1
|
Mars JC, Culjkovic-Kraljacic B, Borden KL. eIF4E orchestrates mRNA processing, RNA export and translation to modify specific protein production. Nucleus 2024; 15:2360196. [PMID: 38880976 PMCID: PMC11185188 DOI: 10.1080/19491034.2024.2360196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
The eukaryotic translation initiation factor eIF4E acts as a multifunctional factor that simultaneously influences mRNA processing, export, and translation in many organisms. Its multifactorial effects are derived from its capacity to bind to the methyl-7-guanosine cap on the 5'end of mRNAs and thus can act as a cap chaperone for transcripts in the nucleus and cytoplasm. In this review, we describe the multifactorial roles of eIF4E in major mRNA-processing events including capping, splicing, cleavage and polyadenylation, nuclear export and translation. We discuss the evidence that eIF4E acts at two levels to generate widescale changes to processing, export and ultimately the protein produced. First, eIF4E alters the production of components of the mRNA processing machinery, supporting a widescale reprogramming of multiple mRNA processing events. In this way, eIF4E can modulate mRNA processing without physically interacting with target transcripts. Second, eIF4E also physically interacts with both capped mRNAs and components of the RNA processing or translation machineries. Further, specific mRNAs are sensitive to eIF4E only in particular mRNA processing events. This selectivity is governed by the presence of cis-acting elements within mRNAs known as USER codes that recruit relevant co-factors engaging the appropriate machinery. In all, we describe the molecular bases for eIF4E's multifactorial function and relevant regulatory pathways, discuss the basis for selectivity, present a compendium of ~80 eIF4E-interacting factors which play roles in these activities and provide an overview of the relevance of its functions to its oncogenic potential. Finally, we summarize early-stage clinical studies targeting eIF4E in cancer.
Collapse
Affiliation(s)
- Jean-Clément Mars
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| | - Biljana Culjkovic-Kraljacic
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| | - Katherine L.B. Borden
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
2
|
Lécuyer E, Sauvageau M, Kothe U, Unrau PJ, Damha MJ, Perreault J, Abou Elela S, Bayfield MA, Claycomb JM, Scott MS. Canada's contributions to RNA research: past, present, and future perspectives. Biochem Cell Biol 2024. [PMID: 39320985 DOI: 10.1139/bcb-2024-0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
The field of RNA research has provided profound insights into the basic mechanisms modulating the function and adaption of biological systems. RNA has also been at the center stage in the development of transformative biotechnological and medical applications, perhaps most notably was the advent of mRNA vaccines that were critical in helping humanity through the Covid-19 pandemic. Unbeknownst to many, Canada boasts a diverse community of RNA scientists, spanning multiple disciplines and locations, whose cutting-edge research has established a rich track record of contributions across various aspects of RNA science over many decades. Through this position paper, we seek to highlight key contributions made by Canadian investigators to the RNA field, via both thematic and historical viewpoints. We also discuss initiatives underway to organize and enhance the impact of the Canadian RNA research community, particularly focusing on the creation of the not-for-profit organization RNA Canada ARN. Considering the strategic importance of RNA research in biology and medicine, and its considerable potential to help address major challenges facing humanity, sustained support of this sector will be critical to help Canadian scientists play key roles in the ongoing RNA revolution and the many benefits this could bring about to Canada.
Collapse
Affiliation(s)
- Eric Lécuyer
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Martin Sauvageau
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, Canada
- Département de Biochimie et de Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Ute Kothe
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Masad J Damha
- Department of Chemistry, McGill University, Montréal, QC, Canada
| | - Jonathan Perreault
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC, Canada
| | - Sherif Abou Elela
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Michelle S Scott
- Département de Biochimie et de Génomique Fonctionnelle, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
3
|
Chen S, Jiang Q, Fan J, Cheng H. Nuclear mRNA export. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39243141 DOI: 10.3724/abbs.2024145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024] Open
Abstract
In eukaryotic cells, gene expression begins with transcription in the nucleus, followed by the maturation of messenger RNAs (mRNAs). These mRNA molecules are then exported to the cytoplasm through the nuclear pore complex (NPC), a process that serves as a critical regulatory phase of gene expression. The export of mRNA is intricately linked to precursor mRNA (pre-mRNA) processing, ensuring that only properly processed mRNA reaches the cytoplasm. This coordination is essential, as recent studies have revealed that mRNA export factors not only assist in transport but also influence upstream processing steps, adding a layer of complexity to gene regulation. Furthermore, the export process competes with RNA processing and degradation pathways, maintaining a delicate balance vital for accurate gene expression. While these mechanisms are generally conserved across eukaryotes, significant differences exist between yeast and higher eukaryotic cells, particularly due to the more genome complexity of the latter. This review delves into the current research on mRNA export in higher eukaryotic cells, focusing on its role in the broader context of gene expression regulation and highlighting how it interacts with other gene expression processes to ensure precise and efficient gene functionality in complex organisms.
Collapse
Affiliation(s)
- Suli Chen
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, Hangzhou 310024, University of Chinese Academy of Sciences, China
| | - Qingyi Jiang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Fan
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Hong Cheng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, Hangzhou 310024, University of Chinese Academy of Sciences, China
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
4
|
Li Y, Zhu J, Zhai F, Kong L, Li H, Jin X. Advances in the understanding of nuclear pore complexes in human diseases. J Cancer Res Clin Oncol 2024; 150:374. [PMID: 39080077 PMCID: PMC11289042 DOI: 10.1007/s00432-024-05881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Nuclear pore complexes (NPCs) are sophisticated and dynamic protein structures that straddle the nuclear envelope and act as gatekeepers for transporting molecules between the nucleus and the cytoplasm. NPCs comprise up to 30 different proteins known as nucleoporins (NUPs). However, a growing body of research has suggested that NPCs play important roles in gene regulation, viral infections, cancer, mitosis, genetic diseases, kidney diseases, immune system diseases, and degenerative neurological and muscular pathologies. PURPOSE In this review, we introduce the structure and function of NPCs. Then We described the physiological and pathological effects of each component of NPCs which provide a direction for future clinical applications. METHODS The literatures from PubMed have been reviewed for this article. CONCLUSION This review summarizes current studies on the implications of NPCs in human physiology and pathology, highlighting the mechanistic underpinnings of NPC-associated diseases.
Collapse
Affiliation(s)
- Yuxuan Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Jie Zhu
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Hong Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| | - Xiaofeng Jin
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
5
|
Schütt J, Brinkert K, Plis A, Schenk T, Brioli A. Unraveling the complexity of drug resistance mechanisms to SINE, T cell-engaging therapies and CELMoDs in multiple myeloma: a comprehensive review. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:26. [PMID: 39050883 PMCID: PMC11267153 DOI: 10.20517/cdr.2024.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
Despite significant advances in the understanding of multiple myeloma (MM) biology and the development of novel treatment strategies in the last two decades, MM is still an incurable disease. Novel drugs with alternative mechanisms of action, such as selective inhibitors of nuclear export (SINE), modulators of the ubiquitin pathway [cereblon E3 ligase modulatory drugs (CELMoDs)], and T cell redirecting (TCR) therapy, have led to significant improvement in patient outcomes. However, resistance still emerges, posing a major problem for the treatment of myeloma patients. This review summarizes current data on treatment with SINE, TCR therapy, and CELMoDs and explores their mechanism of resistance. Understanding these resistance mechanisms is critical for developing strategies to overcome treatment failure and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Jacqueline Schütt
- Clinic for Hematology, Hemostasis, Oncology and Stem cell transplantation, Hannover Medical School, Hannover 30625, Germany
- Authors contributed equally
| | - Kerstin Brinkert
- Clinic for Hematology, Hemostasis, Oncology and Stem cell transplantation, Hannover Medical School, Hannover 30625, Germany
- Authors contributed equally
| | - Andrzej Plis
- Clinic for Internal Medicine C, Hematology and Oncology, Greifswald University Medicine, Greifswald 17489, Germany
| | - Tino Schenk
- Clinic of Internal Medicine 2, Department of Hematology and Medical Oncology, Jena University Hospital, Jena 07741, Germany
- Institute of Molecular Cell Biology, CMB, Jena University Hospital, Jena 07741, Germany
| | - Annamaria Brioli
- Clinic for Hematology, Hemostasis, Oncology and Stem cell transplantation, Hannover Medical School, Hannover 30625, Germany
- Clinic for Internal Medicine C, Hematology and Oncology, Greifswald University Medicine, Greifswald 17489, Germany
| |
Collapse
|
6
|
Wang ZQ, Wu ZX, Wang ZP, Bao JX, Wu HD, Xu DY, Li HF, Xu YY, Wu RX, Dai XX. Pan-cancer analysis of NUP155 and validation of its role in breast cancer cell proliferation, migration, and apoptosis. BMC Cancer 2024; 24:353. [PMID: 38504158 PMCID: PMC10953186 DOI: 10.1186/s12885-024-12039-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
NUP155 is reported to be correlated with tumor development. However, the role of NUP155 in tumor physiology and the tumor immune microenvironment (TIME) has not been previously examined. This study comprehensively investigated the expression, immunological function, and prognostic significance of NUP155 in different cancer types. Bioinformatics analysis revealed that NUP155 was upregulated in 26 types of cancer. Additionally, NUP155 upregulation was strongly correlated with advanced pathological or clinical stages and poor prognosis in several cancers. Furthermore, NUP155 was significantly and positively correlated with DNA methylation, tumor mutational burden, microsatellite instability, and stemness score in most cancers. Additionally, NUP155 was also found to be involved in TIME and closely associated with tumor infiltrating immune cells and immunoregulation-related genes. Functional enrichment analysis revealed a strong correlation between NUP155 and immunomodulatory pathways, especially antigen processing and presentation. The role of NUP155 in breast cancer has not been examined. This study, for the first time, demonstrated that NUP155 was upregulated in breast invasive carcinoma (BRCA) cells and revealed its oncogenic role in BRCA using molecular biology experiments. Thus, our study highlights the potential value of NUP155 as a biomarker in the assessment of prognostic prediction, tumor microenvironment and immunotherapeutic response in pan-cancer.
Collapse
Affiliation(s)
- Zi-Qiong Wang
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, 100 Minjiang Avenue, Quzhou, Zhejiang, 324000, Zhejiang, China
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhi-Xuan Wu
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zong-Pan Wang
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, 100 Minjiang Avenue, Quzhou, Zhejiang, 324000, Zhejiang, China
| | - Jing-Xia Bao
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Hao-Dong Wu
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Di-Yan Xu
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Hong-Feng Li
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yi-Yin Xu
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, 100 Minjiang Avenue, Quzhou, Zhejiang, 324000, Zhejiang, China
| | - Rong-Xing Wu
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, 100 Minjiang Avenue, Quzhou, Zhejiang, 324000, Zhejiang, China.
| | - Xuan-Xuan Dai
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, 100 Minjiang Avenue, Quzhou, Zhejiang, 324000, Zhejiang, China.
