1
|
Hifdi N, Vaucourt M, Hnia K, Panasyuk G, Vandromme M. Phosphoinositide signaling in the nucleus: Impacts on chromatin and transcription regulation. Biol Cell 2024:e2400096. [PMID: 39707648 DOI: 10.1111/boc.202400096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
Phosphoinositides also called Polyphosphoinositides (PPIns) are small lipid messengers with established key roles in organelle trafficking and cell signaling in response to physiological and environmental inputs. Besides their well-described functions in the cytoplasm, accumulating evidences pointed to PPIns involvement in transcription and chromatin regulation. Through the description of previous and recent advances of PPIns implication in transcription, this review highlights key discoveries on how PPIns modulate nuclear factors activity and might impact chromatin to modify gene expression. Finally, we discuss how PPIns nuclear and cytosolic metabolisms work jointly in orchestrating key transduction cascades that end in the nucleus to modulate gene expression.
Collapse
Affiliation(s)
- Nesrine Hifdi
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM-UMR 1297/University Paul Sabatier, Toulouse Cedex 4, France
| | - Mathilde Vaucourt
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM-UMR 1297/University Paul Sabatier, Toulouse Cedex 4, France
| | - Karim Hnia
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM-UMR 1297/University Paul Sabatier, Toulouse Cedex 4, France
| | - Ganna Panasyuk
- Institut Necker-Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université de Paris Cité, Paris, France
| | - Marie Vandromme
- Institute of Cardiovascular and Metabolic Diseases (I2MC), INSERM-UMR 1297/University Paul Sabatier, Toulouse Cedex 4, France
| |
Collapse
|
2
|
Chen Y, Xu J, Liu X, Guo L, Yi P, Cheng C. Potential therapies targeting nuclear metabolic regulation in cancer. MedComm (Beijing) 2023; 4:e421. [PMID: 38034101 PMCID: PMC10685089 DOI: 10.1002/mco2.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 12/02/2023] Open
Abstract
The interplay between genetic alterations and metabolic dysregulation is increasingly recognized as a pivotal axis in cancer pathogenesis. Both elements are mutually reinforcing, thereby expediting the ontogeny and progression of malignant neoplasms. Intriguingly, recent findings have highlighted the translocation of metabolites and metabolic enzymes from the cytoplasm into the nuclear compartment, where they appear to be intimately associated with tumor cell proliferation. Despite these advancements, significant gaps persist in our understanding of their specific roles within the nuclear milieu, their modulatory effects on gene transcription and cellular proliferation, and the intricacies of their coordination with the genomic landscape. In this comprehensive review, we endeavor to elucidate the regulatory landscape of metabolic signaling within the nuclear domain, namely nuclear metabolic signaling involving metabolites and metabolic enzymes. We explore the roles and molecular mechanisms through which metabolic flux and enzymatic activity impact critical nuclear processes, including epigenetic modulation, DNA damage repair, and gene expression regulation. In conclusion, we underscore the paramount significance of nuclear metabolic signaling in cancer biology and enumerate potential therapeutic targets, associated pharmacological interventions, and implications for clinical applications. Importantly, these emergent findings not only augment our conceptual understanding of tumoral metabolism but also herald the potential for innovative therapeutic paradigms targeting the metabolism-genome transcriptional axis.
Collapse
Affiliation(s)
- Yanjie Chen
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jie Xu
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiaoyi Liu
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Linlin Guo
- Department of Microbiology and ImmunologyThe Indiana University School of MedicineIndianapolisIndianaUSA
| | - Ping Yi
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Chunming Cheng
- Department of Radiation OncologyJames Comprehensive Cancer Center and College of Medicine at The Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
3
|
Chi ES, Stivison EA, Blind RD. SF-1 Induces Nuclear PIP2. Biomolecules 2023; 13:1509. [PMID: 37892191 PMCID: PMC10604688 DOI: 10.3390/biom13101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Metazoan cell nuclei contain non-membrane pools of the phosphoinositide lipid PI(4,5)P2 (PIP2), but how this hydrophobic lipid exists within the aqueous nucleoplasm remains unclear. Steroidogenic Factor-1 (NR5A1, SF-1) is a nuclear receptor that binds PIP2 in vitro, and a co-crystal structure of the complex suggests the acyl chains of PIP2 are hidden in the hydrophobic core of the SF-1 protein while the PIP2 headgroup is solvent-exposed. This binding mode explains how SF-1 can solubilize nuclear PIP2; however, cellular evidence that SF-1 expression associates with nuclear PIP2 has been lacking. Here, we examined if tetracycline induction of SF-1 expression would associate with nuclear accumulation of PIP2, using antibodies directed against the PIP2 headgroup. Indeed, tetracycline induction of wild-type SF-1 induced a signal in the nucleus of HEK cells that cross-reacts with PIP2 antibodies, but did not cross-react with antibodies against the lower abundance phosphoinositide PI(3,4,5)P3 (PIP3). The nuclear PIP2 signal co-localized with FLAG-tagged SF-1 in the nuclear compartment. To determine if the nuclear PIP2 signal was dependent on the ability of SF-1 to bind PIP2, we examined a "pocket mutant" of SF-1 (A270W, L345F) shown to be deficient in phospholipid binding by mass spectrometry. Tetracycline induction of this pocket mutant SF-1 in HEK cells failed to induce a detectable PIP2 antibody cross-reactive signal, despite similar Tet-induced expression levels of the wild-type and pocket mutant SF-1 proteins in these cells. Together, these data are the first to suggest that expression of SF-1 induces a PIP2 antibody cross-reactive signal in the nucleus, consistent with X-ray crystallographic and biochemical evidence suggesting SF-1 binds PIP2 in human cells.
Collapse
Affiliation(s)
| | | | - Raymond D. Blind
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
4
|
Anuj A, Reuven N, Roberts SGE, Elson A. BASP1 down-regulates RANKL-induced osteoclastogenesis. Exp Cell Res 2023; 431:113758. [PMID: 37619639 DOI: 10.1016/j.yexcr.2023.113758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/03/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The cytokine RANKL (Receptor Activator of NFκB Ligand) is the key driver of differentiation of monocytes/macrophages to form multi-nucleated, bone-resorbing osteoclasts, a process that is accompanied by significant changes in gene expression. We show that exposure to RANKL rapidly down-regulates expression of Brain Acid Soluble Protein 1 (BASP1) in cultured primary mouse bone marrow macrophages (BMMs), and that this reduced expression is causally linked to the osteoclastogenic process in vitro. Knocking down BASP1 expression in BMMs or eliminating its expression in these cells or in RAW 264.7 cells enhanced RANKL-induced osteoclastogenesis, promoted cell-cell fusion, and generated cultures containing larger osteoclasts with increased mineral degrading abilities relative to controls. Expression of exogenous BASP1 in BMMs undergoing osteoclastogenic differentiation produced the opposite effects. Upon exposure to RANKL, primary mouse BMMs in which BASP1 had been knocked down exhibited increased expression of the key osteoclastogenic transcription factor Nfatc1and of its downstream target genes Dc-stamp, Ctsk, Itgb3, and Mmp9 relative to controls. The knock-down cells also exhibited increased sensitivity to the pro-osteoclastogenic effects of RANKL. We conclude that BASP1 is a negative regulator of RANKL-induced osteoclastogenesis, which down-regulates the pro-osteoclastogenic gene expression pattern induced by this cytokine. Decreased expression of BASP1 upon exposure of BMMs to RANKL removes a negative regulator of osteoclastogenesis and promotes this process.
Collapse
Affiliation(s)
- Anuj Anuj
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Stefan G E Roberts
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
5
|
Vidalle MC, Sheth B, Fazio A, Marvi MV, Leto S, Koufi FD, Neri I, Casalin I, Ramazzotti G, Follo MY, Ratti S, Manzoli L, Gehlot S, Divecha N, Fiume R. Nuclear Phosphoinositides as Key Determinants of Nuclear Functions. Biomolecules 2023; 13:1049. [PMID: 37509085 PMCID: PMC10377365 DOI: 10.3390/biom13071049] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Polyphosphoinositides (PPIns) are signalling messengers representing less than five per cent of the total phospholipid concentration within the cell. Despite their low concentration, these lipids are critical regulators of various cellular processes, including cell cycle, differentiation, gene transcription, apoptosis and motility. PPIns are generated by the phosphorylation of the inositol head group of phosphatidylinositol (PtdIns). Different pools of PPIns are found at distinct subcellular compartments, which are regulated by an array of kinases, phosphatases and phospholipases. Six of the seven PPIns species have been found in the nucleus, including the nuclear envelope, the nucleoplasm and the nucleolus. The identification and characterisation of PPIns interactor and effector proteins in the nucleus have led to increasing interest in the role of PPIns in nuclear signalling. However, the regulation and functions of PPIns in the nucleus are complex and are still being elucidated. This review summarises our current understanding of the localisation, biogenesis and physiological functions of the different PPIns species in the nucleus.
Collapse
Affiliation(s)
- Magdalena C Vidalle
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Bhavwanti Sheth
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Antonietta Fazio
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Maria Vittoria Marvi
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Stefano Leto
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Foteini-Dionysia Koufi
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Irene Neri
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Irene Casalin
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Giulia Ramazzotti
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Matilde Y Follo
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Lucia Manzoli
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Sonakshi Gehlot
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Nullin Divecha
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Roberta Fiume
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
6
|
The Banana MaWRKY18, MaWRKY45, MaWRKY60 and MaWRKY70 Genes Encode Functional Transcription Factors and Display Differential Expression in Response to Defense Phytohormones. Genes (Basel) 2022; 13:genes13101891. [PMID: 36292777 PMCID: PMC9602068 DOI: 10.3390/genes13101891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022] Open
Abstract
WRKY transcription factors (TFs) play key roles in plant defense responses through phytohormone signaling pathways. However, their functions in tropical fruit crops, especially in banana, remain largely unknown. Several WRKY genes from the model plants rice (OsWRKY45) and Arabidopsis (AtWRKY18, AtWRKY60, AtWRKY70) have shown to be attractive TFs for engineering disease resistance. In this study, we isolated four banana cDNAs (MaWRKY18, MaWRKY45, MaWRKY60, and MaWRKY70) with homology to these rice and ArabidopsisWRKY genes. The MaWRKY cDNAs were isolated from the wild banana Musa acuminata ssp. malaccensis, which is resistant to several diseases of this crop and is a progenitor of most banana cultivars. The deduced amino acid sequences of the four MaWRKY cDNAs revealed the presence of the conserved WRKY domain of ~60 amino acids and a zinc-finger motif at the N-terminus. Based on the number of WRKY repeats and the structure of the zinc-finger motif, MaWRKY18 and MaWRKY60 belong to group II of WRKY TFs, while MaWRKY45 and MaWRKY70 are members of group III. Their corresponding proteins were located in the nuclei of onion epidermal cells and were shown to be functional TFs in yeast cells. Moreover, expression analyses revealed that the majority of these MaWRKY genes were upregulated by salicylic acid (SA) or methyl jasmonate (MeJA) phytohormones, although the expression levels were relatively higher with MeJA treatment. The fact that most of these banana WRKY genes were upregulated by SA or MeJA, which are involved in systemic acquired resistance (SAR) or induced systemic resistance (ISR), respectively, make them interesting candidates for bioengineering broad-spectrum resistance in this crop.
