1
|
L Ruden X, Singh A, Marben T, Tang W, O Awonuga A, Ruden DM, E Puscheck E, Feng H, Korzeniewski SJ, A Rappolee D. A Single Cell Transcriptomic Fingerprint of Stressed Premature, Imbalanced Differentiation of Embryonic Stem Cells. Birth Defects Res 2024; 116:e2409. [PMID: 39482570 DOI: 10.1002/bdr2.2409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 08/13/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Miscarriages cause a greater loss-of-life than cardiovascular diseases, but knowledge about environmentally induced miscarriages is limited. Cultured naïve pluripotent embryonic stem cells (ESC) differentiate into extra-embryonic endoderm/extraembryonic endoderm (XEN) or formative pluripotent ESC, during the period emulating maximal miscarriage of peri-implantation development. In previous reports using small marker sets, hyperosmotic sorbitol, or retinoic acid (RA) decreased naïve pluripotency and increased XEN by FACS quantitation. METHODS Bulk and single cell (sc)RNAseq analyses of two cultured ESC lines was done, corroborated by qPCR. Transcriptomic responses were analyzed of cultured ESC stressed by Sorbitol, with Leukemia inhibitory factor (LIF + ; stemness growth factor), RA without LIF to control for XEN induction, and compared with normal differentiation (LIF - , ND). RESULTS Sorbitol and RA increase subpopulations of 2-cell embryo-like (2CEL) and XEN sub-lineages; primitive, parietal, and visceral endoderm (VE) cells and suppress formative pluripotency, imbalancing alternate lineage choices of initial naïve pluripotent cultured ESC compared with ND. Although bulk RNAseq and gene ontology (GO) group analyses suggest that stress induces anterior VE-head organizer and placental markers, scRNAseq reveals relatively few cells. But VE and placental markers/cells were in adjacent stressed cell clusters in the UMAP, like recent, normal UMAP of conceptuses. UMAPs show that dose-dependent stress overrides stemness to force premature lineage imbalance. CONCLUSIONS Hyperosmotic stress, and other toxicological stresses, like drugs with active ingredient RA, may cause premature, lineage imbalance, resulting in miscarriages or birth defects.
Collapse
Affiliation(s)
- Ximena L Ruden
- CS Mott Center/Ob/Gyn Department, Wayne State University (WSU), Detroit, Michigan, USA
- Reproductive Stress Inc, Grosse Pointe Farms, Michigan, USA
| | - Aditi Singh
- CS Mott Center/Ob/Gyn Department, Wayne State University (WSU), Detroit, Michigan, USA
- WSU Center for Molecular Medicine and Genetics, Detroit, Michigan, USA
| | - Teya Marben
- University of Detroit, Detroit, Michigan, USA
| | - Wen Tang
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Awoniyi O Awonuga
- CS Mott Center/Ob/Gyn Department, Wayne State University (WSU), Detroit, Michigan, USA
| | - Douglas M Ruden
- CS Mott Center/Ob/Gyn Department, Wayne State University (WSU), Detroit, Michigan, USA
- Institute for Environmental Health Sciences, Wayne State University, Detroit, USA
| | - Elizabeth E Puscheck
- CS Mott Center/Ob/Gyn Department, Wayne State University (WSU), Detroit, Michigan, USA
- Reproductive Stress Inc, Grosse Pointe Farms, Michigan, USA
- Invia Fertility, Chicago, Illinois, USA
| | - Hao Feng
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Steven J Korzeniewski
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Daniel A Rappolee
- CS Mott Center/Ob/Gyn Department, Wayne State University (WSU), Detroit, Michigan, USA
- Reproductive Stress Inc, Grosse Pointe Farms, Michigan, USA
- WSU Center for Molecular Medicine and Genetics, Detroit, Michigan, USA
- Department of Physiology, Wayne State University (WSU), Detroit, Michigan, USA
| |
Collapse
|
2
|
Ee LS, Medina-Cano D, Uyehara CM, Schwarz C, Goetzler E, Salataj E, Polyzos A, Madhuranath S, Evans T, Hadjantonakis AK, Apostolou E, Vierbuchen T, Stadtfeld M. Transcriptional remodeling by OTX2 directs specification and patterning of mammalian definitive endoderm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596630. [PMID: 38854146 PMCID: PMC11160813 DOI: 10.1101/2024.05.30.596630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The molecular mechanisms that drive essential developmental patterning events in the mammalian embryo remain poorly understood. To generate a conceptual framework for gene regulatory processes during germ layer specification, we analyzed transcription factor (TF) expression kinetics around gastrulation and during in vitro differentiation. This approach identified Otx2 as a candidate regulator of definitive endoderm (DE), the precursor of all gut- derived tissues. Analysis of multipurpose degron alleles in gastruloid and directed differentiation models revealed that loss of OTX2 before or after DE specification alters the expression of core components and targets of specific cellular signaling pathways, perturbs adhesion and migration programs as well as de-represses regulators of other lineages, resulting in impaired foregut specification. Key targets of OTX2 are conserved in human DE. Mechanistically, OTX2 is required to establish chromatin accessibility at candidate enhancers, which regulate genes critical to establishing an anterior cell identity in the developing gut. Our results provide a working model for the progressive establishment of spatiotemporal cell identity by developmental TFs across germ layers and species, which may facilitate the generation of gut cell types for regenerative medicine applications.
Collapse
Affiliation(s)
- LS Ee
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - D Medina-Cano
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - CM Uyehara
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - C Schwarz
- Emerald Cloud Lab, Austin, TX 78728 USA
| | - E Goetzler
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - E Salataj
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - A Polyzos
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - S Madhuranath
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - T Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, New York, NY 10065, USA
| | - AK Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - E Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - T Vierbuchen
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - M Stadtfeld
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
3
|
Zhao H, Li D, Xiao X, Liu C, Chen G, Su X, Yan Z, Gu S, Wang Y, Li G, Feng J, Li W, Chen P, Yang J, Li Q. Pluripotency state transition of embryonic stem cells requires the turnover of histone chaperone FACT on chromatin. iScience 2024; 27:108537. [PMID: 38213626 PMCID: PMC10783625 DOI: 10.1016/j.isci.2023.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/06/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024] Open
Abstract
The differentiation of embryonic stem cells (ESCs) begins with the transition from the naive to the primed state. The formative state was recently established as a critical intermediate between the two states. Here, we demonstrate the role of the histone chaperone FACT in regulating the naive-to-formative transition. We found that the Q265K mutation in the FACT subunit SSRP1 increased the binding of FACT to histone H3-H4, impaired nucleosome disassembly in vitro, and reduced the turnover of FACT on chromatin in vivo. Strikingly, mouse ESCs harboring this mutation showed elevated naive-to-formative transition. Mechanistically, the SSRP1-Q265K mutation enriched FACT at the enhancers of formative-specific genes to increase targeted gene expression. Together, these findings suggest that the turnover of FACT on chromatin is crucial for regulating the enhancers of formative-specific genes, thereby mediating the naive-to-formative transition. This study highlights the significance of FACT in fine-tuning cell fate transition during early development.