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
7
|
Martino EA, Vigna E, Bruzzese A, Labanca C, Mendicino F, Lucia E, Olivito V, Zimbo A, Torricelli F, Neri A, Morabito F, Gentile M. Selinexor in multiple myeloma. Expert Opin Pharmacother 2024; 25:421-434. [PMID: 38503547 DOI: 10.1080/14656566.2024.2333376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024]
Abstract
INTRODUCTION Selinexor, an XPO1 inhibitor, has emerged as a promising therapeutic option in the challenging landscape of relapsed/refractory multiple myeloma (RRMM). AREAS COVERED This article provides a review of selinexor, with a focus on available clinical studies involving MM patients and its safety profile. Clinical trials, such as STORM and BOSTON, have demonstrated its efficacy, particularly in combination regimens, showcasing notable overall response rates (ORR) and prolonged median progressionfree survival (mPFS). Selinexor's versatility is evident across various combinations, including carfilzomibdexamethasone (XKd), lenalidomidedexamethasone (XRd), and pomalidomidedexamethasone (XPd), with efficacy observed even in tripleclass refractory and highrisk patient populations. However, challenges, including resistance mechanisms and adverse events, necessitate careful management. Realworld evidence also underscores selinexor's effectiveness in RRMM, though dose adjustments and supportive measures remain crucial. Ongoing trials are exploring selinexor in diverse combinations and settings, including pomalidomidenaïve patients and postautologous stem cell transplant (ASCT) maintenance. EXPERT OPINION The evolving landscape of selinexor's role in the sequencing of treatment for RRMM, its potential in highrisk patients, including those with extramedullary disease, as revealed in the most recent international meetings, and ongoing investigations signal a dynamic era in myeloma therapeutics. Selinexor emerges as a pivotal component in multidrug strategies and innovative combinations.
Collapse
Affiliation(s)
| | - Ernesto Vigna
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | | | | | | | - Eugenio Lucia
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | | | - Annamaria Zimbo
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- UOC Laboratorio Analisi Cliniche, Biomolecolari e Genetica, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Federica Torricelli
- Laboratorio di Ricerca Traslazionale Azienda USL-IRCSS Reggio Emilia, Emilia-Romagna, Italy
| | - Antonino Neri
- Scientific Directorate IRCCS of Reggio Emilia, I-42123 Reggio Emilia, EmiliaRomagna, Italy
| | | | - Massimo Gentile
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende, Italy
| |
Collapse
|
8
|
Huang Q, Zhao R, Xu L, Hao X, Tao S. Treatment of multiple myeloma with selinexor: a review. Ther Adv Hematol 2024; 15:20406207231219442. [PMID: 38186637 PMCID: PMC10771077 DOI: 10.1177/20406207231219442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024] Open
Abstract
Over the last 20 years, breakthroughs in accessible therapies for the treatment of multiple myeloma (MM) have been made. Nevertheless, patients with MM resistant to immunomodulatory drugs, proteasome inhibitors, and anti-CD38 monoclonal antibodies have a very poor outcome. Therefore, it is necessary to explore new drugs for the treatment of MM. This review summarizes the mechanism of action of selinexor, relevant primary clinical trials, and recent developments in both patients with relapsed/refractory myeloma and patients with newly diagnosed myeloma. Selinexor may be useful for the treatment of refractory MM.
Collapse
Affiliation(s)
- Qianlei Huang
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Hainan Province Clinical Medical Center, Haikou, China
| | - Ranran Zhao
- Department of Hematology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lu Xu
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Hainan Province Clinical Medical Center, Haikou, China
| | - Xinbao Hao
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Hainan Province Clinical Medical Center, Haikou, China
| | - Shi Tao
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Hainan Province Clinical Medical Center, 31 Longhua Road, Haikou 570102, China
| |
Collapse
|
9
|
Marullo R, Rutherford SC, Revuelta MV, Zamponi N, Culjkovic-Kraljacic B, Kotlov N, Di Siervi N, Lara-Garcia J, Allan JN, Ruan J, Furman RR, Chen Z, Shore TB, Phillips AA, Mayer S, Hsu J, van Besien K, Leonard JP, Borden KL, Inghirami G, Martin P, Cerchietti L. XPO1 Enables Adaptive Regulation of mRNA Export Required for Genotoxic Stress Tolerance in Cancer Cells. Cancer Res 2024; 84:101-117. [PMID: 37801604 PMCID: PMC10758694 DOI: 10.1158/0008-5472.can-23-1992] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/08/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
Exportin-1 (XPO1), the main soluble nuclear export receptor in eukaryotic cells, is frequently overexpressed in diffuse large B-cell lymphoma (DLBCL). A selective XPO1 inhibitor, selinexor, received approval as single agent for relapsed or refractory (R/R) DLBCL. Elucidating the mechanisms by which XPO1 overexpression supports cancer cells could facilitate further clinical development of XPO1 inhibitors. We uncovered here that XPO1 overexpression increases tolerance to genotoxic stress, leading to a poor response to chemoimmunotherapy. Upon DNA damage induced by MYC expression or exogenous compounds, XPO1 bound and exported EIF4E and THOC4 carrying DNA damage repair mRNAs, thereby increasing synthesis of DNA damage repair proteins under conditions of increased turnover. Consequently, XPO1 inhibition decreased the capacity of lymphoma cells to repair DNA damage and ultimately resulted in increased cytotoxicity. In a phase I clinical trial conducted in R/R DLBCL, the combination of selinexor with second-line chemoimmunotherapy was tolerated with early indication of efficacy. Overall, this study reveals that XPO1 overexpression plays a critical role in the increased tolerance of cancer cells to DNA damage while providing new insights to optimize the clinical development of XPO1 inhibitors. SIGNIFICANCE XPO1 regulates the dynamic ribonucleoprotein nuclear export in response to genotoxic stress to support tolerance and can be targeted to enhance the sensitivity of cancer cells to endogenous and exogenous DNA damage. See related commentary by Knittel and Reinhardt, p. 3.
Collapse
Affiliation(s)
- Rossella Marullo
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - Sarah C. Rutherford
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - Maria V. Revuelta
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - Nahuel Zamponi
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - Biljana Culjkovic-Kraljacic
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Canada
| | | | - Nicolás Di Siervi
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - Juan Lara-Garcia
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - John N. Allan
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - Jia Ruan
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - Richard R. Furman
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - Zhengming Chen
- Division of Biostatistics, Population Health Sciences Department, Weill Cornell Medicine, New York, New York
| | - Tsiporah B. Shore
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - Adrienne A. Phillips
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - Sebastian Mayer
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - Jingmei Hsu
- New York University Grossman School of Medicine, New York, New York
| | | | - John P. Leonard
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - Katherine L.B. Borden
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, University of Montreal, Montreal, Canada
| | - Giorgio Inghirami
- Pathology and Laboratory Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - Peter Martin
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| | - Leandro Cerchietti
- Division of Hematology and Oncology, Medicine Department, Weill Cornell Medicine and NewYork-Presbyterian Hospital, New York, New York
| |
Collapse
|
10
|
Borden KLB. The eukaryotic translation initiation factor eIF4E unexpectedly acts in splicing thereby coupling mRNA processing with translation: eIF4E induces widescale splicing reprogramming providing system-wide connectivity between splicing, nuclear mRNA export and translation. Bioessays 2024; 46:e2300145. [PMID: 37926700 PMCID: PMC11021180 DOI: 10.1002/bies.202300145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Recent findings position the eukaryotic translation initiation factor eIF4E as a novel modulator of mRNA splicing, a process that impacts the form and function of resultant proteins. eIF4E physically interacts with the spliceosome and with some intron-containing transcripts implying a direct role in some splicing events. Moreover, eIF4E drives the production of key components of the splicing machinery underpinning larger scale impacts on splicing. These drive eIF4E-dependent reprogramming of the splicing signature. This work completes a series of studies demonstrating eIF4E acts in all the major mRNA maturation steps whereby eIF4E drives production of the RNA processing machinery and escorts some transcripts through various maturation steps. In this way, eIF4E couples the mRNA processing-export-translation axis linking nuclear mRNA processing to cytoplasmic translation. eIF4E elevation is linked to worse outcomes in acute myeloid leukemia patients where these activities are dysregulated. Understanding these effects provides new insight into post-transcriptional control and eIF4E-driven cancers.
Collapse
Affiliation(s)
- Katherine L. B. Borden
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell BiologyUniversity of MontrealMontrealQuebecCanada
| |
Collapse
|
11
|
Wang R, Yang L, Zhen Y, Li X, Huang S, Wen H, Sun Q. eIF4E plays the role of a pathogenic gene in psoriasis, and the inhibition of eIF4E phosphorylation ameliorates psoriasis-like skin damage. Exp Dermatol 2024; 33:e14997. [PMID: 38284198 DOI: 10.1111/exd.14997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/11/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024]
Abstract
Psoriasis is a complex inflammatory skin disease with uncertain pathogenesis. eIF4E (eukaryotic translation initiation factor 4E) and its phosphorylation state p-eIF4E are highly expressed in psoriatic tissues. However, the role eIF4E played in psoriasis is still unclear. To investigate the function of eIF4E and p-eIF4E in psoriasis and to figure out whether eFT-508 (Tomivosertib, eIF4E phosphorylation inhibitor) can relieve the disease severity and become a promising candidate for the psoriasis treatment. We first verified the expression of eIF4E and p-eIF4E in psoriasis patients' lesional skin. Then, we demonstrated the effect of eIF4E and p-eIF4E on the abnormal proliferation and inflammatory state of keratinocytes by using eIF4E-specific small interfering RNA (si-eIF4E) and eFT-508. In this study, all cell experiments were performed under the psoriasis-model condition. Moreover, the external application of eFT-508 on imiquimod (IMQ)-induced psoriasis mice was performed to explore its potential clinical value. Results showed that eIF4E and p-eIF4E were significantly overexpressed in skin lesions of psoriasis patients. Knocking down eIF4E or adding eFT-508 can relieve the abnormal proliferation and the excessive inflammatory state of keratinocytes by reducing the expression of cyclin D1, IL-1β, CXCL10, IL23, Wnt 5a, NBS1 and p-AKT from mRNA or protein levels. Furthermore, these results were consistent with those obtained from the in vitro experiments. Then, we conclude that eIF4E plays the role of the pathogenic gene in psoriasis, and eFT-508 may be a promising candidate for anti-prosoriasis drugs.
Collapse
Affiliation(s)
- Ruijie Wang
- Department of Dermatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Luan Yang
- Department of Dermatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunyue Zhen
- Department of Dermatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xueqing Li
- Department of Dermatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shan Huang
- Department of Dermatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - He Wen
- Department of Dermatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qing Sun
- Department of Dermatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
12
|
Kastritis E, Gavriatopoulou M, Solia E, Theodorakakou F, Spiliopoulou V, Malandrakis P, Ntanasis-Stathopoulos I, Migkou M, Kokkali N, Eleutherakis-Papaiakovou E, Syrigou R, Fotiou D, Terpos E, Dimopoulos MA. Real World Efficacy and Toxicity of Selinexor: Importance of Patient Characteristics, Dose Intensity and Post Progression Outcomes. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:844-849. [PMID: 37599164 DOI: 10.1016/j.clml.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
BACKGOUND Selinexor is an orally available selective inhibitor of exportin-1 that has offered a new treatment option in relapsed or refractory myeloma (RRMM) either in combination with dexamethasone (Sd) or with bortezomib and dexamethasone (SVd). PATIENTS-METHODS We evaluated the efficacy and toxicity of selinexor combinations in the real world, post progression therapies and their outcomes. The analysis included 44 patients with RRMM treated with Sd (N = 21, 48%) or SVd (N = 23, 52%). RESULTS On intent-to-treat, response rate (ORR) among all treated patients was 29.5% (13/44, of which CR: 2, VGPR: 3, PR:8); ORR was 35% for SVd and 24% for Sd. Median PFS was 3.0 months for all; 6.9 months for responders (≥PR),2.7 months for Sd and 3.4 months for SVd treated patients. In univariate analysis, serum albumin <3.5 g/dl and LDH >ULN were associated with worse PFS (P = .001 and P = .032, respectively).The OS of the whole cohort exceeded one year while serum albumin <3.5 gr/dl and LDH>ULN were associated with worse OS. After progression to Sd/SVd, 20 patients received further therapy; on ITT, the ORR was 40% (8/20) and the subsequent PFS was 3.4 months. The most common adverse events were fatigue, thrombocytopenia and nausea, while the most recorded grade 3 or 4 side effect was thrombocytopenia; 56% (25/44) of patients required dose reduction, however, this was not associated with inferior PFS. CONCLUSION In conclusion, selinexor-based therapy provides an additional treatment option in the real word setting and with appropriate dosing and toxicity management a subset of patients may have significant benefit.