Collapse
|
7
|
Moorhouse AJ, Loats AE, Medler KF, Roberts SG. The BASP1 transcriptional corepressor modifies chromatin through lipid-dependent and lipid-independent mechanisms. iScience 2022; 25:104796. [PMID: 35982799 PMCID: PMC9379585 DOI: 10.1016/j.isci.2022.104796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/22/2022] [Accepted: 07/14/2022] [Indexed: 12/01/2022] Open
Abstract
The transcriptional corepressor BASP1 requires N-terminal myristoylation for its activity and functions through interactions with nuclear lipids. Here we determine the role of BASP1 lipidation in histone modification and the modulation of chromatin accessibility. We find that the removal of the active histone modifications H3K9ac and H3K4me3 by BASP1 requires the N-terminal myristoylation of BASP1. In contrast, the placement of the repressive histone modification, H3K27me3, by BASP1 does not require BASP1 lipidation. RNA-seq and ATAC-seq analysis finds that BASP1 regulates the activity of multiple transcription factors and induces extensive changes in chromatin accessibility. We find that ∼50% of BASP1 target genes show lipidation-dependent chromatin compaction and transcriptional repression. Our results suggest that BASP1 elicits both lipid-dependent and lipid-independent functions in histone modification and transcriptional repression. In accordance with this, we find that the tumor suppressor activity of BASP1 is also partially dependent on its myristoylation.
Collapse
Affiliation(s)
| | - Amy E. Loats
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Kathryn F. Medler
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Stefan G.E. Roberts
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
8
|
Harraz MM, Malla AP, Semenza ER, Shishikura M, Singh M, Hwang Y, Kang IG, Song YJ, Snowman AM, Cortés P, Karuppagounder SS, Dawson TM, Dawson VL, Snyder SH. A high-affinity cocaine binding site associated with the brain acid soluble protein 1. Proc Natl Acad Sci U S A 2022; 119:e2200545119. [PMID: 35412917 PMCID: PMC9169839 DOI: 10.1073/pnas.2200545119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022] Open
Abstract
Cocaine exerts its stimulant effect by inhibiting dopamine (DA) reuptake, leading to increased dopamine signaling. This action is thought to reflect the binding of cocaine to the dopamine transporter (DAT) to inhibit its function. However, cocaine is a relatively weak inhibitor of DAT, and many DAT inhibitors do not share cocaine’s behavioral actions. Further, recent reports show more potent actions of the drug, implying the existence of a high-affinity receptor for cocaine. We now report high-affinity binding of cocaine associated with the brain acid soluble protein 1 (BASP1) with a dissociation constant (Kd) of 7 nM. Knocking down BASP1 in the striatum inhibits [3H]cocaine binding to striatal synaptosomes. Depleting BASP1 in the nucleus accumbens but not the dorsal striatum diminishes locomotor stimulation in mice. Our findings imply that BASP1 is a pharmacologically relevant receptor for cocaine.
Collapse
Affiliation(s)
- Maged M. Harraz
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Adarsha P. Malla
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Evan R. Semenza
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Maria Shishikura
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Manisha Singh
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Yun Hwang
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - In Guk Kang
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Young Jun Song
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Adele M. Snowman
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Pedro Cortés
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Senthilkumar S. Karuppagounder
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Ted M. Dawson
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Valina L. Dawson
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
9
|
Abstract
Cholesterol is present within the cell nucleus, where it associates with chromatin, but to date, a direct role for cholesterol in nuclear processes has not been identified. We demonstrate that the transcriptional repressor brain acid soluble protein 1 (BASP1) directly interacts with cholesterol within the cell nucleus through a consensus cholesterol interaction motif. BASP1 recruits cholesterol to the promoter region of target genes, where it is required to mediate chromatin remodeling and transcriptional repression. Our work demonstrates that cholesterol plays a direct role in transcriptional regulation. Lipids are present within the cell nucleus, where they engage with factors involved in gene regulation. Cholesterol associates with chromatin in vivo and stimulates nucleosome packing in vitro, but its effects on specific transcriptional responses are not clear. Here, we show that the lipidated Wilms tumor 1 (WT1) transcriptional corepressor, brain acid soluble protein 1 (BASP1), interacts with cholesterol in the cell nucleus through a conserved cholesterol interaction motif. We demonstrate that BASP1 directly recruits cholesterol to the promoter region of WT1 target genes. Mutation of BASP1 to ablate its interaction with cholesterol or the treatment of cells with drugs that block cholesterol biosynthesis inhibits the transcriptional repressor function of BASP1. We find that the BASP1–cholesterol interaction is required for BASP1-dependent chromatin remodeling and the direction of transcription programs that control cell differentiation. Our study uncovers a mechanism for gene-specific targeting of cholesterol where it is required to mediate transcriptional repression.
Collapse
|
10
|
Nuclear Phosphatidylinositol 3,4,5-Trisphosphate Interactome Uncovers an Enrichment in Nucleolar Proteins. Mol Cell Proteomics 2021; 20:100102. [PMID: 34048982 PMCID: PMC8255942 DOI: 10.1016/j.mcpro.2021.100102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Polyphosphoinositides (PPIns) play essential roles as lipid signaling molecules, and many of their functions have been elucidated in the cytoplasm. However, PPIns are also intranuclear where they contribute to chromatin remodeling, transcription, and mRNA splicing. The PPIn, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), has been mapped to the nucleus and nucleoli, but its role remains unclear in this subcellular compartment. To gain further insights into the nuclear functions of PtdIns(3,4,5)P3, we applied a previously developed quantitative MS-based approach to identify the targets of PtdIns(3,4,5)P3 from isolated nuclei. We identified 179 potential PtdIns(3,4,5)P3-interacting partners, and gene ontology analysis for the biological functions of this dataset revealed an enrichment in RNA processing/splicing, cytokinesis, protein folding, and DNA repair. Interestingly, about half of these interactors were common to nucleolar protein datasets, some of which had dual functions in rRNA processes and DNA repair, including poly(ADP-ribose) polymerase 1 (PARP1, now referred as ADP-ribosyltransferase 1). PARP1 was found to interact directly with PPIn via three polybasic regions in the DNA-binding domain and the linker located N-terminal of the catalytic region. PARP1 was shown to bind to PtdIns(3,4,5)P3 as well as phosphatidylinositol 3,4-bisphosphate in vitro and to colocalize with PtdIns(3,4,5)P3 in the nucleolus and with phosphatidylinositol 3,4-bisphosphate in nucleoplasmic foci. In conclusion, the PtdIns(3,4,5)P3 interactome reported here will serve as a resource to further investigate the molecular mechanisms underlying PtdIns(3,4,5)P3-mediated interactions in the nucleus and nucleolus. Phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) localizes to nucleoli. PtdIns(3,4,5)P3 interactomics from isolated nuclei identifies nucleolar proteins. PARP1 interacts directly with polyphosphoinositides via several polybasic regions. PARP1 colocalizes with PtdIns(3,4,5)P3 in the nucleolus.
Collapse
|
11
|
Myristoylation-mediated phase separation of EZH2 compartmentalizes STAT3 to promote lung cancer growth. Cancer Lett 2021; 516:84-98. [PMID: 34102285 DOI: 10.1016/j.canlet.2021.05.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 01/27/2023]
Abstract
N-myristoylation is a crucial signaling and pathogenic modification process that confers hydrophobicity to cytosolic proteins. Although different large-scale approaches have been applied, a large proportion of myristoylated proteins remain to be identified. EZH2 is overexpressed in lung cancer cells and exerts oncogenic effects via its intrinsic methyltransferase activity. Using a well-established click chemistry approach, we found that EZH2 can be modified by myristoylation at its N-terminal glycine in lung cancer cells. Hydrophobic interaction is one of the main forces driving or stabilizing liquid-liquid phase separation (LLPS), raising the possibility that myristoylation can modulate LLPS by mediating hydrophobic interactions. Indeed, myristoylation facilitates EZH2 to form phase-separated liquid droplets in lung cancer cells and in vitro. Furthermore, we provide evidence that myristoylation-mediated LLPS of EZH2 compartmentalizes its non-canonical substrate, STAT3, and activates STAT3 signaling, ultimately resulting in accelerated lung cancer cell growth. Thus, targeting EZH2 myristoylation may have significant therapeutic efficacy in the treatment of lung cancer. Altogether, these observations not only extend the list of myristoylated proteins, but also indicate that hydrophobic lipidation may serve as a novel incentive to induce or maintain LLPS.
Collapse
|
12
|
WT1 activates transcription of the splice factor kinase SRPK1 gene in PC3 and K562 cancer cells in the absence of corepressor BASP1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194642. [PMID: 33017668 DOI: 10.1016/j.bbagrm.2020.194642] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022]
Abstract
Dysregulated alternative splicing plays a prominent role in all hallmarks of cancer. The splice factor kinase SRPK1 drives the activity of oncogenic splice factors such as SRSF1. SRSF1 in turn promotes the expression of splice isoforms that favour tumour growth, including proangiogenic VEGF. Knockdown (with siRNA) or chemical inhibition (using SPHINX) of SRPK1 in K562 leukemia and PC3 prostate cancer cell lines reduced cell proliferation, invasion and migration. In glomerular podocytes, the Wilms tumour suppressor zinc-finger transcription factor WT1 represses SRPK1 transcription. Here we show that in cancer cells WT1 activates SRPK1 transcription, unless a canonical WT1 binding site adjacent to the transcription start site is mutated. The ability of WT1 to activate SRPK1 transcription was reversed by the transcriptional corepressor BASP1, and both WT1 and BASP1 co-precipitated with the SRPK1 promoter. BASP1 significantly increased the expression of the antiangiogenic VEGF165b splice isoform. We propose that by upregulating SRPK1 transcription WT1 can direct an alternative splicing landscape that facilitates tumour growth.
Collapse
|
13
|
Super-Resolution Localisation of Nuclear PI(4)P and Identification of Its Interacting Proteome. Cells 2020; 9:cells9051191. [PMID: 32403279 PMCID: PMC7291030 DOI: 10.3390/cells9051191] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022] Open
Abstract
Phosphoinositides are glycerol-based phospholipids, and they play essential roles in cellular signalling, membrane and cytoskeletal dynamics, cell movement, and the modulation of ion channels and transporters. Phosphoinositides are also associated with fundamental nuclear processes through their nuclear protein-binding partners, even though membranes do not exist inside of the nucleus. Phosphatidylinositol 4-phosphate (PI(4)P) is one of the most abundant cellular phosphoinositides; however, its functions in the nucleus are still poorly understood. In this study, we describe PI(4)P localisation in the cell nucleus by super-resolution light and electron microscopy, and employ immunoprecipitation with a specific anti-PI(4)P antibody and subsequent mass spectrometry analysis to determine PI(4)P’s interaction partners. We show that PI(4)P is present at the nuclear envelope, in nuclear lamina, in nuclear speckles and in nucleoli and also forms multiple small foci in the nucleoplasm. Nuclear PI(4)P undergoes re-localisation to the cytoplasm during cell division; it does not localise to chromosomes, nucleolar organising regions or mitotic interchromatin granules. When PI(4)P and PI(4,5)P2 are compared, they have different nuclear localisations during interphase and mitosis, pointing to their functional differences in the cell nucleus. Mass spectrometry identified hundreds of proteins, including 12 potentially novel PI(4)P interactors, most of them functioning in vital nuclear processes such as pre-mRNA splicing, transcription or nuclear transport, thus extending the current knowledge of PI(4)P’s interaction partners. Based on these data, we propose that PI(4)P also plays a role in essential nuclear processes as a part of protein–lipid complexes. Altogether, these observations provide a novel insight into the role of PI(4)P in nuclear functions and provide a direction for further investigation.