Collapse
Affiliation(s)
- Hang Zhao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Di Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xue Xiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guifang Chen
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Xiaoyu Su
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhenxin Yan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shijia Gu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yizhou Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Feng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Wei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jiayi Yang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Kondoh H. Different Types of Pluripotent Stem Cells Represent Different Developmental Stages. Results Probl Cell Differ 2024; 72:11-25. [PMID: 38509250 DOI: 10.1007/978-3-031-39027-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Pluripotent stem cell lines established from early-stage embryos of mammals or other species represent the embryonic stages before the initiation of somatic development. In these stem cell lines, cell proliferation capacity is maintained while developmental progression is arrested at a specific developmental stage that is determined by the combination of culture conditions, cell state, and species. All of these pluripotent stem cell lines express the transcription factors (TFs) Sox2 and Pou5f1 (Oct3/4); hence, these TFs are often regarded as pluripotency factors. However, the regulatory roles of these TFs vary depending on the cell line type. The cell lines representing preimplantation stage embryonic cells (mouse embryonic stem cells, mESCs) are regulated principally by the combined action of Sox2 and Pou5f1. Human ESCs and mouse epiblast stem cells (EpiSCs) represent immature and mature epiblast cells, respectively, where Otx2 and Zic2 progressively take over the preimplantation stage's regulatory roles of Sox2 and Pou5f1. This transition of the core TFs occurs to prepare for the initiation of somatic development.
Collapse
Affiliation(s)
- Hisato Kondoh
- Osaka University, Suita, Osaka, Japan
- Biohistory Research Hall, Takatsuki, Osaka, Japan
| |
Collapse
|
5
|
Hasan A, Khan NA, Uddin S, Khan AQ, Steinhoff M. Deregulated transcription factors in the emerging cancer hallmarks. Semin Cancer Biol 2024; 98:31-50. [PMID: 38123029 DOI: 10.1016/j.semcancer.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/25/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Cancer progression is a multifaceted process that entails several stages and demands the persistent expression or activation of transcription factors (TFs) to facilitate growth and survival. TFs are a cluster of proteins with DNA-binding domains that attach to promoter or enhancer DNA strands to start the transcription of genes by collaborating with RNA polymerase and other supporting proteins. They are generally acknowledged as the major regulatory molecules that coordinate biological homeostasis and the appropriate functioning of cellular components, subsequently contributing to human physiology. TFs proteins are crucial for controlling transcription during the embryonic stage and development, and the stability of different cell types depends on how they function in different cell types. The development and progression of cancer cells and tumors might be triggered by any anomaly in transcription factor function. It has long been acknowledged that cancer development is accompanied by the dysregulated activity of TF alterations which might result in faulty gene expression. Recent studies have suggested that dysregulated transcription factors play a major role in developing various human malignancies by altering and rewiring metabolic processes, modifying the immune response, and triggering oncogenic signaling cascades. This review emphasizes the interplay between TFs involved in metabolic and epigenetic reprogramming, evading immune attacks, cellular senescence, and the maintenance of cancer stemness in cancerous cells. The insights presented herein will facilitate the development of innovative therapeutic modalities to tackle the dysregulated transcription factors underlying cancer.
Collapse
Affiliation(s)
- Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Lucknow 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow 226026, India
| | - Naushad Ahmad Khan
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Biosciences, Integral University, Lucknow 226026, India; Animal Research Center, Qatar University, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar.
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Animal Research Center, Qatar University, Doha, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar
| |
Collapse
|
6
|
Wulff-Fuentes E, Boakye J, Kroenke K, Berendt RR, Martinez-Morant C, Pereckas M, Hanover JA, Olivier-Van Stichelen S. O-GlcNAcylation regulates OTX2's proteostasis. iScience 2023; 26:108184. [PMID: 38026167 PMCID: PMC10661118 DOI: 10.1016/j.isci.2023.108184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/28/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
O-GlcNAcylation is a key post-translational modification, playing a vital role in cell signaling during development, especially in the brain. In this study, we investigated the role of O-GlcNAcylation in regulating the homeobox protein OTX2, which contributes to various brain disorders, such as combined pituitary hormone deficiency, retinopathy, and medulloblastoma. Our research demonstrated that, under normal physiological conditions, the proteasome plays a pivotal role in breaking down endogenous OTX2. However, when the levels of OTX2 rise, it forms oligomers and/or aggregates that require macroautophagy for clearance. Intriguingly, we demonstrated that O-GlcNAcylation enhances the solubility of OTX2, thereby limiting the formation of these aggregates. Additionally, we unveiled an interaction between OTX2 and the chaperone protein CCT5 at the O-GlcNAc sites, suggesting a potential collaborative role in preventing OTX2 aggregation. Finally, our study demonstrated that while OTX2 physiologically promotes cell proliferation, an O-GlcNAc-depleted OTX2 is detrimental to cancer cells.
Collapse
Affiliation(s)
| | - Jeffrey Boakye
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0851, USA
| | - Kaeley Kroenke
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rex R. Berendt
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Michaela Pereckas
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0851, USA
| | - Stephanie Olivier-Van Stichelen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
7
|
Aich M, Ansari AH, Ding L, Iesmantavicius V, Paul D, Choudhary C, Maiti S, Buchholz F, Chakraborty D. TOBF1 modulates mouse embryonic stem cell fate through regulating alternative splicing of pluripotency genes. Cell Rep 2023; 42:113177. [PMID: 37751355 DOI: 10.1016/j.celrep.2023.113177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/28/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Embryonic stem cells (ESCs) can undergo lineage-specific differentiation, giving rise to different cell types that constitute an organism. Although roles of transcription factors and chromatin modifiers in these cells have been described, how the alternative splicing (AS) machinery regulates their expression has not been sufficiently explored. Here, we show that the long non-coding RNA (lncRNA)-associated protein TOBF1 modulates the AS of transcripts necessary for maintaining stem cell identity in mouse ESCs. Among the genes affected is serine/arginine splicing factor 1 (SRSF1), whose AS leads to global changes in splicing and expression of a large number of downstream genes involved in the maintenance of ESC pluripotency. By overlaying information derived from TOBF1 chromatin occupancy, the distribution of its pluripotency-associated OCT-SOX binding motifs, and transcripts undergoing differential expression and AS upon its knockout, we describe local nuclear territories where these distinct events converge. Collectively, these contribute to the maintenance of mouse ESC identity.
Collapse
Affiliation(s)
- Meghali Aich
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Asgar Hussain Ansari
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Li Ding
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Vytautas Iesmantavicius
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Deepanjan Paul
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Chunaram Choudhary
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Souvik Maiti
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Debojyoti Chakraborty
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Shojaee A, Huang SSC. Robust discovery of gene regulatory networks from single-cell gene expression data by Causal Inference Using Composition of Transactions. Brief Bioinform 2023; 24:bbad370. [PMID: 37897702 PMCID: PMC10612495 DOI: 10.1093/bib/bbad370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/06/2023] [Accepted: 09/29/2023] [Indexed: 10/30/2023] Open
Abstract
Gene regulatory networks (GRNs) drive organism structure and functions, so the discovery and characterization of GRNs is a major goal in biological research. However, accurate identification of causal regulatory connections and inference of GRNs using gene expression datasets, more recently from single-cell RNA-seq (scRNA-seq), has been challenging. Here we employ the innovative method of Causal Inference Using Composition of Transactions (CICT) to uncover GRNs from scRNA-seq data. The basis of CICT is that if all gene expressions were random, a non-random regulatory gene should induce its targets at levels different from the background random process, resulting in distinct patterns in the whole relevance network of gene-gene associations. CICT proposes novel network features derived from a relevance network, which enable any machine learning algorithm to predict causal regulatory edges and infer GRNs. We evaluated CICT using simulated and experimental scRNA-seq data in a well-established benchmarking pipeline and showed that CICT outperformed existing network inference methods representing diverse approaches with many-fold higher accuracy. Furthermore, we demonstrated that GRN inference with CICT was robust to different levels of sparsity in scRNA-seq data, the characteristics of data and ground truth, the choice of association measure and the complexity of the supervised machine learning algorithm. Our results suggest aiming at directly predicting causality to recover regulatory relationships in complex biological networks substantially improves accuracy in GRN inference.
