1
|
Abavisani M, Faraji S, Ebadpour N, Karav S, Sahebkar A. Beyond the Hayflick limit: How microbes influence cellular aging. Ageing Res Rev 2025; 104:102657. [PMID: 39788433 DOI: 10.1016/j.arr.2025.102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/23/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Cellular senescence, a complex biological process resulting in permanent cell-cycle arrest, is central to aging and age-related diseases. A key concept in understanding cellular senescence is the Hayflick Limit, which refers to the limited capacity of normal human cells to divide, after which they become senescent. Senescent cells (SC) accumulate with age, releasing pro-inflammatory and tissue-remodeling factors collectively known as the senescence-associated secretory phenotype (SASP). The causes of senescence are multifaceted, including telomere attrition, oxidative stress, and genotoxic damage, and they extend to influences from microbial sources. Research increasingly emphasizes the role of the microbiome, especially gut microbiota (GM), in modulating host senescence processes. Beneficial microbial metabolites, such as short-chain fatty acids (SCFAs), support host health by maintaining antioxidant defenses and reducing inflammation, potentially mitigating senescence onset. Conversely, pathogenic bacteria like Pseudomonas aeruginosa and Helicobacter pylori introduce factors that damage host DNA or increase ROS, accelerating senescence via pathways such as NF-κB and p53-p21. This review explores the impact of bacterial factors on cellular senescence, highlighting the role of specific bacterial toxins in promoting senescence. Additionally, it discusses how dysbiosis and the loss of beneficial microbial species further contribute to age-related cellular deterioration. Modulating the gut microbiome to delay cellular senescence opens a path toward targeted anti-aging strategies. This work underscores the need for deeper investigation into microbial influence on aging, supporting innovative interventions to manage and potentially reverse cellular senescence.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba Faraji
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Student research committee, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Dewulf M, Duchateau L, Meesters M, Martens DS, Nawrot TS, Van Eetvelde M, Opsomer G. Telomere Length in Neonatal Dairy Calves in Relation to Lifetime Parameters. Animals (Basel) 2025; 15:109. [PMID: 39795052 PMCID: PMC11718767 DOI: 10.3390/ani15010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/22/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Telomere length (TL) has gained attention as a biomarker for longevity and productivity in dairy cattle. This study explored the association between neonatal TL in Holstein calves and lifetime parameters (lifespan, milk production, and reproduction). Blood samples were collected from 210 calves (≤10d old) across four dairy farms in Flanders, Belgium. Telomere length was measured using qPCR and analyzed as a continuous variable and across three groups: the 10% shortest, the 10% longest, and the remaining 80%. Survival analyses showed no association between TL and lifespan (p = 0.1) or TL groups (p = 0.8). Similarly, TL showed no significant association with production traits. However, categorical analyses revealed that calves with the longest TL had lower lifetime fat (p = 0.01) and protein yields (p = 0.01) than those with the shortest TL. Reproductive analyses showed cows in the long TL group required fewer inseminations per lactation (p = 0.02) and exhibited longer calving intervals (p = 0.05). These findings suggest that while neonatal TL may not predict productive lifespan, it may provide insight into reproductive efficiency. Future studies should prioritize longitudinal assessments of TL dynamics to better understand their interactions with management practices and application in herd improvement.
Collapse
Affiliation(s)
- Manon Dewulf
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium (G.O.)
| | - Luc Duchateau
- Biometrics Research Group, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Maya Meesters
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium (G.O.)
| | - Dries S. Martens
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium; (D.S.M.)
| | - Tim S. Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium; (D.S.M.)
- Research Unit Environment and Health, Department of Public Health & Primary Care, Leuven University, 3000 Leuven, Belgium
| | - Mieke Van Eetvelde
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium (G.O.)
| | - Geert Opsomer
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium (G.O.)
| |
Collapse
|
3
|
Inui T, Kawamura N, Yamamura M, Kubo K, Yamakage H, Satoh-Asahara N, Ogawa Y, Katsuura G. Oral intake of degalactosylated whey protein increases peripheral blood telomere length in young and aged mice. Sci Rep 2024; 14:30859. [PMID: 39730524 DOI: 10.1038/s41598-024-81597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/27/2024] [Indexed: 12/29/2024] Open
Abstract
In order to elucidate novel actions of degalactosylated whey protein (D-WP) in comparison with intact whey protein (WP), the effects of oral intake of D-WP on peripheral blood telomere length and telomerase were examined in young and aged mice. In young mice, peripheral blood telomere length was significantly elongated following oral intake of D-WP for 4 weeks. mRNA expression of both telomerase reverse transcriptase (TERT) and telomerase RNA component (TERC) was significantly increased in the peripheral blood following oral intake of D-WP for 4 weeks. In aged mice, peripheral blood telomere length was significantly decreased as compared with that of young mice, and significantly restored to the level of young mice drinking water by the oral intake of D-WP for 4 weeks. The mRNA expression of peripheral blood TERT and TERC mRNA in aged mice significantly decreased as compared with the level in young mice drinking water, and was significantly restored to the level of expression of young mice drinking water by oral intake of D-WP for 4 weeks. These results suggest that D-WP, but not WP, potently increases peripheral blood telomere length accompanied by increased mRNA expression of TERT and TERC in both young and aged mice.
Collapse
Affiliation(s)
- Toshio Inui
- Saisei Mirai Cell Processing Center, Moriguchi, Japan.
- Cancer Immunotherapy Clinic, 6-14-17 Kinda-cho, Moriguchi-shi, Osaka, 570-0011, Japan.
- Kobe Saisei Mirai Clinic, Kobe, Japan.
- Inui Immunotherapy Clinic, Moriguchi, Japan.
- Saisei Pharma, Moriguchi, Japan.
| | - Namiko Kawamura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Kentaro Kubo
- Cancer Immunotherapy Clinic, 6-14-17 Kinda-cho, Moriguchi-shi, Osaka, 570-0011, Japan
| | - Hajime Yamakage
- Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8555, Japan
| | - Noriko Satoh-Asahara
- Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8555, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Goro Katsuura
- Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8555, Japan.
| |
Collapse
|
4
|
Xue CC, Nusinovici S, Yu M, Chee ML, Teo K, Su X, Cheung CMG, Sabanayagam C, Cheng CY, Tham YC. Associations between shorter leucocyte telomere length and increased risk of age-related macular degeneration in women: insights from the United Kingdom Biobank study. Eye (Lond) 2024:10.1038/s41433-024-03566-4. [PMID: 39719503 DOI: 10.1038/s41433-024-03566-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024] Open
Abstract
OBJECTIVES To determine the association between telomere length (TL) and age-related macular degeneration (AMD) and examine the potential variations with sex and ethnicity. METHODS Population-based, cross-sectional study. A total of 52,083 participants from the UK Biobank were included. Leucocyte TL, measured using quantitative polymerase chain reaction assay, was presented as the ratio of telomere repeat copy number relative to that of a single copy gene, and then log-transformed and Z-standardised. AMD cases were identified based on a combination of in-patient, self-reported and primary care data, and furtherly classified as early, intermediate and late AMD using the Beckmann classification system (based on more severe eye). RESULTS Among the 52,083 participants aged 60.2 ± 5.4 years, 725 were any-AMD cases. AMD patients had shorter TL than those without AMD (-0.22 ± 0.95 vs. -0.10 ± 0.99, P = 0.001). In multivariable model, shorter TL (per standard deviation) was significantly associated with higher odds of AMD in Whites (OR:1.09; 95% CI: 1.01-1.18; P = 0.036). When stratified by sex and ethnicity, this association was only significant in White women (OR:1.14; 95%CI: 1.02, 1.27; P = 0.018), but not in men and nonwhite populations (all P ≥ 0.335). Among white women, the association was more pronounced (OR:1.47; 95%CI:1.23-1.77; P < 0.001) for intermediate/late AMD but not for early AMD (P = 0.789). CONCLUSIONS Shorter TL was associated with any AMD in white women but not in men and other ethnicities. Our findings highlight the potential role of telomere length in the pathogenesis of AMD and the importance of considering sex and ethnicity variation in this research area.
Collapse
Affiliation(s)
- Can Can Xue
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Simon Nusinovici
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Marco Yu
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Miao-Li Chee
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Kelvin Teo
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Xinyi Su
- Department of Ophthalmology, National University Health System, Singapore, Singapore
- Centre for Innovation and Precision Eye Health & Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chui Ming Gemmy Cheung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Centre for Innovation and Precision Eye Health & Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yih-Chung Tham
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.
- Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore.
- Centre for Innovation and Precision Eye Health & Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Lehodey A, Kaliman P, Palix C, de Florès R, Touron E, Turpin AL, Fauvel S, Mézenge F, Landeau B, Chocat A, Vrillon A, Paquet C, Vivien D, de La Sayette V, Chételat G, Poisnel G. Association of critically short telomeres with brain and blood markers of ageing and Alzheimer's disease in older adults. Alzheimers Res Ther 2024; 16:269. [PMID: 39707531 DOI: 10.1186/s13195-024-01635-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Accumulation of critically short telomeres (CST) is implicated in decreased tissular regenerative capacity and increased susceptibility to degenerative diseases such as Alzheimer's disease (AD). Telomere shortening has also been associated with age-related brain changes. However, it remains unclear whether CST accumulation is directly associated with AD markers or instead amplifies age-related effects, potentially increasing susceptibility of developing AD in cognitively healthy older adults. METHODS This cross-sectional study used baseline data of 129 community-dwelling cognitively healthy older adults from the Age-Well trial (NCT02977819), aged 65 years and older enrolled between 2016 and 2018, in France. Using linear regressions, we analyzed the relationship between an innovative marker of telomere shortening, the percentage of CST (%CST), structural, functional and molecular neuroimaging outcomes, and multiple blood-based biomarkers related to AD pathophysiology. The effect of apolipoprotein E ε4 genotype (APOE4) was assessed on these relationships using interaction analysis. RESULTS A higher %CST was associated with lower global kurtosis fractional anisotropy (β = -.230; P = .010), particularly in frontal and temporal regions. A higher %CST was also related to higher plasma levels of Neurofilament light chain (β = .195; P = .020) and a lower subiculum volume (β = -.206; P = .020), although these associations did not meet the threshold for multiple comparisons. %CST was not associated with AD-related neuroimaging markers, including the AD-sensitive gray matter pattern (β = -.060; P = .441), glucose metabolism pattern (β = -.099; P = .372), brain perfusion pattern (β = -.106; P = .694) or hippocampus volume (β = -.106; P = .194). In APOE4 carriers, higher %CST was associated with lower subiculum (β = -.423; P = 0.003), DG (β = -.410; P = 0.018) and CA1 volumes (β = -.373; P = 0.024), even though associations with DG and CA1 volumes did not survive multiple comparison. CONCLUSIONS Although an increase in %CST does not appear to be directly linked to the pathophysiology of AD in cognitively healthy older adults, it could heighten the susceptibility of APOE4 carriers to develop AD plausibly due to greater vulnerability to age-related effects. However, longitudinal studies would be necessary to determine whether %CST influences the development and progression of AD later in life.
Collapse
Affiliation(s)
- Asrar Lehodey
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Boulevard Henri Becquerel, BP 5229, 14074, Caen Cedex, France
| | - Perla Kaliman
- Faculty of Health Sciences, Universitat Oberta de Catalunya, Rambla del Poblenou, 154-156, Sant Martí, 08018, Barcelona, Espagne
| | - Cassandre Palix
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Boulevard Henri Becquerel, BP 5229, 14074, Caen Cedex, France
| | - Robin de Florès
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Boulevard Henri Becquerel, BP 5229, 14074, Caen Cedex, France
| | - Edelweiss Touron
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Boulevard Henri Becquerel, BP 5229, 14074, Caen Cedex, France
| | - Anne-Laure Turpin
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Boulevard Henri Becquerel, BP 5229, 14074, Caen Cedex, France
| | - Séverine Fauvel
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Boulevard Henri Becquerel, BP 5229, 14074, Caen Cedex, France
| | - Florence Mézenge
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Boulevard Henri Becquerel, BP 5229, 14074, Caen Cedex, France
| | - Brigitte Landeau
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Boulevard Henri Becquerel, BP 5229, 14074, Caen Cedex, France
| | - Anne Chocat
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Boulevard Henri Becquerel, BP 5229, 14074, Caen Cedex, France
| | - Agathe Vrillon
- Université de Paris, Inserm U1144, 4 Avenue de L'Observatoire, 75006, Paris, France
- AP-HP Nord, Hôpital Lariboisière Fernand-Widal, GHU, Université de Paris, Centre de Neurologie Cognitive/CMRR Paris Nord Île de France, 2 Rue Ambroise Paré, 75010, Paris, France
| | - Claire Paquet
- Université de Paris, Inserm U1144, 4 Avenue de L'Observatoire, 75006, Paris, France
- AP-HP Nord, Hôpital Lariboisière Fernand-Widal, GHU, Université de Paris, Centre de Neurologie Cognitive/CMRR Paris Nord Île de France, 2 Rue Ambroise Paré, 75010, Paris, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Boulevard Henri Becquerel, BP 5229, 14074, Caen Cedex, France
- Clinical Research Department, CHU Caen-Normandie, Avenue de La Côte de Nacre CS 30001, 14000, Caen, France
| | - Vincent de La Sayette
- CHU Caen-Normandie, Neurology Department, Avenue de La Côte de Nacre CS 30001, 14000, Caen, France
| | - Gaël Chételat
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Boulevard Henri Becquerel, BP 5229, 14074, Caen Cedex, France
| | - Géraldine Poisnel
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Boulevard Henri Becquerel, BP 5229, 14074, Caen Cedex, France.
| |
Collapse
|
6
|
Tharmapalan V, Wagner W. Biomarkers for aging of blood - how transferable are they between mice and humans? Exp Hematol 2024; 140:104600. [PMID: 39128692 DOI: 10.1016/j.exphem.2024.104600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Aging significantly impacts the hematopoietic system, reducing its regenerative capacity and ability to restore homeostasis after stress. Mouse models have been invaluable in studying this process due to their shorter lifespan and the ability to explore genetic, treatment, and environmental influences on aging. However, not all aspects of aging are mirrored between species. This review compares three key aging biomarkers in the hematopoietic systems of mice and humans: myeloid bias, telomere attrition, and epigenetic clocks. Myeloid bias, marked by an increased fraction of myeloid cells and decreased lymphoid cells, is a significant aging marker in mice but is scarcely observed in humans after childhood. Conversely, telomere length is a robust aging biomarker in humans, whereas mice exhibit significantly different telomere dynamics, making telomere length less reliable in the murine system. Epigenetic clocks, based on DNA methylation changes at specific genomic regions, provide precise estimates of chronologic age in both mice and humans. Notably, age-associated regions in mice and humans occur at homologous genomic locations. Epigenetic clocks, depending on the epigenetic signatures used, also capture aspects of biological aging, offering powerful tools to assess genetic and environmental impacts on aging. Taken together, not all blood aging biomarkers are transferable between mice and humans. When using murine models to extrapolate human aging, it may be advantageous to focus on aging phenomena observed in both species. In conclusion, although mouse models offer significant insights, selecting appropriate biomarkers is crucial for translating findings to human aging.