Collapse
|
14
|
Hartl M, Puglisi K, Nist A, Raffeiner P, Bister K. The brain acid-soluble protein 1 (BASP1) interferes with the oncogenic capacity of MYC and its binding to calmodulin. Mol Oncol 2020; 14:625-644. [PMID: 31944520 PMCID: PMC7053243 DOI: 10.1002/1878-0261.12636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/16/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
The MYC protein is a transcription factor with oncogenic potential controlling fundamental cellular processes such as cell proliferation, metabolism, differentiation, and apoptosis. The MYC gene is a major cancer driver, and elevated MYC protein levels are a hallmark of most human cancers. We have previously shown that the brain acid-soluble protein 1 gene (BASP1) is specifically downregulated by the v-myc oncogene and that ectopic BASP1 expression inhibits v-myc-induced cell transformation. The 11-amino acid effector domain of the BASP1 protein interacts with the calcium sensor calmodulin (CaM) and is mainly responsible for this inhibitory function. We also reported recently that CaM interacts with all MYC variant proteins and that ectopic CaM increases the transactivation and transformation potential of the v-Myc protein. Here, we show that the presence of excess BASP1 or of a synthetic BASP1 effector domain peptide leads to displacement of v-Myc from CaM. The protein stability of v-Myc is decreased in cells co-expressing v-Myc and BASP1, which may account for the inhibition of v-Myc. Furthermore, suppression of v-Myc-triggered transcriptional activation and cell transformation is compensated by ectopic CaM, suggesting that BASP1-mediated withdrawal of CaM from v-Myc is a crucial event in the inhibition. In view of the tumor-suppressive role of BASP1 which was recently also reported for human cancer, small compounds or peptides based on the BASP1 effector domain could be used in drug development strategies aimed at tumors with high MYC expression.
Collapse
Affiliation(s)
- Markus Hartl
- Institute of Biochemistry and Center for Molecular Biosciences (CMBI)University of InnsbruckAustria
| | - Kane Puglisi
- Institute of Biochemistry and Center for Molecular Biosciences (CMBI)University of InnsbruckAustria
| | - Andrea Nist
- Institute of Biochemistry and Center for Molecular Biosciences (CMBI)University of InnsbruckAustria
- Present address:
Genomics Core FacilityPhilipps University of MarburgGermany
| | - Philipp Raffeiner
- Institute of Biochemistry and Center for Molecular Biosciences (CMBI)University of InnsbruckAustria
- Present address:
Department of Molecular MedicineScripps ResearchLa JollaCAUSA
| | - Klaus Bister
- Institute of Biochemistry and Center for Molecular Biosciences (CMBI)University of InnsbruckAustria
| |
Collapse
|
15
|
Chen M, Wen T, Horn HT, Chandrahas VK, Thapa N, Choi S, Cryns VL, Anderson RA. The nuclear phosphoinositide response to stress. Cell Cycle 2020; 19:268-289. [PMID: 31902273 PMCID: PMC7028212 DOI: 10.1080/15384101.2019.1711316] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Accumulating evidence reveals that nuclear phosphoinositides (PIs) serve as central signaling hubs that control a multitude of nuclear processes by regulating the activity of nuclear proteins. In response to cellular stressors, PIs accumulate in the nucleus and multiple PI isomers are synthesized by the actions of PI-metabolizing enzymes, kinases, phosphatases and phospholipases. By directly interacting with effector proteins, phosphoinositide signals transduce changes in cellular functions. Here we describe nuclear phosphoinositide signaling in multiple sub-nuclear compartments and summarize the literature that demonstrates roles for specific kinases, phosphatases, and phospholipases in the orchestration of nuclear phosphoinositide signaling in response to cellular stress. Additionally, we discuss the specific PI-protein complexes through which these lipids execute their functions by regulating the configuration, stability, and transcription activity of their effector proteins. Overall, our review provides a detailed landscape of the current understanding of the nuclear PI-protein interactome and its role in shaping the coordinated response to cellular stress.
Collapse
Affiliation(s)
- Mo Chen
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Tianmu Wen
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Hudson T. Horn
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Narendra Thapa
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Suyong Choi
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Vincent L. Cryns
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Richard A. Anderson
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
16
|
Fang F, Ye S, Tang J, Bennett MJ, Liang W. DWT1/DWL2 act together with OsPIP5K1 to regulate plant uniform growth in rice. THE NEW PHYTOLOGIST 2020; 225:1234-1246. [PMID: 31550392 DOI: 10.1111/nph.16216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/14/2019] [Indexed: 05/27/2023]
Abstract
Uniform growth of the main shoot and tillers significantly influences rice plant architecture and grain yield. The WUSCHEL-related homeobox transcription factor DWT1 is a key regulator of this important agronomic trait, disruption of which causes enhanced main shoot dominance and tiller dwarfism by an unknown mechanism. Here, we have used yeast-two-hybrid screening to identify OsPIP5K1, a member of the rice phosphatidylinositol-4-phosphate 5-kinase family, as a protein that interacts with DWT1. Cytological analyses confirmed that DWT1 induces accumulation of OsPIP5K1 and its product PI(4,5)P2 , a phosphoinositide secondary messenger, in nuclear bodies. Mutation of OsPIP5K1 compounds the dwarf dwt1 phenotype but abolishes the main shoot dominance. Conversely, overexpression of OsPIP5K1 partially rescues dwt1 developmental defects. Furthermore, we showed that DWL2, the homologue of DWT1, is also able to interact with OsPIP5K1 and shares partial functional redundancy with DWT1 in controlling rice uniformity. Overall, our data suggest that nuclear localised OsPIP5K1 acts with DWT1 and/or DWL2 to coordinate the uniform growth of rice shoots, likely to be through nuclear phosphoinositide signals, and provides insights into the regulation of rice uniformity via a largely unexplored plant nuclear signalling pathway.
Collapse
Affiliation(s)
- Fang Fang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Shiwei Ye
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Jingyao Tang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 20040, China
| |
Collapse
|
17
|
Nuclear Phosphoinositides-Versatile Regulators of Genome Functions. Cells 2019; 8:cells8070649. [PMID: 31261688 PMCID: PMC6678639 DOI: 10.3390/cells8070649] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
The many functions of phosphoinositides in cytosolic signaling were extensively studied; however, their activities in the cell nucleus are much less clear. In this review, we summarize data about their nuclear localization and metabolism, and review the available literature on their involvements in chromatin remodeling, gene transcription, and RNA processing. We discuss the molecular mechanisms via which nuclear phosphoinositides, in particular phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2), modulate nuclear processes. We focus on PI(4,5)P2’s role in the modulation of RNA polymerase I activity, and functions of the nuclear lipid islets—recently described nucleoplasmic PI(4,5)P2-rich compartment involved in RNA polymerase II transcription. In conclusion, the high impact of the phosphoinositide–protein complexes on nuclear organization and genome functions is only now emerging and deserves further thorough studies.
Collapse
|
18
|
Gao Y, Dutta Banik D, Muna MM, Roberts SG, Medler KF. The WT1-BASP1 complex is required to maintain the differentiated state of taste receptor cells. Life Sci Alliance 2019; 2:2/3/e201800287. [PMID: 31167803 PMCID: PMC6555901 DOI: 10.26508/lsa.201800287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/21/2022] Open
Abstract
The WT1/BASP1 complex is important to maintain taste receptor cells in their terminally differentiated state. WT1 is a transcriptional activator that controls the boundary between multipotency and differentiation. The transcriptional cofactor BASP1 binds to WT1, forming a transcriptional repressor complex that drives differentiation in cultured cells; however, this proposed mechanism has not been demonstrated in vivo. We used the peripheral taste system as a model to determine how BASP1 regulates the function of WT1. During development, WT1 is highly expressed in the developing taste cells while BASP1 is absent. By the end of development, BASP1 and WT1 are co-expressed in taste cells, where they both occupy the promoter of WT1 target genes. Using a conditional BASP1 mouse, we demonstrate that BASP1 is critical to maintain the differentiated state of adult taste cells and that loss of BASP1 expression significantly alters the composition and function of these cells. This includes the de-repression of WT1-dependent target genes from the Wnt and Shh pathways that are normally only transcriptionally activated by WT1 in the undifferentiated taste cells. Our results uncover a central role for the WT1–BASP1 complex in maintaining cell differentiation in vivo.
Collapse
Affiliation(s)
- Yankun Gao
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | | | - Mutia M Muna
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Stefan Ge Roberts
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA .,School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Kathryn F Medler
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
19
|
Hartl M, Schneider R. A Unique Family of Neuronal Signaling Proteins Implicated in Oncogenesis and Tumor Suppression. Front Oncol 2019; 9:289. [PMID: 31058089 PMCID: PMC6478813 DOI: 10.3389/fonc.2019.00289] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/29/2019] [Indexed: 12/20/2022] Open
Abstract
The neuronal proteins GAP43 (neuromodulin), MARCKS, and BASP1 are highly expressed in the growth cones of nerve cells where they are involved in signal transmission and cytoskeleton organization. Although their primary structures are unrelated, these signaling proteins share several structural properties like fatty acid modification, and the presence of cationic effector domains. GAP43, MARCKS, and BASP1 bind to cell membrane phospholipids, a process reversibly regulated by protein kinase C-phosphorylation or by binding to the calcium sensor calmodulin (CaM). GAP43, MARCKS, and BASP1 are also expressed in non-neuronal cells, where they may have important functions to manage cytoskeleton architecture, and in case of MARCKS and BASP1 to act as cofactors in transcriptional regulation. During neoplastic cell transformation, the proteins reveal differential expression in normal vs. tumor cells, and display intrinsic tumor promoting or tumor suppressive activities. Whereas GAP43 and MARCKS are oncogenic, tumor suppressive functions have been ascribed to BASP1 and in part to MARCKS depending on the cell type. Like MARCKS, the myristoylated BASP1 protein is localized both in the cytoplasm and in the cell nucleus. Nuclear BASP1 participates in gene regulation converting the Wilms tumor transcription factor WT1 from an oncoprotein into a tumor suppressor. The BASP1 gene is downregulated in many human tumor cell lines particularly in those derived from leukemias, which display elevated levels of WT1 and of the major cancer driver MYC. BASP1 specifically inhibits MYC-induced cell transformation in cultured cells. The tumor suppressive functions of BASP1 and MARCKS could be exploited to expand the spectrum of future innovative therapeutic approaches to inhibit growth and viability of susceptible human tumors.
Collapse
Affiliation(s)
- Markus Hartl
- Center of Molecular Biosciences (CMBI), Institute of Biochemistry, University of Innsbruck, Innsbruck, Austria
| | - Rainer Schneider
- Center of Molecular Biosciences (CMBI), Institute of Biochemistry, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
20
|
Polyphosphoinositides in the nucleus: Roadmap of their effectors and mechanisms of interaction. Adv Biol Regul 2019; 72:7-21. [PMID: 31003946 DOI: 10.1016/j.jbior.2019.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 01/01/2023]
Abstract
Biomolecular interactions between proteins and polyphosphoinositides (PPIn) are essential in the regulation of the vast majority of cellular processes. Consequently, alteration of these interactions is implicated in the development of many diseases. PPIn are phosphorylated derivatives of phosphatidylinositol and consist of seven species with different phosphate combinations. PPIn signal by recruiting proteins via canonical domains or short polybasic motifs. Although their actions are predominantly documented on cytoplasmic membranes, six of the seven PPIn are present within the nucleus together with the PPIn kinases, phosphatases and phospholipases that regulate their turnover. Importantly, the contribution of nuclear PPIn in the regulation of nuclear processes has led to an increased recognition of their importance compared to their more accepted cytoplasmic roles. This review summarises our knowledge on the identification and functional characterisation of nuclear PPIn-effector proteins as well as their mode of interactions, which tend to favour polybasic motifs.