Collapse
Affiliation(s)
- Abbas Shojaee
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Shao-shan Carol Huang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
9
|
Ruden X, Singh A, Marben T, Tang W, Awonuga A, Ruden DM, Puscheck E, Feng H, Rappolee D. A single cell transcriptomic fingerprint of stressed premature, imbalanced differentiation of embryonic stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541952. [PMID: 37292812 PMCID: PMC10245821 DOI: 10.1101/2023.05.23.541952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cultured naïve pluripotent ESC differentiate into first lineage, XEN or second lineage, formative pluripotency. Hyperosmotic stress (sorbitol), like retinoic acid, decreases naive pluripotency and increases XEN in two ESC lines, as reported by bulk and scRNAseq, analyzed by UMAP. Sorbitol overrides pluripotency in two ESC lines as reported by bulk and scRNAseq, analyzed by UMAP. UMAP analyzed the effects of 5 stimuli - three stressed (200-300mM sorbitol with leukemia inhibitory factor +LIF) and two unstressed (+LIF, normal stemness-NS and -LIF, normal differentiation-ND). Sorbitol and RA decrease naive pluripotency and increase subpopulations of 2-cell embryo-like and XEN sub-lineages; primitive, parietal, and visceral endoderm (VE). Between the naïve pluripotency and primitive endoderm clusters is a stress-induced cluster with transient intermediate cells with higher LIF receptor signaling, with increased Stat3, Klf4, and Tbx3 expression. Sorbitol, like RA, also suppresses formative pluripotency, increasing lineage imbalance. Although bulk RNAseq and gene ontology group analyses suggest that stress induces head organizer and placental markers, scRNAseq reveals few cells. But VE and placental markers/cells were in adjacent clusters, like recent reports. UMAPs show that dose-dependent stress overrides stemness to force premature lineage imbalance. Hyperosmotic stress induces lineage imbalance, and other toxicological stresses, like drugs with RA, may cause lineage imbalance, resulting in miscarriages or birth defects.
Collapse
|
10
|
Furlan G, Huyghe A, Combémorel N, Lavial F. Molecular versatility during pluripotency progression. Nat Commun 2023; 14:68. [PMID: 36604434 PMCID: PMC9814743 DOI: 10.1038/s41467-022-35775-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
A challenge during development is to ensure lineage segregation while preserving plasticity. Using pluripotency progression as a paradigm, we review how developmental transitions are coordinated by redeployments, rather than global resettings, of cellular components. We highlight how changes in response to extrinsic cues (FGF, WNT, Activin/Nodal, Netrin-1), context- and stoichiometry-dependent action of transcription factors (Oct4, Nanog) and reconfigurations of epigenetic regulators (enhancers, promoters, TrxG, PRC) may confer robustness to naïve to primed pluripotency transition. We propose the notion of Molecular Versatility to regroup mechanisms by which molecules are repurposed to exert different, sometimes opposite, functions in close stem cell configurations.
Collapse
Affiliation(s)
- Giacomo Furlan
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France
- Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, ON, Canada
| | - Aurélia Huyghe
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France
| | - Noémie Combémorel
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France
| | - Fabrice Lavial
- Cellular reprogramming, stem cells and oncogenesis laboratory - Equipe labellisée La Ligue Contre le Cancer - LabEx Dev2Can - Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, 69008, France.
| |
Collapse
|
11
|
Gupta S, Polit LD, Fitzgerald M, Rowland HA, Murali D, Buckley NJ, Subramaniam S. Temporal transcriptional control of neural induction in human induced pluripotent stem cells. Front Mol Neurosci 2023; 16:1139287. [PMID: 37213689 PMCID: PMC10195998 DOI: 10.3389/fnmol.2023.1139287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/14/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Neural induction of human induced pluripotent stem cells represents a critical switch in cell state during which pluripotency is lost and commitment to a neural lineage is initiated. Although many of the key transcription factors involved in neural induction are known, we know little of the temporal and causal relationships that are required for this state transition. Methods Here, we have carried out a longitudinal analysis of the transcriptome of human iPSCs undergoing neural induction. Using the temporal relationships between the changing profile of key transcription factors and subsequent changes in their target gene expression profiles, we have identified distinct functional modules operative throughout neural induction. Results In addition to modules that govern loss of pluripotency and gain of neural ectoderm identity, we discover other modules governing cell cycle and metabolism. Strikingly, some of these functional modules are retained throughout neural induction, even though the gene membership of the module changes. Systems analysis identifies other modules associated with cell fate commitment, genome integrity, stress response and lineage specification. We then focussed on OTX2, one of the most precociously activated transcription factors during neural induction. Our temporal analysis of OTX2 target gene expression identified several OTX2 regulated gene modules representing protein remodelling, RNA splicing and RNA processing. Further CRISPRi inhibition of OTX2 prior to neural induction promotes an accelerated loss of pluripotency and a precocious and aberrant neural induction disrupting some of the previously identified modules. Discussion We infer that OTX2 has a diverse role during neural induction and regulates many of the biological processes that are required for loss of pluripotency and gain of neural identity. This dynamical analysis of transcriptional changes provides a unique perspective of the widespread remodelling of the cell machinery that occurs during neural induction of human iPSCs.
Collapse
Affiliation(s)
- Shakti Gupta
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Lucia Dutan Polit
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Michael Fitzgerald
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Helen A. Rowland
- Department of Psychiatry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| | - Divya Murali
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Noel J. Buckley
- Department of Psychiatry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
- *Correspondence: Noel J. Buckley, ; Shankar Subramaniam,
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
- Departments of Computer Science and Engineering, and Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States
- *Correspondence: Noel J. Buckley, ; Shankar Subramaniam,
| |
Collapse
|
12
|
Schnirman RE, Kuo SJ, Kelly RC, Yamaguchi TP. The role of Wnt signaling in the development of the epiblast and axial progenitors. Curr Top Dev Biol 2023; 153:145-180. [PMID: 36967193 DOI: 10.1016/bs.ctdb.2023.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Understanding how the body plan is established during embryogenesis remains a fundamental biological question. The Wnt/β-catenin signaling pathway plays a crucial and highly conserved role in body plan formation, functioning to polarize the primary anterior-posterior (AP) or head-to-tail body axis in most metazoans. In this chapter, we focus on the roles that the mammalian Wnt/β-catenin pathway plays to prepare the pluripotent epiblast for gastrulation, and to elicit the emergence of multipotent axial progenitors from the caudal epiblast. Interactions between Wnt and retinoic acid (RA), another powerful family of developmental signaling molecules, in axial progenitors will also be discussed. Gastrulation movements and somitogenesis result in the anterior displacement of the RA source (the rostral somites and lateral plate mesoderm (LPM)), from the posterior Wnt source (the primitive streak (PS)), leading to the establishment of antiparallel gradients of RA and Wnt that control the self-renewal and successive differentiation of neck, trunk and tail progenitors.