Collapse
Affiliation(s)
- Vithurithra Tharmapalan
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Aachen, Germany
| | - Wolfgang Wagner
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, Aachen, Germany; Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany.
| |
Collapse
|
7
|
Jones-Weinert C, Mainz L, Karlseder J. Telomere function and regulation from mouse models to human ageing and disease. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00800-5. [PMID: 39614014 DOI: 10.1038/s41580-024-00800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 12/01/2024]
Abstract
Telomeres protect the ends of chromosomes but shorten following cell division in the absence of telomerase activity. When telomeres become critically short or damaged, a DNA damage response is activated. Telomeres then become dysfunctional and trigger cellular senescence or death. Telomere shortening occurs with ageing and may contribute to associated maladies such as infertility, neurodegeneration, cancer, lung dysfunction and haematopoiesis disorders. Telomere dysfunction (sometimes without shortening) is associated with various diseases, known as telomere biology disorders (also known as telomeropathies). Telomere biology disorders include dyskeratosis congenita, Høyeraal-Hreidarsson syndrome, Coats plus syndrome and Revesz syndrome. Although mouse models have been invaluable in advancing telomere research, full recapitulation of human telomere-related diseases in mice has been challenging, owing to key differences between the species. In this Review, we discuss telomere protection, maintenance and damage. We highlight the differences between human and mouse telomere biology that may contribute to discrepancies between human diseases and mouse models. Finally, we discuss recent efforts to generate new 'humanized' mouse models to better model human telomere biology. A better understanding of the limitations of mouse telomere models will pave the road for more human-like models and further our understanding of telomere biology disorders, which will contribute towards the development of new therapies.
Collapse
Affiliation(s)
| | - Laura Mainz
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jan Karlseder
- The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
8
|
Córdova-Oriz I, Cuadrado-Torroglosa I, Madero-Molina M, Rodriguez-García A, Balmori C, Medrano M, Polonio AM, Chico-Sordo L, Pacheco A, García-Velasco JA, Varela E. Telomeric RNAs, TERRA, as a Potential Biomarker for Spermatozoa Quality. Reprod Sci 2024; 31:3475-3484. [PMID: 39269661 DOI: 10.1007/s43032-024-01690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024]
Abstract
Characterization of long non-coding telomeric repeat-containing RNAs in sperm of normozoospermic and oligoasthenozoospermic men as new biomarker of idiopathic male infertility. We conducted an observational prospective study with two groups of men with normal or orligoasthenozoospermic spermiogram, aged 40 and above. Fertility parameters were analyzed in men undergoing intracytoplasmic sperm injection with donor oocytes, to avoid the female factor. Telomeric RNAs and telomere length were measured by quantitative fluorescent in situ hybridization. Data from seminal parameters and in-vitro fertilization were assessed according to IVIRMA protocols. Patients with oligoasthenozoospermia, who had worse seminal parameters, also obtained embryos with lower inner-cell-mass quality (p = 0.04), despite using donor oocytes. While mean levels of telomeric RNAs were similar for both groups, the percentage of spermatozoa with more than 3 foci was higher in oligoasthenozoospermic men (p = 0.02). Regarding telomere length, oligoasthenozoospermic men had shorter mean, a higher accumulation of short telomeres (15th percentile; p = 0.03) and a lower percentage of very-long telomeres (85th percentile; p = 0.01). Finally, a positive correlation was found between telomeric-RNAs intensity and total progressive motility in the spermatozoa of normozoospermic patients (r = 0.5; p = 0.03). Telomeric parameters were altered in the spermatozoa of the oligoasthenozoospermic group, which also showed lower quality embryos. Interestingly, in the normozoospermic group, a correlation was found between progressive motility and telomeric RNA levels, suggesting that they could be a good biomarker of sperm quality. Further studies are required to confirm these results and translate them into the clinical practice.Trial registration number: 1711-MAD-109-CB, 07/07/2021.
Collapse
Affiliation(s)
- Isabel Córdova-Oriz
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Isabel Cuadrado-Torroglosa
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Maria Madero-Molina
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Angela Rodriguez-García
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Carlos Balmori
- IVIRMA Global Research Alliance, IVIRMA Madrid, Madrid, Spain
| | - Marta Medrano
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Alba M Polonio
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Lucía Chico-Sordo
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Alberto Pacheco
- IVIRMA Global Research Alliance, IVIRMA Madrid, Madrid, Spain
- Alfonso X El Sabio University, Madrid, Spain
| | - Juan A García-Velasco
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- IVIRMA Global Research Alliance, IVIRMA Madrid, Madrid, Spain
- Department of Medical Specialties and Public Health, Rey Juan Carlos University, Edificio Departamental II. Av. de Atenas, s/n, 28922, Alcorcón, Madrid, Spain
| | - Elisa Varela
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.
- Department of Medical Specialties and Public Health, Rey Juan Carlos University, Edificio Departamental II. Av. de Atenas, s/n, 28922, Alcorcón, Madrid, Spain.
| |
Collapse
|
9
|
Gao H, Nepovimova E, Adam V, Heger Z, Valko M, Wu Q, Kuca K. Age-associated changes in innate and adaptive immunity: role of the gut microbiota. Front Immunol 2024; 15:1421062. [PMID: 39351234 PMCID: PMC11439693 DOI: 10.3389/fimmu.2024.1421062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Aging is generally regarded as an irreversible process, and its intricate relationship with the immune system has garnered significant attention due to its profound implications for the health and well-being of the aging population. As people age, a multitude of alterations occur within the immune system, affecting both innate and adaptive immunity. In the realm of innate immunity, aging brings about changes in the number and function of various immune cells, including neutrophils, monocytes, and macrophages. Additionally, certain immune pathways, like the cGAS-STING, become activated. These alterations can potentially result in telomere damage, the disruption of cytokine signaling, and impaired recognition of pathogens. The adaptive immune system, too, undergoes a myriad of changes as age advances. These include shifts in the number, frequency, subtype, and function of T cells and B cells. Furthermore, the human gut microbiota undergoes dynamic changes as a part of the aging process. Notably, the interplay between immune changes and gut microbiota highlights the gut's role in modulating immune responses and maintaining immune homeostasis. The gut microbiota of centenarians exhibits characteristics akin to those found in young individuals, setting it apart from the microbiota observed in typical elderly individuals. This review delves into the current understanding of how aging impacts the immune system and suggests potential strategies for reversing aging through interventions in immune factors.
Collapse
Affiliation(s)
- Haoyu Gao
- College of Life Science, Yangtze University, Jingzhou, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| |
Collapse
|
10
|
Ravazzano L, Colaianni G, Tarakanova A, Xiao YB, Grano M, Libonati F. Multiscale and multidisciplinary analysis of aging processes in bone. NPJ AGING 2024; 10:28. [PMID: 38879533 PMCID: PMC11180112 DOI: 10.1038/s41514-024-00156-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/07/2024] [Indexed: 06/19/2024]
Abstract
The world population is increasingly aging, deeply affecting our society by challenging our healthcare systems and presenting an economic burden, thus turning the spotlight on aging-related diseases: exempli gratia, osteoporosis, a silent disease until you suddenly break a bone. The increase in bone fracture risk with age is generally associated with a loss of bone mass and an alteration in the skeletal architecture. However, such changes cannot fully explain increased fragility with age. To successfully tackle age-related bone diseases, it is paramount to comprehensively understand the fundamental mechanisms responsible for tissue degeneration. Aging mechanisms persist at multiple length scales within the complex hierarchical bone structure, raising the need for a multiscale and multidisciplinary approach to resolve them. This paper aims to provide an overarching analysis of aging processes in bone and to review the most prominent outcomes of bone aging. A systematic description of different length scales, highlighting the corresponding techniques adopted at each scale and motivating the need for combining diverse techniques, is provided to get a comprehensive description of the multi-physics phenomena involved.
Collapse
Affiliation(s)
- Linda Ravazzano
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Graziana Colaianni
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Anna Tarakanova
- School of Mechanical, Aerospace, and Manufacturing Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, 06269, CT, USA
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, CT, 06269, Storrs, USA
| | - Yu-Bai Xiao
- School of Mechanical, Aerospace, and Manufacturing Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, 06269, CT, USA
| | - Maria Grano
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Flavia Libonati
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy.
- Department of Mechanical, Energy, Management and Transport Engineering - DIME, University of Genova, Via all'Opera Pia 15, Genova, 16145, Italy.
| |
Collapse
|
11
|
Lewis CJ, de Grey AD. Combining rejuvenation interventions in rodents: a milestone in biomedical gerontology whose time has come. Expert Opin Ther Targets 2024; 28:501-511. [PMID: 38477630 DOI: 10.1080/14728222.2024.2330425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/11/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION Longevity research has matured to the point where significantly postponing age-related decline in physical and mental function is now achievable in the laboratory and foreseeable in the clinic. The most promising strategies involve rejuvenation, i.e. reducing biological age, not merely slowing its progression. AREAS COVERED We discuss therapeutic strategies for rejuvenation and results achieved thus far, with a focus on in vivo studies. We discuss the implications of interventions which act on mean or maximum lifespan and those showing effects in accelerated disease models. While the focus is on work conducted in mice, we also highlight notable insights in the field from studies in other model organisms. EXPERT OPINION Rejuvenation was originally proposed as easier than slowing aging because it targets initially inert changes to tissue structure and composition, rather than trying to disentangle processes that both create aging damage and maintain life. While recent studies support this hypothesis, a true test requires a panel of rejuvenation interventions targeting multiple damage categories simultaneously. Considerations of cost, profitability, and academic significance have dampened enthusiasm for such work, but it is vital. Now is the time for the field to take this key step toward the medical control of aging.
Collapse
Affiliation(s)
- Caitlin J Lewis
- Longevity Escape Velocity Foundation, San Francisco, CA, USA
| | | |
Collapse
|
12
|
Chen X, Yin X, Gao Y, Chen X, Ye N, He X. From cup to clock: exploring coffee's role in slowing down biological aging. Food Funct 2024; 15:5655-5663. [PMID: 38726849 DOI: 10.1039/d3fo04177h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Background: Previous research has proposed that coffee consumption may have potential health benefits, yet the effect of coffee on one's biological age has not been determined to date. The purpose of this study is to investigate the influence of coffee drinking on biological aging. Methods: Participants were chosen from the National Health and Nutrition Examination Survey (NHANES) and had to meet the selection criteria. Coffee consumption was evaluated through two 24-hour dietary questionnaires. Biological age was measured using both the PhenoAge and KDM-BA algorithms. Multiple linear and logistic regression models were adopted to analyze the association of coffee consumption with biological aging. Results: A total of 13 384 participants with an average daily coffee consumption of 1.73 cups were included. Participants with higher coffee consumption tended to be older, male, non-Hispanic white; had a higher educational level beyond high school; were more likely to be married; had better financial status; and were less likely to smoke or engage in excessive drinking. These individuals with higher coffee consumption exhibited a younger biological age in relation to their chronological age, as indicated by lower mean advancements in PhenoAge and KDM-BA scores. Furthermore, coffee intake was found to be inversely related to PhenoAge and KDM-BA progressions, as well as to the chances of accelerated biological aging, both in unadjusted and adjusted models. These associations remained consistent across all age and gender groups. Additionally, some heterogeneity was also observed among body mass index and physical activity categories. Conclusions: Coffee drinking was inversely related to biological age advancements and the likelihood of accelerated biological aging. Moderate coffee consumption may offer substantial benefits in reducing biological aging.
Collapse
Affiliation(s)
- Xiaoli Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University Medical School, Hangzhou 310016, China.
| | - Xin Yin
- Department of Radiation Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003, PR China
| | - Yajie Gao
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University Medical School, Hangzhou 310016, China.
| | - Nan Ye
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xingkang He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University Medical School, Hangzhou 310016, China.
| |
Collapse
|
13
|
Guo X, Li J, Qi Y, Chen J, Jiang M, Zhu L, Liu Z, Wang H, Wang G, Wang X. Telomere length and micronuclei trajectories in APP/PS1 mouse model of Alzheimer's disease: Correlating with cognitive impairment and brain amyloidosis in a sexually dimorphic manner. Aging Cell 2024; 23:e14121. [PMID: 38450924 PMCID: PMC11113262 DOI: 10.1111/acel.14121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/31/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
Although studies have demonstrated that genome instability is accumulated in patients with Alzheimer's disease (AD), the specific types of genome instability linked to AD pathogenesis remain poorly understood. Here, we report the first characterization of the age- and sex-related trajectories of telomere length (TL) and micronuclei in APP/PS1 mice model and wild-type (WT) controls (C57BL/6). TL was measured in brain (prefrontal cortex, cerebellum, pituitary gland, and hippocampus), colon and skin, and MN was measured in bone marrow in 6- to 14-month-old mice. Variation in TL was attributable to tissue type, age, genotype and, to a lesser extent, sex. Compared to WT, APP/PS1 had a significantly shorter baseline TL across all examined tissues. TL was inversely associated with age in both genotypes and TL shortening was accelerated in brain of APP/PS1. Age-related increase of micronuclei was observed in both genotypes but was accelerated in APP/PS1. We integrated TL and micronuclei data with data on cognition performance and brain amyloidosis. TL and micronuclei were linearly correlated with cognition performance or Aβ40 and Aβ42 levels in both genotypes but to a greater extent in APP/PS1. These associations in APP/PS1 mice were dominantly driven by females. Together, our findings provide foundational knowledge to infer the TL and micronuclei trajectories in APP/PS1 mice during disease progression, and strongly support that TL attrition and micronucleation are tightly associated with AD pathogenesis in a female-biased manner.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
| | - Jianfei Li
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
| | - Yanmei Qi
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
| | - Juanlin Chen
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
| | - Minyan Jiang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
| | - Lina Zhu
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
| | - Zetong Liu
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
| | - Han Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
| | - Gongwu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass EnergyYunnan Normal UniversityKunmingYunnanChina
- Yeda Institute of Gene and Cell TherapyTaizhouZhejiangChina
| |
Collapse
|
14
|
Ozturk S. The close relationship between oocyte aging and telomere shortening, and possible interventions for telomere protection. Mech Ageing Dev 2024; 218:111913. [PMID: 38307343 DOI: 10.1016/j.mad.2024.111913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
As women delay childbearing due to socioeconomic reasons, understanding molecular mechanisms decreasing oocyte quantity and quality during ovarian aging becomes increasingly important. The ovary undergoes biological aging at a higher pace when compared to other organs. As is known, telomeres play crucial roles in maintaining genomic integrity, and their shortening owing to increased reactive oxygen species, consecutive cellular divisions, genetic and epigenetic alterations is associated with loss of developmental competence of oocytes. Novel interventions such as antioxidant treatments and regulation of gene expression are being investigated to prevent or rescue telomere attrition and thereby oocyte aging. Herein, potential factors and molecular mechanisms causing telomere shortening in aging oocytes were comprehensively reviewed. For the purpose of extending reproductive lifespan, possible therapeutic interventions to protect telomere length were also discussed.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey.