Collapse
Affiliation(s)
- Efstathios Kastritis
- Department of Clinical Therapeutics, Plasma Cell Dyscrasia Unit, National and Kapodistrian University of Athens, School of Medicine, Greece.
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, Plasma Cell Dyscrasia Unit, National and Kapodistrian University of Athens, School of Medicine, Greece
| | - Eirini Solia
- Department of Clinical Therapeutics, Plasma Cell Dyscrasia Unit, National and Kapodistrian University of Athens, School of Medicine, Greece
| | - Foteini Theodorakakou
- Department of Clinical Therapeutics, Plasma Cell Dyscrasia Unit, National and Kapodistrian University of Athens, School of Medicine, Greece
| | - Vasiliki Spiliopoulou
- Department of Clinical Therapeutics, Plasma Cell Dyscrasia Unit, National and Kapodistrian University of Athens, School of Medicine, Greece
| | - Panagiotis Malandrakis
- Department of Clinical Therapeutics, Plasma Cell Dyscrasia Unit, National and Kapodistrian University of Athens, School of Medicine, Greece
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, Plasma Cell Dyscrasia Unit, National and Kapodistrian University of Athens, School of Medicine, Greece
| | - Magdalini Migkou
- Department of Clinical Therapeutics, Plasma Cell Dyscrasia Unit, National and Kapodistrian University of Athens, School of Medicine, Greece
| | - Nikoleta Kokkali
- Department of Clinical Therapeutics, Plasma Cell Dyscrasia Unit, National and Kapodistrian University of Athens, School of Medicine, Greece
| | - Evangelos Eleutherakis-Papaiakovou
- Department of Clinical Therapeutics, Plasma Cell Dyscrasia Unit, National and Kapodistrian University of Athens, School of Medicine, Greece
| | - Rodanthi Syrigou
- Department of Clinical Therapeutics, Plasma Cell Dyscrasia Unit, National and Kapodistrian University of Athens, School of Medicine, Greece
| | - Despina Fotiou
- Department of Clinical Therapeutics, Plasma Cell Dyscrasia Unit, National and Kapodistrian University of Athens, School of Medicine, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, Plasma Cell Dyscrasia Unit, National and Kapodistrian University of Athens, School of Medicine, Greece
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, Plasma Cell Dyscrasia Unit, National and Kapodistrian University of Athens, School of Medicine, Greece
| |
Collapse
|
13
|
Binder AF, Walker CJ, Mark TM, Baljevic M. Impacting T-cell fitness in multiple myeloma: potential roles for selinexor and XPO1 inhibitors. Front Immunol 2023; 14:1275329. [PMID: 37954586 PMCID: PMC10637355 DOI: 10.3389/fimmu.2023.1275329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/05/2023] [Indexed: 11/14/2023] Open
Abstract
Competent T-cells with sufficient levels of fitness combat cancer formation and progression. In multiple myeloma (MM), T-cell exhaustion is caused by several factors including tumor burden, constant immune activation due to chronic disease, age, nutritional status, and certain MM treatments such as alkylating agents and proteasome inhibitors. Many currently used therapies, including bispecific T-cell engagers, anti-CD38 antibodies, proteasome inhibitors, and CART-cells, directly or indirectly depend on the anti-cancer activity of T-cells. Reduced T-cell fitness not only diminishes immune defenses, increasing patient susceptibility to opportunistic infections, but can impact effectiveness MM therapy effectiveness, bringing into focus sequencing strategies that could modulate T-cell fitness and potentially optimize overall benefit and clinical outcomes. Certain targeted agents used to treat MM, such as selective inhibitors of nuclear export (SINE) compounds, have the potential to mitigate T-cell exhaustion. Herein referred to as XPO1 inhibitors, SINE compounds inhibit the nuclear export protein exportin 1 (XPO1), which leads to nuclear retention and activation of tumor suppressor proteins and downregulation of oncoprotein expression. The XPO1 inhibitors selinexor and eltanexor reduced T-cell exhaustion in cell lines and animal models, suggesting their potential role in revitalizating these key effector cells. Additional clinical studies are needed to understand how T-cell fitness is impacted by diseases and therapeutic factors in MM, to potentially facilitate the optimal use of available treatments that depend on, and impact, T-cell function. This review summarizes the importance of T-cell fitness and the potential to optimize treatment using T-cell engaging therapies with a focus on XPO1 inhibitors.
Collapse
Affiliation(s)
- Adam F. Binder
- Department of Medical Oncology, Division of Hematopoietic Stem Cell Transplant and Hematologic Malignancies, Thomas Jefferson University, Philadelphia, PA, United States
| | - Christopher J. Walker
- Department of Translational Research, Karyopharm Therapeutics, Inc, Newton, MA, United States
| | - Tomer M. Mark
- Department of Translational Research, Karyopharm Therapeutics, Inc, Newton, MA, United States
| | - Muhamed Baljevic
- Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
14
|
Desgraupes S, Etienne L, Arhel NJ. RANBP2 evolution and human disease. FEBS Lett 2023; 597:2519-2533. [PMID: 37795679 DOI: 10.1002/1873-3468.14749] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Ran-binding protein 2 (RANBP2)/Nup358 is a nucleoporin and a key component of the nuclear pore complex. Through its multiple functions (e.g., SUMOylation, regulation of nucleocytoplasmic transport) and subcellular localizations (e.g., at the nuclear envelope, kinetochores, annulate lamellae), it is involved in many cellular processes. RANBP2 dysregulation or mutation leads to the development of human pathologies, such as acute necrotizing encephalopathy 1, cancer, neurodegenerative diseases, and it is also involved in viral infections. The chromosomal region containing the RANBP2 gene is highly dynamic, with high structural variation and recombination events that led to the appearance of a gene family called RANBP2 and GCC2 Protein Domains (RGPD), with multiple gene loss/duplication events during ape evolution. Although RGPD homoplasy and maintenance during evolution suggest they might confer an advantage to their hosts, their functions are still unknown and understudied. In this review, we discuss the appearance and importance of RANBP2 in metazoans and its function-related pathologies, caused by an alteration of its expression levels (through promotor activity, post-transcriptional, or post-translational modifications), its localization, or genetic mutations.
Collapse
Affiliation(s)
- Sophie Desgraupes
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, France
| | - Lucie Etienne
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, France
| | - Nathalie J Arhel
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, France
| |
Collapse
|
15
|
Gao X, Jin Y, Zhu W, Wu X, Wang J, Guo C. Regulation of Eukaryotic Translation Initiation Factor 4E as a Potential Anticancer Strategy. J Med Chem 2023; 66:12678-12696. [PMID: 37725577 DOI: 10.1021/acs.jmedchem.3c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Eukaryotic translation initiation factors (eIFs) are highly expressed in cancer cells, especially eIF4E, the central regulatory node driving cancer cell growth and a potential target for anticancer drugs. eIF4E-targeting strategies primarily focus on inhibiting eIF4E synthesis, interfering with eIF4E/eIF4G interactions, and targeting eIF4E phosphorylation and peptide inhibitors. Although some small-molecule inhibitors are in clinical trials, no eIF4E inhibitors are available for clinical use. We provide an overview of the regulatory mechanisms of eIF4E and summarize the progress in developing and discovering eIF4E inhibitor strategies. We propose that interference with eIF4E/eIF4G interactions will provide a new perspective for the design of eIF4E inhibitors and may be a preferred strategy.
Collapse
Affiliation(s)
- Xintao Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yonglong Jin
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Wenyong Zhu
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China
| | - Xiaochen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou 014030, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
16
|
Chen X, An Y, Tan M, Xie D, Liu L, Xu B. Biological functions and research progress of eIF4E. Front Oncol 2023; 13:1076855. [PMID: 37601696 PMCID: PMC10435865 DOI: 10.3389/fonc.2023.1076855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/30/2023] [Indexed: 08/22/2023] Open
Abstract
The eukaryotic translation initiation factor eIF4E can specifically bind to the cap structure of an mRNA 5' end, mainly regulating translation initiation and preferentially enhancing the translation of carcinogenesis related mRNAs. The expression of eIF4E is closely related to a variety of malignant tumors. In tumor cells, eIF4E activity is abnormally increased, which stimulates cell growth, metastasis and translation of related proteins. The main factors affecting eIF4E activity include intranuclear regulation, phosphorylation of 4EBPs, and phosphorylation and sumoylation of eIF4E. In this review, we summarize the biological functions and the research progress of eIF4E, the main influencing factors of eIF4E activity, and the recent progress of drugs targeting eIF4E, in the hope of providing new insights for the treatment of multiple malignancies and development of targeted drugs.
Collapse
Affiliation(s)
- Xiaocong Chen
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Yang An
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Mengsi Tan
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Dongrui Xie
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Benjin Xu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| |
Collapse
|
17
|
Khan M, Hou S, Chen M, Lei H. Mechanisms of RNA export and nuclear retention. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1755. [PMID: 35978483 DOI: 10.1002/wrna.1755] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/21/2022] [Accepted: 07/06/2022] [Indexed: 05/13/2023]
Abstract
With the identification of huge amount of noncoding RNAs in recent years, the concept of RNA localization has extended from traditional mRNA export to RNA export of mRNA and ncRNA as well as nuclear retention of ncRNA. This review aims to summarize the recent findings from studies on the mechanisms of export of different RNAs and nuclear retention of some lncRNAs in higher eukaryotes, with a focus on splicing-dependent TREX recruitment for the export of spliced mRNA and the sequence-dependent mechanism of mRNA export in the absence of splicing. In addition, evidence to support the involvement of m6 A modification in RNA export with the coordination between the methylase complex and TREX complex as well as sequence-dependent nuclear retention of lncRNA is recapitulated. Finally, a model of sequence-dependent RNA localization is proposed along with the many questions that remain to be answered. This article is categorized under: RNA Export and Localization > RNA Localization RNA Export and Localization > Nuclear Export/Import.
Collapse
Affiliation(s)
- Misbah Khan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Shuai Hou
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Mo Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Haixin Lei
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
18
|
Ghram M, Morris G, Culjkovic-Kraljacic B, Mars JC, Gendron P, Skrabanek L, Revuelta MV, Cerchietti L, Guzman ML, Borden KLB. The eukaryotic translation initiation factor eIF4E reprograms alternative splicing. EMBO J 2023; 42:e110496. [PMID: 36843541 PMCID: PMC10068332 DOI: 10.15252/embj.2021110496] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/28/2023] Open
Abstract
Aberrant splicing is typically attributed to splice-factor (SF) mutation and contributes to malignancies including acute myeloid leukemia (AML). Here, we discovered a mutation-independent means to extensively reprogram alternative splicing (AS). We showed that the dysregulated expression of eukaryotic translation initiation factor eIF4E elevated selective splice-factor production, thereby impacting multiple spliceosome complexes, including factors mutated in AML such as SF3B1 and U2AF1. These changes generated a splicing landscape that predominantly supported altered splice-site selection for ~800 transcripts in cell lines and ~4,600 transcripts in specimens from high-eIF4E AML patients otherwise harboring no known SF mutations. Nuclear RNA immunoprecipitations, export assays, polysome analyses, and mutational studies together revealed that eIF4E primarily increased SF production via its nuclear RNA export activity. By contrast, eIF4E dysregulation did not induce known SF mutations or alter spliceosome number. eIF4E interacted with the spliceosome and some pre-mRNAs, suggesting its direct involvement in specific splicing events. eIF4E induced simultaneous effects on numerous SF proteins, resulting in a much larger range of splicing alterations than in the case of mutation or dysregulation of individual SFs and providing a novel paradigm for splicing control and dysregulation.
