 and GSDMD activation. Similar results were obtained in BMDM after LPS and ATP treatment. Treatment with CB2 knockdown lentiviral particles prevented the HU308-induced decreases in cell pyroptosis, demonstrating that endogenous CB2 receptors are required for the cannabinoid-induced cell protection. CONCLUSIONS CB2 receptors activation plays a protective role in sepsis through inhibition of pyroptosis. The effect of CB2 receptors against pyroptosis depends on the existence of endogenous CB2 receptors.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Feng Zheng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Anpeng Liu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Zhen Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Fei Zheng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Qiangsheng Liu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Liu Yang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Kai Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Yanlin Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Qianwen He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, People's Republic of China.
| | - Jia Zhan
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
19
|
Cannabinoid Type-2 Receptor Agonist, JWH133 May Be a Possible Candidate for Targeting Infection, Inflammation, and Immunity in COVID-19. IMMUNO 2021. [DOI: 10.3390/immuno1030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, is a deadly disease affecting millions due to the non-availability of drugs and vaccines. The majority of COVID-19 drugs have been repurposed based on antiviral, immunomodulatory, and antibiotic potential. The pathogenesis and advanced complications with infection involve the immune-inflammatory cascade. Therefore, a therapeutic strategy could reduce infectivity, inflammation, and immune modulation. In recent years, modulating the endocannabinoid system, particularly activation of the cannabinoid type 2 (CB2) receptor is a promising therapeutic target for modulation of immune-inflammatory responses. JWH133, a selective, full functional agonist of the CB2 receptor, has been extensively studied for its potent anti-inflammatory, antiviral, and immunomodulatory properties. JWH133 modulates numerous signaling pathways and inhibits inflammatory mediators, including cytokines, chemokines, adhesion molecules, prostanoids, and eicosanoids. In this study, we propose that JWH133 could be a promising candidate for targeting infection, immunity, and inflammation in COVID-19, due to its pharmacological and molecular mechanisms in numerous preclinical efficacy and safety studies, along with its immunomodulatory, anti-inflammatory, organoprotective, and antiviral properties. Thus, JWH133 should be investigated in preclinical and clinical studies for its potential as an agent or adjuvant with other agents for its effect on viremia, infectivity, immune modulation, resolution of inflammation, reduction in severity, and progression of complications in COVID-19. JWH133 is devoid of psychotropic effects due to CB2 receptor selectivity, has negligible toxicity, good bioavailability and druggable properties, including pharmacokinetic and physicochemical effects. We believe that JWH133 could be a promising drug and may inspire further studies for an evidence-based approach against COVID-19.
Collapse
|
20
|
Scheau C, Caruntu C, Badarau IA, Scheau AE, Docea AO, Calina D, Caruntu A. Cannabinoids and Inflammations of the Gut-Lung-Skin Barrier. J Pers Med 2021; 11:494. [PMID: 34072930 PMCID: PMC8227007 DOI: 10.3390/jpm11060494] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Recent studies have identified great similarities and interferences between the epithelial layers of the digestive tract, the airways and the cutaneous layer. The relationship between these structures seems to implicate signaling pathways, cellular components and metabolic features, and has led to the definition of a gut-lung-skin barrier. Inflammation seems to involve common features in these tissues; therefore, analyzing the similarities and differences in the modulation of its biomarkers can yield significant data promoting a better understanding of the particularities of specific signaling pathways and cellular effects. Cannabinoids are well known for a wide array of beneficial effects, including anti-inflammatory properties. This paper aims to explore the effects of natural and synthetic cannabinoids, including the components of the endocannabinoid system, in relation to the inflammation of the gut-lung-skin barrier epithelia. Recent advancements in the use of cannabinoids as anti-inflammatory substances in various disorders of the gut, lungs and skin are detailed. Some studies have reported mixed or controversial results, and these have also been addressed in our paper.
Collapse
Affiliation(s)
- Cristian Scheau
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.); (I.A.B.)
| | - Constantin Caruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.); (I.A.B.)
- Department of Dermatology, “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.); (I.A.B.)