Collapse
Affiliation(s)
| | - Samuel J Kuo
- NCI-Frederick, NIH, Frederick, MD, United States
| | - Ryan C Kelly
- NCI-Frederick, NIH, Frederick, MD, United States
| | | |
Collapse
|
13
|
Endoh M, Niwa H. Stepwise pluripotency transitions in mouse stem cells. EMBO Rep 2022; 23:e55010. [PMID: 35903955 PMCID: PMC9442314 DOI: 10.15252/embr.202255010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 07/31/2023] Open
Abstract
Pluripotent cells in mouse embryos, which first emerge in the inner cell mass of the blastocyst, undergo gradual transition marked by changes in gene expression, developmental potential, polarity, and morphology as they develop from the pre-implantation until post-implantation gastrula stage. Recent studies of cultured mouse pluripotent stem cells (PSCs) have clarified the presence of intermediate pluripotent stages between the naïve pluripotent state represented by embryonic stem cells (ESCs-equivalent to the pre-implantation epiblast) and the primed pluripotent state represented by epiblast stem cells (EpiSCs-equivalent to the late post-implantation gastrula epiblast). In this review, we discuss these recent findings in light of our knowledge on peri-implantation mouse development and consider the implications of these new PSCs to understand their temporal sequence and the feasibility of using them as model system for pluripotency.
Collapse
Affiliation(s)
- Mitsuhiro Endoh
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG)Kumamoto UniversityKumamotoJapan
| | - Hitoshi Niwa
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG)Kumamoto UniversityKumamotoJapan
| |
Collapse
|
14
|
Romeike M, Spach S, Huber M, Feng S, Vainorius G, Elling U, Versteeg GA, Buecker C. Transient upregulation of IRF1 during exit from naive pluripotency confers viral protection. EMBO Rep 2022; 23:e55375. [PMID: 35852463 PMCID: PMC9442322 DOI: 10.15252/embr.202255375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 11/15/2022] Open
Abstract
Stem cells intrinsically express a subset of genes which are normally associated with interferon stimulation and the innate immune response. However, the expression of these interferon-stimulated genes (ISG) in stem cells is independent from external stimuli such as viral infection. Here, we show that the interferon regulatory factor 1, Irf1, is directly controlled by the murine formative pluripotency gene regulatory network and transiently upregulated during the transition from naive to formative pluripotency. IRF1 binds to regulatory regions of a conserved set of ISGs and is required for their faithful expression upon exit from naive pluripotency. We show that in the absence of IRF1, cells exiting the naive pluripotent stem cell state are more susceptible to viral infection. Irf1 therefore acts as a link between the formative pluripotency network, regulation of innate immunity genes, and defense against viral infections during formative pluripotency.
Collapse
Affiliation(s)
- Merrit Romeike
- Max Perutz Labs ViennaVienna Biocenter (VBC), University of ViennaViennaAustria
- Vienna Biocenter PhD ProgramA Doctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Stephanie Spach
- Max Perutz Labs ViennaVienna Biocenter (VBC), University of ViennaViennaAustria
| | - Marie Huber
- Max Perutz Labs ViennaVienna Biocenter (VBC), University of ViennaViennaAustria
| | - Songjie Feng
- Max Perutz Labs ViennaVienna Biocenter (VBC), University of ViennaViennaAustria
- Vienna Biocenter PhD ProgramA Doctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Gintautas Vainorius
- Vienna Biocenter PhD ProgramA Doctoral School of the University of Vienna and Medical University of ViennaViennaAustria
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA)Vienna Biocenter (VBC)ViennaAustria
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA)Vienna Biocenter (VBC)ViennaAustria
| | - Gjis A Versteeg
- Max Perutz Labs ViennaVienna Biocenter (VBC), University of ViennaViennaAustria
| | - Christa Buecker
- Max Perutz Labs ViennaVienna Biocenter (VBC), University of ViennaViennaAustria
| |
Collapse
|
15
|
Wang X, Wu Q. The Divergent Pluripotent States in Mouse and Human Cells. Genes (Basel) 2022; 13:genes13081459. [PMID: 36011370 PMCID: PMC9408542 DOI: 10.3390/genes13081459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Pluripotent stem cells (PSCs), which can self-renew and give rise to all cell types in all three germ layers, have great potential in regenerative medicine. Recent studies have shown that PSCs can have three distinct but interrelated pluripotent states: naive, formative, and primed. The PSCs of each state are derived from different stages of the early developing embryo and can be maintained in culture by different molecular mechanisms. In this review, we summarize the current understanding on features of the three pluripotent states and review the underlying molecular mechanisms of maintaining their identities. Lastly, we discuss the interrelation and transition among these pluripotency states. We believe that comprehending the divergence of pluripotent states is essential to fully harness the great potential of stem cells in regenerative medicine.
Collapse
Affiliation(s)
| | - Qiang Wu
- Correspondence: ; Tel.: +853-8897-2708
| |
Collapse
|
16
|
Oct4 dependent chromatin activation is required for chicken primordial germ cell migration. Stem Cell Rev Rep 2022; 18:2535-2546. [PMID: 35397052 DOI: 10.1007/s12015-022-10371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
Abstract
Primordial germ cells (PGCs) are the undifferentiated progenitors of the gametes. Unlike the poor maintenance of cultured mammalian PGCs, the avian PGCs can be expanded in vitro indefinitely while preserving pluripotency and germline competence. In mammals, the Oct4 is the master transcription factor that ensures the stemness of pluripotent cells such as PGCs, but the specific function of Oct4 in chicken PGCs remains unclear. As expected, the loss of Oct4 in chicken PGCs reduced the expression of key pluripotency factors and promoted the genes involved in endoderm and ectoderm differentiation. Furthermore, the global active chromatin was reduced as shown by the depletion of the H3K27ac upon Oct4 suppression. Interestingly, the de-activated chromatin caused the down-regulation of adjacent genes which are mostly known regulators of cell junction, chemotaxis and cell migration. Consequently, the Oct4-deficient PGCs show impaired cell migration and could not colonize the gonads when re-introduced into the bloodstream of the embryo. We propose that, in addition to maintaining pluripotency, the Oct4 mediated chromatin activation is dictating chicken PGC migration.
Collapse
|
17
|
Gjaltema RAF, Schwämmle T, Kautz P, Robson M, Schöpflin R, Ravid Lustig L, Brandenburg L, Dunkel I, Vechiatto C, Ntini E, Mutzel V, Schmiedel V, Marsico A, Mundlos S, Schulz EG. Distal and proximal cis-regulatory elements sense X chromosome dosage and developmental state at the Xist locus. Mol Cell 2022; 82:190-208.e17. [PMID: 34932975 DOI: 10.1016/j.molcel.2021.11.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
Developmental genes such as Xist, which initiates X chromosome inactivation, are controlled by complex cis-regulatory landscapes, which decode multiple signals to establish specific spatiotemporal expression patterns. Xist integrates information on X chromosome dosage and developmental stage to trigger X inactivation in the epiblast specifically in female embryos. Through a pooled CRISPR screen in differentiating mouse embryonic stem cells, we identify functional enhancer elements of Xist at the onset of random X inactivation. Chromatin profiling reveals that X-dosage controls the promoter-proximal region, while differentiation cues activate several distal enhancers. The strongest distal element lies in an enhancer cluster associated with a previously unannotated Xist-enhancing regulatory transcript, which we named Xert. Developmental cues and X-dosage are thus decoded by distinct regulatory regions, which cooperate to ensure female-specific Xist upregulation at the correct developmental time. With this study, we start to disentangle how multiple, functionally distinct regulatory elements interact to generate complex expression patterns in mammals.