Collapse
|
21
|
Deng L, Gao X, Liu B, He X, Xu J, Qiang J, Wu Q, Liu S. NMT1 inhibition modulates breast cancer progression through stress-triggered JNK pathway. Cell Death Dis 2018; 9:1143. [PMID: 30446635 PMCID: PMC6240078 DOI: 10.1038/s41419-018-1201-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/11/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023]
Abstract
Myristoylation is one of key post-translational modifications that involved in signal transduction, cellular transformation and tumorigenesis. Increasing evidence demonstrates that targeting myristoylation might provide a new strategy for eliminating cancers. However, the underlying mechanisms are still yielded unclear. In this study, we demonstrated that genetic inhibition of N-myristoyltransferase NMT1 suppressed initiation, proliferation and invasion of breast cancer cells either in vitro or in vivo. We identified ROS could negatively regulate NMT1 expression and NMT1 knockdown conversely promoted oxidative stress, which formed a feedback loop. Furthermore, inhibition of NMT1 caused degraded proteins increase and ER stress, which cross-talked with mitochondria to produce more ROS. And both of oxidative stress and ER stress could activate JNK pathway, leading to autophagy which abrogated breast cancer progression especially triple-negative breast cancer (TNBC). These studies provide a preclinical proof of concept for targeting NMT1 as a strategy to treat breast cancer.
Collapse
Affiliation(s)
- Lu Deng
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Shanghai Medical College; Key Laboratory of Breast Cancer in Shanghai; Innovation Center for Cell Signaling Network; Cancer Institutes, Fudan University, 200032, Shanghai, China.,School of Life Science, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Xinlei Gao
- School of Life Science, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Bingjie Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Shanghai Medical College; Key Laboratory of Breast Cancer in Shanghai; Innovation Center for Cell Signaling Network; Cancer Institutes, Fudan University, 200032, Shanghai, China.,School of Life Science, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Xueyan He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Shanghai Medical College; Key Laboratory of Breast Cancer in Shanghai; Innovation Center for Cell Signaling Network; Cancer Institutes, Fudan University, 200032, Shanghai, China
| | - Jiahui Xu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Shanghai Medical College; Key Laboratory of Breast Cancer in Shanghai; Innovation Center for Cell Signaling Network; Cancer Institutes, Fudan University, 200032, Shanghai, China
| | - Jiankun Qiang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Shanghai Medical College; Key Laboratory of Breast Cancer in Shanghai; Innovation Center for Cell Signaling Network; Cancer Institutes, Fudan University, 200032, Shanghai, China
| | - Qingfa Wu
- School of Life Science, The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, 230027, Hefei, Anhui, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Shanghai Medical College; Key Laboratory of Breast Cancer in Shanghai; Innovation Center for Cell Signaling Network; Cancer Institutes, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
22
|
Wang Q, Chen X, Yi D, Song Y, Zhao YH, Luo Q. Expression profile analysis of differentially expressed genes in ruptured intracranial aneurysms: In search of biomarkers. Biochem Biophys Res Commun 2018; 506:548-556. [PMID: 30366668 DOI: 10.1016/j.bbrc.2018.10.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 01/29/2023]
Abstract
Intracranial aneurysms (IAs) result from the bulging of arterial walls secondary to several factors such as flow, vessel morphology, and genetics. Subarachnoid hemorrhage occurs when such walls rupture, leading to high disability and mortality. Despite numerous investigations pertaining to the relationship between geometric characteristics and IA rupture, only a few have obtained consistent results. This study aimed to further identify the potential genes associated with the pathogenesis of IAs, which may provide novel molecular biomarkers. We downloaded and reanalyzed six datasets, which were divided into four groups. IA walls and blood samples were screened for differentially expressed genes (DEGs); then, functional and pathway enrichment analyses were conducted. In total, 158 common DEGs were identified from Groups 1-3 and 396 genes (187 upregulated and 209 downregulated genes) were differentially expressed in Group 4. The functional analysis revealed that the DEGs were mainly associated with the major histocompatibility complex class II protein complex and antigen processing and presentation. Finally, we identified nine key genes, both in aneurysm tissue samples and blood samples, of which three were mostly associated with the progression and rupture of IAs. Bioinformatics was used to analyze the datasets of the ruptured IAs and identify potential biomarkers, which may provide information for the early detection and treatment of IAs.
Collapse
Affiliation(s)
- Qunhui Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Xuan Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Dazhuang Yi
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Yu Song
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Yu-Hao Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, PR China.
| | - Qi Luo
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, PR China.
| |
Collapse
|
23
|
Ulicna L, Rohozkova J, Hozak P. Multiple Aspects of PIP2 Involvement in C. elegans Gametogenesis. Int J Mol Sci 2018; 19:ijms19092679. [PMID: 30201859 PMCID: PMC6163852 DOI: 10.3390/ijms19092679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/28/2018] [Accepted: 09/05/2018] [Indexed: 12/20/2022] Open
Abstract
One of the most studied phosphoinositides is phosphatidylinositol 4,5-bisphosphate (PIP2), which localizes to the plasma membrane, nuclear speckles, small foci in the nucleoplasm, and to the nucleolus in mammalian cells. Here, we show that PIP2 also localizes to the nucleus in prophase I, during the gametogenesis of C. elegans hermaphrodite. The depletion of PIP2 by type I PIP kinase (PPK-1) kinase RNA interference results in an altered chromosome structure and leads to various defects during meiotic progression. We observed a decreased brood size and aneuploidy in progeny, defects in synapsis, and crossover formation. The altered chromosome structure is reflected in the increased transcription activity of a tightly regulated process in prophase I. To elucidate the involvement of PIP2 in the processes during the C. elegans development, we identified the PIP2-binding partners, leucine-rich repeat (LRR-1) protein and proteasome subunit beta 4 (PBS-4), pointing to its involvement in the ubiquitin–proteasome pathway.
Collapse
Affiliation(s)
- Livia Ulicna
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Prague 142 20, Czech Republic.
| | - Jana Rohozkova
- Department of Epigenetics of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Division BIOCEV, Vestec 252 50, Czech Republic.
| | - Pavel Hozak
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Prague 142 20, Czech Republic.
- Department of Epigenetics of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Division BIOCEV, Vestec 252 50, Czech Republic.
- Microscopy Centre, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., Prague 142 20, Czech Republic.
| |
Collapse
|
24
|
Phospholipids and inositol phosphates linked to the epigenome. Histochem Cell Biol 2018; 150:245-253. [DOI: 10.1007/s00418-018-1690-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2018] [Indexed: 12/17/2022]
|
25
|
Fu P, Ebenezer DL, Ha AW, Suryadevara V, Harijith A, Natarajan V. Nuclear lipid mediators: Role of nuclear sphingolipids and sphingosine-1-phosphate signaling in epigenetic regulation of inflammation and gene expression. J Cell Biochem 2018; 119:6337-6353. [PMID: 29377310 DOI: 10.1002/jcb.26707] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/23/2018] [Indexed: 12/18/2022]
Abstract
Phospholipids, sphingolipids, and cholesterol are integral components of eukaryotic cell organelles, including the nucleus. Recent evidence shows characteristic features of nuclear lipid composition and signaling, which are distinct from that of the cytoplasm and plasma membrane. While the nuclear phosphoinositol lipid signaling in cell cycle regulation and differentiation has been well described, there is a paucity on the role of nuclear sphingolipids and sphingolipid signaling in different physiological and pathophysiological human conditions. In this prospective, we describe the role of sphingolipids and specifically focus on the sphingoid bases, such as sphingosine, ceramide, and sphingosine-1-phosphate (S1P) generation and catabolism in nuclear signaling and function. Particularly, S1P generated in the nucleus by phosphorylation of SPHK2 modulates HDAC activity either by direct binding or through activation of nuclear reactive oxygen species and regulates cell cycle and pro-inflammatory gene expression. Potential implication of association of SPHK2 with the co-repressor complexes and generation of S1P in the nucleus on chromatin remodeling under normal and pathological conditions is discussed. A better understanding of sphingolipid signaling in the nucleus will facilitate the design and development of new and novel therapeutic approaches to modulate expression of pro-inflammatory and cell cycle dependent genes in human pathologies such as cancer, bacterial lung infection, neurodegeneration, and cystic fibrosis.
Collapse
Affiliation(s)
- Panfeng Fu
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - David L Ebenezer
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois
| | - Alison W Ha
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois
| | | | - Anantha Harijith
- Department of Pediatrics, University of Illinois, Chicago, Illinois
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois.,Department of Medicine, University of Illinois, Chicago, Illinois
| |
Collapse
|
26
|
Sobol M, Krausová A, Yildirim S, Kalasová I, Fáberová V, Vrkoslav V, Philimonenko V, Marášek P, Pastorek L, Čapek M, Lubovská Z, Uličná L, Tsuji T, Lísa M, Cvačka J, Fujimoto T, Hozak P. Nuclear phosphatidylinositol 4,5-bisphosphate islets contribute to efficient RNA polymerase II-dependent transcription. J Cell Sci 2018; 131:jcs.211094. [PMID: 29507116 DOI: 10.1242/jcs.211094] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/22/2018] [Indexed: 12/18/2022] Open
Abstract
This paper describes a novel type of nuclear structure - nuclear lipid islets (NLIs). They are of 40-100 nm with a lipidic interior, and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] molecules comprise a significant part of their surface. Most of NLIs have RNA at the periphery. Consistent with that, RNA is required for their integrity. The NLI periphery is associated with Pol II transcription machinery, including the largest Pol II subunit, transcription factors and NM1 (also known as NMI). The PtdIns(4,5)P2-NM1 interaction is important for Pol II transcription, since NM1 knockdown reduces the Pol II transcription level, and the overexpression of wild-type NM1 [but not NM1 mutated in the PtdIns(4,5)P2-binding site] rescues the transcription. Importantly, Pol II transcription is dependent on NLI integrity, because an enzymatic reduction of the PtdIns(4,5)P2 level results in a decrease of the Pol II transcription level. Furthermore, about half of nascent transcripts localise to NLIs, and transcriptionally active transgene loci preferentially colocalise with NLIs. We hypothesize that NLIs serve as a structural platform that facilitates the formation of Pol II transcription factories, thus participating in the formation of nuclear architecture competent for transcription.