Collapse
Affiliation(s)
- Mehdi Ghram
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada.,Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC, Canada
| | - Gavin Morris
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada.,Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC, Canada
| | - Biljana Culjkovic-Kraljacic
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada.,Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC, Canada
| | - Jean-Clement Mars
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada.,Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC, Canada
| | - Patrick Gendron
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC, Canada
| | - Lucy Skrabanek
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.,Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - Maria Victoria Revuelta
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Leandro Cerchietti
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Monica L Guzman
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Katherine L B Borden
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada.,Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
19
|
Audia S, Brescia C, Dattilo V, D’Antona L, Calvano P, Iuliano R, Trapasso F, Perrotti N, Amato R. RANBP1 (RAN Binding Protein 1): The Missing Genetic Piece in Cancer Pathophysiology and Other Complex Diseases. Cancers (Basel) 2023; 15:cancers15020486. [PMID: 36672435 PMCID: PMC9857238 DOI: 10.3390/cancers15020486] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
RANBP1 encoded by RANBP1 or HTF9A (Hpall Tiny Fragments Locus 9A), plays regulatory functions of the RAN-network, belonging to the RAS superfamily of small GTPases. Through this function, RANBP1 regulates the RANGAP1 activity and, thus, the fluctuations between GTP-RAN and GDP-RAN. In the light of this, RANBP1 take actions in maintaining the nucleus-cytoplasmic gradient, thus making nuclear import-export functional. RANBP1 has been implicated in the inter-nuclear transport of proteins, nucleic acids and microRNAs, fully contributing to cellular epigenomic signature. Recently, a RANBP1 diriment role in spindle checkpoint formation and nucleation has emerged, thus constituting an essential element in the control of mitotic stability. Over time, RANBP1 has been demonstrated to be variously involved in human cancers both for the role in controlling nuclear transport and RAN activity and for its ability to determine the efficiency of the mitotic process. RANBP1 also appears to be implicated in chemo-hormone and radio-resistance. A key role of this small-GTPases related protein has also been demonstrated in alterations of axonal flow and neuronal plasticity, as well as in viral and bacterial metabolism and in embryological maturation. In conclusion, RANBP1 appears not only to be an interesting factor in several pathological conditions but also a putative target of clinical interest.
Collapse
Affiliation(s)
- Salvatore Audia
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Carolina Brescia
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Vincenzo Dattilo
- Dipartimento di Medicina Sperimentale e Clinica, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Lucia D’Antona
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Pierluigi Calvano
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Rodolfo Iuliano
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Francesco Trapasso
- Dipartimento di Medicina Sperimentale e Clinica, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Nicola Perrotti
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Rosario Amato
- Dipartimento di Scienze della Salute, Campus Salvatore Venuta, Università degli Studi “Magna Graecia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
- Correspondence: ; Tel.: +39-0961-3694084
| |
Collapse
|
20
|
Trkulja KL, Manji F, Kuruvilla J, Laister RC. Nuclear Export in Non-Hodgkin Lymphoma and Implications for Targeted XPO1 Inhibitors. Biomolecules 2023; 13:111. [PMID: 36671496 PMCID: PMC9855521 DOI: 10.3390/biom13010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023] Open
Abstract
Exportin-1 (XPO1) is a key player in the nuclear export pathway and is overexpressed in almost all cancers. This is especially relevant for non-Hodgkin lymphoma (NHL), where high XPO1 expression is associated with poor prognosis due to its oncogenic role in exporting proteins and RNA that are involved in cancer progression and treatment resistance. Here, we discuss the proteins and RNA transcripts that have been identified as XPO1 cargo in NHL lymphoma including tumour suppressors, immune modulators, and transcription factors, and their implications for oncogenesis. We then highlight the research to date on XPO1 inhibitors such as selinexor and other selective inhibitors of nuclear export (SINEs), which are used to treat some cases of non-Hodgkin lymphoma. In vitro, in vivo, and clinical studies investigating the anti-cancer effects of SINEs from bench to bedside, both as a single agent and in combination, are also reported. Finally, we discuss the limitations of the current research landscape and future directions to better understand and improve the clinical utility of SINE compounds in NHL.
Collapse
Affiliation(s)
- Kyla L. Trkulja
- Institute of Medical Science, University of Toronto, 27 King’s College Circle, Toronto, ON M5S 1A1, Canada
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2C1, Canada
| | - Farheen Manji
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2C1, Canada
| | - John Kuruvilla
- Institute of Medical Science, University of Toronto, 27 King’s College Circle, Toronto, ON M5S 1A1, Canada
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2C1, Canada
| | - Rob C. Laister
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2C1, Canada
| |
Collapse
|
21
|
Subramanian C, Spielbauer KK, Pearce R, Kovatch KJ, Prince ME, Timmermann BN, Cohen MS. Combination Treatment of Withalongolide a Triacetate with Cisplatin Induces Apoptosis by Targeting Translational Initiation, Migration, and Epithelial to Mesenchymal Transition in Head and Neck Squamous Cell Carcinoma. Nutrients 2022; 14:nu14245398. [PMID: 36558560 PMCID: PMC9782118 DOI: 10.3390/nu14245398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Treatment regimens for head and neck squamous cell carcinoma (HNSCC) typically include cisplatin and radiotherapy and are limited by toxicities. We have identified naturally derived withalongolide A triacetate (WGA-TA) from Physalis longifolia as a lead compound for targeting HNSCC. We hypothesized that combining WGA-TA with cisplatin may allow for lower, less toxic cisplatin doses. HNSCC cell lines were treated with WGA-TA and cisplatin. After treatment with the drugs, the cell viability was determined by MTS assay. The combination index was calculated using CompuSyn. The expression of proteins involved in the targeting of translational initiation complex, epithelial to mesenchymal transition (EMT), and apoptosis were measured by western blot. Invasion and migration were measured using the Boyden-chamber assay. Treatment of MDA-1986 and UMSCC-22B cell lines with either WGA-TA or cisplatin alone for 72 h resulted in a dose dependent decrease in cell viability. Cisplatin in combination with WGA-TA resulted in significant synergistic cell death starting from 1.25 μM cisplatin. Combination treatment with WGA-TA resulted in lower cisplatin dosing while maintaining the downregulation of translational initiation complex proteins, the induction of apoptosis, and the blockade of migration, invasion, and EMT transition. These results suggest that combining a low concentration of cisplatin with WGA-TA may provide a safer, more effective therapeutic option for HNSCC that warrants translational validation.
Collapse
Affiliation(s)
- Chitra Subramanian
- Departments of Surgery and Bioengineering, Carle Illinois College of Medicine, University of Illinois, Urbana-Champaign, IL 61820, USA
- Correspondence: (C.S.); (M.S.C.)
| | - Katie K. Spielbauer
- Department of Otolaryngology-Head and Neck Cancer, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - Robin Pearce
- Department of Computational Medicine and Bioinformatics, Ann Arbor, MI 48109, USA
| | | | - Mark E. Prince
- Department of Otolaryngology-Head and Neck Cancer, Michigan Medicine, Ann Arbor, MI 48109, USA
| | | | - Mark S. Cohen
- Departments of Surgery and Bioengineering, Carle Illinois College of Medicine, University of Illinois, Urbana-Champaign, IL 61820, USA
- Correspondence: (C.S.); (M.S.C.)
| |
Collapse
|
22
|
The efficacy of selinexor (KPT-330), an XPO1 inhibitor, on non-hematologic cancers: a comprehensive review. J Cancer Res Clin Oncol 2022; 149:2139-2155. [PMID: 35941226 DOI: 10.1007/s00432-022-04247-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE Selinexor is a novel XPO1 inhibitor which inhibits the export of tumor suppressor proteins and oncoprotein mRNAs, leading to cell-cycle arrest and apoptosis in cancer cells. While selinexor is currently FDA approved to treat multiple myeloma, compelling preclinical and early clinical studies reveal selinexor's efficacy in treating hematologic and non-hematologic malignancies, including sarcoma, gastric, bladder, prostate, breast, ovarian, skin, lung, and brain cancers. Current reviews of selinexor primarily highlight its use in hematologic malignancies; however, this review seeks to summarize the recent evidence of selinexor treatment in solid tumors. METHODS Pertinent literature searches in PubMed and the Karyopharm Therapeutics website for selinexor and non-hematologic malignancies preclinical and clinical trials. RESULTS This review provides evidence that selinexor is a promising agent used alone or in combination with other anticancer medications in non-hematologic malignancies. CONCLUSION Further clinical investigation of selinexor treatment for solid malignancies is warranted.
Collapse
|
23
|
Ben Barouch S, Bhella S, Kridel R, Kukreti V, Prica A, Crump M, Kuruvilla J. Long-term follow up of relapsed/refractory non-Hodgkin lymphoma patients treated with single-agent selinexor – a retrospective, single center study. Leuk Lymphoma 2022; 63:1879-1886. [DOI: 10.1080/10428194.2022.2047674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sharon Ben Barouch
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
- Division of Hematology, Assuta Ashdod University Hospital, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Sita Bhella
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Robert Kridel
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Vishel Kukreti
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Anca Prica
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Michel Crump
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - John Kuruvilla
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
24
|
Dimitriou ID, Meiri D, Jitkova Y, Elford AR, Koritzinsky M, Schimmer AD, Ohashi PS, Sonenberg N, Rottapel R. Translational Control by 4E-BP1/2 Suppressor Proteins Regulates Mitochondrial Biosynthesis and Function during CD8 + T Cell Proliferation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2702-2712. [PMID: 35667842 DOI: 10.4049/jimmunol.2101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
CD8+ T cell proliferation and differentiation into effector and memory states are high-energy processes associated with changes in cellular metabolism. CD28-mediated costimulation of T cells activates the PI3K/AKT/mammalian target of rapamycin signaling pathway and induces eukaryotic translation initiation factor 4E-dependent translation through the derepression by 4E-BP1 and 4E-BP2. In this study, we demonstrate that 4E-BP1/2 proteins are required for optimum proliferation of mouse CD8+ T cells and the development of an antiviral effector function. We show that translation of genes encoding mitochondrial biogenesis is impaired in T cells derived from 4E-BP1/2-deficient mice. Our findings demonstrate an unanticipated role for 4E-BPs in regulating a metabolic program that is required for cell growth and biosynthesis during the early stages of CD8+ T cell expansion.
Collapse
Affiliation(s)
- Ioannis D Dimitriou
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David Meiri
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yulia Jitkova
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Alisha R Elford
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Pamela S Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Robert Rottapel
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada;
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada; and
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Borden K. The search for genetic dark matter and lessons learned from the journey. Biochem Cell Biol 2022; 100:276-281. [DOI: 10.1139/bcb-2022-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this review, I describe our scientific journey to unearth the impact of RNA metabolism in cancer using the eukaryotic translation initiation factor eIF4E as an exemplar. This model allowed us to discover new structural, biochemical, and molecular features of RNA processing, and to reveal their substantial impact on cell physiology. This led us to develop proof-of-principle strategies to target these pathways in cancer patients leading to clinical benefit. I discuss the important role that the unexpected plays in research and the necessity of embracing the data even when it clashes with dogma. I also touch on the importance of equity, diversity and inclusion to the success of the scientific enterprise.