Collapse
Affiliation(s)
- Rutger A F Gjaltema
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Till Schwämmle
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Pauline Kautz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Michael Robson
- Development and Disease Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh EH4 2XU, Edinburgh, UK
| | - Robert Schöpflin
- Development and Disease Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Liat Ravid Lustig
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Lennart Brandenburg
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Ilona Dunkel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Carolina Vechiatto
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Evgenia Ntini
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Verena Mutzel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Vera Schmiedel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Annalisa Marsico
- Computational Health Center, Helmholtz Center München, 85764 Neuherberg, Germany
| | - Stefan Mundlos
- Development and Disease Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
18
|
N6-methyladenosine (m 6A) depletion regulates pluripotency exit by activating signaling pathways in embryonic stem cells. Proc Natl Acad Sci U S A 2021; 118:2105192118. [PMID: 34921114 PMCID: PMC8713808 DOI: 10.1073/pnas.2105192118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Dynamic deposition of the N6-methyladenosine (m6A) modification on
messenger RNA (mRNA) regulates pluripotency in embryonic stem cells. Reports
show that depletion of m6A abundances increases the mRNA stability of
pluripotency and lineage transcription factors (TFs) alike. If the mRNAs of
these two TF groups become stabilized, it remains unclear how the pluripotency
or lineage commitment decision is implemented. Quantification of pluripotency
TFs live at single-cell resolution over generations shows long-term preservation
of both pluripotency and priming. m6A depletion activates key
signaling pathways involved in pluripotency versus commitment decisions. This
occurs independently of m6A control over TF mRNA transcript
stability. m6A deposition regulates TF protein expression levels by
activating pErk and pAkt signaling to enact cell-fate determination in
pluripotent stem cells. N6-methyladenosine (m6A) deposition on messenger RNA (mRNA) controls
embryonic stem cell (ESC) fate by regulating the mRNA stabilities of
pluripotency and lineage transcription factors (TFs) [P. J. Batista
et al., Cell Stem Cell 15, 707–719 (2014); Y.
Wang et al., Nat. Cell Biol. 16, 191–198 (2014);
and S. Geula et al., Science 347, 1002–1006
(2015)]. If the mRNAs of these two TF groups become stabilized, it remains
unclear how the pluripotency or lineage commitment decision is implemented. We
performed noninvasive quantification of Nanog and Oct4 TF protein levels in
reporter ESCs to define cell-state dynamics at single-cell resolution. Long-term
single-cell tracking shows that immediate m6A depletion by Mettl3
knock-down in serum/leukemia inhibitory factor supports both pluripotency
maintenance and its departure. This is mediated by differential and opposing
signaling pathways. Increased FGF5 mRNA stability activates pErk, leading to
Nanog down-regulation. FGF5-mediated coactivation of pAkt reenforces Nanog
expression. In formative stem cells poised toward differentiation,
m6A depletion activates both pErk and pAkt, increasing the propensity
for mesendodermal lineage induction. Stable m6A depletion by Mettl3
knock-out also promotes pErk activation. Higher pErk counteracts the
pluripotency exit delay exhibited by stably m6A-depleted cells upon
differentiation. At single-cell resolution, we illustrate that decreasing
m6A abundances activates pErk and pAkt-signaling, regulating
pluripotency departure.
Collapse
|
19
|
Gordeev MN, Bakhmet EI, Tomilin AN. Pluripotency Dynamics during Embryogenesis and in Cell Culture. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421060059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Festuccia N, Owens N, Chervova A, Dubois A, Navarro P. The combined action of Esrrb and Nr5a2 is essential for murine naïve pluripotency. Development 2021; 148:271840. [PMID: 34397088 PMCID: PMC8451941 DOI: 10.1242/dev.199604] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022]
Abstract
The maintenance of pluripotency in mouse embryonic stem cells (ESCs) is governed by the action of an interconnected network of transcription factors. Among them, only Oct4 and Sox2 have been shown to be strictly required for the self-renewal of ESCs and pluripotency, particularly in culture conditions in which differentiation cues are chemically inhibited. Here, we report that the conjunct activity of two orphan nuclear receptors, Esrrb and Nr5a2, parallels the importance of that of Oct4 and Sox2 in naïve mouse ESCs. By occupying a large common set of regulatory elements, these two factors control the binding of Oct4, Sox2 and Nanog to DNA. Consequently, in their absence the pluripotency network collapses and the transcriptome is substantially deregulated, leading to the differentiation of ESCs. Altogether, this work identifies orphan nuclear receptors, previously thought to be performing supportive functions, as a set of core regulators of naïve pluripotency. Summary: Esrrb and Nr5a2, two orphan nuclear receptors, are identified as essential regulators of pluripotency in mouse embryonic stem cells.
Collapse
Affiliation(s)
- Nicola Festuccia
- Regulatory Dynamics and Cell Identity, MRC London Institute of Medical Sciences (LMS), Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK.,Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France
| | - Nick Owens
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Almira Chervova
- Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France
| | - Agnès Dubois
- Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France
| | - Pablo Navarro
- Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France
| |
Collapse
|
21
|
Snijders KE, Fehér A, Táncos Z, Bock I, Téglási A, van den Berk L, Niemeijer M, Bouwman P, Le Dévédec SE, Moné MJ, Van Rossom R, Kumar M, Wilmes A, Jennings P, Verfaillie CM, Kobolák J, Ter Braak B, Dinnyés A, van de Water B. Fluorescent tagging of endogenous Heme oxygenase-1 in human induced pluripotent stem cells for high content imaging of oxidative stress in various differentiated lineages. Arch Toxicol 2021; 95:3285-3302. [PMID: 34480604 PMCID: PMC8448683 DOI: 10.1007/s00204-021-03127-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/27/2021] [Indexed: 12/28/2022]
Abstract
Tagging of endogenous stress response genes can provide valuable in vitro models for chemical safety assessment. Here, we present the generation and application of a fluorescent human induced pluripotent stem cell (hiPSC) reporter line for Heme oxygenase-1 (HMOX1), which is considered a sensitive and reliable biomarker for the oxidative stress response. CRISPR/Cas9 technology was used to insert an enhanced green fluorescent protein (eGFP) at the C-terminal end of the endogenous HMOX1 gene. Individual clones were selected and extensively characterized to confirm precise editing and retained stem cell properties. Bardoxolone-methyl (CDDO-Me) induced oxidative stress caused similarly increased expression of both the wild-type and eGFP-tagged HMOX1 at the mRNA and protein level. Fluorescently tagged hiPSC-derived proximal tubule-like, hepatocyte-like, cardiomyocyte-like and neuron-like progenies were treated with CDDO-Me (5.62–1000 nM) or diethyl maleate (5.62–1000 µM) for 24 h and 72 h. Multi-lineage oxidative stress responses were assessed through transcriptomics analysis, and HMOX1-eGFP reporter expression was carefully monitored using live-cell confocal imaging. We found that eGFP intensity increased in a dose-dependent manner with dynamics varying amongst lineages and stressors. Point of departure modelling further captured the specific lineage sensitivities towards oxidative stress. We anticipate that the newly developed HMOX1 hiPSC reporter will become a valuable tool in understanding and quantifying critical target organ cell-specific oxidative stress responses induced by (newly developed) chemical entities.
Collapse
Affiliation(s)
- Kirsten E Snijders
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | | | | | | | | | - Linda van den Berk
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Marije Niemeijer
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Peter Bouwman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Sylvia E Le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Martijn J Moné
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Rob Van Rossom
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Manoj Kumar
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Anja Wilmes
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Amsterdam, The Netherlands
| | - Paul Jennings
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Amsterdam, The Netherlands
| | - Catherine M Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | | | - Bas Ter Braak
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - András Dinnyés
- BioTalentum Ltd., 2100, Gödöllő, Hungary. .,Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, 2100, Gödöllő, Hungary.