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania;
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| |
Collapse
|
21
|
Jha NK, Sharma C, Hashiesh HM, Arunachalam S, Meeran MN, Javed H, Patil CR, Goyal SN, Ojha S. β-Caryophyllene, A Natural Dietary CB2 Receptor Selective Cannabinoid can be a Candidate to Target the Trinity of Infection, Immunity, and Inflammation in COVID-19. Front Pharmacol 2021; 12:590201. [PMID: 34054510 PMCID: PMC8163236 DOI: 10.3389/fphar.2021.590201] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/04/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease (COVID-19), caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing pandemic and presents a public health emergency. It has affected millions of people and continues to affect more, despite tremendous social preventive measures. Identifying candidate drugs for the prevention and treatment of COVID-19 is crucial. The pathogenesis and the complications with advanced infection mainly involve an immune-inflammatory cascade. Therefore, therapeutic strategy relies on suppressing infectivity and inflammation, along with immune modulation. One of the most promising therapeutic targets for the modulation of immune-inflammatory responses is the endocannabinoid system, particularly the activation of cannabinoid type 2 receptors (CB2R), a G-protein coupled receptor which mediates the anti-inflammatory properties by modulating numerous signaling pathways. To pharmacologically activate the CB2 receptors, a naturally occurring cannabinoid ligand, beta-caryophyllene (BCP), received attention due to its potent anti-inflammatory, antiviral, and immunomodulatory properties. BCP is recognized as a full selective functional agonist on CB2 receptors and produces therapeutic effects by activating CB2 and the nuclear receptors, peroxisome proliferator-activated receptors (PPARs). BCP is regarded as the first dietary cannabinoid with abundant presence across cannabis and non-cannabis plants, including spices and other edible plants. BCP showed tissue protective properties and favorably modulates numerous signaling pathways and inhibits inflammatory mediators, including cytokines, chemokines, adhesion molecules, prostanoids, and eicosanoids. Based on its pharmacological properties, molecular mechanisms, and the therapeutic potential of BCP as an immunomodulator, anti-inflammatory, organ-protective, and antiviral, we hypothesize that BCP could be a promising therapeutic and/or preventive candidate to target the triad of infection, immunity, and inflammation in COVID-19. In line with numerous studies that proposed the potential of cannabinoids in COVID-19, BCP may be a novel candidate compound for pharmaceutical and nutraceutical development due to its unique functional receptor selectivity, wide availability and accessibility, dietary bioavailability, nonpsychoactivity, and negligible toxicity along with druggable properties, including favorable pharmacokinetic and physicochemical properties. Based on reasonable pharmacological mechanisms and therapeutic properties, we speculate that BCP has potential to be investigated against COVID-19 and will inspire further preclinical and clinical studies.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, India
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Seenipandi Arunachalam
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mf Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Chandragouda R Patil
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Sameer N Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
22
|
Sensory neuron-associated macrophages as novel modulators of neuropathic pain. Pain Rep 2021; 6:e873. [PMID: 33981924 PMCID: PMC8108583 DOI: 10.1097/pr9.0000000000000873] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/28/2022] Open
Abstract
The peripheral nervous system comprises an infinity of neural networks that act in the communication between the central nervous system and the most diverse tissues of the body. Along with the extension of the primary sensory neurons (axons and cell bodies), a population of resident macrophages has been described. These newly called sensory neuron-associated macrophages (sNAMs) seem to play an essential role in physiological and pathophysiological processes, including infection, autoimmunity, nerve degeneration/regeneration, and chronic neuropathic pain. After different types of peripheral nerve injury, there is an increase in the number and activation of sNAMs in the sciatic nerve and sensory ganglia. The activation of sNAMs and their participation in neuropathic pain development depends on the stimulation of pattern recognition receptors such as Toll-like receptors and Nod-like receptors, chemokines/cytokines, and microRNAs. On activation, sNAMs trigger the production of critical inflammatory mediators such as proinflammatory cytokines (eg, TNF and IL-1β) and reactive oxygen species that can act in the amplification of primary sensory neurons sensitization. On the other hand, there is evidence that sNAMs can produce antinociceptive mediators (eg, IL-10) that counteract neuropathic pain development. This review will present the cellular and molecular mechanisms behind the participation of sNAMs in peripheral nerve injury-induced neuropathic pain development. Understanding how sNAMs are activated and responding to nerve injury can help set novel targets for the control of neuropathic pain.
Collapse
|
23
|
Nagoor Meeran M, Javed H, Sharma C, Goyal SN, Kumar S, Jha NK, Ojha S. Can Echinacea be a potential candidate to target immunity, inflammation, and infection - The trinity of coronavirus disease 2019. Heliyon 2021; 7:e05990. [PMID: 33585706 PMCID: PMC7870107 DOI: 10.1016/j.heliyon.2021.e05990] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/18/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing public health emergency. The pathogenesis and complications advanced with infection mainly involve immune-inflammatory cascade. Therefore, the therapeutic strategy relies on immune modulation, reducing infectivity and inflammation. Given the interplay of infection and immune-inflammatory axis, the natural products received attention for preventive and therapeutic usage in COVID-19 due to their potent antiviral and anti-immunomodulatory activities. Recently, Echinacea preparations, particularly E. purpurea, have been suggested to be an important antiviral agent to be useful in COVID-19 by modulating virus entry, internalization and replication. In principle, the immune response and the resultant inflammatory process