| |
Collapse
|
15
|
Ojeda-Rodriguez A, Rangel-Zuñiga OA, Arenas-de Larriva AP, Gutierrez-Mariscal FM, Torres-Peña JD, Romero-Cabrera JL, Podadera-Herreros A, García-Fernandez H, Porras-Pérez E, Luque RM, Kales SN, Perez-Martinez P, Delgado-Lista J, Yubero-Serrano EM, Lopez-Miranda J. Telomere length as biomarker of nutritional therapy for prevention of type 2 diabetes mellitus development in patients with coronary heart disease: CORDIOPREV randomised controlled trial. Cardiovasc Diabetol 2024; 23:98. [PMID: 38493287 PMCID: PMC10944592 DOI: 10.1186/s12933-024-02175-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/20/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Telomere Length (TL), a marker of cellular aging, holds promise as a biomarker to elucidate the molecular mechanism of diabetes. This study aimed to investigate whether shorter telomeres are associated with a higher risk of type 2 diabetes mellitus (T2DM) incidence in patients with coronary heart disease; and to determine whether the most suitable dietary patterns, particularly a Mediterranean diet or a low-fat diet, can mitigate the development of diabetes in these patients after a follow-up period of five years. METHODS The CORonary Diet Intervention with Olive oil and cardiovascular PREVention study (CORDIOPREV study) was a single-centre, randomised clinical trial done at the Reina Sofia University Hospital in Córdoba, Spain. Patients with established coronary heart disease (aged 20-75 years) were randomly assigned in a 1:1 ratio by the Andalusian School of Public Health to receive two healthy diets. Clinical investigators were masked to treatment assignment; participants were not. Quantitative-PCR was used to assess TL measurements. FINDINGS 1002 patients (59.5 ± 8.7 years and 82.5% men) were enrolled into Mediterranean diet (n = 502) or a low-fat diet (n = 500) groups. In this analysis, we included all 462 patients who did not have T2DM at baseline. Among them, 107 patients developed T2DM after a median of 60 months. Cox regression analyses showed that patients at risk of short telomeres (TL < percentile 20th) are more likely to experience T2DM than those at no risk of short telomeres (HR 1.65, p-value 0.023). In terms of diet, patients at high risk of short telomeres had a higher risk of T2DM incidence after consuming a low-fat diet compared to patients at no risk of short telomeres (HR 2.43, 95CI% 1.26 to 4.69, p-value 0.008), while no differences were observed in the Mediterranean diet group. CONCLUSION Patients with shorter TL presented a higher risk of developing T2DM. This association could be mitigated with a specific dietary pattern, in our case a Mediterranean diet, to prevent T2DM in patients with coronary heart disease. TRIAL REGISTRATION Clinicaltrials.gov number NCT00924937.
Collapse
Affiliation(s)
- Ana Ojeda-Rodriguez
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, Cordoba, 14004, Spain
- Department of Medical and Surgical Science, University of Cordoba, Cordoba, 14004, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, Cordoba, 14004, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Oriol A Rangel-Zuñiga
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, Cordoba, 14004, Spain
- Department of Medical and Surgical Science, University of Cordoba, Cordoba, 14004, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, Cordoba, 14004, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Antonio P Arenas-de Larriva
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, Cordoba, 14004, Spain
- Department of Medical and Surgical Science, University of Cordoba, Cordoba, 14004, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, Cordoba, 14004, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Francisco M Gutierrez-Mariscal
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, Cordoba, 14004, Spain
- Department of Medical and Surgical Science, University of Cordoba, Cordoba, 14004, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, Cordoba, 14004, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Jose D Torres-Peña
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, Cordoba, 14004, Spain
- Department of Medical and Surgical Science, University of Cordoba, Cordoba, 14004, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, Cordoba, 14004, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Juan L Romero-Cabrera
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, Cordoba, 14004, Spain
- Department of Medical and Surgical Science, University of Cordoba, Cordoba, 14004, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, Cordoba, 14004, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Alicia Podadera-Herreros
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, Cordoba, 14004, Spain
- Department of Medical and Surgical Science, University of Cordoba, Cordoba, 14004, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, Cordoba, 14004, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Helena García-Fernandez
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, Cordoba, 14004, Spain
- Department of Medical and Surgical Science, University of Cordoba, Cordoba, 14004, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, Cordoba, 14004, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Esther Porras-Pérez
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, Cordoba, 14004, Spain
- Department of Medical and Surgical Science, University of Cordoba, Cordoba, 14004, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, Cordoba, 14004, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Raul M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, Cordoba, 14004, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, 14004, Spain
| | - Stefanos N Kales
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Occupational Medicine, Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Pablo Perez-Martinez
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, Cordoba, 14004, Spain
- Department of Medical and Surgical Science, University of Cordoba, Cordoba, 14004, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, Cordoba, 14004, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Javier Delgado-Lista
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, Cordoba, 14004, Spain
- Department of Medical and Surgical Science, University of Cordoba, Cordoba, 14004, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, Cordoba, 14004, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Elena M Yubero-Serrano
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, Cordoba, 14004, Spain
- Department of Medical and Surgical Science, University of Cordoba, Cordoba, 14004, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, Cordoba, 14004, Spain
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Jose Lopez-Miranda
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, Cordoba, 14004, Spain.
- Department of Medical and Surgical Science, University of Cordoba, Cordoba, 14004, Spain.
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, Cordoba, 14004, Spain.
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain.
| |
Collapse
|
16
|
Hourvitz N, Awad A, Tzfati Y. The many faces of the helicase RTEL1 at telomeres and beyond. Trends Cell Biol 2024; 34:109-121. [PMID: 37532653 DOI: 10.1016/j.tcb.2023.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
Regulator of telomere elongation 1 (RTEL1) is known as a DNA helicase that is important for telomeres and genome integrity. However, the diverse phenotypes of RTEL1 dysfunction, the wide spectrum of symptoms caused by germline RTEL1 mutations, and the association of RTEL1 mutations with cancers suggest that RTEL1 is a complex machine that interacts with DNA, RNA, and proteins, and functions in diverse cellular pathways. We summarize the proposed functions of RTEL1 and discuss their implications for telomere maintenance. Studying RTEL1 is crucial for understanding the complex interplay between telomere maintenance and other nuclear pathways, and how compromising these pathways causes telomere biology diseases, various aging-associated pathologies, and cancer.
Collapse
Affiliation(s)
- Noa Hourvitz
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Safra Campus, Jerusalem 91904, Israel
| | - Aya Awad
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Safra Campus, Jerusalem 91904, Israel
| | - Yehuda Tzfati
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Safra Campus, Jerusalem 91904, Israel.
| |
Collapse
|
17
|
Beauvieux A, Fromentin JM, Romero D, Couffin N, Brown A, Metral L, Bourjea J, Bertile F, Schull Q. Molecular fingerprint of gilthead seabream physiology in response to pollutant mixtures in the wild. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122789. [PMID: 37913978 DOI: 10.1016/j.envpol.2023.122789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/29/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
The increase in trace element concentrations in the aquatic environment due to anthropogenic activities, urges the need for their monitoring and potential toxicity, persistence, bioaccumulation, and biomagnification at different trophic levels. Gilthead seabream is a species of commercial importance in the Mediterranean Sea, both for the aquaculture and fisheries sectors, however very little is known about their trace element contamination accumulation and the resulting effect on their health status. In the present study, 135 juveniles were collected from seven coastal lagoons known to be essential nursery areas for this species. We measured seventeen different inorganic contaminants at the individual level in fish muscle (namely Al, As, Be, Bi, Cd, Cr, Cu, Hg, Li, Ni, Pb, Rb, Sb, Sr, Ti, Tl and Zn). Our results revealed the accumulation of multiple trace elements in individuals and distinct contamination signatures between lagoons which might lead to contrasted quality as nurseries for juveniles of numerous ecologically and economically relevant fish species in addition to seabreams. We further evaluated the potential adverse effect of these complex contamination mixtures on the liver (the main organ implicated in the metabolism of xenobiotics) and red muscle (a highly metabolic organ) using a proteomic approach. Alterations in cellular organization pathways and protein transport were detected in both tissues (albeit they were not similarly regulated). Chromosome organization and telomere maintenance in the liver appeared to be affected by contaminant mixture which could increase mortality, age-related disease risk and shorter lifetime expectancy for these juveniles. Red muscle proteome also demonstrated an upregulation of pathways involved in metabolism in response to contamination which raises the issue of potential energy allocation trade-offs between the organisms' main functions such as reproduction and growth. This study provides new insights into the cellular and molecular responses of seabreams to environmental pollution and proposed biomarkers of health effects of trace elements that could serve as a starting point for larger-scale biomonitoring programs.
Collapse
Affiliation(s)
| | | | - Diego Romero
- Toxicology Department, Faculty of Veterinary Medicine, University of Murcia, 30100, Murcia, Spain
| | - Nathan Couffin
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, 67037, Strasbourg Cedex 2, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS, CEA, Strasbourg, 67087, France
| | - Adrien Brown
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, 67037, Strasbourg Cedex 2, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS, CEA, Strasbourg, 67087, France
| | - Luisa Metral
- MARBEC, Univ Montpellier, Ifremer, IRD, CNRS, Sète, France
| | - Jérôme Bourjea
- MARBEC, Univ Montpellier, Ifremer, IRD, CNRS, Sète, France
| | - Fabrice Bertile
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, 67037, Strasbourg Cedex 2, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS, CEA, Strasbourg, 67087, France
| | - Quentin Schull
- MARBEC, Univ Montpellier, Ifremer, IRD, CNRS, Sète, France
| |
Collapse
|
18
|
Dunn PL, Logeswaran D, Chen JJL. Telomerase-Mediated Anti-Ageing Interventions. Subcell Biochem 2024; 107:1-20. [PMID: 39693017 DOI: 10.1007/978-3-031-66768-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The ageing process involves a gradual decline of chromosome integrity throughout an organism's lifespan. Telomeres are protective DNA-protein complexes that cap the ends of linear chromosomes in eukaryotic organisms. Telomeric DNA consists of long stretches of short "TTAGGG" repeats that are conserved across most eukaryotes including humans. Telomeres shorten progressively with each round of DNA replication due to the inability of conventional DNA polymerase to completely replicate the chromosome ends, known as the "end-replication problem". The telomerase enzyme counteracts the telomeric DNA loss by de novo addition of telomeric repeats onto chromosomal ends. Germline and stem cells maintain significant levels of telomerase activity to maintain telomere length and can divide almost indefinitely. However, the differentiation of stem cells accompanies the inactivation of telomerase gene expression, resulting in the progressive shortening of telomeres in somatic cells over successive divisions. Critically short telomeres elicit and sustain a persistent DNA damage response leading to permanent growth arrest of cells known as cellular senescence, a hallmark of cellular ageing. The accumulation of senescent cells in tissues and organs contributes to organismal ageing. Thus, the prevention of telomere shortening is a promising means to delay or even reverse cellular ageing. In this chapter, we summarize potential anti-ageing interventions that mitigate telomere shortening through increasing telomerase level or activity and discuss these strategies' risks, benefits, and future outlooks.
Collapse
Affiliation(s)
- Phoebe L Dunn
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | | | - Julian J-L Chen
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA.
| |
Collapse
|
19
|
Jeon HJ, Levine MT, Lampson MA. Telomere Elongation During Pre-Implantation Embryo Development. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024; 238:121-129. [PMID: 39030357 DOI: 10.1007/978-3-031-55163-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The primary mechanism of telomere elongation in mammals is reverse transcription by telomerase. An alternative (ALT) pathway elongates telomeres by homologous recombination in some cancer cells and during pre-implantation embryo development, when telomere length increases rapidly within a few cell cycles. The maternal and paternal telomeres in the zygote are genetically and epigenetically distinct, with differences in telomere length and in chromatin packaging. We discuss models for how these asymmetries may contribute to telomere regulation during the earliest embryonic cell cycles and suggest directions for future research.
Collapse
Affiliation(s)
- Hyuk-Joon Jeon
- Department of Biology and Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA, USA
| | - Mia T Levine
- Department of Biology and Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA, USA.
| | - Michael A Lampson
- Department of Biology and Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Hu J, Leisegang MS, Looso M, Drekolia MK, Wittig J, Mettner J, Karantanou C, Kyselova A, Dumbovic G, Li X, Li Y, Guenther S, John D, Siragusa M, Zukunft S, Oo JA, Wittig I, Hille S, Weigert A, Knapp S, Brandes RP, Müller OJ, Papapetropoulos A, Sigala F, Dobreva G, Kojonazarov B, Fleming I, Bibli SI. Disrupted Binding of Cystathionine γ-Lyase to p53 Promotes Endothelial Senescence. Circ Res 2023; 133:842-857. [PMID: 37800327 DOI: 10.1161/circresaha.123.323084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Advanced age is unequivocally linked to the development of cardiovascular disease; however, the mechanisms resulting in reduced endothelial cell regeneration remain poorly understood. Here, we investigated novel mechanisms involved in endothelial cell senescence that impact endothelial cell transcription and vascular repair after injury. METHODS Native endothelial cells were isolated from young (20±3.4 years) and aged (80±2.3 years) individuals and subjected to molecular analyses to assess global transcriptional and metabolic changes. In vitro studies were conducted using primary human and murine endothelial cells. A murine aortic re-endothelialization model was used to examine endothelial cell regenerative capacity in vivo. RESULTS RNA sequencing of native endothelial cells revealed that aging resulted in p53-mediated reprogramming to express senescence-associated genes and suppress glycolysis. Reduced glucose uptake and ATP contributed to attenuated assembly of the telomerase complex, which was required for endothelial cell proliferation. Enhanced p53 activity in aging was linked to its acetylation on K120 due to enhanced activity of the acetyltransferase MOZ (monocytic leukemic zinc finger). Mechanistically, p53 acetylation and translocation were, at least partially, attributed to the loss of the vasoprotective enzyme, CSE (cystathionine γ-lyase). CSE physically anchored p53 in the cytosol to prevent its nuclear translocation and CSE absence inhibited AKT (Protein kinase B)-mediated MOZ phosphorylation, which in turn increased MOZ activity and subsequently p53 acetylation. In mice, the endothelial cell-specific deletion of CSE activated p53, induced premature endothelial senescence, and arrested vascular repair after injury. In contrast, the adeno-associated virus 9-mediated re-expression of an active CSE mutant retained p53 in the cytosol, maintained endothelial glucose metabolism and proliferation, and prevented endothelial cell senescence. Adenoviral overexpression of CSE in native endothelial cells from aged individuals maintained low p53 activity and reactivated telomerase to revert endothelial cell senescence. CONCLUSIONS Aging-associated impairment of vascular repair is partly determined by the vasoprotective enzyme CSE.