Collapse
Affiliation(s)
- Margarita Sobol
- Institute of Molecular Genetics, CAS, v.v.i., Department of Biology of the Cell Nucleus, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Alžběta Krausová
- Institute of Molecular Genetics, CAS, v.v.i., Department of Biology of the Cell Nucleus, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Sukriye Yildirim
- Institute of Molecular Genetics, CAS, v.v.i., Department of Biology of the Cell Nucleus, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Ilona Kalasová
- Institute of Molecular Genetics, CAS, v.v.i., Department of Biology of the Cell Nucleus, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Veronika Fáberová
- Institute of Molecular Genetics, CAS, v.v.i., Department of Biology of the Cell Nucleus, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry, CAS, v.v.i., Research Service Group of Mass Spectrometry, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
| | - Vlada Philimonenko
- Institute of Molecular Genetics, CAS, v.v.i., Department of Biology of the Cell Nucleus, Vídeňská 1083, 142 20, Prague 4, Czech Republic.,Institute of Molecular Genetics, CAS, v.v.i., Electron Microscopy Core Facility, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Pavel Marášek
- Institute of Molecular Genetics, CAS, v.v.i., Department of Biology of the Cell Nucleus, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Lukáš Pastorek
- Institute of Molecular Genetics, CAS, v.v.i., Department of Biology of the Cell Nucleus, Vídeňská 1083, 142 20, Prague 4, Czech Republic.,Institute of Molecular Genetics, CAS, v.v.i., Electron Microscopy Core Facility, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Martin Čapek
- Institute of Molecular Genetics, CAS, v.v.i., Light Microscopy Core Facility, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Zuzana Lubovská
- Institute of Molecular Genetics, CAS, v.v.i., Electron Microscopy Core Facility, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Lívia Uličná
- Institute of Molecular Genetics, CAS, v.v.i., Department of Biology of the Cell Nucleus, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Takuma Tsuji
- Nagoya University Graduate School of Medicine, Department of Molecular Cell Biology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Miroslav Lísa
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry, CAS, v.v.i., Research Service Group of Mass Spectrometry, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
| | - Toyoshi Fujimoto
- Nagoya University Graduate School of Medicine, Department of Molecular Cell Biology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Pavel Hozak
- Institute of Molecular Genetics, CAS, v.v.i., Department of Biology of the Cell Nucleus, Vídeňská 1083, 142 20, Prague 4, Czech Republic .,Institute of Molecular Genetics, CAS, v.v.i., Division BIOCEV, Laboratory of Epigenetics of the Cell Nucleus, Průmyslová 595, 252 50, Vestec, Czech Republic.,Institute of Molecular Genetics, CAS, v.v.i., Microscopy Centre, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| |
Collapse
|
27
|
PIP2 epigenetically represses rRNA genes transcription interacting with PHF8. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:266-275. [DOI: 10.1016/j.bbalip.2017.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/05/2017] [Accepted: 12/09/2017] [Indexed: 02/01/2023]
|
28
|
Jiang H, Zhang X, Chen X, Aramsangtienchai P, Tong Z, Lin H. Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chem Rev 2018; 118:919-988. [PMID: 29292991 DOI: 10.1021/acs.chemrev.6b00750] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein lipidation, including cysteine prenylation, N-terminal glycine myristoylation, cysteine palmitoylation, and serine and lysine fatty acylation, occurs in many proteins in eukaryotic cells and regulates numerous biological pathways, such as membrane trafficking, protein secretion, signal transduction, and apoptosis. We provide a comprehensive review of protein lipidation, including descriptions of proteins known to be modified and the functions of the modifications, the enzymes that control them, and the tools and technologies developed to study them. We also highlight key questions about protein lipidation that remain to be answered, the challenges associated with answering such questions, and possible solutions to overcome these challenges.
Collapse
Affiliation(s)
- Hong Jiang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiaoyu Zhang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Xiao Chen
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Pornpun Aramsangtienchai
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Zhen Tong
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
29
|
Tang H, Wang Y, Zhang B, Xiong S, Liu L, Chen W, Tan G, Li H. High brain acid soluble protein 1(BASP1) is a poor prognostic factor for cervical cancer and promotes tumor growth. Cancer Cell Int 2017; 17:97. [PMID: 29089860 PMCID: PMC5655910 DOI: 10.1186/s12935-017-0452-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/09/2017] [Indexed: 12/16/2022] Open
Abstract
Background The aim of this study was to determine whether brain abundant membrane attached signal protein 1 (BASP1) is a valuable prognostic biomarker for cervical cancer and whether BASP1 regulates the progression of cervical cancer. Methods Quantitative real-time PCR, western blotting, and immunohistochemistry were used to determined BASP1 levels. Statistical analyses were used to examine whether BASP1 was a prognostic factor for patients with cervical cancer. The MTT assay, colony formation assay, cell cycle assay, anchorage-independent growth assay, and a tumor xenograft model were used to determine the role of BASP1 in the proliferation and tumorigenicity of cervical cancer. Results Brain abundant membrane attached signal protein 1 was upregulated in cervical cancer tissues and cells, and BASP1 expression levels were higher in patients that had died during follow-up compared with those that survived. There was a positive correlation between BASP1 expression and clinical stage (p < 0.001), T classification (p < 0.001), N classification (p < 0.05), and survival or mortality (p < 0.05). Patients with higher BASP1 expression had a shorter overall survival time. Cox regression analysis shown BSAP1 was an unfavorable prognostic factor for patients with cervical cancer. Overexpression of BASP1 promoted the proliferation of cervical cancer and its colony formation ability, accelerated cell cycle progression, and enhanced tumorgenicity. BASP1 knockdown inhibited the proliferation of cervical cancer and its colony formation ability, suppressed cell cycle progression, and decreased tumorgenicity. Conclusions The results showed that BASP1 not only is a novel prognostic factor for patients with cervical cancer, but also promotes the proliferation and tumorigenicity of cervical cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12935-017-0452-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huiru Tang
- Department of Gynecology & Obstetrics, Peking University Shenzhen Hospital, Shenzhen, 518036 People's Republic of China.,Shenzhen Key Laboratory of Gynecological Diagnostic Technology Research, Shenzhen, 518036 People's Republic of China
| | - Yan Wang
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 People's Republic of China
| | - Bing Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 People's Republic of China
| | - Shiqiu Xiong
- Department of Biochemistry, University of Leicester, Leicester, LE1 7RH UK
| | - Liangshuai Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 People's Republic of China
| | - Wei Chen
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 People's Republic of China
| | - Guosheng Tan
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 People's Republic of China.,Department of Medical Oncology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Yuexiu District, Guangzhou, 510080 People's Republic of China
| | - Heping Li
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 People's Republic of China.,Department of Medical Oncology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Yuexiu District, Guangzhou, 510080 People's Republic of China
| |
Collapse
|
30
|
Lee KY, Jeon YJ, Kim HG, Ryu J, Lim DY, Jung SK, Yu DH, Chen H, Bode AM, Dong Z. The CUG-translated WT1, not AUG-WT1, is an oncogene. Carcinogenesis 2017; 38:1228-1240. [DOI: 10.1093/carcin/bgx108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/09/2017] [Indexed: 11/13/2022] Open
|
31
|
Replacing reprogramming factors with antibodies selected from combinatorial antibody libraries. Nat Biotechnol 2017; 35:960-968. [PMID: 28892074 DOI: 10.1038/nbt.3963] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 08/16/2017] [Indexed: 01/12/2023]
Abstract
The reprogramming of differentiated cells into induced pluripotent stem cells (iPSCs) is usually achieved by exogenous induction of transcription by factors acting in the nucleus. In contrast, during development, signaling pathways initiated at the membrane induce differentiation. The central idea of this study is to identify antibodies that can catalyze cellular de-differentiation and nuclear reprogramming by acting at the cell surface. We screen a lentiviral library encoding ∼100 million secreted and membrane-bound single-chain antibodies and identify antibodies that can replace either Sox2 and Myc (c-Myc) or Oct4 during reprogramming of mouse embryonic fibroblasts into iPSCs. We show that one Sox2-replacing antibody antagonizes the membrane-associated protein Basp1, thereby de-repressing nuclear factors WT1, Esrrb and Lin28a (Lin28) independent of Sox2. By manipulating this pathway, we identify three methods to generate iPSCs. Our results establish unbiased selection from autocrine combinatorial antibody libraries as a robust method to discover new biologics and uncover membrane-to-nucleus signaling pathways that regulate pluripotency and cell fate.
Collapse
|
32
|
BASP1 interacts with oestrogen receptor α and modifies the tamoxifen response. Cell Death Dis 2017; 8:e2771. [PMID: 28492543 PMCID: PMC5520704 DOI: 10.1038/cddis.2017.179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 01/01/2023]
Abstract
Tamoxifen binds to oestrogen receptor α (ERα) to elicit distinct responses that vary by cell/tissue type and status, but the factors that determine these differential effects are unknown. Here we report that the transcriptional corepressor BASP1 interacts with ERα and in breast cancer cells, this interaction is enhanced by tamoxifen. We find that BASP1 acts as a major selectivity factor in the transcriptional response of breast cancer cells to tamoxifen. In all, 40% of the genes that are regulated by tamoxifen in breast cancer cells are BASP1 dependent, including several genes that are associated with tamoxifen resistance. BASP1 elicits tumour-suppressor activity in breast cancer cells and enhances the antitumourigenic effects of tamoxifen treatment. Moreover, BASP1 is expressed in breast cancer tissue and is associated with increased patient survival. Our data have identified BASP1 as an ERα cofactor that has a central role in the transcriptional and antitumourigenic effects of tamoxifen.
Collapse
|
33
|
Hamann BL, Blind RD. Nuclear phosphoinositide regulation of chromatin. J Cell Physiol 2017; 233:107-123. [PMID: 28256711 DOI: 10.1002/jcp.25886] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/26/2022]
Abstract
Phospholipid signaling has clear connections to a wide array of cellular processes, particularly in gene expression and in controlling the chromatin biology of cells. However, most of the work elucidating how phospholipid signaling pathways contribute to cellular physiology have studied cytoplasmic membranes, while relatively little attention has been paid to the role of phospholipid signaling in the nucleus. Recent work from several labs has shown that nuclear phospholipid signaling can have important roles that are specific to this cellular compartment. This review focuses on the nuclear phospholipid functions and the activities of phospholipid signaling enzymes that regulate metazoan chromatin and gene expression. In particular, we highlight the roles that nuclear phosphoinositides play in several nuclear-driven physiological processes, such as differentiation, proliferation, and gene expression. Taken together, the recent discovery of several specifically nuclear phospholipid functions could have dramatic impact on our understanding of the fundamental mechanisms that enable tight control of cellular physiology.
Collapse
Affiliation(s)
- Bree L Hamann
- Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Raymond D Blind
- Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee.,Departments of Medicine, Biochemistry and Pharmacology, Division of Diabetes Endocrinology and Metabolism, The Vanderbilt Diabetes Research and Training Center and the Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| |
Collapse
|
34
|
Crowder MK, Seacrist CD, Blind RD. Phospholipid regulation of the nuclear receptor superfamily. Adv Biol Regul 2016; 63:6-14. [PMID: 27838257 DOI: 10.1016/j.jbior.2016.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 11/27/2022]
Abstract
Nuclear receptors are ligand-activated transcription factors whose diverse biological functions are classically regulated by cholesterol-based small molecules. Over the past few decades, a growing body of evidence has demonstrated that phospholipids and other similar amphipathic molecules can also specifically bind and functionally regulate the activity of certain nuclear receptors, suggesting a critical role for these non-cholesterol-based molecules in transcriptional regulation. Phosphatidylcholines, phosphoinositides and sphingolipids are a few of the many phospholipid like molecules shown to quite specifically regulate nuclear receptors in mouse models, cell lines and in vitro. More recent evidence has also shown that certain nuclear receptors can "present" a bound phospholipid headgroup to key lipid signaling enzymes, which can then modify the phospholipid headgroup with very unique kinetic properties. Here, we review the broad array of phospholipid/nuclear receptor interactions, from the perspective of the chemical nature of the phospholipid, and the cellular abundance of the phospholipid. We also view the data in the light of well established paradigms for phospholipid mediated transcriptional regulation, as well as newer models of how phospholipids might effect transcription in the acute regulation of complex nuclear signaling pathways. Thus, this review provides novel insight into the new, non-membrane associated roles nuclear phospholipids play in regulating complex nuclear events, centered on the nuclear receptor superfamily of transcription factors.