are important for the elimination of the infection, but may have a significant impact on SARS-CoV-2 pathogenesis and may play a role in the clinical spectrum of COVID-19. Considering the pharmacological effects, therapeutic potential, and molecular mechanisms of Echinacea, we hypothesize that it could be a reasonably possible candidate for targeting infection, immunity, and inflammation in COVID-19 with recent recognition of cannabinoid-2 (CB2) receptors and peroxisome proliferator-activated receptor gamma (PPARγ) mediated mechanisms of bioactive components that make them notable immunomodulatory, anti-inflammatory and antiviral agent. The plausible reason for our hypothesis is that the presence of numerous bioactive agents in different parts of plants that may synergistically exert polypharmacological actions in regulating immune-inflammatory axis in COVID-19. Our proposition is to scientifically contemplate the therapeutic perspective and prospect of Echinacea on infection, immunity, and inflammation with a potential in COVID-19 to limit the severity and progression of the disease. Based on the clinical usage for respiratory infections, and relative safety in humans, further studies for the evidence-based approach to COVID-19 are needed. We do hope that Echinacea could be a candidate agent for immunomodulation in the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- M.F. Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Hayate Javed
- Department of Anatomy, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sameer N. Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Sanjay Kumar
- Division of Hematology/Nephrology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box - 17666, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
24
|
Hydrogen sulfide exacerbated periodontal inflammation and induced autophagy in experimental periodontitis. Int Immunopharmacol 2021; 93:107399. [PMID: 33529908 DOI: 10.1016/j.intimp.2021.107399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/27/2022]
Abstract
Hydrogen sulfide (H2S), the metabolite produced by gram-negative bacteria, is present in deep periodontal pockets of periodontitis patients at high concentrations. The harsh conditions in the diseased periodontium may stimulate a local autophagy response. However, how H2S participates in pathogenesis and whether H2S induces autophagy in periodontitis remain partially unknown. In this article, we determined the role of the slow-releasing H2S donor GYY4137 in experimental periodontitis and its possible regulation in autophagy involved. We found that GYY4137 dose-dependently decreased cell viability and increased the level of proinflammatory cytokines in LPS-stimulated human periodontal ligament cells (HPDLCs). Topically applied GYY4137 also exacerbated periodontal inflammation and alveolar bone loss in ligature-induced rats. Moreover, GYY4137 activated autophagy by upregulating the expression levels of the autophagy-related proteins LC3 and Beclin-1 and downregulating P62 in LPS-treated HPDLCs and inflamed periodontal tissues. Blocking autophagy with 3-methyladenine resulted in further increased expression of proinflammatory cytokines in LPS- and GYY4137-induced HPDLCs. Our results indicate that GYY4137 exerted proinflammatory effects and promoted autophagy in periodontitis, and the induced autophagy may function as a cytoprotective mechanism to prevent excessive inflammation.
Collapse
|
25
|
El Biali M, Broers B, Besson M, Demeules J. Cannabinoids and COVID-19. Med Cannabis Cannabinoids 2020; 3:111-115. [PMID: 34671712 PMCID: PMC7490504 DOI: 10.1159/000510799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/08/2020] [Indexed: 12/24/2022] Open
Abstract
Since the endocannabinoid system is involved in immune function, the effect of cannabinoid intake on infectious conditions is questioned for several years and is of particular interest in the COVID 19 pandemia. Some data suggest that the immunomodulatory effect of cannabinoids may affect the course and severity of SARS-CoV-2 infection. Given the large number of cannabinoids consumers in the community, this commentary presents the current knowledge on the potential impact of cannabinoids and endocannabinoids on bacterial and viral infection courses namely SARS-CoV-2 disease. Practical recommendations, which can be drawn from the literature, are given.
Collapse
Affiliation(s)
- Myriam El Biali
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland
| | - Barbara Broers
- Division of Primary Care, Geneva University Hospitals, Geneva, Switzerland
| | - Marie Besson
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland
| | - Jules Demeules
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
26
|
An D, Peigneur S, Hendrickx LA, Tytgat J. Targeting Cannabinoid Receptors: Current Status and Prospects of Natural Products. Int J Mol Sci 2020; 21:E5064. [PMID: 32709050 PMCID: PMC7404216 DOI: 10.3390/ijms21145064] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cannabinoid receptors (CB1 and CB2), as part of the endocannabinoid system, play a critical role in numerous human physiological and pathological conditions. Thus, considerable efforts have been made to develop ligands for CB1 and CB2, resulting in hundreds of phyto- and synthetic cannabinoids which have shown varying affinities relevant for the treatment of various diseases. However, only a few of these ligands are clinically used. Recently, more detailed structural information for cannabinoid receptors was revealed thanks to the powerfulness of cryo-electron microscopy, which now can accelerate structure-based drug discovery. At the same time, novel peptide-type cannabinoids from animal sources have arrived at the scene, with their potential in vivo therapeutic effects in relation to cannabinoid receptors. From a natural products perspective, it is expected that more novel cannabinoids will be discovered and forecasted as promising drug leads from diverse natural sources and species, such as animal venoms which constitute a true pharmacopeia of toxins modulating diverse targets, including voltage- and ligand-gated ion channels, G protein-coupled receptors such as CB1 and CB2, with astonishing affinity and selectivity. Therefore, it is believed that discovering novel cannabinoids starting from studying the biodiversity of the species living on planet earth is an uncharted territory.
Collapse
Affiliation(s)
| | | | | | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Campus Gasthuisberg, O&N 2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium; (D.A.); (S.P.); (L.A.H.)
| |
Collapse
|