Collapse
Affiliation(s)
- Katherine Borden
- University of Montreal, 5622, Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| |
Collapse
|
26
|
The Association between Patient Characteristics and the Efficacy and Safety of Selinexor in Diffuse Large B-Cell Lymphoma in the SADAL Study. Cancers (Basel) 2022; 14:cancers14030791. [PMID: 35159058 PMCID: PMC8834328 DOI: 10.3390/cancers14030791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Diffuse large B-cell lymphoma (DLBCL) is a complex disease. A combination of immunotherapy and chemotherapy is used to treat DLBCL at initial diagnosis. Additional treatments are available when DLBCL does not respond to initial treatment; however, for many patients, DLBCL will stop responding to treatment (relapse) or may not respond at all (refractory). Selinexor is a novel, oral medication that belongs to a class of drugs called selective inhibitors of nuclear export, and it works by killing cancer cells in patients with DLBCL that has relapsed after or is refractory to at least two treatments. When deciding on a course of treatment, it is useful for physicians to know which frequently described clinical characteristics of DLBCL affect the activity and tolerability of selinexor. We found that selinexor showed similar activity and tolerability across most of the frequently described clinical characteristics assessed. Abstract Selinexor, an oral selective inhibitor of nuclear export, was evaluated in the Phase 2b SADAL study in patients with diffuse large B-cell lymphoma (DLBCL) who previously received two to five prior systemic regimens. In post hoc analyses, we analyzed several categories of patient characteristics (age, renal function, DLBCL subtype, absolute lymphocyte count, transplant status, number of prior lines of therapy, refractory status, Ann Arbor disease stage, and lactate dehydrogenase) at baseline, i.e., during screening procedures, to determine their potential contributions to the efficacy (overall response rate [ORR], duration of response [DOR], overall survival [OS]) and tolerability of selinexor. Across most categories of characteristics, no significant difference was observed in ORR or DOR. OS was significantly longer for patients < 65 vs. ≥ 65 years, and for those with lymphocyte counts ≥ 1000/µL vs. < 1000/µL or lactate dehydrogenase ≤ ULN vs. > ULN. The most common adverse events (AEs) across the characteristics were thrombocytopenia and nausea, and similar rates of grade 3 AEs and serious AEs were observed. With its oral administration, novel mechanism of action, and consistency in responses in heavily pretreated patients, selinexor may help to address an important unmet clinical need in the treatment of DLBCL.
Collapse
|
27
|
Richard S, Jagannath S. Targeting Nuclear Export Proteins in Multiple Myeloma Therapy. BioDrugs 2022; 36:13-25. [PMID: 35113384 DOI: 10.1007/s40259-021-00514-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 12/23/2022]
Abstract
Nuclear export proteins such as exportin-1 (XPO1) transport tumor-suppressor proteins and other growth-regulatory proteins from the nucleus to the cytoplasm. Overexpression of XPO1 has been observed in several cancers and correlates with shorter event-free and overall survival in multiple myeloma. Selinexor was developed as an oral first-in-class selective inhibitor of nuclear export (SINE) that inhibits XPO1. Preclinical studies in tumor cell lines and mouse models have demonstrated the efficacy of selinexor both as a single agent and in various combinations with known active antimyeloma agents. Results from the pivotal phase II STORM trial led to the US FDA approval of selinexor with dexamethasone in penta-refractory myeloma. Because of the feasibility of combining selinexor with other active antimyeloma agents, the multiarm STOMP trial was initiated and is ongoing, with impressive response rates reported in some of the combination arms thus far. The registrational phase III BOSTON trial demonstrated the superiority of selinexor in combination with bortezomib and dexamethasone as compared with bortezomib and dexamethasone in patients with relapsed refractory multiple myeloma (RRMM) who have received one to three prior anti-MM regimens. The toxicity profile of selinexor is well established and predictable and may be significant unless managed aggressively and preemptively. The most common side effects are thrombocytopenia, anemia, neutropenia, fatigue, nausea, anorexia, and weight loss. Hyponatremia and cataracts seem to be class effects. Other SINE compounds are now being studied in efforts to discover agents that will potentially be better tolerated. Eltanexor is an investigational SINE compound that has shown a more positive toxicity profile in preclinical studies, with reduced central nervous system penetration and gastrointestinal side effects, and is now undergoing clinical investigation. These and other trials will further clarify the role of these innovative agents in the therapeutic advancement of RRMM.
Collapse
Affiliation(s)
- Shambavi Richard
- Mount Sinai Medical Center, One Gustave L. Levy Place, Box 1185, New York, NY, 10029, USA
| | - Sundar Jagannath
- Mount Sinai Medical Center, One Gustave L. Levy Place, Box 1185, New York, NY, 10029, USA.
| |
Collapse
|
28
|
Shukla P, Mandalla A, Elrick MJ, Venkatesan A. Clinical Manifestations and Pathogenesis of Acute Necrotizing Encephalopathy: The Interface Between Systemic Infection and Neurologic Injury. Front Neurol 2022; 12:628811. [PMID: 35058867 PMCID: PMC8764155 DOI: 10.3389/fneur.2021.628811] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Acute necrotizing encephalopathy (ANE) is a devastating neurologic condition that can arise following a variety of systemic infections, including influenza and SARS-CoV-2. Affected individuals typically present with rapid changes in consciousness, focal neurological deficits, and seizures. Neuroimaging reveals symmetric, bilateral deep gray matter lesions, often involving the thalami, with evidence of necrosis and/or hemorrhage. The clinical and radiologic picture must be distinguished from direct infection of the central nervous system by some viruses, and from metabolic and mitochondrial disorders. Outcomes following ANE are poor overall and worse in those with brainstem involvement. Specific management is often directed toward modulating immune responses given the potential role of systemic inflammation and cytokine storm in potentiating neurologic injury in ANE, though benefits of such approaches remain unclear. The finding that many patients have mutations in the nucleoporin gene RANBP2, which encodes a multifunctional protein that plays a key role in nucleocytoplasmic transport, may allow for the development of disease models that provide insights into pathogenic mechanisms and novel therapeutic approaches.
Collapse
Affiliation(s)
- Priya Shukla
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Abby Mandalla
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Matthew J Elrick
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Arun Venkatesan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
29
|
Culjkovic-Kraljacic B, Borden KLB. Subcellular Fractionation Suitable for Studies of RNA and Protein Trafficking. Methods Mol Biol 2022; 2502:91-104. [PMID: 35412233 DOI: 10.1007/978-1-0716-2337-4_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The nuclear pore complex is the major conduit for trafficking between the nucleus and cytoplasm. Nuclear import and export of both proteins and RNAs represent important functional steps for many biological processes. One of the major means to study NPC activity and the nuclear and cytoplasmic distribution of proteins and RNAs is through biochemical fractionation. Here, we describe detailed methods to generate high quality nuclear and cytoplasmic fractions simultaneously capturing RNA and proteins which can be used subsequently for a wide array of biochemical characterizations including proteomics and next generation sequencings.
Collapse
Affiliation(s)
- Biljana Culjkovic-Kraljacic
- Department of Pathology and Cell Biology, Institute of Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada.
| | - Katherine L B Borden
- Department of Pathology and Cell Biology, Institute of Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
30
|
Tao Y, Zhou H, Niu T. Safety and Efficacy Analysis of Selinexor-Based Treatment in Multiple Myeloma, a Meta-Analysis Based on Prospective Clinical Trials. Front Pharmacol 2021; 12:758992. [PMID: 34925019 PMCID: PMC8678413 DOI: 10.3389/fphar.2021.758992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Selinexor (SEL) is an orally bioavailable, highly-selective, and slowly-reversible small molecule that inhibits Exportin 1. Preclinical studies showed that SEL had synergistic antimyeloma activity with glucocorticoids, proteasome inhibitors (PIs) and immunomodulators. The combination of selinexor and dexamethasone (DEX) has been approved in the United States for patients with penta-refractory multiple myeloma in July 2019. This meta-analysis aimed to investigate the safety and efficacy of selinexor based treatment in Multiple myeloma. Methods: We systematically searched the Medline (PubMed), Embase, Web of Science, Cochrane Central Register of Controlled Trials Library databases and ClinicalTrials.gov. Outcome measures of efficacy included overall response rate (ORR), clinical benefit rate (CBR), stringent complete response rate (sCR), complete response rate (CR), very good partial response (VGPR), partial response rate (PR), minimal response (MR), rate of stable disease (SDR), rate of progressive disease (PDR) and median progression-free survival (mPFS). Safety was evaluated by the incidences of all grade adverse events and Grade≥3 adverse events. The subgroup analysis was conducted to analyze the difference in different combination treatment regimens (SEL + DEX + PIs vs SEL + DEX). Results: We included six studies with 477 patients. The pooled ORR, CBR, sCR, CR, VGPR, PR, MR, SDR, and PDR were 43% (18-67%), 55% (32-78%), 5% (-2-13%), 7% (4-11%), 14% (5-24%), 23% (15-31%), 11% (8-14%), 26% (14-38%) and 14% (4-23%), respectively. SEL + DEX + PIs treatment had higher ORR (54 vs 24%, p = 0.01), CBR (66 vs 37%, p = 0.01), sCR (10 vs 2%, p = 0.0008), and VGPR (23 vs 5%, p < 0.00001) compared to SEL + DEX treatment, and lower PDR (4 vs 23%, p < 0.00001) and SDR (17 vs 37%, p = 0.0006). The pooled incidences of any grade and grade≥3 were 45 and 30% in hematological AEs, and in non-hematological AEs were 40 and 30%, respectively. The most common all grade (68%) and grade≥3 (54%) hematological AE were both thrombocytopenia. Fatigue was the most common all grade (62%) and grade≥3 (16%) non-hematological AE. Compared to SEL + DEX treatment, SEL + DEX + PIs treatment had lower incidences of hyponatremia (39 vs 12%, p < 0.00001), nausea (72 vs 52%, p < 0.00001), vomiting (41 vs 23%, p < 0.0001), and weight loss (42 vs 17%, p = 0.03) in all grade AEs. Meanwhile, SEL + DEX + PIs treatment had lower incidences of anemia (36 vs 16%, p = 0.02), fatigue (20 vs 13%, p = 0.04), hyponatremia (22 vs 5%, p < 0.0001) than SEL + DEX treatment in grade≥3 AEs. Conclusion: Our meta-analysis revealed that selinexor-based regimens could offer reasonable efficacy and tolerable adverse events in patients with multiple myeloma. SEL + DEX + PIs treatments had higher efficacy and lower toxicities than SEL + DEX.
Collapse
Affiliation(s)
- Yali Tao
- Department of Hematology and Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Zhou
- Department of Hematology and Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Niu
- Department of Hematology and Research Laboratory of Hematology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Qi X, Zhang S, Chen Z, Wang L, Zhu W, Yin C, Fan J, Wu X, Wang J, Guo C. EGPI-1, a novel eIF4E/eIF4G interaction inhibitor, inhibits lung cancer cell growth and angiogenesis through Ras/MNK/ERK/eIF4E signaling pathway. Chem Biol Interact 2021; 352:109773. [PMID: 34902296 DOI: 10.1016/j.cbi.2021.109773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 11/03/2022]
Abstract
eIF4E plays an important role in regulating tumor growth and angiogenesis, and eIF4E is highly expressed in a variety of lung cancer cell lines. siRNA eIF4E can significantly inhibit the proliferation of lung cancer cells, indicating that inhibition of eIF4E may become a novel anti-tumor target. In the previous study, we synthesized a series of small molecule compounds with the potential to inhibit eIF4E. Among them, the compound EGPI-1 significantly inhibited the proliferation of a variety of lung cancer cells such as A549, NCI-H460, NCI-H1650 and 95D without inhibiting the proliferation of HUVEC cells. Further studies found that EGPI-1 interfered with the eIF4E/eIF4G interaction and inhibited the phosphorylation of eIF4E in NCI-H460 cells. The results of flow cytometry showed that EGPI-1 induced apoptosis and G0/G1 cycle arrest in NCI-H460 cell. Interestingly, we also found that EGPI-1 induced autophagy and DNA damage in NCI-H460 cells. The mechanism results showed that EGPI-1 inhibited the Ras/MNK/ERK/eIF4E signaling pathway. Moreover, EGPI-1 inhibited tube formation of HUVECs, as well as inhibited the neovascularization of CAM, proving the anti-angiogenesis activity of EGPI-1. The NCI-H460 xenograft studies showed that EGPI-1 inhibited tumor growth and angiogenesis in vivo by regulating Ras/MNK/ERK/eIF4E pathway. Our studies proved that eIF4E was a novel target for regulating tumor growth, and the eIF4E/eIF4G interaction inhibitor EGPI-1 was promising to develop into a novel anti-lung cancer drug.