Collapse
Affiliation(s)
- Mark K Crowder
- Department of Pharmacology, Vanderbilt University School of Medicine, USA
| | - Corey D Seacrist
- Department of Pharmacology, Vanderbilt University School of Medicine, USA
| | - Raymond D Blind
- Department of Pharmacology, Vanderbilt University School of Medicine, USA; Department of Biochemistry, Vanderbilt University School of Medicine, USA; Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University School of Medicine, USA.
| |
Collapse
|
35
|
In Vitro Transcription to Study WT1 Function. Methods Mol Biol 2016. [PMID: 27417967 DOI: 10.1007/978-1-4939-4023-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In vitro transcription methods using mammalian nuclear extracts have been available for over 30 years and have allowed sophisticated biochemical analyses of the transcription process. This method has been extensively used to study the basic mechanisms of transcription, allowing the identification of the general transcription factors and elucidation of their mechanisms of action. Gene-specific transcriptional regulators have also been studied using in vitro transcription. This has facilitated the identification of their cofactors and provided information on their function that is invaluable to facilitate their study in a more physiological setting. Here we describe the application of in vitro transcription methods to study the mechanism of action of WT1. Coupling transcription assays with methods to purify transcription complexes, and protein affinity chromatography, has provided insights into how WT1 can both positively and negatively regulate transcription.
Collapse
|
36
|
Resh MD. Fatty acylation of proteins: The long and the short of it. Prog Lipid Res 2016; 63:120-31. [PMID: 27233110 DOI: 10.1016/j.plipres.2016.05.002] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/19/2016] [Accepted: 05/21/2016] [Indexed: 12/22/2022]
Abstract
Long, short and medium chain fatty acids are covalently attached to hundreds of proteins. Each fatty acid confers distinct biochemical properties, enabling fatty acylation to regulate intracellular trafficking, subcellular localization, protein-protein and protein-lipid interactions. Myristate and palmitate represent the most common fatty acid modifying groups. New insights into how fatty acylation reactions are catalyzed, and how fatty acylation regulates protein structure and function continue to emerge. Myristate is typically linked to an N-terminal glycine, but recent studies reveal that lysines can also be myristoylated. Enzymes that remove N-terminal myristoyl-glycine or myristate from lysines have now been identified. DHHC proteins catalyze S-palmitoylation, but the mechanisms that regulate substrate recognition by individual DHHC family members remain to be determined. New studies continue to reveal thioesterases that remove palmitate from S-acylated proteins. Another area of rapid expansion is fatty acylation of the secreted proteins hedgehog, Wnt and Ghrelin, by Hhat, Porcupine and GOAT, respectively. Understanding how these membrane bound O-acyl transferases recognize their protein and fatty acyl CoA substrates is an active area of investigation, and is punctuated by the finding that these enzymes are potential drug targets in human diseases.
Collapse
Affiliation(s)
- Marilyn D Resh
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 143, New York, NY 10075, United States.
| |
Collapse
|
37
|
A polybasic motif in ErbB3-binding protein 1 (EBP1) has key functions in nucleolar localization and polyphosphoinositide interaction. Biochem J 2016; 473:2033-47. [PMID: 27118868 PMCID: PMC4941749 DOI: 10.1042/bcj20160274] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/26/2016] [Indexed: 12/29/2022]
Abstract
We reveal the identification of a polybasic motif necessary for polyphosphoinositide interaction and nucleolar targeting of ErbB3 binding protein 1 (EBP1). EBP1 interacts directly with phosphatidylinositol(3,4,5)-triphosphate and their association is detected in the nucleolus, implying regulatory roles of nucleolar processes. Polyphosphoinositides (PPIns) are present in the nucleus where they participate in crucial nuclear processes, such as chromatin remodelling, transcription and mRNA processing. In a previous interactomics study, aimed to gain further insight into nuclear PPIns functions, we identified ErbB3 binding protein 1 (EBP1) as a potential nuclear PPIn-binding protein in a lipid pull-down screen. EBP1 is a ubiquitous and conserved protein, located in both the cytoplasm and nucleolus, and associated with cell proliferation and survival. In the present study, we show that EBP1 binds directly to several PPIns via two distinct PPIn-binding sites consisting of clusters of lysine residues and positioned at the N- and C-termini of the protein. Using interaction mutants, we show that the C-terminal PPIn-binding motif contributes the most to the localization of EBP1 in the nucleolus. Importantly, a K372N point mutation, located within the C-terminal motif and found in endometrial tumours, is sufficient to alter the nucleolar targeting of EBP1. Our study reveals also the presence of the class I phosphoinositide 3-kinase (PI3K) catalytic subunit p110β and its product PtdIns(3,4,5)P3 together with EBP1 in the nucleolus. Using NMR, we further demonstrate an association between EBP1 and PtdIns(3,4,5)P3 via both electrostatic and hydrophobic interactions. Taken together, these results show that EBP1 interacts directly with PPIns and associate with PtdIns(3,4,5)P3 in the nucleolus. The presence of p110β and PtdIns(3,4,5)P3 in the nucleolus indicates their potential role in regulating nucleolar processes, at least via EBP1.
Collapse
|
38
|
Godino A, Jayanthi S, Cadet JL. Epigenetic landscape of amphetamine and methamphetamine addiction in rodents. Epigenetics 2016; 10:574-80. [PMID: 26023847 PMCID: PMC4622560 DOI: 10.1080/15592294.2015.1055441] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Amphetamine and methamphetamine addiction is described by specific behavioral alterations, suggesting long-lasting changes in gene and protein expression within specific brain subregions involved in the reward circuitry. Given the persistence of the addiction phenotype at both behavioral and transcriptional levels, several studies have been conducted to elucidate the epigenetic landscape associated with persistent effects of drug use on the mammalian brain. This review discusses recent advances in our comprehension of epigenetic mechanisms underlying amphetamine- or methamphetamine-induced behavioral, transcriptional, and synaptic plasticity. Accumulating evidence demonstrated that drug exposure induces major epigenetic modifications-histone acetylation and methylation, DNA methylation-in a very complex manner. In rare instances, however, the regulation of a specific target gene can be correlated to both epigenetic alterations and behavioral abnormalities. Work is now needed to clarify and validate an epigenetic model of addiction to amphetamines. Investigations that include genome-wide approaches will accelerate the speed of discovery in the field of addiction.
Collapse
Key Words
- AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
- AMPH, amphetamine
- AP1, activator protein 1
- ATF2, activating transcription factor 2
- BASP1, brain abundant signal protein 1
- BDNF, brain derived neurotrophic factor
- CCR2, C‒C chemokine receptor 2
- CPP, conditioned place preference
- CREB, cAMP response element binding protein
- ChIP, chromatin immunoprecipitation
- CoREST, restrictive element 1 silencing transcription factor corepressor
- Cp60, compound 60
- DNA methylation
- DNMT, DNA methyltransferase
- FOS, Finkel–Biskis–Jinkins murine osteosarcoma viral oncogene
- GABA, γ-aminobutyric acid
- GLUA1, glutamate receptor subunit A1
- GLUA2, glutamate receptor subunit A2
- GLUN1, glutamate receptor subunit N1
- H2Bac, pan-acetylation of histone 2B
- H3, histone 3
- H3K14Ac, acetylation of histone 3 at lysine 14
- H3K18, lysine 18 of histone 3
- H3K4, lysine 4 of histone 3
- H3K4me3, trimethylation of histone 3 at lysine 4
- H3K9, lysine 9 of histone 3
- H3K9Ac, acetylation of histone 3 at lysine 9
- H3K9me3, trimethylation of histone 3 at lysine 9
- H4, histone 4
- H4Ac, pan-acetylation of histone 4
- H4K12Ac, acetylation of histone 4 at lysine 12
- H4K16, lysine 16 of histone 4
- H4K5, lysine 5 of histone 4
- H4K8, lysine 8 of histone 4
- HAT, histone acetyltransferase
- HDAC, histone deacetylase
- HDM, histone demethylase
- HMT, histone methyltransferase
- IP, intra-peritoneal
- JUN, jun proto-oncogene
- KDM, lysine demethylase
- KLF10, Kruppel-like factor 10
- KMT, lysine methyltransferase
- METH, methamphetamine
- MeCP2, methyl-CpG binding protein 2
- NAc, nucleus accumbens
- NMDA, N-methyl-D-aspartate
- NaB, sodium butyrate
- OfC, orbitofrontal cortex
- PfC, prefrontal cortex
- REST, restrictive element 1 silencing transcription factor
- RNAi, RNA interference
- Ser241, serine 241
- Sin3A, SIN3 transcription regulator family member A
- TSS, transcription start site
- VPA, valproic acid
- WT1, Wilms tumor protein 1.
- amphetamine
- histone acetylation
- histone methylation
- methamphetamine
- siRNA, silencing RNA
Collapse
Affiliation(s)
- Arthur Godino
- a Département de Biologie; École Normale Supérieure de Lyon ; Lyon , France
| | | | | |
Collapse
|
39
|
Forsova OS, Zakharov VV. High-order oligomers of intrinsically disordered brain proteins BASP1 and GAP-43 preserve the structural disorder. FEBS J 2016; 283:1550-69. [PMID: 26918762 DOI: 10.1111/febs.13692] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/26/2016] [Accepted: 02/23/2016] [Indexed: 11/30/2022]
Abstract
Brain acid-soluble protein-1 (BASP1) and growth-associated protein-43 (GAP-43) are presynaptic membrane proteins participating in axon guidance, neuroregeneration and synaptic plasticity. They are presumed to sequester phosphatidylinositol-4,5-bisphosphate (PIP2 ) in lipid rafts. Previously we have shown that the proteins form heterogeneously sized oligomers in the presence of anionic phospholipids or SDS at submicellar concentration. BASP1 and GAP-43 are intrinsically disordered proteins (IDPs). In light of this, we investigated the structure of their oligomers. Using partial cross-linking of the oligomers with glutaraldehyde, the aggregation numbers of BASP1 and GAP-43 were estimated as 10-14 and 6-7 monomer subunits, respectively. The cross-linking pattern indicated that the subunits are circularly arranged. The circular dichroism (CD) spectra of the monomers were characteristic of coil-like IDPs showing unordered structure with a high population of polyproline-II conformation. The oligomerization was accompanied by a minor CD spectral change attributable to formation of a small amount of α-helix. The number of residues in the α-helical conformation was estimated as 13 in BASP1 and 18 in GAP-43. However, the overall structure of the oligomers remained disordered, indicating a high degree of 'fuzziness'. This was confirmed by measuring the hydrodynamic dimensions of the oligomers using polyacrylamide gradient gel electrophoresis and size-exclusion chromatography, and by assaying their sensitivity to proteolytic digestion. There is evidence that the observed α-helical folding occurs within the basic effector domains, which are presumably tethered together via anionic molecules of SDS or PIP2 . We conclude that BASP1 and GAP-43 oligomers preserve a mostly disordered structure, which may be of great importance for their function in PIP2 signaling pathway.