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
22
|
Dierolf JG, Watson AJ, Betts DH. Differential localization patterns of pyruvate kinase isoforms in murine naïve, formative, and primed pluripotent states. Exp Cell Res 2021; 405:112714. [PMID: 34181938 DOI: 10.1016/j.yexcr.2021.112714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/17/2021] [Accepted: 06/22/2021] [Indexed: 12/28/2022]
Abstract
Mouse embryonic stem cells (mESCs) and mouse epiblast stem cells (mEpiSCs) represent opposite ends of the pluripotency continuum, referred to as naïve and primed pluripotent states, respectively. These divergent pluripotent states differ in several ways, including growth factor requirements, transcription factor expression, DNA methylation patterns, and metabolic profiles. Naïve cells employ both glycolysis and oxidative phosphorylation (OXPHOS), whereas primed cells preferentially utilize aerobic glycolysis, a trait shared with cancer cells referred to as the Warburg Effect. Until recently, metabolism has been regarded as a by-product of cell fate, however, evidence now supports metabolism as being a driver of stem cell state and fate decisions. Pyruvate kinase muscle isoforms (PKM1 and PKM2) are important for generating and maintaining pluripotent stem cells (PSCs) and mediating the Warburg Effect. Both isoforms catalyze the final, rate limiting step of glycolysis, generating adenosine triphosphate and pyruvate, however, the precise role(s) of PKM1/2 in naïve and primed pluripotency is not well understood. The primary objective of this study was to characterize the cellular expression and localization patterns of PKM1 and PKM2 in mESCs, chemically transitioned epiblast-like cells (mEpiLCs) representing formative pluripotency, and mEpiSCs using immunoblotting and confocal microscopy. The results indicate that PKM1 and PKM2 are not only localized to the cytoplasm, but also accumulate in differential subnuclear regions of mESC, mEpiLCs, and mEpiSCs as determined by a quantitative confocal microscopy employing orthogonal projections and airyscan processing. Importantly, we discovered that the subnuclear localization of PKM1/2 changes during the transition from mESCs, mEpiLCs, and mEpiSCs. Finally, we have comprehensively validated the appropriateness and power of the Pearson's correlation coefficient and Manders's overlap coefficient for assessing nuclear and cytoplasmic protein colocalization in PSCs by immunofluorescence confocal microscopy. We propose that nuclear PKM1/2 may assist with distinct pluripotency state maintenance and lineage priming by non-canonical mechanisms. These results advance our understanding of the overall mechanisms controlling naïve, formative, and primed pluripotency.
Collapse
Affiliation(s)
- Joshua G Dierolf
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - Andrew J Watson
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; Department of Obstetrics and Gynecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; The Children's Health Research Institute (CHRI), Lawson Health Research Institute, London, Canada
| | - Dean H Betts
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; Department of Obstetrics and Gynecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada; The Children's Health Research Institute (CHRI), Lawson Health Research Institute, London, Canada.
| |
Collapse
|
23
|
Guo SM, Mei NH, Yang J, Zhou LQ. Transcription factor OTX2 silences the expression of cleavage embryo genes and transposable elements. J Reprod Dev 2021; 67:223-228. [PMID: 33896883 PMCID: PMC8238675 DOI: 10.1262/jrd.2021-007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/28/2021] [Indexed: 11/20/2022] Open
Abstract
Upon mammalian fertilization, zygotic genome activation (ZGA) and activation of transposable elements (TEs) occur in early embryos to establish totipotency and support embryogenesis. However, the molecular mechanisms controlling the expression of these genes in mammals remain poorly understood. The 2-cell-like population of mouse embryonic stem cells (mESCs) mimics cleavage-stage embryos with transient Dux activation. In this study, we demonstrated that deficiency of the transcription factor OTX2 stimulates the expression of ZGA genes in mESCs. Further analysis revealed that OTX2 is incorporated at the Dux locus with corepressors for transcriptional inhibition. We also found that OTX2 associates with TEs and silences the subtypes of TEs. Therefore, OTX2 protein plays an important role in ZGA and TE expression in mESCs to orchestrate the transcriptional network.
Collapse
Affiliation(s)
- Shi-Meng Guo
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| | - Ning-Hua Mei
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| |
Collapse
|
24
|
Xie J, Yin Y, Wang J. TIPD: A Probability Distribution-Based Method for Trajectory Inference from Single-Cell RNA-Seq Data. Interdiscip Sci 2021; 13:652-665. [PMID: 34109565 DOI: 10.1007/s12539-021-00445-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 11/25/2022]
Abstract
Single-cell RNA-seq technology provides an unprecedented opportunity to allow researchers to study the biological heterogeneity during cell differentiation and development with higher resolution. Although many computational methods have been proposed to infer cell lineages from single-cell RNA-seq data, constructing accurate cell trajectories remains a challenge. We develop a novel trajectory inference method-based probability distribution (TIPD) to describe the heterogeneity of cell population. TIPD combines signalling entropy and clustering results of the gene expression profile to describe the probability distributions of heterogeneous states in a cell population. It does not require external knowledge to determine the direction of the differentiation trajectories, so its application is not limited by the annotations of the data set. We also propose a new distance metric to measure the distance of the probability distributions of the identified heterogeneous states. On this distance matrix, a minimum spanning tree (MST) is built to reorganize the order of cell clusters. The constructed MST is calculated based on systems-level information, so it is consistent with the real biological process. We validated our method on four previously published single-cell RNA-seq data sets including the linear structure and branch structure. The results showed that TIPD successfully reconstructed the differentiation trajectories that are highly consistent with the known differentiation trajectories and outperformed the other four state-of-the-art methods under different assessment criteria.
Collapse
Affiliation(s)
- Jiang Xie
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Yiting Yin
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, China.
| |
Collapse
|
25
|
Di Giovannantonio LG, Acampora D, Omodei D, Nigro V, Barba P, Barbieri E, Chambers I, Simeone A. Direct repression of Nanog and Oct4 by OTX2 modulates the contribution of epiblast-derived cells to germline and somatic lineage. Development 2021; 148:263923. [PMID: 33999993 DOI: 10.1242/dev.199166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 11/20/2022]
Abstract
In mammals, the pre-gastrula proximal epiblast gives rise to primordial germ cells (PGCs) or somatic precursors in response to BMP4 and WNT signaling. Entry into the germline requires activation of a naïve-like pluripotency gene regulatory network (GRN). Recent work has shown that suppression of OTX2 expression in the epiblast by BMP4 allows cells to develop a PGC fate in a precise temporal window. However, the mechanisms by which OTX2 suppresses PGC fate are unknown. Here, we show that, in mice, OTX2 prevents epiblast cells from activating the pluripotency GRN by direct repression of Oct4 and Nanog. Loss of this control during PGC differentiation in vitro causes widespread activation of the pluripotency GRN and a deregulated response to LIF, BMP4 and WNT signaling. These abnormalities, in specific cell culture conditions, result in massive germline entry at the expense of somatic mesoderm differentiation. Increased generation of PGCs also occurs in mutant embryos. We propose that the OTX2-mediated repressive control of Oct4 and Nanog is the basis of the mechanism that determines epiblast contribution to germline and somatic lineage.