Collapse
Affiliation(s)
- Xueju Qi
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shuna Zhang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Zekun Chen
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lijun Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Wenyong Zhu
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China
| | - Chuanjin Yin
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Junting Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou, 014030, China.
| | - Chuanlong Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
32
|
Mars JC, Ghram M, Culjkovic-Kraljacic B, Borden KLB. The Cap-Binding Complex CBC and the Eukaryotic Translation Factor eIF4E: Co-Conspirators in Cap-Dependent RNA Maturation and Translation. Cancers (Basel) 2021; 13:6185. [PMID: 34944805 PMCID: PMC8699206 DOI: 10.3390/cancers13246185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/26/2022] Open
Abstract
The translation of RNA into protein is a dynamic process which is heavily regulated during normal cell physiology and can be dysregulated in human malignancies. Its dysregulation can impact selected groups of RNAs, modifying protein levels independently of transcription. Integral to their suitability for translation, RNAs undergo a series of maturation steps including the addition of the m7G cap on the 5' end of RNAs, splicing, as well as cleavage and polyadenylation (CPA). Importantly, each of these steps can be coopted to modify the transcript signal. Factors that bind the m7G cap escort these RNAs through different steps of maturation and thus govern the physical nature of the final transcript product presented to the translation machinery. Here, we describe these steps and how the major m7G cap-binding factors in mammalian cells, the cap binding complex (CBC) and the eukaryotic translation initiation factor eIF4E, are positioned to chaperone transcripts through RNA maturation, nuclear export, and translation in a transcript-specific manner. To conceptualize a framework for the flow and integration of this genetic information, we discuss RNA maturation models and how these integrate with translation. Finally, we discuss how these processes can be coopted by cancer cells and means to target these in malignancy.
Collapse
Affiliation(s)
- Jean-Clement Mars
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Mehdi Ghram
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Biljana Culjkovic-Kraljacic
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Katherine L B Borden
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
33
|
Kachaev ZM, Ivashchenko SD, Kozlov EN, Lebedeva LA, Shidlovskii YV. Localization and Functional Roles of Components of the Translation Apparatus in the Eukaryotic Cell Nucleus. Cells 2021; 10:3239. [PMID: 34831461 PMCID: PMC8623629 DOI: 10.3390/cells10113239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Components of the translation apparatus, including ribosomal proteins, have been found in cell nuclei in various organisms. Components of the translation apparatus are involved in various nuclear processes, particularly those associated with genome integrity control and the nuclear stages of gene expression, such as transcription, mRNA processing, and mRNA export. Components of the translation apparatus control intranuclear trafficking; the nuclear import and export of RNA and proteins; and regulate the activity, stability, and functional recruitment of nuclear proteins. The nuclear translocation of these components is often involved in the cell response to stimulation and stress, in addition to playing critical roles in oncogenesis and viral infection. Many components of the translation apparatus are moonlighting proteins, involved in integral cell stress response and coupling of gene expression subprocesses. Thus, this phenomenon represents a significant interest for both basic and applied molecular biology. Here, we provide an overview of the current data regarding the molecular functions of translation factors and ribosomal proteins in the cell nucleus.
Collapse
Affiliation(s)
- Zaur M. Kachaev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergey D. Ivashchenko
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Eugene N. Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Lyubov A. Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
34
|
Abstract
Multiple myeloma (MM) is an incurable malignancy of plasma cells with a clinical course characterized by multiple relapses and treatment refractoriness. While recent treatment advancements have extended overall survival (OS), refractory MM has a poor prognosis, with a median OS of between 4 and 6 months. Nuclear export inhibition, specifically inhibition of CRM1/XPO1, is an emerging novel treatment modality that has shown promise in treatment-refractory MM. Initially discovered in yeast in 1983, early clinical applications were met with significant toxicities that limited their utility. The creation of small molecule inhibitors of nuclear export (SINE) has improved on toxicity limitations and has led to investigation in a number of malignancies at the preclinical and clinical stages. Preclinical studies of SINEs in MM have shown that these molecules are cytotoxic to myeloma cells, play a role in therapy resensitization, and suggest a role in limiting bone disease progression. In July 2019, selinexor became the first nuclear export inhibitor approved for use in relapsed/refractory MM based on the STORM trial. As of May 2020, there were eight ongoing trials combining selinexor with standard treatment regimens in relapsed/refractory MM. Eltanexor, a second-generation SINE, is also under investigation and has shown preliminary signs of efficacy in an early clinical trial while potentially having an improved toxicity profile compared with selinexor. Results in ongoing trials will help further define the role of SINEs in MM.
Collapse
Affiliation(s)
| | - Guido Lancman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, Box 1185, New York, NY, 10029, USA
| | - Ajai Chari
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, Box 1185, New York, NY, 10029, USA.
| |
Collapse
|
35
|
Small-molecule inhibitor targeting the Hsp70-Bim protein-protein interaction in CML cells overcomes BCR-ABL-independent TKI resistance. Leukemia 2021; 35:2862-2874. [PMID: 34007045 DOI: 10.1038/s41375-021-01283-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/21/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
Herein, we screened a novel inhibitor of the Hsp70-Bim protein-protein interaction (PPI), S1g-2, from a Bcl-2 inhibitor library; this compound specifically disrupted the Hsp70-Bim PPI by direct binding to an unknown site adjacent to that of an allosteric Hsp70 inhibitor MKT-077, showing binding affinity in sub-μM concentration range. S1g-2 exhibited overall 5-10-fold higher apoptosis-inducing activity in CML cells, primary CML blasts, and BCR-ABL-transformed BaF3 cells than other cancer cells, normal lymphocytes, and BaF3 cells, illustrating Hsp70-Bim PPI driven by BCR-ABL protects CML through oncoclient proteins that enriched in three pathways: eIF2 signaling, the regulation of eIF4E and p70S6K signaling, and the mTOR signaling pathways. Moreover, S1g-2 progressively enhanced lethality along with the increase in BCR-ABL-independent TKI resistance in the K562 cell lines and is more effective in primary samples from BCR-ABL-independent TKI-resistant patients than those from TKI-sensitive patients. By comparing the underlying mechanisms of S1g-2, MKT-077, and an ATP-competitive Hsp70 inhibitor VER-155008, the Hsp70-Bim PPI was identified to be a CML-specific target to protect from TKIs through the above three oncogenic signaling pathways. The in vivo activity against CML and low toxicity endows S1g-2 a first-in-class promising drug candidate for both TKI-sensitive and resistant CML.
Collapse
|
36
|
Richard S, Chari A, Delimpasi S, Simonova M, Spicka I, Pour L, Kriachok I, Dimopoulos MA, Pylypenko H, Auner HW, Leleu X, Usenko G, Hajek R, Benjamin R, Dolai TK, Sinha DK, Venner CP, Garg M, Stevens DA, Quach H, Jagannath S, Moreau P, Levy M, Badros A, Anderson LD, Bahlis NJ, Facon T, Mateos MV, Cavo M, Chang H, Landesman Y, Chai Y, Arazy M, Shah J, Shacham S, Kauffman MG, Grosicki S, Richardson PG. Selinexor, bortezomib, and dexamethasone versus bortezomib and dexamethasone in previously treated multiple myeloma: Outcomes by cytogenetic risk. Am J Hematol 2021; 96:1120-1130. [PMID: 34062004 PMCID: PMC8457116 DOI: 10.1002/ajh.26261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 11/06/2022]
Abstract
In the phase 3 BOSTON study, patients with multiple myeloma (MM) after 1-3 prior regimens were randomized to once-weekly selinexor (an oral inhibitor of exportin 1 [XPO1]) plus bortezomib-dexamethasone (XVd) or twice-weekly bortezomib-dexamethasone (Vd). Compared with Vd, XVd was associated with significant improvements in median progression-free survival (PFS), overall response rate (ORR), and lower rates of peripheral neuropathy, with trends in overall survival (OS) favoring XVd. In BOSTON, 141 (35.1%) patients had MM with high-risk (presence of del[17p], t[4;14], t[14;16], or ≥4 copies of amp1q21) cytogenetics (XVd, n = 70; Vd, n = 71), and 261 (64.9%) exhibited standard-risk cytogenetics (XVd, n = 125; Vd, n = 136). Among patients with high-risk MM, median PFS was 12.91 months for XVd and 8.61 months for Vd (HR, 0.73 [95% CI, (0.4673, 1.1406)], p = 0.082), and ORRs were 78.6% and 57.7%, respectively (OR 2.68; p = 0.004). In the standard-risk subgroup, median PFS was 16.62 months for XVd and 9.46 months for Vd (HR 0.61; p = 0.004), and ORRs were 75.2% and 64.7%, respectively (OR 1.65; p = 0.033). The safety profiles of XVd and Vd in both subgroups were consistent with the overall population. These data suggest that selinexor can confer benefits to patients with MM regardless of cytogenetic risk. ClinicalTrials.gov identifier: NCT03110562.
Collapse
Affiliation(s)
- Shambavi Richard
- Icahn School of Medicine at Mount Sinai Tisch Cancer Institute New York New York USA
| | - Ajai Chari
- Icahn School of Medicine at Mount Sinai Tisch Cancer Institute New York New York USA
| | | | - Maryana Simonova
- Institute of Blood Pathology & Transfusion Medicine of National Academy of Medical Sciences of Ukraine Lviv Ukraine
| | - Ivan Spicka
- Charles University and General Hospital Prague Czech Republic
| | - Ludek Pour
- Clinic of Internal Medicine —Hematology and Oncology University Hospital Brno Brno Czech Republic
| | | | - Meletios A. Dimopoulos
- School of Medicine National and Kapodistrian University of Athens School of Medicine Athens Greece
| | - Halyna Pylypenko
- Department of Hematology Cherkassy Regional Oncological Center Cherkassy Ukraine
| | | | - Xavier Leleu
- Department of Hematology CHU la Miletrie and Inserm CIC 1402 Poitiers France
| | - Ganna Usenko
- City Clinical Hospital No. 4 of Dnipro City Council Dnipro Ukraine
| | - Roman Hajek
- Department of Hemato‐oncology, University Hospital Ostrava University of Ostrava Ostrava Czech Republic
| | | | | | - Dinesh Kumar Sinha
- State Cancer Institute Indira Gandhi Institute of Medical Sciences Patna India
| | | | - Mamta Garg
- University Hospitals of Leicester NHS Trust Leicester UK
| | | | - Hang Quach
- University of Melbourne, St. Vincent's Hospital Melbourne Victoria Australia
| | - Sundar Jagannath
- Icahn School of Medicine at Mount Sinai Tisch Cancer Institute New York New York USA
| | | | - Moshe Levy
- Baylor University Medical Center Dallas Texas USA
| | - Ashraf Badros
- University of Maryland, Greenebaum Comprehensive Cancer Center Baltimore Maryland USA
| | - Larry D. Anderson
- Simmons Comprehensive Cancer Center UT Southwestern Medical Center Dallas Texas USA
| | - Nizar J. Bahlis
- University of Calgary Charbonneau Cancer Research Institute Calgary Alberta Canada
| | - Thierry Facon
- CHU Lille Service des Maladies du Sang F‐59000 Lille France
| | | | - Michele Cavo
- Seràgnoli Institute of Hematology Bologna University School of Medicine Bologna Italy
| | - Hua Chang
- Karyopharm Therapeutics Inc. Newton Massachusetts USA
| | | | - Yi Chai
- Karyopharm Therapeutics Inc. Newton Massachusetts USA
| | - Melina Arazy
- Karyopharm Therapeutics Inc. Newton Massachusetts USA
| | - Jatin Shah
- Karyopharm Therapeutics Inc. Newton Massachusetts USA
| | | | | | | | | |
Collapse
|
37
|
Weiss B, Allen GE, Kloehn J, Abid K, Jaquier-Gubler P, Curran JA. eIF4E3 forms an active eIF4F complex during stresses (eIF4FS) targeting mTOR and re-programs the translatome. Nucleic Acids Res 2021; 49:5159-5176. [PMID: 33893802 PMCID: PMC8136781 DOI: 10.1093/nar/gkab267] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
The eIF4E are a family of initiation factors that bind the mRNA 5' cap, regulating the proteome and the cellular phenotype. eIF4E1 mediates global translation and its activity is controlled via the PI3K/AKT/mTOR pathway. mTOR down-regulation results in eIF4E1 sequestration into an inactive complex with the 4E binding proteins (4EBPs). The second member, eIF4E2, regulates the translatome during hypoxia. However, the exact function of the third member, eIF4E3, has remained elusive. We have dissected its function using a range of techniques. Starting from the observation that it does not interact with 4EBP1, we demonstrate that eIF4E3 recruitment into an eIF4F complex occurs when Torin1 inhibits the mTOR pathway. Ribo-seq studies demonstrate that this complex (eIF4FS) is translationally active during stress and that it selects specific mRNA populations based on 5' TL (UTR) length. The interactome reveals that it associates with cellular proteins beyond the cognate initiation factors, suggesting that it may have 'moon-lighting' functions. Finally, we provide evidence that cellular metabolism is altered in an eIF4E3 KO background but only upon Torin1 treatment. We propose that eIF4E3 acts as a second branch of the integrated stress response, re-programming the translatome to promote 'stress resistance' and adaptation.