Collapse
Affiliation(s)
- Oksana S Forsova
- Molecular and Radiation Biophysics Division, B. P. Konstantinov Petersburg Nuclear Physics Institute, National Research Centre 'Kurchatov Institute', Gatchina, Russia.,Laboratory of Natural Polymers, Institute of Macromolecular Compounds, Russian Academy of Sciences, St Petersburg, Russia
| | - Vladislav V Zakharov
- Molecular and Radiation Biophysics Division, B. P. Konstantinov Petersburg Nuclear Physics Institute, National Research Centre 'Kurchatov Institute', Gatchina, Russia.,Laboratory of Natural Polymers, Institute of Macromolecular Compounds, Russian Academy of Sciences, St Petersburg, Russia.,Department of Biophysics, Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St Petersburg Polytechnic University, Russia
| |
Collapse
|
40
|
Abstract
Wilms' tumor-1 protein (WT1) is a transcription factor that can either activate or repress genes to regulate cell growth, apoptosis and differentiation. WT1 can act as either a tumor suppressor or an oncogene. The cellular functions of WT1 are predominantly regulated by its various interacting partners. Recently we have found that WT1 can regulate the fidelity of chromosome segregation through its interaction with the spindle assembly checkpoint protein, Mitotic arrest deficient-2 (MAD2). WT1 delays anaphase entry by inhibiting the ubiquitination activity of the Anaphase promoting complex/cyclosome (APC/C). Our findings have revealed an important role of WT1 in the regulation of mitotic checkpoint and genomic stability.
Collapse
Affiliation(s)
- Jayasha Shandilya
- a Department of Biological Sciences ; University at Buffalo ; Buffalo , NY USA
| | | |
Collapse
|
41
|
Tools for visualization of phosphoinositides in the cell nucleus. Histochem Cell Biol 2016; 145:485-96. [DOI: 10.1007/s00418-016-1409-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2016] [Indexed: 01/09/2023]
|
42
|
Abbas A, Hall JA, Patterson WL, Ho E, Hsu A, Al-Mulla F, Georgel PT. Sulforaphane modulates telomerase activity via epigenetic regulation in prostate cancer cell lines. Biochem Cell Biol 2016; 94:71-81. [DOI: 10.1139/bcb-2015-0038] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epidemiologic studies have revealed that diets rich in sulforaphane (SFN), an isothiocyanate present in cruciferous vegetables, are associated with a marked decrease in prostate cancer incidence. The chemo-preventive role of SFN is associated with its histone de-acetylase inhibitor activity. However, the effect of SFN on chromatin composition and dynamic folding, especially in relation to HDAC inhibitor activity, remains poorly understood. In this study, we found that SFN can inhibit the expression and activity of human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase, in 2 prostate cancer cell lines. This decrease in gene expression is correlated with SFN-induced changes in chromatin structure and composition. The SFN-mediated changes in levels of histone post-translational modifications, more specifically acetylation of histone H3 lysine 18 and di-methylation of histone H3 lysine 4, 2 modifications linked with high risk of prostate cancer recurrence, were associated with regulatory elements within the hTERT promoter region. Chromatin condensation may also play a role in SFN-mediated hTERT repression, since expression and recruitment of MeCP2, a known chromatin compactor, were altered in SFN treated prostate cancer cells. Chromatin immuno-precipitation (ChIP) of MeCP2 showed enrichment over regions of the hTERT promoter with increased nucleosome density. These combined results strongly support a role for SFN in the mediation of epigenetic events leading to the repression of hTERT in prostate cancer cells. This ability of SFN to modify chromatin composition and structure associated with target gene expression provides a new model by which dietary phytochemicals may exert their chemoprevention activity.
Collapse
Affiliation(s)
- Ata Abbas
- Department of Biological Sciences, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA
- Cell Differentiation and Development Center, Marshall University, Huntington, WV, USA
| | - J. Adam Hall
- Department of Biological Sciences, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA
- Cell Differentiation and Development Center, Marshall University, Huntington, WV, USA
- Department of Biochemistry and Microbiology, Marshall University School of Medicine, Huntington, WV, USA
| | - William L. Patterson
- Department of Biological Sciences, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA
- Cell Differentiation and Development Center, Marshall University, Huntington, WV, USA
- Department of Biochemistry and Microbiology, Marshall University School of Medicine, Huntington, WV, USA
| | - Emily Ho
- Oregon State University, School of Biological and Population Health Sciences, Linus Pauling Institute, Corvallis, OR, USA
| | - Anna Hsu
- Oregon State University, School of Biological and Population Health Sciences, Linus Pauling Institute, Corvallis, OR, USA
| | - Fahd Al-Mulla
- Kuwait University, Health Sciences Center, Faculty of Medicine, Molecular Pathology Unit, Kuwait City, Kuwait
| | - Philippe T. Georgel
- Department of Biological Sciences, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA
- Cell Differentiation and Development Center, Marshall University, Huntington, WV, USA
- Department of Biochemistry and Microbiology, Marshall University School of Medicine, Huntington, WV, USA
| |
Collapse
|
43
|
Bosch A, Li Z, Bergamaschi A, Ellis H, Toska E, Prat A, Tao JJ, Spratt DE, Viola-Villegas NT, Castel P, Minuesa G, Morse N, Rodón J, Ibrahim Y, Cortes J, Perez-Garcia J, Galvan P, Grueso J, Guzman M, Katzenellenbogen JA, Kharas M, Lewis JS, Dickler M, Serra V, Rosen N, Chandarlapaty S, Scaltriti M, Baselga J. PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor-positive breast cancer. Sci Transl Med 2016; 7:283ra51. [PMID: 25877889 DOI: 10.1126/scitranslmed.aaa4442] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activating mutations of PIK3CA are the most frequent genomic alterations in estrogen receptor (ER)-positive breast tumors, and selective phosphatidylinositol 3-kinase α (PI3Kα) inhibitors are in clinical development. The activity of these agents, however, is not homogeneous, and only a fraction of patients bearing PIK3CA-mutant ER-positive tumors benefit from single-agent administration. Searching for mechanisms of resistance, we observed that suppression of PI3K signaling results in induction of ER-dependent transcriptional activity, as demonstrated by changes in expression of genes containing ER-binding sites and increased occupancy by the ER of promoter regions of up-regulated genes. Furthermore, expression of ESR1 mRNA and ER protein were also increased upon PI3K inhibition. These changes in gene expression were confirmed in vivo in xenografts and patient-derived models and in tumors from patients undergoing treatment with the PI3Kα inhibitor BYL719. The observed effects on transcription were enhanced by the addition of estradiol and suppressed by the anti-ER therapies fulvestrant and tamoxifen. Fulvestrant markedly sensitized ER-positive tumors to PI3Kα inhibition, resulting in major tumor regressions in vivo. We propose that increased ER transcriptional activity may be a reactive mechanism that limits the activity of PI3K inhibitors and that combined PI3K and ER inhibition is a rational approach to target these tumors.
Collapse
Affiliation(s)
- Ana Bosch
- Human Oncology and Pathogenesis Program and Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
| | - Zhiqiang Li
- Human Oncology and Pathogenesis Program and Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
| | - Anna Bergamaschi
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 524 Burrill Hall, Urbana, IL 61801, USA
| | - Haley Ellis
- Human Oncology and Pathogenesis Program and Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
| | - Eneda Toska
- Human Oncology and Pathogenesis Program and Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
| | - Aleix Prat
- Translational Genomics Group, Vall d'Hebron Institute of Oncology (VHIO), Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain. Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute, Hospital Clinic Barcelona, C/Rosselló 149-153, Barcelona 08035, Spain
| | - Jessica J Tao
- Massachusetts General Hospital Cancer Center and Harvard Medical School, 425 13th Street, Charlestown, MA 02129, USA
| | - Daniel E Spratt
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Pau Castel
- Human Oncology and Pathogenesis Program and Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
| | - Gerard Minuesa
- Molecular Pharmacology and Chemistry Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Natasha Morse
- Human Oncology and Pathogenesis Program and Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
| | - Jordi Rodón
- Department of Medical Oncology, VHIO, Barcelona 08035, Spain. Universitat Autònoma de Barcelona, Plaza Cívica, Campus UAB, 08193 Bellaterra, Spain
| | - Yasir Ibrahim
- Experimental Therapeutics Group, VHIO, Barcelona 08035, Spain
| | - Javier Cortes
- Department of Medical Oncology, VHIO, Barcelona 08035, Spain
| | | | - Patricia Galvan
- Translational Genomics Group, Vall d'Hebron Institute of Oncology (VHIO), Passeig Vall d'Hebron 119-129, Barcelona 08035, Spain
| | - Judit Grueso
- Experimental Therapeutics Group, VHIO, Barcelona 08035, Spain
| | - Marta Guzman
- Experimental Therapeutics Group, VHIO, Barcelona 08035, Spain
| | | | - Michael Kharas
- Molecular Pharmacology and Chemistry Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Molecular Pharmacology and Chemistry Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maura Dickler
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Violeta Serra
- Experimental Therapeutics Group, VHIO, Barcelona 08035, Spain
| | - Neal Rosen
- Molecular Pharmacology and Chemistry Program and Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program and Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA. Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Weill Cornell Medical College, New York, NY 10065, USA.
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program and Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA.
| | - José Baselga
- Human Oncology and Pathogenesis Program and Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA. Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
44
|
Poli A, Billi AM, Mongiorgi S, Ratti S, McCubrey JA, Suh PG, Cocco L, Ramazzotti G. Nuclear Phosphatidylinositol Signaling: Focus on Phosphatidylinositol Phosphate Kinases and Phospholipases C. J Cell Physiol 2015; 231:1645-55. [DOI: 10.1002/jcp.25273] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Alessandro Poli
- Department of Biomedical Sciences; University of Bologna; Bologna Italy
| | - Anna Maria Billi
- Department of Biomedical Sciences; University of Bologna; Bologna Italy
| | - Sara Mongiorgi
- Department of Biomedical Sciences; University of Bologna; Bologna Italy
| | - Stefano Ratti
- Department of Biomedical Sciences; University of Bologna; Bologna Italy
| | - James A. McCubrey
- Department of Microbiology and Immunology; Brody School of Medicine; East Carolina University; Greenville North Carolina
| | - Pann-Ghill Suh
- School of Life Sciences; Ulsan National Institute of Science and Technology; Ulsan Republic of Korea
| | - Lucio Cocco
- Department of Biomedical Sciences; University of Bologna; Bologna Italy
| | - Giulia Ramazzotti
- Department of Biomedical Sciences; University of Bologna; Bologna Italy
| |
Collapse
|
45
|
The Effector Domain of MARCKS Is a Nuclear Localization Signal that Regulates Cellular PIP2 Levels and Nuclear PIP2 Localization. PLoS One 2015; 10:e0140870. [PMID: 26470026 PMCID: PMC4607481 DOI: 10.1371/journal.pone.0140870] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/01/2015] [Indexed: 01/01/2023] Open
Abstract
Translocation to the nucleus of diacylglycerol kinase (DGK)– ζ is dependent on a sequence homologous to the effector domain of Myristoylated Alanine Rich C-Kinase Substrate (MARCKS). These data would suggest that MARCKS could also localize to the nucleus. A single report demonstrated immunofluorescence staining of MARCKS in the nucleus; however, further experimental evidence confirming the specific domain responsible for this localization has not been reported. Here, we report that MARCKS is present in the nucleus in GBM cell lines. We then over-expressed wild-type MARCKS (WT) and MARCKS with the effector domain deleted (ΔED), both tagged with V5-epitope in a GBM cell line with low endogenous MARCKS expression (U87). We found that MARCKS-WT localized to the nucleus, while the MARCKS construct without the effector domain remained in the cytoplasm. We also found that over-expression of MARCKS-WT resulted in a significant increase in total cellular phosphatidyl-inositol (4,5) bisphosphate (PIP2) levels, consistent with prior evidence that MARCKS can regulate PIP2 levels. We also found increased staining for PIP2 in the nucleus with MARCKS-WT over-expression compared to MARCKS ΔED by immunofluorescence. Interestingly, we observed MARCKS and PIP2 co-localization in the nucleus. Lastly, we found changes in gene expression when MARCKS was not present in the nucleus (MARCKS ΔED). These data indicate that the MARCKS effector domain can function as a nuclear localization signal and that this sequence is critical for the ability of MARCKS to regulate PIP2 levels, nuclear localization, and gene expression. These data suggests a novel role for MARCKS in regulating nuclear functions such as gene expression.