Collapse
Affiliation(s)
| | - Dario Acampora
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Via P. Castellino, 111, 80131 Naples, Italy
| | - Daniela Omodei
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Via P. Castellino, 111, 80131 Naples, Italy.,Institute of Biostructures and Bioimaging, CNR, Via Tommaso De Amicis, 95, 80145 Naples, Italy
| | - Vincenzo Nigro
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania 'Luigi Vanvitelli', Via L. De Crecchio, 7, 80138 Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei, 34, 80087 Pozzuoli (NA), Italy
| | - Pasquale Barba
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Via P. Castellino, 111, 80131 Naples, Italy
| | - Elisa Barbieri
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK.,Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, UK
| | - Ian Chambers
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK.,Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, UK
| | - Antonio Simeone
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', CNR, Via P. Castellino, 111, 80131 Naples, Italy
| |
Collapse
|
26
|
Ghosh A, Som A. Decoding molecular markers and transcriptional circuitry of naive and primed states of human pluripotency. Stem Cell Res 2021; 53:102334. [PMID: 33862536 DOI: 10.1016/j.scr.2021.102334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022] Open
Abstract
Pluripotent stem cells (PSCs) have been observed to occur in two distinct states - naive and primed. Both naive and primed state PSCs can give rise to tissues of all the three germ layers in vitro but differ in their potential to generate germline chimera in vivo. Understanding the molecular mechanisms that govern these two states of pluripotency in human can open a plethora of opportunities for studying early embryonic development and in biomedical applications. In this work, we use weighted gene co-expression network analysis (WGCNA) to identify the key molecular makers and their interactions that define the two distinct pluripotency states. Signed hybrid network was reconstructed from transcriptomic data (RNA-seq) of naive and primed state pluripotent samples. Our analysis revealed two sets of genes that are involved in the establishment and maintenance of naive and primed states. The naive state genes were found to be enriched for biological processes and pathways related to metabolic processes while primed state genes were associated with system development. We further filtered these lists to identify the intra-modular hubs and the hub transcription factors (TFs) for each group. Validation of the identified TFs was carried out using independent microarray datasets and we finally present a list of 52 and 33 TFs as the set of core TFs that are responsible for the induction and maintenance of naive and primed states of pluripotency in human, respectively. Among these, the TFs ZNF275, ZNF232, SP4, and MSANTD3 could be of interest as they were not reported in previous studies.
Collapse
Affiliation(s)
- Arindam Ghosh
- Centre of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj 211002, India; Institute of Biomedicine, University of Eastern Finland, FI-70210 Kuopio, Finland
| | - Anup Som
- Centre of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj 211002, India.
| |
Collapse
|
27
|
Chovanec P, Collier AJ, Krueger C, Várnai C, Semprich CI, Schoenfelder S, Corcoran AE, Rugg-Gunn PJ. Widespread reorganisation of pluripotent factor binding and gene regulatory interactions between human pluripotent states. Nat Commun 2021; 12:2098. [PMID: 33828098 PMCID: PMC8026613 DOI: 10.1038/s41467-021-22201-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 03/05/2021] [Indexed: 01/10/2023] Open
Abstract
The transition from naive to primed pluripotency is accompanied by an extensive reorganisation of transcriptional and epigenetic programmes. However, the role of transcriptional enhancers and three-dimensional chromatin organisation in coordinating these developmental programmes remains incompletely understood. Here, we generate a high-resolution atlas of gene regulatory interactions, chromatin profiles and transcription factor occupancy in naive and primed human pluripotent stem cells, and develop a network-graph approach to examine the atlas at multiple spatial scales. We uncover highly connected promoter hubs that change substantially in interaction frequency and in transcriptional co-regulation between pluripotent states. Small hubs frequently merge to form larger networks in primed cells, often linked by newly-formed Polycomb-associated interactions. We identify widespread state-specific differences in enhancer activity and interactivity that correspond with an extensive reconfiguration of OCT4, SOX2 and NANOG binding and target gene expression. These findings provide multilayered insights into the chromatin-based gene regulatory control of human pluripotent states.
Collapse
Affiliation(s)
- Peter Chovanec
- Lymphocyte Signalling and Development Programme, Babraham Institute, Cambridge, UK
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, UK
| | | | | | - Csilla Várnai
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, UK
- Centre for Computational Biology, University of Birmingham, Birmingham, UK
| | | | - Stefan Schoenfelder
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, UK
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Anne E Corcoran
- Lymphocyte Signalling and Development Programme, Babraham Institute, Cambridge, UK
- Nuclear Dynamics Programme, Babraham Institute, Cambridge, UK
| | - Peter J Rugg-Gunn
- Epigenetics Programme, Babraham Institute, Cambridge, UK.
- Wellcome - MRC Cambridge Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
28
|
Kinoshita M, Barber M, Mansfield W, Cui Y, Spindlow D, Stirparo GG, Dietmann S, Nichols J, Smith A. Capture of Mouse and Human Stem Cells with Features of Formative Pluripotency. Cell Stem Cell 2021; 28:453-471.e8. [PMID: 33271069 PMCID: PMC7939546 DOI: 10.1016/j.stem.2020.11.005] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/03/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Pluripotent cells emerge as a naive founder population in the blastocyst, acquire capacity for germline and soma formation, and then undergo lineage priming. Mouse embryonic stem cells (ESCs) and epiblast-derived stem cells (EpiSCs) represent the initial naive and final primed phases of pluripotency, respectively. Here, we investigate the intermediate formative stage. Using minimal exposure to specification cues, we derive stem cells from formative mouse epiblast. Unlike ESCs or EpiSCs, formative stem (FS) cells respond directly to germ cell induction. They colonize somatic tissues and germline in chimeras. Whole-transcriptome analyses show similarity to pre-gastrulation formative epiblast. Signal responsiveness and chromatin accessibility features reflect lineage capacitation. Furthermore, FS cells show distinct transcription factor dependencies, relying critically on Otx2. Finally, FS cell culture conditions applied to human naive cells or embryos support expansion of similar stem cells, consistent with a conserved staging post on the trajectory of mammalian pluripotency.
Collapse
Affiliation(s)
- Masaki Kinoshita
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK.
| | - Michael Barber
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - William Mansfield
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Yingzhi Cui
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Daniel Spindlow
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Giuliano Giuseppe Stirparo
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Sabine Dietmann
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Jennifer Nichols
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Austin Smith
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
29
|
Betto RM, Diamante L, Perrera V, Audano M, Rapelli S, Lauria A, Incarnato D, Arboit M, Pedretti S, Rigoni G, Guerineau V, Touboul D, Stirparo GG, Lohoff T, Boroviak T, Grumati P, Soriano ME, Nichols J, Mitro N, Oliviero S, Martello G. Metabolic control of DNA methylation in naive pluripotent cells. Nat Genet 2021; 53:215-229. [PMID: 33526924 PMCID: PMC7116828 DOI: 10.1038/s41588-020-00770-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/17/2020] [Indexed: 12/31/2022]
Abstract
Naive epiblast and embryonic stem cells (ESCs) give rise to all cells of adults. Such developmental plasticity is associated with genome hypomethylation. Here, we show that LIF-Stat3 signaling induces genomic hypomethylation via metabolic reconfiguration. Stat3-/- ESCs show decreased α-ketoglutarate production from glutamine, leading to increased Dnmt3a and Dnmt3b expression and DNA methylation. Notably, genome methylation is dynamically controlled through modulation of α-ketoglutarate availability or Stat3 activation in mitochondria. Alpha-ketoglutarate links metabolism to the epigenome by reducing the expression of Otx2 and its targets Dnmt3a and Dnmt3b. Genetic inactivation of Otx2 or Dnmt3a and Dnmt3b results in genomic hypomethylation even in the absence of active LIF-Stat3. Stat3-/- ESCs show increased methylation at imprinting control regions and altered expression of cognate transcripts. Single-cell analyses of Stat3-/- embryos confirmed the dysregulated expression of Otx2, Dnmt3a and Dnmt3b as well as imprinted genes. Several cancers display Stat3 overactivation and abnormal DNA methylation; therefore, the molecular module that we describe might be exploited under pathological conditions.