Collapse
Affiliation(s)
- Jiong Hu
- Department of Histology and Embryology, School of Basic Medicine (J.H., X.L., Y.L.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Sino-German Laboratory of CardioPulmonary Science (J.H., I.F.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Matthias S Leisegang
- Institute for Cardiovascular Physiology (M.S.L., J.A.O., R.P.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mario Looso
- Bioinformatics Core Unit, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (M.L., S.G.)
- German Center for Cardiovascular Research (DZHK), partner site RheinMain, Frankfurt am Main (M.L., S.G., R.P.B., I.F., S.-I.B.)
| | - Maria-Kyriaki Drekolia
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Janina Wittig
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Janina Mettner
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christina Karantanou
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anastasia Kyselova
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Gabrjela Dumbovic
- Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (G.D.)
| | - Xiaoming Li
- Department of Histology and Embryology, School of Basic Medicine (J.H., X.L., Y.L.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Yuanyuan Li
- Department of Histology and Embryology, School of Basic Medicine (J.H., X.L., Y.L.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Stefan Guenther
- Bioinformatics Core Unit, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (M.L., S.G.)
- German Center for Cardiovascular Research (DZHK), partner site RheinMain, Frankfurt am Main (M.L., S.G., R.P.B., I.F., S.-I.B.)
| | - David John
- Institute of Cardiovascular Regeneration (D.J.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mauro Siragusa
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - James A Oo
- Institute for Cardiovascular Physiology (M.S.L., J.A.O., R.P.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ilka Wittig
- Sino-German Laboratory of CardioPulmonary Science (J.H., I.F.), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Functional Proteomics, Institute for Cardiovascular Physiology (I.W.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Susanne Hille
- Department of Internal Medicine III, University of Kiel, Germany (S.H., O.J.M.)
| | - Andreas Weigert
- Institute of Biochemistry I (A.W.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Molecular Life Sciences (S.K.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology (M.S.L., J.A.O., R.P.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), partner site RheinMain, Frankfurt am Main (M.L., S.G., R.P.B., I.F., S.-I.B.)
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Germany (S.H., O.J.M.)
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Germany (O.J.M.)
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy (A.P.), National and Kapodistrian University of Athens, Greece
| | - Fragiska Sigala
- First Propedeutic Department of Surgery, Vascular Surgery Division (F.S.), National and Kapodistrian University of Athens, Greece
| | - Gergana Dobreva
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg, Germany (G.D.)
| | - Baktybek Kojonazarov
- Institute for Lung Health (ILH) (B.K.), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Excellence Cluster Cardio-Pulmonary Institute (CPI) (B.K.), Justus Liebig University, Giessen, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine (J.H., M.-K.D., J.W., J.M., C.K., A.K., X.L., M.S., S.Z., I.F., S.-I.B.), Goethe University Frankfurt, Frankfurt am Main, Germany
- German Center for Cardiovascular Research (DZHK), partner site RheinMain, Frankfurt am Main (M.L., S.G., R.P.B., I.F., S.-I.B.)
| |
Collapse
|
21
|
Tichy ED, Lee JH, Li G, Estep KN, Brad Johnson F, Mourkioti F. Impacts of radiation exposure, hindlimb unloading, and recovery on murine skeletal muscle cell telomere length. NPJ Microgravity 2023; 9:76. [PMID: 37714858 PMCID: PMC10504369 DOI: 10.1038/s41526-023-00303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 07/06/2023] [Indexed: 09/17/2023] Open
Abstract
Astronauts are exposed to harsh conditions, including cosmic radiation and microgravity. Spaceflight elongates human telomeres in peripheral blood, which shorten upon return to Earth and approach baseline levels during postflight recovery. Astronauts also encounter muscle atrophy, losing up to 20% loss of muscle mass on spaceflights. Telomere length changes in muscle cells of astronauts remain unexplored. This study investigates telomere alterations in grounded mice experiencing radiation exposure and muscle atrophy, via a hindlimb unloading spaceflight mimicking model. We find telomere lengthening is present in muscle stem cells and in myofiber nuclei, but not in muscle-resident endothelial cells. We further assessed telomere length in the model following hindlimb unloading recovery. We find that telomere length failed to return to baseline values. Our results suggest a role for telomeres in muscle acclimatization, which is relevant for the well-being of astronauts in space, and upon their return to Earth.
Collapse
Affiliation(s)
- Elisia D Tichy
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ji-Hyung Lee
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Grant Li
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Katrina N Estep
- Department of Pathology and Laboratory Medicine, Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Foteini Mourkioti
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn Institute for Regenerative Medicine, Musculoskeletal Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
22
|
Volobaev VP, Kunizheva SS, Uralsky LI, Kupriyanova DA, Rogaev EI. Quantifying human genome parameters in aging. Vavilovskii Zhurnal Genet Selektsii 2023; 27:495-501. [PMID: 37808212 PMCID: PMC10551942 DOI: 10.18699/vjgb-23-60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 10/10/2023] Open
Abstract
Healthy human longevity is a global goal of the world health system. Determining the causes and processes influencing human longevity is the primary fundamental goal facing the scientific community. Currently, the main efforts of the scientific community are aimed at identifying the qualitative characteristics of the genome that determine the trait. At the same time, when evaluating qualitative characteristics, there are many challenges that make it difficult to establish associations. Quantitative traits are burdened with such problems to a lesser extent, but they are largely overlooked in current genomic studies of aging and longevity. Although there is a wide repertoire of quantitative trait analyses based on genomic data, most opportunities are ignored by authors, which, along with the inaccessibility of published data, leads to the loss of this important information. This review focuses on describing quantitative traits important for understanding aging and necessary for analysis in further genomic studies, and recommends the inclusion of the described traits in the analysis. The review considers the relationship between quantitative characteristics of the mitochondrial genome and aging, longevity, and age-related neurodegenerative diseases, such as the frequency of extensive mitochondrial DNA (mtDNA) deletions, mtDNA half-life, the frequency of A>G replacements in the mtDNA heavy chain, the number of mtDNA copies; special attention is paid to the mtDNA methylation sign. A separate section of this review is devoted to the correlation of telomere length parameters with age, as well as the association of telomere length with the amount of mitochondrial DNA. In addition, we consider such a quantitative feature as the rate of accumulation of somatic mutations with aging in relation to the lifespan of living organisms. In general, it may be noted that there are quite serious reasons to suppose that various quantitative characteristics of the genome may be directly or indirectly associated with certain aspects of aging and longevity. At the same time, the available data are clearly insufficient for definitive conclusions and the determination of causal relationships.
Collapse
Affiliation(s)
- V P Volobaev
- Sirius University of Science and Technology, Scientific Center for Genetics and Life Sciences, Sochi, Russia
| | - S S Kunizheva
- Sirius University of Science and Technology, Scientific Center for Genetics and Life Sciences, Sochi, Russia Vavilov Institute of General Genetics, Russian Academy of Sciences, Department of Genomics and Human Genetics, Moscow, Russia Lomonosov Moscow State University, Center for Genetics and Genetic Technologies, Faculty of Biology, Moscow, Russia
| | - L I Uralsky
- Sirius University of Science and Technology, Scientific Center for Genetics and Life Sciences, Sochi, Russia Vavilov Institute of General Genetics, Russian Academy of Sciences, Department of Genomics and Human Genetics, Moscow, Russia
| | - D A Kupriyanova
- Sirius University of Science and Technology, Scientific Center for Genetics and Life Sciences, Sochi, Russia
| | - E I Rogaev
- Sirius University of Science and Technology, Scientific Center for Genetics and Life Sciences, Sochi, Russia Vavilov Institute of General Genetics, Russian Academy of Sciences, Department of Genomics and Human Genetics, Moscow, Russia Lomonosov Moscow State University, Center for Genetics and Genetic Technologies, Faculty of Biology, Moscow, Russia University of Massachusetts Chan Medical School, Department of Psychiatry, Shrewsbury, USA
| |
Collapse
|
23
|
Ojeda-Rodriguez A, Alcala-Diaz JF, Rangel-Zuñiga OA, Arenas-de Larriva AP, Gutierrez-Mariscal FM, Gómez-Luna P, Torres-Peña JD, Garcia-Rios A, Romero-Cabrera JL, Malagon MM, Perez-Martinez P, Ordovas JM, Delgado-Lista J, Yubero-Serrano EM, Lopez-Miranda J. Association between telomere length and intima-media thickness of both common carotid arteries in patients with coronary heart disease: From the CORDIOPREV randomized controlled trial. Atherosclerosis 2023; 380:117193. [PMID: 37549582 DOI: 10.1016/j.atherosclerosis.2023.117193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/23/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND AND AIMS A critical telomere length (TL) is associated with cardiovascular mortality. Dietary habits have been demonstrated to affect cardiovascular risk. However, it remains unclear how exactly TL determines the response to specific dietary approaches in the reduction of arterial injury. We aimed to evaluate whether TL was associated with the progression of arterial injury (assessed by intima-media thickness of both common carotid arteries: IMT-CC), after long-term consumption of two healthy dietary models in patients with coronary heart disease (CHD). METHODS From the 1002 CHD patients of the CORDIOPREV study, 903 completed IMT-CC and TL evaluation at baseline and were randomized to follow a Mediterranean diet or a low-fat diet for 5 years. RESULTS Patients at risk of short TL (TL < 20th percentile) presented an elevated IMT-CC, (0.79 ± 0.17 vs patients at non-risk 0.74 ± 0.17 p < 0.001). TL and IMT-CC showed an inverse association (β = -0.035, p = 0.002). Patients who consumed a Mediterranean diet, regardless of the risk of short TL, showed a significant decrease in IMT-CC, with a higher reduction in those patients with risk of short TL (-0.03 ± 0.11, p = 0.036). TL (β = 0.019, p = 0.024), age (β = -0.001, p = 0.031), energy intake (β = -0.000, p = 0.036), use of statins (β = -0.027, p = 0.028) and allocation into the Mediterranean diet (vs low-fat diet) (β = -0.024, p = 0.003) were significant contributors to changes in IMT-CC. CONCLUSIONS Patients who had a reduced TL exhibited a greater decrease in IMT-CC after consuming a Mediterranean diet.
Collapse
Affiliation(s)
- Ana Ojeda-Rodriguez
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain; Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004, Cordoba, Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Juan F Alcala-Diaz
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain; Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004, Cordoba, Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Oriol Alberto Rangel-Zuñiga
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain; Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004, Cordoba, Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Antonio Pablo Arenas-de Larriva
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain; Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004, Cordoba, Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Francisco M Gutierrez-Mariscal
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain; Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004, Cordoba, Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Purificación Gómez-Luna
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain; Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004, Cordoba, Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Jose D Torres-Peña
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain; Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004, Cordoba, Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Antonio Garcia-Rios
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain; Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004, Cordoba, Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Juan L Romero-Cabrera
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain; Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004, Cordoba, Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Maria M Malagon
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004, Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004, Cordoba, Spain
| | - Pablo Perez-Martinez
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain; Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004, Cordoba, Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Jose M Ordovas
- Nutrition and Genomics Laboratory, J.M.-US Department of Agriculture Human Nutrition Research Center on Aging, At Tufts University, Boston, MA, 02111, USA; IMDEA Alimentacion, Madrid, Spain; CNIC, 28049, Madrid, Spain
| | - Javier Delgado-Lista
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain; Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004, Cordoba, Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Elena M Yubero-Serrano
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain; Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004, Cordoba, Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Jose Lopez-Miranda
- Lipids and Atherosclerosis Unit, Internal Medicine Unit, Reina Sofia University Hospital, 14004, Cordoba, Spain; Department of Medical and Surgical Science, University of Cordoba, 14004, Córdoba, Spain; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Av. Menendez Pidal, s/n, 14004, Cordoba, Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
24
|
Xie K, Ehninger D. Ageing-associated phenotypes in mice. Mech Ageing Dev 2023; 214:111852. [PMID: 37454704 DOI: 10.1016/j.mad.2023.111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Ageing is a continuous process in life featuring progressive damage accumulation that leads to physiological decline, functional deterioration and ultimately death of an organism. Based on the relatively close anatomical and physiological similarity to humans, the mouse has been proven as a valuable model organism in ageing research over the last decades. In this review, we survey methods and tools currently in use to assess ageing phenotypes in mice. We summarize a range of ageing-associated alterations detectable at two major levels of analysis: (1) physiology and pathophysiology and (2) molecular biomarkers. Age-sensitive phenotypes provided in this article may serve to inform future studies targeting various aspects of organismal ageing in mice. In addition, we discuss conceptual and technical challenges faced by previous ageing studies in mice and, where possible, provide recommendations on how to resolve some of these issues.
Collapse
Affiliation(s)
- Kan Xie
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Dan Ehninger
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany.
| |
Collapse
|
25
|
Le NT. Metabolic regulation of endothelial senescence. Front Cardiovasc Med 2023; 10:1232681. [PMID: 37649668 PMCID: PMC10464912 DOI: 10.3389/fcvm.2023.1232681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/18/2023] [Indexed: 09/01/2023] Open
Abstract
Endothelial cell (EC) senescence is increasingly recognized as a significant contributor to the development of vascular dysfunction and age-related disorders and diseases, including cancer and cardiovascular diseases (CVD). The regulation of cellular senescence is known to be influenced by cellular metabolism. While extensive research has been conducted on the metabolic regulation of senescence in other cells such as cancer cells and fibroblasts, our understanding of the metabolic regulation of EC senescence remains limited. The specific metabolic changes that drive EC senescence are yet to be fully elucidated. The objective of this review is to provide an overview of the intricate interplay between cellular metabolism and senescence, with a particular emphasis on recent advancements in understanding the metabolic changes preceding cellular senescence. I will summarize the current knowledge on the metabolic regulation of EC senescence, aiming to offer insights into the underlying mechanisms and future research directions.