Collapse
|
46
|
Choi S, Thapa N, Tan X, Hedman AC, Anderson RA. PIP kinases define PI4,5P₂signaling specificity by association with effectors. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:711-23. [PMID: 25617736 PMCID: PMC4380618 DOI: 10.1016/j.bbalip.2015.01.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 12/21/2022]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI4,5P₂) is an essential lipid messenger with roles in all eukaryotes and most aspects of human physiology. By controlling the targeting and activity of its effectors, PI4,5P₂modulates processes, such as cell migration, vesicular trafficking, cellular morphogenesis, signaling and gene expression. In cells, PI4,5P₂has a much higher concentration than other phosphoinositide species and its total content is largely unchanged in response to extracellular stimuli. The discovery of a vast array of PI4,5P₂ binding proteins is consistent with data showing that the majority of cellular PI4,5P₂is sequestered. This supports a mechanism where PI4,5P₂functions as a localized and highly specific messenger. Further support of this mechanism comes from the de novo synthesis of PI4,5P₂which is often linked with PIP kinase interaction with PI4,5P₂effectors and is a mechanism to define specificity of PI4,5P₂signaling. The association of PI4,5P₂-generating enzymes with PI4,5P₂effectors regulate effector function both temporally and spatially in cells. In this review, the PI4,5P₂effectors whose functions are tightly regulated by associations with PI4,5P₂-generating enzymes will be discussed. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Suyong Choi
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Narendra Thapa
- Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Xiaojun Tan
- Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Andrew C Hedman
- Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Richard A Anderson
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA; Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
47
|
Fiume R, Stijf-Bultsma Y, Shah ZH, Keune WJ, Jones DR, Jude JG, Divecha N. PIP4K and the role of nuclear phosphoinositides in tumour suppression. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:898-910. [PMID: 25728392 DOI: 10.1016/j.bbalip.2015.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 02/03/2015] [Accepted: 02/17/2015] [Indexed: 12/27/2022]
Abstract
Phosphatidylinositol-5-phosphate (PtdIns5P)-4-kinases (PIP4Ks) are stress-regulated lipid kinases that phosphorylate PtdIns5P to generate PtdIns(4,5)P₂. There are three isoforms of PIP4Ks: PIP4K2A, 2B and 2C, which localise to different subcellular compartments with the PIP4K2B isoform being localised predominantly in the nucleus. Suppression of PIP4K expression selectively prevents tumour cell growth in vitro and prevents tumour development in mice that have lost the tumour suppressor p53. p53 is lost or mutated in over 70% of all human tumours. These studies suggest that inhibition of PIP4K signalling constitutes a novel anti-cancer therapeutic target. In this review we will discuss the role of PIP4K in tumour suppression and speculate on how PIP4K modulates nuclear phosphoinositides (PPIns) and how this might impact on nuclear functions to regulate cell growth. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Roberta Fiume
- Cellular Signalling Laboratory, DIBINEM, University of Bologna, Bologna, Italy.
| | - Yvette Stijf-Bultsma
- Inositide Laboratory, Centre for Biological Sciences, Faculty of Natural & Environmental Sciences, Life Sciences Building 85, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Zahid H Shah
- Inositide Laboratory, Centre for Biological Sciences, Faculty of Natural & Environmental Sciences, Life Sciences Building 85, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
| | - Willem Jan Keune
- The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| | - David R Jones
- Oncology iMED, AstraZeneca, Alderley Park, Macclesfield SK10 4TF, UK
| | - Julian Georg Jude
- IMP - Institute of Molecular Pathology, Vienna Biocenter, Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Nullin Divecha
- Inositide Laboratory, Centre for Biological Sciences, Faculty of Natural & Environmental Sciences, Life Sciences Building 85, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.
| |
Collapse
|
48
|
Sanchez-Niño MD, Fernandez-Fernandez B, Perez-Gomez MV, Poveda J, Sanz AB, Cannata-Ortiz P, Ruiz-Ortega M, Egido J, Selgas R, Ortiz A. Albumin-induced apoptosis of tubular cells is modulated by BASP1. Cell Death Dis 2015; 6:e1644. [PMID: 25675304 PMCID: PMC4669784 DOI: 10.1038/cddis.2015.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 12/21/2014] [Accepted: 12/29/2014] [Indexed: 12/25/2022]
Abstract
Albuminuria promotes tubular injury and cell death, and is associated with faster progression of chronic kidney disease (CKD) to end-stage renal disease. However, the molecular mechanisms regulating tubular cell death in response to albuminuria are not fully understood. Brain abundant signal protein 1 (BASP1) was recently shown to mediate glucose-induced apoptosis in tubular cells. We have studied the role of BASP1 in albumin-induced tubular cell death. BASP1 expression was studied in experimental puromycin aminonucleoside-induced nephrotic syndrome in rats and in human nephrotic syndrome. The role of BASP1 in albumin-induced apoptosis was studied in cultured human HK2 proximal tubular epithelial cells. Puromycin aminonucleoside induced proteinuria and increased total kidney BASP1 mRNA and protein expression. Immunohistochemistry localized the increased BASP1 to tubular cells. BASP1 expression colocalized with deoxynucleotidyl-transferase-mediated dUTP nick-end labeling staining for apoptotic cells. Increased tubular BASP1 expression was observed in human proteinuric nephropathy by immunohistochemistry, providing evidence for potential clinical relevance. In cultured tubular cells, albumin induced apoptosis and increased BASP1 mRNA and protein expression at 6–48 h. Confocal microscopy localized the increased BASP1 expression in albumin-treated cells mainly to the perinuclear area. A peripheral location near the cell membrane was more conspicuous in albumin-treated apoptotic cells, where it colocalized with actin. Inhibition of BASP1 expression by a BASP1 siRNA protected from albumin-induced apoptosis. In conclusion, albumin-induced apoptosis in tubular cells is BASP1-dependent. This information may be used to design novel therapeutic approaches to slow CKD progression based on protection of tubular cells from the adverse consequences of albuminuria.
Collapse
Affiliation(s)
- M D Sanchez-Niño
- 1] Instituto de Investigacion Sanitaria IDIPAZ, Madrid, Spain [2] REDINREN, Madrid, Spain
| | - B Fernandez-Fernandez
- 1] REDINREN, Madrid, Spain [2] IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain
| | - M V Perez-Gomez
- 1] REDINREN, Madrid, Spain [2] IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain
| | - J Poveda
- 1] REDINREN, Madrid, Spain [2] IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain
| | - A B Sanz
- 1] REDINREN, Madrid, Spain [2] IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain
| | - P Cannata-Ortiz
- 1] REDINREN, Madrid, Spain [2] IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain
| | - M Ruiz-Ortega
- 1] REDINREN, Madrid, Spain [2] IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain
| | - J Egido
- IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain
| | - R Selgas
- 1] Instituto de Investigacion Sanitaria IDIPAZ, Madrid, Spain [2] REDINREN, Madrid, Spain
| | - A Ortiz
- 1] REDINREN, Madrid, Spain [2] IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain
| |
Collapse
|
49
|
Bidlingmaier S, Liu B. Utilizing Yeast Surface Human Proteome Display Libraries to Identify Small Molecule-Protein Interactions. Methods Mol Biol 2015; 1319:203-14. [PMID: 26060077 PMCID: PMC4838597 DOI: 10.1007/978-1-4939-2748-7_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The identification of proteins that interact with small bioactive molecules is a critical but often difficult and time-consuming step in understanding cellular signaling pathways or molecular mechanisms of drug action. Numerous methods for identifying small molecule-interacting proteins have been developed and utilized, including affinity-based purification followed by mass spectrometry analysis, protein microarrays, phage display, and three-hybrid approaches. Although all these methods have been used successfully, there remains a need for additional techniques for analyzing small molecule-protein interactions. A promising method for identifying small molecule-protein interactions is affinity-based selection of yeast surface-displayed human proteome libraries. Large and diverse libraries displaying human protein fragments on the surface of yeast cells have been constructed and subjected to FACS-based enrichment followed by comprehensive exon microarray-based output analysis to identify protein fragments with affinity for small molecule ligands. In a recent example, a proteome-wide search has been successfully carried out to identify cellular proteins binding to the signaling lipids PtdIns(4,5)P2 and PtdIns(3,4,5)P3. Known phosphatidylinositide-binding proteins such as pleckstrin homology domains were identified, as well as many novel interactions. Intriguingly, many novel nuclear phosphatidylinositide-binding proteins were discovered. Although the existence of an independent pool of nuclear phosphatidylinositides has been known about for some time, their functions and mechanism of action remain obscure. Thus, the identification and subsequent study of nuclear phosphatidylinositide-binding proteins is expected to bring new insights to this important biological question. Based on the success with phosphatidylinositides, it is expected that the screening of yeast surface-displayed human proteome libraries will be of general use for the discovery of novel small molecule-protein interactions, thus facilitating the study of cellular signaling pathways and mechanisms of drug action or toxicity.
Collapse
Affiliation(s)
- Scott Bidlingmaier
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1001 Potrero Avenue, Box 1305, San Francisco, CA, 94110, USA
| | | |
Collapse
|
50
|
c-Fos-activated synthesis of nuclear phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P₂] promotes global transcriptional changes. Biochem J 2014; 461:521-30. [PMID: 24819416 DOI: 10.1042/bj20131376] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
c-Fos is a well-recognized member of the AP-1 (activator protein-1) family of transcription factors. In addition to this canonical activity, we previously showed that cytoplasmic c-Fos activates phospholipid synthesis through a mechanism independent of its genomic AP-1 activity. c-Fos associates with particular enzymes of the lipid synthesis pathway at the endoplasmic reticulum and increases the Vmax of the reactions without modifying the Km values. This lipid synthesis activation is associated with events of differentiation and proliferation that require high rates of membrane biogenesis. Since lipid synthesis also occurs in the nucleus, and different phospholipids have been assigned transcription regulatory functions, in the present study we examine if c-Fos also acts as a regulator of phospholipid synthesis in the nucleus. Furthermore, we examine if c-Fos modulates transcription through its phospholipid synthesis activator capacity. We show that nuclear-localized c-Fos associates with and activates PI4P5K (phosphatidylinositol-4-monophosphate 5-kinase), but not with PI4KIIIβ (type IIIβ phosphatidylinositol 4-kinase) thus promoting PtdIns(4,5)P₂ (phosphatidylinositol 4,5-bisphosphate) formation, which, in turn, promotes transcriptional changes. We propose c-Fos as a key regulator of nuclear PtdIns(4,5)P₂ synthesis in response to growth signals that results in c-Fos-dependent transcriptional changes promoted by the newly synthesized lipids.
Collapse
|