Collapse
Affiliation(s)
- Benjamin Weiss
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - George Edward Allen
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - Karim Abid
- Catecholamine and Peptides Laboratory, Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Pascale Jaquier-Gubler
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - Joseph Alphonsus Curran
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Switzerland
| |
Collapse
|
38
|
Venetoclax response is enhanced by selective inhibitor of nuclear export compounds in hematologic malignancies. Blood Adv 2021; 4:586-598. [PMID: 32045477 DOI: 10.1182/bloodadvances.2019000359] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 01/17/2020] [Indexed: 12/18/2022] Open
Abstract
The selective inhibitor of nuclear export (SINE) compounds selinexor (KPT-330) and eltanexor (KPT-8602) are from a novel class of small molecules that target exportin-1 (XPO1 [CRM1]), an essential nucleo-cytoplasmic transport protein responsible for the nuclear export of major tumor suppressor proteins and growth regulators such as p53, p21, and p27. XPO1 also affects the translation of messenger RNAs for critical oncogenes, including MYC, BCL2, MCL1, and BCL6, by blocking the export of the translation initiation factor eIF4E. Early trials with venetoclax (ABT-199), a potent, selective inhibitor of BCL2, have revealed responses across a variety of hematologic malignancies. However, many tumors are not responsive to venetoclax. We used models of acute myeloid leukemia (AML) and diffuse large B-cell lymphoma (DLBCL) to determine in vitro and in vivo responses to treatment with venetoclax and SINE compounds combined. Cotreatment with venetoclax and SINE compounds demonstrated loss of viability in multiple cell lines. Further in vitro analyses showed that this enhanced cell death was the result of an increase in apoptosis that led to a loss of clonogenicity in methylcellulose assays, coinciding with activation of p53 and loss of MCL1. Treatment with SINE compounds and venetoclax combined led to a reduction in tumor growth in both AML and DLBCL xenografts. Immunohistochemical analysis of tissue sections revealed that the reduction in tumor cells was partly the result of an induction of apoptosis. The enhanced effects of this combination were validated in primary AML and DLBCL patient cells. Our studies reveal synergy with SINE compounds and venetoclax in aggressive hematologic malignancies and provide a rationale for pursuing this approach in a clinical trial.
Collapse
|
39
|
Pharmacokinetics of Selinexor: The First-in-Class Selective Inhibitor of Nuclear Export. Clin Pharmacokinet 2021; 60:957-969. [PMID: 33928519 DOI: 10.1007/s40262-021-01016-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2021] [Indexed: 02/07/2023]
Abstract
The functionality of many tumor suppressor proteins (TSPs) and oncoprotein transcript RNAs largely depend on their location within the cell. The exportin 1 complex (XPO1) transports many of these molecules from the nucleus into the cytoplasm, thereby inactivating TSPs and activating oncoprotein transcript RNAs. Aberrations of these molecules or XPO1 can increase this translocation process, leading to oncogenesis. Selinexor is a selective inhibitor of nuclear export and is an active agent in various malignancies. It is currently approved for relapsed or refractory diffuse large B-cell lymphoma as well as multiple myeloma. Following oral administration, selinexor exhibits linear and time-independent pharmacokinetics (PK) across a wide dose range, with moderately rapid absorption (time to reach maximum concentration [Tmax] 2-4 h) and moderate elimination (half-life [t½] 6-8 h). Selinexor PK observed among patients with various solid tumors and hematologic malignancies is consistent irrespective of disease. Population PK analyses demonstrated the PK of selinexor is well-described by a two-compartment model, with significant relationships for body weight on apparent clearance and apparent central volume of distribution, and sex on apparent clearance, which result in clinically non-relevant changes in exposure. These analyses also suggested selinexor PK are not significantly impacted by various concomitant medications and organ dysfunction (hepatic/renal). The time course of selinexor PK appears similar between pediatric and adult patients, although higher exposures have been observed among pediatric patients relative to adults administered similar milligrams per meter squared (mg/m2) doses of selinexor.
Collapse
|
40
|
Delaleau M. Monitoring eIF4E-Dependent Nuclear 3' End mRNA Cleavage. Methods Mol Biol 2021; 2209:347-361. [PMID: 33201480 DOI: 10.1007/978-1-0716-0935-4_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In eukaryotes, the maturation of the 3' ends of most transcripts involves cleavage and polyadenylation steps in the nucleus. While I was working in the group of Katherine Borden at the University of Montréal, we reported that the eukaryotic translation initiation factor 4E (eIF4E) promotes the 3' end cleavage of specific RNAs. Here, I describe how we monitored this specific maturation pathway using subcellular fractionation, quantitative RT-PCR, and an in vitro cleavage assay with the nuclear fraction.
Collapse
Affiliation(s)
- Mildred Delaleau
- Centre de Biophysique Moléculaire (UPR4301), CNRS, Orléans, France.
| |
Collapse
|
41
|
Abstract
While the processing of mRNA is essential for gene expression, recent findings have highlighted that RNA processing is systematically altered in cancer. Mutations in RNA splicing factor genes and the shortening of 3' untranslated regions are widely observed. Moreover, evidence is accumulating that other types of RNAs, including circular RNAs, can contribute to tumorigenesis. In this Review, we highlight how altered processing or activity of coding and non-coding RNAs contributes to cancer. We introduce the regulation of gene expression by coding and non-coding RNA and discuss both established roles (microRNAs and long non-coding RNAs) and emerging roles (selective mRNA processing and circular RNAs) for RNAs, highlighting the potential mechanisms by which these RNA subtypes contribute to cancer. The widespread alteration of coding and non-coding RNA demonstrates that altered RNA biogenesis contributes to multiple hallmarks of cancer.
Collapse
Affiliation(s)
- Gregory J Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
- Department of Medicine, University of Adelaide, Adelaide, SA, Australia.
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia.
| | - Vihandha O Wickramasinghe
- RNA Biology and Cancer Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
42
|
The Nuclear Pore Complex and mRNA Export in Cancer. Cancers (Basel) 2020; 13:cancers13010042. [PMID: 33375634 PMCID: PMC7796397 DOI: 10.3390/cancers13010042] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Export of mRNAs from the nucleus to the cytoplasm is a key regulatory step in the expression of proteins. mRNAs are transported through the nuclear pore complex (NPC). Export of mRNAs responds to a variety of cellular stimuli and stresses. Revelations of the specific effects elicited by NPC components and associated co-factors provides a molecular basis for the export of selected RNAs, independent of bulk mRNA export. Aberrant RNA export has been observed in primary human cancer specimens. These cargo RNAs encode factors involved in nearly all facets of malignancy. Indeed, the NPC components involved in RNA export as well as the RNA export machinery can be found to be dysregulated, mutated, or impacted by chromosomal translocations in cancer. The basic mechanisms associated with RNA export with relation to export machinery and relevant NPC components are described. Therapeutic strategies targeting this machinery in clinical trials is also discussed. These findings firmly position RNA export as a targetable feature of cancer along with transcription and translation.
Collapse
|
43
|
Guha S, Bhaumik SR. Viral regulation of mRNA export with potentials for targeted therapy. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194655. [PMID: 33246183 DOI: 10.1016/j.bbagrm.2020.194655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/15/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Eukaryotic gene expression begins with transcription in the nucleus to synthesize mRNA (messenger RNA), which is subsequently exported to the cytoplasm for translation to protein. Like transcription and translation, mRNA export is an important regulatory step of eukaryotic gene expression. Various factors are involved in regulating mRNA export, and thus gene expression. Intriguingly, some of these factors interact with viral proteins, and such interactions interfere with mRNA export of the host cell, favoring viral RNA export. Hence, viruses hijack host mRNA export machinery for export of their own RNAs from nucleus to cytoplasm for translation to proteins for viral life cycle, suppressing host mRNA export (and thus host gene expression and immune/antiviral response). Therefore, the molecules that can impair the interactions of these mRNA export factors with viral proteins could emerge as antiviral therapeutic agents to suppress viral RNA transport and enhance host mRNA export, thereby promoting host gene expression and immune response. Thus, there has been a number of studies to understand how virus hijacks mRNA export machinery in suppressing host gene expression and promoting its own RNA export to the cytoplasm for translation to proteins required for viral replication/assembly/life cycle towards developing targeted antiviral therapies, as concisely described here.
Collapse
Affiliation(s)
- Shalini Guha
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
44
|
Culjkovic-Kraljacic B, Skrabanek L, Revuelta MV, Gasiorek J, Cowling VH, Cerchietti L, Borden KLB. The eukaryotic translation initiation factor eIF4E elevates steady-state m 7G capping of coding and noncoding transcripts. Proc Natl Acad Sci U S A 2020; 117:26773-26783. [PMID: 33055213 PMCID: PMC7604501 DOI: 10.1073/pnas.2002360117] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Methyl-7-guanosine (m7G) "capping" of coding and some noncoding RNAs is critical for their maturation and subsequent activity. Here, we discovered that eukaryotic translation initiation factor 4E (eIF4E), itself a cap-binding protein, drives the expression of the capping machinery and increased capping efficiency of ∼100 coding and noncoding RNAs. To quantify this, we developed enzymatic (cap quantification; CapQ) and quantitative cap immunoprecipitation (CapIP) methods. The CapQ method has the further advantage that it captures information about capping status independent of the type of 5' cap, i.e., it is not restricted to informing on m7G caps. These methodological advances led to unanticipated revelations: 1) Many RNA populations are inefficiently capped at steady state (∼30 to 50%), and eIF4E overexpression increased this to ∼60 to 100%, depending on the RNA; 2) eIF4E physically associates with noncoding RNAs in the nucleus; and 3) approximately half of eIF4E-capping targets identified are noncoding RNAs. eIF4E's association with noncoding RNAs strongly positions it to act beyond translation. Coding and noncoding capping targets have activities that influence survival, cell morphology, and cell-to-cell interaction. Given that RNA export and translation machineries typically utilize capped RNA substrates, capping regulation provides means to titrate the protein-coding capacity of the transcriptome and, for noncoding RNAs, to regulate their activities. We also discovered a cap sensitivity element (CapSE) which conferred eIF4E-dependent capping sensitivity. Finally, we observed elevated capping for specific RNAs in high-eIF4E leukemia specimens, supporting a role for cap dysregulation in malignancy. In all, levels of capping RNAs can be regulated by eIF4E.