Collapse
Affiliation(s)
- Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
26
|
Igoshin AV, Yudin NS, Romashov GA, Larkin DM. A Multibreed Genome-Wide Association Study for Cattle Leukocyte Telomere Length. Genes (Basel) 2023; 14:1596. [PMID: 37628647 PMCID: PMC10454124 DOI: 10.3390/genes14081596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Telomeres are terminal DNA regions of chromosomes that prevent chromosomal fusion and degradation during cell division. In cattle, leukocyte telomere length (LTL) is associated with longevity, productive lifespan, and disease susceptibility. However, the genetic basis of LTL in this species is less studied than in humans. In this study, we utilized the whole-genome resequencing data of 239 animals from 17 cattle breeds for computational leukocyte telomere length estimation and subsequent genome-wide association study of LTL. As a result, we identified 42 significant SNPs, of which eight were found in seven genes (EXOC6B, PTPRD, RPS6KC1, NSL1, AGBL1, ENSBTAG00000052188, and GPC1) when using covariates for two major breed groups (Turano-Mongolian and European). Association analysis with covariates for breed effect detected 63 SNPs, including 13 in five genes (EXOC6B, PTPRD, RPS6KC1, ENSBTAG00000040318, and NELL1). The PTPRD gene, demonstrating the top signal in analysis with breed effect, was previously associated with leukocyte telomere length in cattle and likely is involved in the mechanism of alternative lengthening of telomeres. The single nucleotide variants found could be tested for marker-assisted selection to improve telomere-length-associated traits.
Collapse
Affiliation(s)
- Alexander V. Igoshin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia
| | - Nikolay S. Yudin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia
| | - Grigorii A. Romashov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia
| | - Denis M. Larkin
- Royal Veterinary College, University of London, London NW1 0TU, UK
| |
Collapse
|
27
|
Napolitano G, Fasciolo G, Muscari Tomajoli MT, Venditti P. Changes in the Mitochondria in the Aging Process-Can α-Tocopherol Affect Them? Int J Mol Sci 2023; 24:12453. [PMID: 37569829 PMCID: PMC10419829 DOI: 10.3390/ijms241512453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Aerobic organisms use molecular oxygen in several reactions, including those in which the oxidation of substrate molecules is coupled to oxygen reduction to produce large amounts of metabolic energy. The utilization of oxygen is associated with the production of ROS, which can damage biological macromolecules but also act as signaling molecules, regulating numerous cellular processes. Mitochondria are the cellular sites where most of the metabolic energy is produced and perform numerous physiological functions by acting as regulatory hubs of cellular metabolism. They retain the remnants of their bacterial ancestors, including an independent genome that encodes part of their protein equipment; they have an accurate quality control system; and control of cellular functions also depends on communication with the nucleus. During aging, mitochondria can undergo dysfunctions, some of which are mediated by ROS. In this review, after a description of how aging affects the mitochondrial quality and quality control system and the involvement of mitochondria in inflammation, we report information on how vitamin E, the main fat-soluble antioxidant, can protect mitochondria from age-related changes. The information in this regard is scarce and limited to some tissues and some aspects of mitochondrial alterations in aging. Improving knowledge of the effects of vitamin E on aging is essential to defining an optimal strategy for healthy aging.
Collapse
Affiliation(s)
- Gaetana Napolitano
- Department of Science and Technology, University of Naples Parthenope, Via Acton n. 38, I-80133 Naples, Italy; (G.N.); (M.T.M.T.)
| | - Gianluca Fasciolo
- Department of Biology, University of Naples ‘Napoli Federico II’, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, I-80126 Naples, Italy;
| | - Maria Teresa Muscari Tomajoli
- Department of Science and Technology, University of Naples Parthenope, Via Acton n. 38, I-80133 Naples, Italy; (G.N.); (M.T.M.T.)
| | - Paola Venditti
- Department of Biology, University of Naples ‘Napoli Federico II’, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, I-80126 Naples, Italy;
| |
Collapse
|
28
|
Córdova-Oriz I, Kohls G, Iglesias C, Polonio AM, Chico-Sordo L, Toribio M, Meseguer M, Varela E, Pellicer A, García-Velasco JA. A Randomized Controlled Intervention Trial with Danazol to Improve Telomeric and Fertility Parameters in Women with Diminished Ovarian Reserve: A Pilot Study. WOMEN'S HEALTH REPORTS (NEW ROCHELLE, N.Y.) 2023; 4:305-318. [PMID: 37476605 PMCID: PMC10354732 DOI: 10.1089/whr.2023.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 07/22/2023]
Abstract
Background Most women who are treated at in vitro fertilization (IVF) clinics have trouble conceiving due to ovarian failure (OF), which seems to be associated to short telomeres and reduced or absent telomerase activity in their granulosa cells. Indeed, telomere pathways are involved in organ dysfunction. However, sexual steroids can stimulate the expression of the telomerase gene and have been successfully used to prevent telomere attrition. Thus, a strategy to improve IVF outcomes in women with OF could be telomerase reactivation using sexual steroids. Methods We conducted a double-blind, placebo-controlled study. Patients with diminished ovarian reserve were randomized to Danazol or placebo for 3 months. We included patients with normal ovarian reserve in the study as untreated controls. Patients and controls underwent several ovarian stimulations (OSs). Telomere and IVF parameters were assessed. Results We found that the mean telomere length in blood and the percentage of short and long telomeres were similar throughout the 3 months of treatment with Danazol. Remarkably, while the number of cells with one telomeric repeat-containing RNA (TERRA) focus decreased (p = 0.04) after the first month of Danazol treatment, the number of cells with 2 to 4 TERRA foci increased (p = 0.02). Regarding fertility, no differences were found in the antral follicle count. Interestingly, in OS performed after the trial, all Danazol-treated patients had a better MII oocyte rate compared to OS performed before the pilot study.EudraCT number: 2018-004400-19. Conclusions Danazol treatment seemed to affect telomere maintenance, since both the number of TERRA foci and the ratio of MII oocytes changed. However, further research is needed to confirm these results.
Collapse
Affiliation(s)
- Isabel Córdova-Oriz
- The Health Research Institute La Fe (IIS La Fe), IVI Foundation, Valencia, Spain
| | | | | | - Alba M. Polonio
- The Health Research Institute La Fe (IIS La Fe), IVI Foundation, Valencia, Spain
| | - Lucía Chico-Sordo
- The Health Research Institute La Fe (IIS La Fe), IVI Foundation, Valencia, Spain
| | | | - Marcos Meseguer
- The Health Research Institute La Fe (IIS La Fe), IVI Foundation, Valencia, Spain
- Laboratory of In Vitro Fertilization, IVIRMA Valencia, Valencia, Spain
| | - Elisa Varela
- The Health Research Institute La Fe (IIS La Fe), IVI Foundation, Valencia, Spain
- Department of Medical Specialties and Public Health, Rey Juan Carlos University, Madrid, Spain
| | - Antonio Pellicer
- The Health Research Institute La Fe (IIS La Fe), IVI Foundation, Valencia, Spain
- School of Medicine, Department of Obstetrics and Gynecology, University of Valencia, Valencia, Spain
- IVIRMA Rome, Rome, Italy
| | - Juan A. García-Velasco
- The Health Research Institute La Fe (IIS La Fe), IVI Foundation, Valencia, Spain
- IVIRMA Madrid, Madrid, Spain
- Department of Medical Specialties and Public Health, Rey Juan Carlos University, Madrid, Spain
| |
Collapse
|
29
|
Martínez P, Sánchez-Vazquez R, Saha A, Rodriguez-Duque MS, Naranjo-Gonzalo S, Osorio-Chavez JS, Villar-Ramos AV, Blasco MA. Short telomeres in alveolar type II cells associate with lung fibrosis in post COVID-19 patients with cancer. Aging (Albany NY) 2023; 15:204755. [PMID: 37294548 DOI: 10.18632/aging.204755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) pandemic. The severity of COVID-19 increases with each decade of life, a phenomenon that suggest that organismal aging contributes to the fatality of the disease. In this regard, we and others have previously shown that COVID-19 severity correlates with shorter telomeres, a molecular determinant of aging, in patient's leukocytes. Lung injury is a predominant feature of acute SARS-CoV-2 infection that can further progress to lung fibrosis in post-COVID-19 patients. Short or dysfunctional telomeres in Alveolar type II (ATII) cells are sufficient to induce pulmonary fibrosis in mouse and humans. Here, we analyze telomere length and the histopathology of lung biopsies from a cohort of alive post-COVID-19 patients and a cohort of age-matched controls with lung cancer. We found loss of ATII cellularity and shorter telomeres in ATII cells concomitant with a marked increase in fibrotic lung parenchyma remodeling in post- COVID-19 patients compared to controls. These findings reveal a link between presence of short telomeres in ATII cells and long-term lung fibrosis sequel in Post-COVID-19 patients.
Collapse
Affiliation(s)
- Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid E-28029, Spain
| | - Raúl Sánchez-Vazquez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid E-28029, Spain
| | - Arpita Saha
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid E-28029, Spain
| | - Maria S Rodriguez-Duque
- Servicio de Anatomía Patológica, Hospital Universitario Marqués de Valdecilla, Santander 39008, Spain
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander E-39011, Spain
| | - Sara Naranjo-Gonzalo
- Servicio de Cirugía Torácica, Hospital Universitario Marqués de Valdecilla, Santander 39008, Spain
| | - Joy S Osorio-Chavez
- Servicio de Neumología Hospital Universitario Marqués de Valdecilla, Santander E-39008, Spain
| | - Ana V Villar-Ramos
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), Cantabria, Santander E-39011, Spain
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander E-39011, Spain
- Departamento de Fisiología y Farmacología, Universidad de Cantabria, Santander E-39011, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid E-28029, Spain
| |
Collapse
|
30
|
Valtetsiotis K, Valsamakis G, Charmandari E, Vlahos NF. Metabolic Mechanisms and Potential Therapeutic Targets for Prevention of Ovarian Aging: Data from Up-to-Date Experimental Studies. Int J Mol Sci 2023; 24:9828. [PMID: 37372976 DOI: 10.3390/ijms24129828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Female infertility and reproduction is an ongoing and rising healthcare issue, resulting in delaying the decision to start a family. Therefore, in this review, we examine potential novel metabolic mechanisms involved in ovarian aging according to recent data and how these mechanisms may be addressed through new potential medical treatments. We examine novel medical treatments currently available based mostly on experimental stem cell procedures as well as caloric restriction (CR), hyperbaric oxygen treatment and mitochondrial transfer. Understanding the connection between metabolic and reproductive pathways has the potential to offer a significant scientific breakthrough in preventing ovarian aging and prolonging female fertility. Overall, the field of ovarian aging is an emerging field that may expand the female fertility window and perhaps even reduce the need for artificial reproductive techniques.
Collapse
Affiliation(s)
- Konstantinos Valtetsiotis
- Second Department of Obstetrics and Gynaecology, Aretaieion University Hospital, National and Kapodistrian University of Athens Medical School, 115 28 Athens, Greece
| | - Georgios Valsamakis
- Second Department of Obstetrics and Gynaecology, Aretaieion University Hospital, National and Kapodistrian University of Athens Medical School, 115 28 Athens, Greece
| | - Evangelia Charmandari
- Second Department of Obstetrics and Gynaecology, Aretaieion University Hospital, National and Kapodistrian University of Athens Medical School, 115 28 Athens, Greece
| | - Nikolaos F Vlahos
- Second Department of Obstetrics and Gynaecology, Aretaieion University Hospital, National and Kapodistrian University of Athens Medical School, 115 28 Athens, Greece
| |
Collapse
|
31
|
Banerjee P, Rosales JE, Chau K, Nguyen MTH, Kotla S, Lin SH, Deswal A, Dantzer R, Olmsted-Davis EA, Nguyen H, Wang G, Cooke JP, Abe JI, Le NT. Possible molecular mechanisms underlying the development of atherosclerosis in cancer survivors. Front Cardiovasc Med 2023; 10:1186679. [PMID: 37332576 PMCID: PMC10272458 DOI: 10.3389/fcvm.2023.1186679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Cancer survivors undergone treatment face an increased risk of developing atherosclerotic cardiovascular disease (CVD), yet the underlying mechanisms remain elusive. Recent studies have revealed that chemotherapy can drive senescent cancer cells to acquire a proliferative phenotype known as senescence-associated stemness (SAS). These SAS cells exhibit enhanced growth and resistance to cancer treatment, thereby contributing to disease progression. Endothelial cell (EC) senescence has been implicated in atherosclerosis and cancer, including among cancer survivors. Treatment modalities for cancer can induce EC senescence, leading to the development of SAS phenotype and subsequent atherosclerosis in cancer survivors. Consequently, targeting senescent ECs displaying the SAS phenotype hold promise as a therapeutic approach for managing atherosclerotic CVD in this population. This review aims to provide a mechanistic understanding of SAS induction in ECs and its contribution to atherosclerosis among cancer survivors. We delve into the mechanisms underlying EC senescence in response to disturbed flow and ionizing radiation, which play pivotal role in atherosclerosis and cancer. Key pathways, including p90RSK/TERF2IP, TGFβR1/SMAD, and BH4 signaling are explored as potential targets for cancer treatment. By comprehending the similarities and distinctions between different types of senescence and the associated pathways, we can pave the way for targeted interventions aim at enhancing the cardiovascular health of this vulnerable population. The insights gained from this review may facilitate the development of novel therapeutic strategies for managing atherosclerotic CVD in cancer survivors.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Julia Enterría Rosales
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- School of Medicine, Instituto Tecnológico de Monterrey, Guadalajara, Mexico
| | - Khanh Chau
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Minh T. H. Nguyen
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
- Department of Life Science, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven H. Lin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elizabeth A. Olmsted-Davis
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Hung Nguyen
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Guangyu Wang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - John P. Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
32
|
Rouan A, Pousse M, Djerbi N, Porro B, Bourdin G, Carradec Q, Hume BC, Poulain J, Lê-Hoang J, Armstrong E, Agostini S, Salazar G, Ruscheweyh HJ, Aury JM, Paz-García DA, McMinds R, Giraud-Panis MJ, Deshuraud R, Ottaviani A, Morini LD, Leone C, Wurzer L, Tran J, Zoccola D, Pey A, Moulin C, Boissin E, Iwankow G, Romac S, de Vargas C, Banaigs B, Boss E, Bowler C, Douville E, Flores M, Reynaud S, Thomas OP, Troublé R, Thurber RV, Planes S, Allemand D, Pesant S, Galand PE, Wincker P, Sunagawa S, Röttinger E, Furla P, Voolstra CR, Forcioli D, Lombard F, Gilson E. Telomere DNA length regulation is influenced by seasonal temperature differences in short-lived but not in long-lived reef-building corals. Nat Commun 2023; 14:3038. [PMID: 37263999 DOI: 10.1038/s41467-023-38499-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Telomeres are environment-sensitive regulators of health and aging. Here,we present telomere DNA length analysis of two reef-building coral genera revealing that the long- and short-term water thermal regime is a key driver of between-colony variation across the Pacific Ocean. Notably, there are differences between the two studied genera. The telomere DNA lengths of the short-lived, more stress-sensitive Pocillopora spp. colonies were largely determined by seasonal temperature variation, whereas those of the long-lived, more stress-resistant Porites spp. colonies were insensitive to seasonal patterns, but rather influenced by past thermal anomalies. These results reveal marked differences in telomere DNA length regulation between two evolutionary distant coral genera exhibiting specific life-history traits. We propose that environmentally regulated mechanisms of telomere maintenance are linked to organismal performances, a matter of paramount importance considering the effects of climate change on health.
Collapse
Affiliation(s)
- Alice Rouan
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France.
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France.
| | - Melanie Pousse
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Nadir Djerbi
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Barbara Porro
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | | | - Quentin Carradec
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
| | - Benjamin Cc Hume
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
| | - Julie Lê-Hoang
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
| | - Eric Armstrong
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| | - Guillem Salazar
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, 8092, Zurich, Switzerland
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, 8092, Zurich, Switzerland
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
| | - David A Paz-García
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. IPN 195, La Paz, Baja California Sur, 23096, La Paz, México
| | - Ryan McMinds
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- University of South Florida Center for Global Health and Infectious Diseases Research, Tampa, FL, USA
- Maison de la Modélisation, de la Simulation et des Interactions (MSI),, Université Côte d'Azur, Nice, France
| | - Marie-Josèphe Giraud-Panis
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Romane Deshuraud
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Alexandre Ottaviani
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Lycia Die Morini
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
| | - Camille Leone
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
| | - Lia Wurzer
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
| | - Jessica Tran
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
| | - Didier Zoccola
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Centre Scientifique de Monaco, Principality of Monaco, Monaco, Monaco
| | - Alexis Pey
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Clémentine Moulin
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
- Tara Ocean Foundation, 8 rue de Prague, 75012, Paris, France
| | - Emilie Boissin
- Laboratoire d'Excellence "CORAIL," PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
| | - Guillaume Iwankow
- Laboratoire d'Excellence "CORAIL," PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
| | - Sarah Romac
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Colomban de Vargas
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Bernard Banaigs
- Laboratoire d'Excellence "CORAIL," PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Chris Bowler
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Eric Douville
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Michel Flores
- Weizmann Institute of Science, Department of Earth, and Planetary Sciences, 76100, Rehovot, Israel
| | - Stéphanie Reynaud
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Centre Scientifique de Monaco, Principality of Monaco, Monaco, Monaco
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road, H91TK33, Galway, Ireland
| | - Romain Troublé
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
- Tara Ocean Foundation, 8 rue de Prague, 75012, Paris, France
| | - Rebecca Vega Thurber
- Oregon State University, Department of Microbiology, 220 Nash Hall, Corvallis, OR, 97331, USA
| | - Serge Planes
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
- Laboratoire d'Excellence "CORAIL," PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
| | - Denis Allemand
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Centre Scientifique de Monaco, Principality of Monaco, Monaco, Monaco
| | - Stephane Pesant
- European Bioinformatics Institute, Wellcome Genome Campus, European Molecular Biology Laboratory, Wellcome Genome Campus, Cambridge CB10 1SD, UK, UK
| | - Pierre E Galand
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, 8092, Zurich, Switzerland
| | - Eric Röttinger
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Paola Furla
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | | | - Didier Forcioli
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Fabien Lombard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
- Sorbonne Université, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
- Institut Universitaire de France, Ministère chargé de l'enseignement supérieur, Paris, France
| | - Eric Gilson
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France.
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France.
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France.
- Department of Medical Genetics, CHU, Nice, France.
| |
Collapse
|
33
|
Ignatieva EV, Yudin NS, Larkin DM. Compilation and functional classification of telomere length-associated genes in humans and other animal species. Vavilovskii Zhurnal Genet Selektsii 2023; 27:283-292. [PMID: 37293446 PMCID: PMC10244590 DOI: 10.18699/vjgb-23-34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/10/2023] Open
Abstract
Telomeres are the terminal regions of chromosomes that ensure their stability while cell division. Telomere shortening initiates cellular senescence, which can lead to degeneration and atrophy of tissues, so the process is associated with a reduction in life expectancy and predisposition to a number of diseases. An accelerated rate of telomere attrition can serve as a predictor of life expectancy and health status of an individual. Telomere length is a complex phenotypic trait that is determined by many factors, including the genetic ones. Numerous studies (including genome-wide association studies, GWAS) indicate the polygenic nature of telomere length control. The objective of the present study was to characterize the genetic basis of the telomere length regulation using the GWAS data obtained during the studies of various human and other animal populations. To do so, a compilation of the genes associated with telomere length in GWAS experiments was collected, which included information on 270 human genes, as well as 23, 22, and 9 genes identified in the cattle, sparrow, and nematode, respectively. Among them were two orthologous genes encoding a shelterin protein (POT1 in humans and pot-2 in C. elegans). Functional analysis has shown that telomere length can be influenced by genetic variants in the genes encoding: (1) structural components of telomerase; (2) the protein components of telomeric regions (shelterin and CST complexes); (3) the proteins involved in telomerase biogenesis and regulating its activity; (4) the proteins that regulate the functional activity of the shelterin components; (5) the proteins involved in telomere replication and/or capping; (6) the proteins involved in the alternative telomere lengthening; (7) the proteins that respond to DNA damage and are responsible for DNA repair; (8) RNA-exosome components. The human genes identified by several research groups in populations of different ethnic origins are the genes encoding telomerase components such as TERC and TERT as well as STN1 encoding the CST complex component. Apparently, the polymorphic loci affecting the functions of these genes may be the most reliable susceptibility markers for telomere-related diseases. The systematized data about the genes and their functions can serve as a basis for the development of prognostic criteria for telomere length-associated diseases in humans. Information about the genes and processes that control telomere length can be used for marker-assisted and genomic selection in the farm animals, aimed at increasing the duration of their productive lifetime.
Collapse
Affiliation(s)
- E V Ignatieva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N S Yudin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D M Larkin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
34
|
Warman DJ, Jia H, Kato H. Effects of Thyme ( Thymus vulgaris L.) Essential Oil on Aging-Induced Brain Inflammation and Blood Telomere Attrition in Chronologically Aged C57BL/6J Mice. Antioxidants (Basel) 2023; 12:1178. [PMID: 37371908 DOI: 10.3390/antiox12061178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Chronological aging is commonly accompanied by chronic low-grade inflammation (or "inflammaging"), a contributor to the development of age-related chronic diseases. Aging increases oxidative stress that accelerates telomere shortening, leading to cell senescence and the generation of senescence-associated secretory phenotype (SASP) that exacerbates inflammation. Dietary antioxidants may help protect telomeres and attenuate inflammation. Thyme essential oil (TEO), reported for its potency against neuroinflammation, was fed to chronologically aged C57BL/6J mice for 24 weeks. The TEO diet showed notable impacts on the hippocampus, indicated by lower expression of the aging-related gene p16INK4A (p = 0.0783) and significantly lower expression of cyclin D kinase Cdk4 and Cdk6 (p < 0.05) compared to the age-matched control mice. The TEO group also showed significantly lower gene expression of the pro-inflammatory cytokine Il6 (p < 0.05) in the hippocampus and lower Il1b expression in the liver and cerebellum (p < 0.05). In vitro experiments conducted on NIH-3T3 cells expressing SASP revealed the dose-dependent anti-inflammatory activity of TEO. Remarkably, TEO diet-fed mice showed higher survival rates and significantly longer blood telomere lengths than the control mice. Monoterpene antioxidants in TEO, particularly thymol and p-cymene, may primarily contribute to the anti-inflammatory and telomere-protecting activities of TEO.
Collapse
Affiliation(s)
- Dwina Juliana Warman
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Huijuan Jia
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hisanori Kato
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Department of Applied Nutrition, School of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado-shi 350-0288, Japan
| |
Collapse
|
35
|
Polonio AM, Medrano M, Chico-Sordo L, Córdova-Oriz I, Cozzolino M, Montans J, Herraiz S, Seli E, Pellicer A, García-Velasco JA, Varela E. Impaired telomere pathway and fertility in Senescence-Accelerated Mice Prone 8 females with reproductive senescence. Aging (Albany NY) 2023; 15:4600-4624. [PMID: 37338562 DOI: 10.18632/aging.204731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/04/2023] [Indexed: 06/21/2023]
Abstract
Ovarian aging is the main cause of infertility and telomere attrition is common to both aging and fertility disorders. Senescence-Accelerated Mouse Prone 8 (SAMP8) model has shortened lifespan and premature infertility, reflecting signs of reproductive senescence described in middle-aged women. Thus, our objective was to study SAMP8 female fertility and the telomere pathway at the point of reproductive senescence. The lifespan of SAMP8 and control mice was monitored. Telomere length (TL) was measured by in situ hybridization in blood and ovary. Telomerase activity (TA) was analyzed by telomere-repeat amplification protocol, and telomerase expression, by real-time quantitative PCR in ovaries from 7-month-old SAMP8 and controls. Ovarian follicles at different stages of maturation were evaluated by immunohistochemistry. Reproductive outcomes were analyzed after ovarian stimulation. Unpaired t-test or Mann-Whitney test were used to calculate p-values, depending on the variable distribution. Long-rank test was used to compare survival curves and Fisher's exact test was used in contingency tables. Median lifespan of SAMP8 females was reduced compared to SAMP8 males (p = 0.0138) and control females (p < 0.0001). In blood, 7-month-old SAMP8 females presented lower mean TL compared to age-matched controls (p = 0.041). Accordingly, the accumulation of short telomeres was higher in 7-month-old SAMP8 females (p = 0.0202). Ovarian TA was lower in 7-month-old SAMP8 females compared to controls. Similarly, telomerase expression was lower in the ovaries of 7-month-old SAMP8 females (p = 0.04). Globally, mean TL in ovaries and granulosa cells (GCs) were similar. However, the percentage of long telomeres in ovaries (p = 0.004) and GCs (p = 0.004) from 7-month-old SAMP8 females was lower compared to controls. In early-antral and antral follicles, mean TL of SAMP8 GCs was lower than in age-matched controls (p = 0.0156 for early-antral and p = 0.0037 for antral follicles). Middle-aged SAMP8 showed similar numbers of follicles than controls, although recovered oocytes after ovarian stimulation were lower (p = 0.0068). Fertilization rate in oocytes from SAMP8 was not impaired, but SAMP8 mice produced significantly more morphologically abnormal embryos than controls (27.03% in SAMP8 vs. 1.22% in controls; p < 0.001). Our findings suggest telomere dysfunction in SAMP8 females, at the time of reproductive senescence.
Collapse
Affiliation(s)
- Alba M Polonio
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | - Marta Medrano
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | - Lucía Chico-Sordo
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | - Isabel Córdova-Oriz
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | | | | | - Sonia Herraiz
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | - Emre Seli
- IVIRMA New Jersey, Basking Ridge, NJ 07920, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Heaven, CT 06510, USA
| | - Antonio Pellicer
- IVIRMA Rome, Rome, Italy
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - Juan A García-Velasco
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- IVIRMA Madrid, Madrid, Spain
- Department of Obstetrics and Gynecology, Rey Juan Carlos University, Madrid, Spain
| | - Elisa Varela
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- Department of Obstetrics and Gynecology, Rey Juan Carlos University, Madrid, Spain
| |
Collapse
|
36
|
Portillo AM, Varela E, García-Velasco JA. Influence of telomerase activity and initial distribution on human follicular aging: Moving from a discrete to a continuum model. Math Biosci 2023; 358:108985. [PMID: 36828232 DOI: 10.1016/j.mbs.2023.108985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023]
Abstract
A discrete model is proposed for the temporal evolution of a population of cells sorted according to their telomeric length. This model assumes that, during cell division, the distribution of the genetic material to daughter cells is asymmetric, i.e. chromosomes of one daughter cell have the same telomere length as the mother, while in the other daughter cell telomeres are shorter. Telomerase activity and cell death are also taken into account. The continuous model is derived from the discrete model by introducing the generational age as a continuous variable in [0,h], being h the Hayflick limit, i.e. the number of times that a cell can divide before reaching the senescent state. A partial differential equation with boundary conditions is obtained. The solution to this equation depends on the initial telomere length distribution. The initial and boundary value problem is solved exactly when the initial distribution is of exponential type. For other types of initial distributions, a numerical solution is proposed. The model is applied to the human follicular growth from preantral to preovulatory follicle as a case study and the aging rate is studied as a function of telomerase activity, the initial distribution and the Hayflick limit. Young, middle and old cell-aged initial normal distributions are considered. In all cases, when telomerase activity decreases, the population ages and the smaller the h value, the higher the aging rate becomes. However, the influence of these two parameters is different depending on the initial distribution. In conclusion, the worst-case scenario corresponds to an aged initial telomere distribution.