Collapse
Affiliation(s)
- Biljana Culjkovic-Kraljacic
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Lucy Skrabanek
- Applied Bioinformatics Core, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065
| | - Maria V Revuelta
- Division of Hematology & Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Jadwiga Gasiorek
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Victoria H Cowling
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Leandro Cerchietti
- Division of Hematology & Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Katherine L B Borden
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3T 1J4, Canada;
| |
Collapse
|
45
|
Iglesias-Pedraz JM, Fossatti-Jara DM, Valle-Riestra-Felice V, Cruz-Visalaya SR, Ayala Felix JA, Comai L. WRN modulates translation by influencing nuclear mRNA export in HeLa cancer cells. BMC Mol Cell Biol 2020; 21:71. [PMID: 33054770 PMCID: PMC7557079 DOI: 10.1186/s12860-020-00315-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/01/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The Werner syndrome protein (WRN) belongs to the RecQ family of helicases and its loss of function results in the premature aging disease Werner syndrome (WS). We previously demonstrated that an early cellular change induced by WRN depletion is a posttranscriptional decrease in the levels of enzymes involved in metabolic pathways that control macromolecular synthesis and protect from oxidative stress. This metabolic shift is tolerated by normal cells but causes mitochondria dysfunction and acute oxidative stress in rapidly growing cancer cells, thereby suppressing their proliferation. RESULTS To identify the mechanism underlying this metabolic shift, we examined global protein synthesis and mRNA nucleocytoplasmic distribution after WRN knockdown. We determined that WRN depletion in HeLa cells attenuates global protein synthesis without affecting the level of key components of the mRNA export machinery. We further observed that WRN depletion affects the nuclear export of mRNAs and demonstrated that WRN interacts with mRNA and the Nuclear RNA Export Factor 1 (NXF1). CONCLUSIONS Our findings suggest that WRN influences the export of mRNAs from the nucleus through its interaction with the NXF1 export receptor thereby affecting cellular proteostasis. In summary, we identified a new partner and a novel function of WRN, which is especially important for the proliferation of cancer cells.
Collapse
Affiliation(s)
- Juan Manuel Iglesias-Pedraz
- Departamento de Investigación, Desarrollo e Innovación, Laboratorio de Genética Molecular y Bioquímica, Universidad Científica del Sur, Villa El Salvador, 15842 Lima, Peru
| | - Diego Matia Fossatti-Jara
- Departamento de Investigación, Desarrollo e Innovación, Laboratorio de Genética Molecular y Bioquímica, Universidad Científica del Sur, Villa El Salvador, 15842 Lima, Peru
- Present address: National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic
| | - Valeria Valle-Riestra-Felice
- Departamento de Investigación, Desarrollo e Innovación, Laboratorio de Genética Molecular y Bioquímica, Universidad Científica del Sur, Villa El Salvador, 15842 Lima, Peru
| | - Sergio Rafael Cruz-Visalaya
- Departamento de Investigación, Desarrollo e Innovación, Laboratorio de Genética Molecular y Bioquímica, Universidad Científica del Sur, Villa El Salvador, 15842 Lima, Peru
| | - Jose Antonio Ayala Felix
- Departamento de Investigación, Desarrollo e Innovación, Laboratorio de Genética Molecular y Bioquímica, Universidad Científica del Sur, Villa El Salvador, 15842 Lima, Peru
| | - Lucio Comai
- Department of Molecular Microbiology and Immunology, Biochemistry and Molecular Medicine, Keck School of Medicine, Longevity Institute, Davis School of Gerontology, University of Southern California, Los Angeles, CA 90033 USA
| |
Collapse
|
46
|
Davis MR, Delaleau M, Borden KLB. Nuclear eIF4E Stimulates 3'-End Cleavage of Target RNAs. Cell Rep 2020; 27:1397-1408.e4. [PMID: 31042468 PMCID: PMC6661904 DOI: 10.1016/j.celrep.2019.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 02/16/2019] [Accepted: 03/29/2019] [Indexed: 11/27/2022] Open
Abstract
The eukaryotic translation initiation factor eIF4E is nuclear and cytoplasmic where it plays roles in export and translation of specific transcripts, respectively. When we were studying its mRNA export activity, we unexpectedly discovered that eIF4E drives the protein expression of elements of the 3′-end core cleavage complex involved in cleavage and polyadenylation (CPA), including CPSF3, the enzyme responsible for cleavage, as well as its co-factors CPSF1, CPSF2, CPSF4, Symplekin, WDR33, and FIP1L1. Using multiple strategies, we demonstrate that eIF4E stimulates 3′-end cleavage of selected RNAs. eIF4E physically interacts with CPSF3, CPSF1, and uncleaved target RNA, suggesting it acts directly and indirectly on the pathway. Through these effects, eIF4E can generate better substrates for its mRNA export and translation activities. Thus, we identified an unanticipated function for eIF4E in 3′-end processing of specific target RNAs, and this function could potentially affect the expression of a broad range of oncoproteins. Davis et al. demonstrate that the eukaryotic translation initiation factor eIF4E, which is usually associated with nuclear export and translation of specific transcripts, also acts in 3′-end processing of selected RNAs. Through these effects, eIF4E can generate better substrates for its export and translation activities and, thus, modulate the proteome.
Collapse
Affiliation(s)
- Margaret Rose Davis
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal, Pavillon Marcelle-Coutu, 2950 Chemin de Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Mildred Delaleau
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal, Pavillon Marcelle-Coutu, 2950 Chemin de Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Katherine L B Borden
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal, Pavillon Marcelle-Coutu, 2950 Chemin de Polytechnique, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
47
|
Richard S, Richter J, Jagannath S. Selinexor: a first-in-class SINE compound for treatment of relapsed refractory multiple myeloma. Future Oncol 2020; 16:1331-1350. [PMID: 32511022 DOI: 10.2217/fon-2020-0054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The progression of multiple myeloma is accompanied by complex cytogenetic and epigenetic alterations that include mutation or functional inactivation of tumor suppressor proteins and overexpression of oncoproteins. Patients whose myeloma is refractory to the three major classes of drugs including immunomodulatory agents, proteasome inhibitors and anti-CD38 monoclonal antibodies have a very poor prognosis. Drugs with novel mechanisms of action that can bypass resistance mechanisms are sorely needed for this group of patients. Selinexor represents a novel, oral agent with an innovative mechanism of action that offers a significant therapeutic advance in this group of heavily treated patients. Moreover, this novel mechanism may provide additional options for patients with less refractory disease.
Collapse
Affiliation(s)
- Shambavi Richard
- Icahn School of Medicine at Mount Sinai Tisch Cancer Institute, New York 10029, USA
| | - Joshua Richter
- Icahn School of Medicine at Mount Sinai Tisch Cancer Institute, New York 10029, USA
| | - Sundar Jagannath
- Icahn School of Medicine at Mount Sinai Tisch Cancer Institute, New York 10029, USA
| |
Collapse
|
48
|
Borden KLB, Volpon L. The diversity, plasticity, and adaptability of cap-dependent translation initiation and the associated machinery. RNA Biol 2020; 17:1239-1251. [PMID: 32496897 PMCID: PMC7549709 DOI: 10.1080/15476286.2020.1766179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Translation initiation is a critical facet of gene expression with important impacts that underlie cellular responses to stresses and environmental cues. Its dysregulation in many diseases position this process as an important area for the development of new therapeutics. The gateway translation factor eIF4E is typically considered responsible for ‘global’ or ‘canonical’ m7G cap-dependent translation. However, eIF4E impacts translation of specific transcripts rather than the entire translatome. There are many alternative cap-dependent translation mechanisms that also contribute to the translation capacity of the cell. We review the diversity of these, juxtaposing more recently identified mechanisms with eIF4E-dependent modalities. We also explore the multiplicity of functions played by translation factors, both within and outside protein synthesis, and discuss how these differentially contribute to their ultimate physiological impacts. For comparison, we discuss some modalities for cap-independent translation. In all, this review highlights the diverse mechanisms that engage and control translation in eukaryotes.
Collapse
Affiliation(s)
- Katherine L B Borden
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal , Montreal, Québec, Canada
| | - Laurent Volpon
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal , Montreal, Québec, Canada
| |
Collapse
|
49
|
Podar K, Shah J, Chari A, Richardson PG, Jagannath S. Selinexor for the treatment of multiple myeloma. Expert Opin Pharmacother 2020; 21:399-408. [PMID: 31957504 DOI: 10.1080/14656566.2019.1707184] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022]
Abstract
Introduction: Despite unprecedented advances in the treatment of multiple myeloma (MM), almost all patients develop a disease that is resistant to the five most commonly used and active anti-MM agents. The prognosis for this patient population is particularly poor resulting in an unmet need for additional therapeutic options. Exportin-1 (XPO-1) is a major nuclear export protein of macromolecular cargo frequently overexpressed in MM. Selinexor is a first-in-class, oral Selective-Inhibitor-of-Nuclear-Export (SINE) compound that impedes XPO-1. Based on results of the STORM-trial, selinexor in combination with dexamethasone was granted accelerated FDA approval for patients with penta-refractory MM in July 2019.Areas covered: This article summarizes our up-to-date knowledge on the pathophysiologic role of XPO-1 in MM. Furthermore, it reviews the most recent clinical data on selinexor in combination with dexamethasone and other anti-MM agents; and discusses its safety profile, management strategies; and potential future developments.Expert opinion: Selinexor represents a next-generation-novel agent with an innovative mechanism of action that marks a significant advance in the treatment of heavily pretreated MM patients. Ongoing studies investigate its therapeutic potential also in earlier lines of therapy. Additional data is needed to confirm that selinexor and other SINE compounds are a valuable addition to our current therapeutic armamentarium.
Collapse
Affiliation(s)
- Klaus Podar
- Department of Internal Medicine, Karl Landsteiner University of Health Sciences, University Hospital, Krems, Austria
| | - Jatin Shah
- Karyopharm Therapeutics, Newton, MA, USA
| | - Ajai Chari
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul G Richardson
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | |
Collapse
|
50
|
Ben-Barouch S, Kuruvilla J. Selinexor (KTP-330) - a selective inhibitor of nuclear export (SINE): anti-tumor activity in diffuse large B-cell lymphoma (DLBCL). Expert Opin Investig Drugs 2019; 29:15-21. [PMID: 31847605 DOI: 10.1080/13543784.2020.1706087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Selinexor is a first-in-class, oral therapeutic that selectively inhibits nuclear export. It has received fast track designation from the FDA for the treatment of relapsed or refractory diffuse large B-cell lymphoma (DLBCL) recently, and continues to be evaluated as a potential treatment for DLBCL.Area covered: This article reviews the available data from clinical trials regarding the efficacy of selinexor in DLBCL and highlights the key toxicity issues and how they may best be managed. Ongoing and future studies in DLBCL are also discussed.Expert opinion: More translational studies are necessary to leverage the unique mechanism action and rationally inform the use of selinexor in combination strategies. There are several different genetic subtypes of DLBCL, but it is not clear if these classifications will identify patients that may benefit from targeted therapies. The broad potential mechanism of action of selinexor will require careful analysis to inform predictive or prognostic biomarkers. Further evaluation of selinexor in combination with standard lymphoma regimens could identify deliverable promising regimens. Future randomized trials are key for registration and to determine the optimal role for this first-in-class agent.
Collapse
Affiliation(s)
- Sharon Ben-Barouch
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Department of Medicine, University of Toronto, Toronto, Canada
| | - John Kuruvilla
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Department of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|