Collapse
Affiliation(s)
- A M Portillo
- Instituto de Investigación en Matemáticas de la Universidad de Valladolid, Valladolid, Spain; Departamento de Matemática Aplicada, Escuela de Ingenierías Industriales, Universidad de Valladolid, Pso. Prado de la Magdalena 3-5, Valladolid, 47011, Spain.
| | - E Varela
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Edificio Biopolo. Av. Fernando Abril Martorell, 106 - Torre A, Planta 1, Valencia, 46026, Spain; Rey Juan Carlos University, Edificio Departamental II. Av. de Atenas, s/n, Alcorcón, Madrid, 28922, Spain.
| | - J A García-Velasco
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Edificio Biopolo. Av. Fernando Abril Martorell, 106 - Torre A, Planta 1, Valencia, 46026, Spain; IVIRMA Madrid, Av. del Talgo, 68, Madrid, 28023, Spain; Rey Juan Carlos University, Edificio Departamental II. Av. de Atenas, s/n, Alcorcón, Madrid, 28922, Spain.
| |
Collapse
|
37
|
Whittemore K, Fossel M. Editorial: Telomere length and species lifespan. Front Genet 2023; 14:1199667. [PMID: 37139235 PMCID: PMC10150125 DOI: 10.3389/fgene.2023.1199667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Affiliation(s)
- Kurt Whittemore
- Harvard Medical School, Boston, MA, United States
- *Correspondence: Kurt Whittemore, ; Michael Fossel,
| | - Michael Fossel
- Telocyte, Grand Rapids, MI, United States
- *Correspondence: Kurt Whittemore, ; Michael Fossel,
| |
Collapse
|
38
|
Domínguez-de-Barros A, Sifaoui I, Borecka Z, Dorta-Guerra R, Lorenzo-Morales J, Castro-Fuentes R, Córdoba-Lanús E. An approach to the effects of longevity, sexual maturity, and reproduction on telomere length and oxidative stress in different Psittacidae species. Front Genet 2023; 14:1156730. [PMID: 37021005 PMCID: PMC10067728 DOI: 10.3389/fgene.2023.1156730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Introduction: Aging is a multifactorial process that includes molecular changes such as telomere shortening. Telomeres shorten progressively with age in vertebrates, and their shortening rate has a significant role in determining the lifespan of a species. However, DNA loss can be enhanced by oxidative stress. The need for novel animal models has recently emerged as a tool to gather more information about the human aging process. Birds live longer than other mammals of the same size, and Psittacidae species are the most persevering of them, due to special key traits. Methods: We aimed to determine telomere length by qPCR, and oxidative stress status using colorimetric and fluorescence methods in different species of the order Psittaciformes with different lifespans. Results: We found that telomeres shorten with age for both long- and short-lived birds (p < 0.001 and p = 0.004, respectively), with long-lived birds presenting longer telomeres than short-lived ones (p = 0.001). In addition, short-lived birds accumulated more oxidative stress products than long-lived birds (p = 0.013), who showed a better antioxidant capacity (p < 0.001). Breeding was found related to telomere shortening in all species (p < 0.001 and p = 0.003 for long- and short-lived birds). Short-lived birds, especially breeding females, increased their oxidative stress products when breeding (p = 0.021), whereas long-lived birds showed greater resistance and even increased their antioxidant capacity (p = 0.002). Conclusion: In conclusion, the relationship between age and telomere length in Psittacidae was verified. The influence of breeding increased cumulative oxidative damage in short-lived species, while long-lived species may counteract this damage.
Collapse
Affiliation(s)
- Angélica Domínguez-de-Barros
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Inés Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Zuzanna Borecka
- Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Roberto Dorta-Guerra
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, La Laguna, Tenerife, Spain
- Departamento de Matemáticas, Estadística e Investigación Operativa, Facultad de Ciencias Sección de Matemáticas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, La Laguna, Tenerife, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Facultad de Ciencias de la Salud, Sección Medicina, Universidad de La Laguna, La Laguna, Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Castro-Fuentes
- Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud-Sección Medicina, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Elizabeth Córdoba-Lanús
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, La Laguna, Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Elizabeth Córdoba-Lanús,
| |
Collapse
|
39
|
Alternative telomere maintenance mechanism in Alligator sinensis provides insights into aging evolution. iScience 2022; 26:105850. [PMID: 36636341 PMCID: PMC9829719 DOI: 10.1016/j.isci.2022.105850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 11/27/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022] Open
Abstract
Lifespan is a life-history trait that undergoes natural selection. Telomeres are hallmarks of aging, and shortening rate predicts species lifespan, making telomere maintenance mechanisms throughout different lifespans a worthy topic for study. Alligators are suitable for the exploration of anti-aging molecular mechanisms, because they exhibit low or even negligible mortality in adults and no significant telomere shortening. Telomerase reverse transcriptase (TERT) expression is absent in the adult Alligator sinensis, as in humans. Selection analyses on telomere maintenance genes indicated that ATM, FANCE, SAMHD1, HMBOX1, NAT10, and MAP3K4 experienced positive selection on A. sinensis. Repressed pleiotropic ATM kinase in A. sinensis suggests their fitness optimum shift. In ATM downstream, Alternative Lengthening of Telomeres (ALT)-related genes were clustered in a higher expression pattern in A. sinensis, which covers 10-15% of human cancers showing no telomerase activities. In summary, we demonstrated how telomere shortening, telomerase activities, and ALT contributed to anti-aging strategies.
Collapse
|
40
|
Aversano S, Caiazza C, Caiazzo M. Induced pluripotent stem cell-derived and directly reprogrammed neurons to study neurodegenerative diseases: The impact of aging signatures. Front Aging Neurosci 2022; 14:1069482. [PMID: 36620769 PMCID: PMC9810544 DOI: 10.3389/fnagi.2022.1069482] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Many diseases of the central nervous system are age-associated and do not directly result from genetic mutations. These include late-onset neurodegenerative diseases (NDDs), which represent a challenge for biomedical research and drug development due to the impossibility to access to viable human brain specimens. Advancements in reprogramming technologies have allowed to obtain neurons from induced pluripotent stem cells (iPSCs) or directly from somatic cells (iNs), leading to the generation of better models to understand the molecular mechanisms and design of new drugs. Nevertheless, iPSC technology faces some limitations due to reprogramming-associated cellular rejuvenation which resets the aging hallmarks of donor cells. Given the prominent role of aging for the development and manifestation of late-onset NDDs, this suggests that this approach is not the most suitable to accurately model age-related diseases. Direct neuronal reprogramming, by which a neuron is formed via direct conversion from a somatic cell without going through a pluripotent intermediate stage, allows the possibility to generate patient-derived neurons that maintain aging and epigenetic signatures of the donor. This aspect may be advantageous for investigating the role of aging in neurodegeneration and for finely dissecting underlying pathological mechanisms. Here, we will compare iPSC and iN models as regards the aging status and explore how this difference is reported to affect the phenotype of NDD in vitro models.
Collapse
Affiliation(s)
- Simona Aversano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Carmen Caiazza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Massimiliano Caiazzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy,Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, Netherlands,*Correspondence: Massimiliano Caiazzo,
| |
Collapse
|
41
|
Brown TJ, Spurgin LG, Dugdale HL, Komdeur J, Burke T, Richardson DS. Causes and consequences of telomere lengthening in a wild vertebrate population. Mol Ecol 2022; 31:5933-5945. [PMID: 34219315 DOI: 10.1111/mec.16059] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/24/2021] [Accepted: 06/21/2021] [Indexed: 01/31/2023]
Abstract
Telomeres have been advocated to be important markers of biological age in evolutionary and ecological studies. Telomeres usually shorten with age and shortening is frequently associated with environmental stressors and increased subsequent mortality. Telomere lengthening - an apparent increase in telomere length between repeated samples from the same individual - also occurs. However, the exact circumstances, and consequences, of telomere lengthening are poorly understood. Using longitudinal data from the Seychelles warbler (Acrocephalus sechellensis), we tested whether telomere lengthening - which occurs in adults of this species - is associated with specific stressors (reproductive effort, food availability, malarial infection and cooperative breeding) and predicts subsequent survival. In females, telomere shortening was observed under greater stress (i.e., low food availability, malaria infection), while telomere lengthening was observed in females experiencing lower stress (i.e., high food availability, assisted by helpers, without malaria). The telomere dynamics of males were not associated with the key stressors tested. These results indicate that, at least for females, telomere lengthening occurs in circumstances more conducive to self-maintenance. Importantly, both females and males with lengthened telomeres had improved subsequent survival relative to individuals that displayed unchanged, or shortened, telomeres - indicating that telomere lengthening is associated with individual fitness. These results demonstrate that telomere dynamics are bidirectionally responsive to the level of stress that an individual faces, but may poorly reflect the accumulation of stress over an individuals lifetime.
Collapse
Affiliation(s)
- Thomas J Brown
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Hannah L Dugdale
- Behavioural and Physiological Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jan Komdeur
- Behavioural and Physiological Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Terry Burke
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich, UK.,Nature Seychelles, Victoria, Mahé, Seychelles
| |
Collapse
|
42
|
Chico-Sordo L, Polonio AM, Córdova-Oriz I, Medrano M, Herraiz S, Bronet F, García-Velasco JA, Varela E. Telomeres and oocyte maturation rate are not reduced by COVID-19 except in severe cases. Reproduction 2022; 164:259-267. [PMID: 36136831 DOI: 10.1530/rep-22-0243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/22/2022] [Indexed: 11/08/2022]
Abstract
In brief COVID-19 does not affect the telomeres or fertility outcomes in mild cases. However, in women with severe symptoms, telomeres of granulosa cells are shorter, and the oocyte maturation rate is decreased. Abstract The coronavirus SARS-CoV-2 causes COVID-19 disease and affects primarily the lungs and also other organs, causing accelerated cell aging. One of the main pathways involved in aging is telomere attrition, which ultimately leads to defective tissue regeneration and organ dysfunction. Indeed, short telomeres in aged people aggravate the COVID-19 symptoms, and COVID-19 survivors showed shorter telomeres in blood cells. The SARS-CoV-2 has been detected in testis, but the ovaries, which express the viral entry factors, have not been fully explored. Our objective was to analyze telomeres and reproductive outcomes in women who had COVID-19 and controls. In this prospective cohort study, granulosa cells (GCs) and blood were collected from 65 women. Telomere length (TL) was measured by high-throughput in situ hybridization. Mean TL of GCs and peripheral blood mononuclear cells (PBMCs) was alike in control and mild cases. However, mean TL of GCs was lower in severe cases compared to controls (P = 0.017). Control and COVID groups had similar ovarian reserve and number of total oocytes after puncture. However, the oocyte maturation rate was lower in severe cases (P = 0.018). Interestingly, a positive correlation between the oocyte maturation rate and TL of GCs was found in the control group (P = 0.024). Our findings point to a potential impact of the coronavirus infection on telomeres and reproductive outcomes in severe cases. This might be considered upon possible new SARS-CoV threats, to favor treatments that enhance oocyte maturation in women severely affected by coronavirus undergoing ART.
Collapse
Affiliation(s)
- L Chico-Sordo
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe) - Edificio Biopolo, Valencia, Spain
| | - A M Polonio
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe) - Edificio Biopolo, Valencia, Spain
| | - I Córdova-Oriz
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe) - Edificio Biopolo, Valencia, Spain
| | - M Medrano
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe) - Edificio Biopolo, Valencia, Spain
| | - S Herraiz
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe) - Edificio Biopolo, Valencia, Spain
| | | | - J A García-Velasco
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe) - Edificio Biopolo, Valencia, Spain.,IVIRMA Madrid, Madrid, Spain.,Rey Juan Carlos University, Edificio Departamental II, Alcorcón, Madrid, Spain
| | - E Varela
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe) - Edificio Biopolo, Valencia, Spain.,Rey Juan Carlos University, Edificio Departamental II, Alcorcón, Madrid, Spain
| |
Collapse
|
43
|
A Y, Shi S, Sun S, Jing Y, Li Z, Zhang X, Li X, Wu F. Telomerase activity, relative telomere length, and longevity in alfalfa ( Medicago sativa L.). PeerJ 2022. [DOI: 10.7717/peerj.14102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background
Medicago sativa L. ‘Qingshui’ is a valuable rhizomatous forage germplasm resource. We previously crossed Qingshui with the high-yielding Medicago sativa L. ‘WL168’ and obtained novel rhizomatous hybrid strains (RSA-01, RSA-02, and RSA-03). Telomere dynamics are more accurate predictors of survival and mortality than chronological age. Based on telomere analyses, we aimed to identify alfalfa varieties with increased stamina and longevity for the establishment of artificial grazing grasslands.
Methods
In this study, we performed longitudinal analysis of telomerase activity and relative telomere length in five alfalfa varieties (Qingshui, WL168, RSA-01, RSA-02, and RSA-03) at the age of 1 year and 5 years to examine the relationship among telomerase activity, rate of change in relative telomere length, and longevity. We further aimed to evaluate the longevity of the examined varieties. Telomerase activity and relative telomere length were measured using enzyme-linked immunosorbent assay and real-time polymerase chain reaction, respectively.
Results
We observed significant differences in telomerase activity between plants aged 1 year and those aged 5 years in all varieties except WL168, and the rate of change in telomerase activity does not differ reliably with age. As telomerase activity and relative telomere length are complex phenomena, further studies examining the molecular mechanisms of telomere-related proteins are needed. Relative telomere lengths of Qingshui, WL168, RSA-01, RSA-02, and RSA-03 in plants aged 5 years were higher than those aged 1 year by 11.41, 11.24, 9.21, 10.23, and 11.41, respectively. Relative telomere length of alfalfa tended to increase with age. Accordingly, alfalfa varieties can be classified according to rate of change in relative telomere length as long-lived (Qingshui, WL168, and RSA-03), medium-lived (RSA-02) and short-lived (RSA-01). The differences in relative telomere length distances of Qingshui, WL168, RSA-01, RSA-02, and RSA-03 between plants aged 1 and 5 years were 10.40, 13.02, 12.22, 11.22, and 13.25, respectively. The largest difference in relative telomere length was found between Qingshui and RSA-02 at 2.20. Our findings demonstrated that relative telomere length in alfalfa is influenced by genetic variation and age, with age exerting a greater effect.
Collapse
Affiliation(s)
- Yun A
- Gansu Agricultural University, Lanzhou, China
| | - Shangli Shi
- Gansu Agricultural University, Lanzhou, China
| | | | | | - Zili Li
- Gansu Agricultural University, Lanzhou, China
| | | | - Xiaolong Li
- Gansu Agricultural University, Lanzhou, China
| | - Fang Wu
- Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
44
|
M’Kacher R, Miguet M, Maillard PY, Colicchio B, Scheidecker S, Najar W, Arnoux M, Oudrhiri N, Borie C, Biehler M, Plesch A, Heidingsfelder L, Bennaceur-Griscelli A, Dieterlen A, Voisin P, Junker S, Carde P, Jeandidier E. A Central Role of Telomere Dysfunction in the Formation of a Unique Translocation within the Sub-Telomere Region Resulting in Duplication and Partial Trisomy. Genes (Basel) 2022; 13:genes13101762. [PMID: 36292646 PMCID: PMC9601474 DOI: 10.3390/genes13101762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
Telomeres play a major role in maintaining genome stability and integrity. Putative involvement of telomere dysfunction in the formation of various types of chromosomal aberrations is an area of active research. Here, we report a case of a six-month-old boy with a chromosomal gain encompassing the 11q22.3q25 region identified by SNP array analysis. The size of the duplication is 26.7 Mb and contains 170 genes (OMIM). The duplication results in partial trisomy of the region in question with clinical consequences, including bilateral renal dysplasia, delayed development, and a heart defect. Moreover, the karyotype determined by R-banding and chromosome painting as well as by hybridization with specific sub-telomere probes revealed the presence of an unbalanced t(9;11)(p24;q22.3) translocation with a unique breakpoint involving the sub-telomere region of the short arm of chromosome 9. The karyotypes of the parents were normal. Telomere integrity in circulating lymphocytes from the child and from his parents was assessed using an automated high-throughput method based on fluorescence in situ hybridization (FISH) with telomere- and centromere-specific PNA probes followed by M-FISH multicolor karyotyping. Very short telomeres, as well as an increased frequency of telomere loss and formation of telomere doublets, were detected in the child’s cells. Interestingly, similar telomere profiles were found in the circulating lymphocytes of the father. Moreover, an assessment of clonal telomere aberrations identified chromosomes 9 and 11 with particularly high frequencies of such aberrations. These findings strongly suggest that telomere dysfunction plays a central role in the formation of this specific unbalanced chromosome rearrangement via chromosome end-to-end fusion and breakage–fusion–bridge cycles.
Collapse
Affiliation(s)
- Radhia M’Kacher
- Cell Environment DNA Damage R&D, Genopole, 91058 Evry, France
- Correspondence: (R.M.); (E.J.); Tel.: +33-1-60878918 (R.M.); +33-3-89648703 (E.J.)
| | - Marguerite Miguet
- Laboratoire de Génétique, Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, 68070 Mulhouse, France
| | - Pierre-Yves Maillard
- Service de Génétique Hôpitaux Universitaires de Strasbourg, Hôpital de Haute Pierre, 1, Rue Molière, 67000 Strasbourg, France
| | - Bruno Colicchio
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 68070 Mulhouse, France
| | - Sophie Scheidecker
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 1, Place de l’Hôpital, 67000 Strasbourg, France
| | - Wala Najar
- Cell Environment DNA Damage R&D, Genopole, 91058 Evry, France
| | - Micheline Arnoux
- APHP-Service d’Hématologie-Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay, 94801 Villejuif, France
| | - Noufissa Oudrhiri
- APHP-Service d’Hématologie-Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay, 94801 Villejuif, France
| | - Claire Borie
- APHP-Service d’Hématologie-Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay, 94801 Villejuif, France
| | - Margaux Biehler
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 1, Place de l’Hôpital, 67000 Strasbourg, France
| | - Andreas Plesch
- MetaSystems GmbH, Robert-Bosch-Str. 6, 68804 Altlussheim, Germany
| | | | - Annelise Bennaceur-Griscelli
- APHP-Service d’Hématologie-Oncohématologie Moléculaire et Cytogénétique Hôpital Paul Brousse Université Paris Saclay, 94801 Villejuif, France
| | - Alain Dieterlen
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 68070 Mulhouse, France
| | - Philippe Voisin
- Cell Environment DNA Damage R&D, Genopole, 91058 Evry, France
| | - Steffen Junker
- Institute of Biomedicine, University of Aarhus, 8000 Aarhus, Denmark
| | - Patrice Carde
- Department of Hematology Gustave Roussy Cancer Campus, Paris Saclay, 94805 Villejuif, France
| | - Eric Jeandidier
- Laboratoire de Génétique, Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, 68070 Mulhouse, France
- Correspondence: (R.M.); (E.J.); Tel.: +33-1-60878918 (R.M.); +33-3-89648703 (E.J.)
| |
Collapse
|
45
|
Lupatov AY, Yarygin KN. Telomeres and Telomerase in the Control of Stem Cells. Biomedicines 2022; 10:biomedicines10102335. [PMID: 36289597 PMCID: PMC9598777 DOI: 10.3390/biomedicines10102335] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Stem cells serve as a source of cellular material in embryogenesis and postnatal growth and regeneration. This requires significant proliferative potential ensured by sufficient telomere length. Telomere attrition in the stem cells and their niche cells can result in the exhaustion of the regenerative potential of high-turnover organs, causing or contributing to the onset of age-related diseases. In this review, stem cells are examined in the context of the current telomere-centric theory of cell aging, which assumes that telomere shortening depends not just on the number of cell doublings (mitotic clock) but also on the influence of various internal and external factors. The influence of the telomerase and telomere length on the functional activity of different stem cell types, as well as on their aging and prospects of use in cell therapy applications, is discussed.
Collapse
|
46
|
Gao J, Pickett HA. Targeting telomeres: advances in telomere maintenance mechanism-specific cancer therapies. Nat Rev Cancer 2022; 22:515-532. [PMID: 35790854 DOI: 10.1038/s41568-022-00490-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/31/2022]
Abstract
Cancer cells establish replicative immortality by activating a telomere-maintenance mechanism (TMM), be it telomerase or the alternative lengthening of telomeres (ALT) pathway. Targeting telomere maintenance represents an intriguing opportunity to treat the vast majority of all cancer types. Whilst telomerase inhibitors have historically been heralded as promising anticancer agents, the reality has been more challenging, and there are currently no therapeutic options for cancer types that use ALT despite their aggressive nature and poor prognosis. In this Review, we discuss the mechanistic differences between telomere maintenance by telomerase and ALT, the current methods used to detect each mechanism, the utility of these tests for clinical diagnosis, and recent developments in the therapeutic strategies being employed to target both telomerase and ALT. We present notable developments in repurposing established therapeutic agents and new avenues that are emerging to target cancer types according to which TMM they employ. These opportunities extend beyond inhibition of telomere maintenance, by finding and exploiting inherent weaknesses in the telomeres themselves to trigger rapid cellular effects that lead to cell death.
Collapse
Affiliation(s)
- Jixuan Gao
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
47
|
Taheri M, Ghafouri-Fard S, Najafi S, Kallenbach J, Keramatfar E, Atri Roozbahani G, Heidari Horestani M, Hussen BM, Baniahmad A. Hormonal regulation of telomerase activity and hTERT expression in steroid-regulated tissues and cancer. Cancer Cell Int 2022; 22:258. [PMID: 35974340 PMCID: PMC9380309 DOI: 10.1186/s12935-022-02678-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
Naturally, in somatic cells chromosome ends (telomeres) shorten during each cell division. This process ensures to limit proliferation of somatic cells to avoid malignant proliferation; however, it leads to proliferative senescence. Telomerase contains the reverse transcriptase TERT, which together with the TERC component, is responsible for protection of genome integrity by preventing shortening of telomeres through adding repetitive sequences. In addition, telomerase has non-telomeric function and supports growth factor independent growth. Unlike somatic cells, telomerase is detectable in stem cells, germ line cells, and cancer cells to support self-renewal and expansion. Elevated telomerase activity is reported in almost all of human cancers. Increased expression of hTERT gene or its reactivation is required for limitless cellular proliferation in immortal malignant cells. In hormonally regulated tissues as well as in prostate, breast and endometrial cancers, telomerase activity and hTERT expression are under control of steroid sex hormones and growth factors. Also, a number of hormones and growth factors are known to play a role in the carcinogenesis via regulation of hTERT levels or telomerase activity. Understanding the role of hormones in interaction with telomerase may help finding therapeutical targets for anticancer strategies. In this review, we outline the roles and functions of several steroid hormones and growth factors in telomerase regulation, particularly in hormone regulated cancers such as prostate, breast and endometrial cancer.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Julia Kallenbach
- Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany
| | - Elmira Keramatfar
- Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany
| | | | | | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07740, Jena, Germany.
| |
Collapse
|
48
|
Edelson PK, Sawyer MR, Gray KJ, Cantonwine DE, McElrath TF, Phillippe M. Increase in short telomeres during the third trimester in human placenta. PLoS One 2022; 17:e0271415. [PMID: 35830448 PMCID: PMC9278733 DOI: 10.1371/journal.pone.0271415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/29/2022] [Indexed: 12/02/2022] Open
Abstract
An increase in telomere shortening in gestational tissues has been proposed as a mechanism involved in the timing for the initiation of parturition. An increase in very short telomeres with increasing gestational age has been observed in mice; this study sought to explore this phenomenon in human pregnancies. Specifically, this study addressed the hypothesis that prior to labor, the quantity of very short telomeres (<3 kilobase (kb) lengths) increases in human placental tissue as term gestation approaches. The primary outcome was the quantity of very short telomeres present in placental tissue. Quantitative measurements of very short telomeres were performed using real-time polymerase chain reaction (qPCR) adaptation of the telomere restriction fragment technique. Placental tissue from 69 pregnant individuals were included. Mean gestational age was 39.1 weeks (term) and 36.2 weeks (preterm). For term versus preterm placentas, the observed increase in very short telomeres were as follows: 500 bp telomeres increased by 1.67-fold (p < 0.03); 1 kb telomeres increased 1.67-fold (p < 0.08); and 3 kb telomeres increased 5.20-fold (p < 0.001). This study confirms a significant increase in very short telomeres in human placental tissue at term; thereby supporting the hypothesis that telomere shortening at term contributes to the mechanism that determine the length of pregnancy thereby leading to onset of parturition.
Collapse
Affiliation(s)
- Paula K. Edelson
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Michala R. Sawyer
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Kathryn J. Gray
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - David E. Cantonwine
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Thomas F. McElrath
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Mark Phillippe
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
49
|
Magnano San Lio R, Maugeri A, La Rosa MC, Giunta G, Panella M, Cianci A, Caruso MAT, Agodi A, Barchitta M. Nutrient intakes and telomere length of cell-free circulating DNA from amniotic fluid: findings from the Mamma & Bambino cohort. Sci Rep 2022; 12:11671. [PMID: 35804173 PMCID: PMC9270384 DOI: 10.1038/s41598-022-15370-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Pregnancy represents a crucial period in which several exposures—and especially maternal diet—might shape children’s health. Thus, identifying how maternal dietary intakes early affect biological aging in children represents a public health mission. We aimed to assess the relationship between maternal intake of nutrients in early pregnancy and telomere length of cell-free circulating DNA (cfDNA) from amniotic fluid. We used data and samples from the ongoing prospective “Mamma & Bambino” study, which recruits mother–child pairs from Catania at the first prenatal visit. Maternal nutrient intakes were assessed using a Food Frequency Questionnaire, while relative telomere length of cfDNA was assessed by real-time polymerase chain reaction. Our analysis included 174 mother–child pairs. The intakes of iron, vitamin B1, and magnesium were positively correlated with relative telomere length (p-values < 0.05). However, only the intake of magnesium was positively associated with relative telomere length, after applying a linear regression model (β = 0.002; SE = 0.001; p = 0.024). Magnesium deficiency was negatively associated with relative telomere length after adjusting for the same covariates (β = −0.467; SE = 0.176; p = 0.009). To our knowledge, this is the first evidence of a positive relationship between maternal nutrient intake and telomere length of cfDNA. Further efforts are needed for deeply investigating the effect of maternal dietary intakes on telomere length, in order to develop effective public health strategies.
Collapse
Affiliation(s)
- Roberta Magnano San Lio
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S.Sofia, 87, 95123, Catania, Italy
| | - Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S.Sofia, 87, 95123, Catania, Italy
| | - Maria Clara La Rosa
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S.Sofia, 87, 95123, Catania, Italy
| | - Giuliana Giunta
- Obstetrics and Gynecology Unit, Department of General Surgery and Medical Surgical Specialties, University of Catania, Via S.Sofia, 78, 95123, Catania, Italy
| | - Marco Panella
- Obstetrics and Gynecology Unit, Department of General Surgery and Medical Surgical Specialties, University of Catania, Via S.Sofia, 78, 95123, Catania, Italy
| | - Antonio Cianci
- Obstetrics and Gynecology Unit, Department of General Surgery and Medical Surgical Specialties, University of Catania, Via S.Sofia, 78, 95123, Catania, Italy
| | - Maria Anna Teresa Caruso
- Cytogenetic Laboratory, Azienda Ospedaliero Universitaria Policlinico "G.Rodolico - San Marco", Via S.Sofia, 78, 95123, Catania, Italy
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S.Sofia, 87, 95123, Catania, Italy.
| | - Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via S.Sofia, 87, 95123, Catania, Italy
| |
Collapse
|
50
|
Brown TJ, Dugdale HL, Hammers M, Komdeur J, Richardson DS. Seychelles warblers with silver spoons: Juvenile body mass is a lifelong predictor of annual survival, but not annual reproduction or senescence. Ecol Evol 2022; 12:e9049. [PMID: 35813920 PMCID: PMC9251861 DOI: 10.1002/ece3.9049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/03/2022] Open
Abstract
The environment experienced during development, and its impact on intrinsic condition, can have lasting outcomes for individual phenotypes and could contribute to variation in adult senescence trajectories. However, the nature of this relationship in wild populations remains uncertain, owing to the difficulties in summarizing natal conditions and in long-term monitoring of individuals from free-roaming long-lived species. Utilizing a closely monitored, closed population of Seychelles warblers (Acrocephalus sechellensis), we determine whether juvenile body mass is associated with natal socioenvironmental factors, specific genetic traits linked to fitness in this system, survival to adulthood, and senescence-related traits. Juveniles born in seasons with higher food availability and into smaller natal groups (i.e., fewer competitors) were heavier. In contrast, there were no associations between juvenile body mass and genetic traits. Furthermore, size-corrected mass-but not separate measures of natal food availability, group size, or genetic traits-was positively associated with survival to adulthood, suggesting juvenile body mass is indicative of natal condition. Heavier juveniles had greater body mass and had higher rates of annual survival as adults, independent of age. In contrast, there was no association between juvenile mass and adult telomere length attrition (a measure of somatic stress) nor annual reproduction. These results indicate that juvenile body mass, while not associated with senescence trajectories, can influence the likelihood of surviving to old age, potentially due to silver-spoon effects. This study shows that measures of intrinsic condition in juveniles can provide important insights into the long-term fitness of individuals in wild populations.
Collapse
Affiliation(s)
- Thomas J. Brown
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Hannah L. Dugdale
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Martijn Hammers
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Jan Komdeur
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - David S. Richardson
- School of Biological SciencesUniversity of East AngliaNorwichUK
- Nature SeychellesVictoria, MahéSeychelles
| |
Collapse
|