Collapse
Affiliation(s)
- Riccardo M Betto
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | - Linda Diamante
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | - Valentina Perrera
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
- Neuroscience Sector, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Stefania Rapelli
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy
| | - Andrea Lauria
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy
| | - Danny Incarnato
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| | - Mattia Arboit
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy
| | - Silvia Pedretti
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Giovanni Rigoni
- Department of Biology, University of Padua, Padua, Italy
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Vincent Guerineau
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - David Touboul
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | | | - Tim Lohoff
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Thorsten Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | | | - Jennifer Nichols
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy.
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
- Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy.
| | - Graziano Martello
- Department of Molecular Medicine, Medical School, University of Padua, Padua, Italy.
- Department of Biology, University of Padua, Padua, Italy.
| |
Collapse
|
30
|
Identification of RNA-binding proteins that partner with Lin28a to regulate Dnmt3a expression. Sci Rep 2021; 11:2345. [PMID: 33504840 PMCID: PMC7841167 DOI: 10.1038/s41598-021-81429-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/06/2021] [Indexed: 12/28/2022] Open
Abstract
Lin28 is an evolutionary conserved RNA-binding protein that plays important roles during embryonic development and tumorigenesis. It regulates gene expression through two different post-transcriptional mechanisms. The first one is based on the regulation of miRNA biogenesis, in particular that of the let-7 family, whose expression is suppressed by Lin28. Thus, loss of Lin28 leads to the upregulation of mRNAs that are targets of let-7 species. The second mechanism is based on the direct interaction of Lin28 with a large number of mRNAs, which results in the regulation of their translation. This second mechanism remains poorly understood. To address this issue, we purified high molecular weight complexes containing Lin28a in mouse embryonic stem cells (ESCs). Numerous proteins, co-purified with Lin28a, were identified by proteomic procedures and tested for their possible role in Lin28a-dependent regulation of the mRNA encoding DNA methyltransferase 3a (Dnmt3a). The results show that Lin28a activity is dependent on many proteins, including three helicases and four RNA-binding proteins. The suppression of four of these proteins, namely Ddx3x, Hnrnph1, Hnrnpu or Syncrip, interferes with the binding of Lin28a to the Dnmt3a mRNA, thus suggesting that they are part of an oligomeric ribonucleoprotein complex that is necessary for Lin28a activity.
Collapse
|
31
|
Kamata S, Hashiyama R, Hana-Ika H, Ohkubo I, Saito R, Honda A, Anan Y, Akahoshi N, Noguchi K, Kanda Y, Ishii I. Cytotoxicity comparison of 35 developmental neurotoxicants in human induced pluripotent stem cells (iPSC), iPSC-derived neural progenitor cells, and transformed cell lines. Toxicol In Vitro 2020; 69:104999. [PMID: 32949729 DOI: 10.1016/j.tiv.2020.104999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/05/2020] [Accepted: 09/09/2020] [Indexed: 11/27/2022]
Abstract
The Organization for Economic Co-operation and Development (OECD) test guideline 426 for developmental neurotoxicity (DNT) of industrial/environmental chemicals depends primarily on animal experimentation. This requirement raises various critical issues, such as high cost, long duration, the sacrifice of large numbers of animals, and interspecies differences. This study demonstrates an alternative protocol that is simple, quick, less expensive, and standardized to evaluate DNT of many chemicals using human induced pluripotent stem cells (iPSC) and their differentiation to neural progenitor cells (NPC). Initially, concentration-dependent cytotoxicity of 35 DNT chemicals, including industrial materials, insecticides, and clinical drugs, were compared among iPSC, NPC, and two transformed cells, Cos-7 and HepG2, using tetrazolium dye (MTS)-reducing colorimetric and ATP luciferase assays, and IC50 values were calculated. Next, inhibitory effects of the 14 representative chemicals (mainly insecticides) on iPSC differentiation to NPC were evaluated by measuring altered expression of neural differentiation and undifferentiation marker genes. Results show that both iPSC and NPC were much more sensitive to most DNT chemicals than the transformed cells, and 14 chemicals induced differential patterns of marker gene expression, highlighting the validity and utility of the protocol for evaluation and classification of DNT chemicals and preclinical DNT tests for safety assessment.
Collapse
Affiliation(s)
- Shotaro Kamata
- Department of Health Chemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Reina Hashiyama
- Department of Health Chemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Hiroto Hana-Ika
- Department of Health Chemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Issei Ohkubo
- Department of Health Chemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Ryota Saito
- Department of Health Chemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Akihiro Honda
- Department of Health Chemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Yasumi Anan
- Department of Health Chemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Noriyuki Akahoshi
- Department of Health Chemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Kohji Noguchi
- Laboratory of Molecular Target Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Kanagawa 210-9501, Japan.
| | - Isao Ishii
- Department of Health Chemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
32
|
Ortmann D, Brown S, Czechanski A, Aydin S, Muraro D, Huang Y, Tomaz RA, Osnato A, Canu G, Wesley BT, Skelly DA, Stegle O, Choi T, Churchill GA, Baker CL, Rugg-Gunn PJ, Munger SC, Reinholdt LG, Vallier L. Naive Pluripotent Stem Cells Exhibit Phenotypic Variability that Is Driven by Genetic Variation. Cell Stem Cell 2020; 27:470-481.e6. [PMID: 32795399 PMCID: PMC7487768 DOI: 10.1016/j.stem.2020.07.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/10/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
Abstract
Variability among pluripotent stem cell (PSC) lines is a prevailing issue that hampers not only experimental reproducibility but also large-scale applications and personalized cell-based therapy. This variability could result from epigenetic and genetic factors that influence stem cell behavior. Naive culture conditions minimize epigenetic fluctuation, potentially overcoming differences in PSC line differentiation potential. Here we derived PSCs from distinct mouse strains under naive conditions and show that lines from distinct genetic backgrounds have divergent differentiation capacity, confirming a major role for genetics in PSC phenotypic variability. This is explained in part through inconsistent activity of extra-cellular signaling, including the Wnt pathway, which is modulated by specific genetic variants. Overall, this study shows that genetic background plays a dominant role in driving phenotypic variability of PSCs.
Collapse
Affiliation(s)
- Daniel Ortmann
- Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge, Cambridge, UK.
| | - Stephanie Brown
- Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge, Cambridge, UK
| | | | | | - Daniele Muraro
- Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge, Cambridge, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Yuanhua Huang
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Rute A Tomaz
- Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge, Cambridge, UK
| | - Anna Osnato
- Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge, Cambridge, UK
| | - Giovanni Canu
- Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge, Cambridge, UK
| | - Brandon T Wesley
- Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge, Cambridge, UK
| | | | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK; European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany; Division of Computational Genomics and Systems Genetics, German Cancer Research, Center (DKFZ), Heidelberg, Germany
| | - Ted Choi
- Jackson Laboratory, Bar Harbor, ME, USA
| | | | | | - Peter J Rugg-Gunn
- Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Epigenetics Programme, Babraham Institute, Cambridge, UK
| | | | | | - Ludovic Vallier
- Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Department of Surgery, University of Cambridge, Cambridge, UK.
| |
Collapse
|
33
|
Lynch CJ, Bernad R, Calvo I, Serrano M. Manipulating the Mediator complex to induce naïve pluripotency. Exp Cell Res 2020; 395:112215. [PMID: 32771524 PMCID: PMC7584500 DOI: 10.1016/j.yexcr.2020.112215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 08/01/2020] [Indexed: 12/26/2022]
Abstract
Human naïve pluripotent stem cells (PSCs) represent an optimal homogenous starting point for molecular interventions and differentiation strategies. This is in contrast to the standard primed PSCs which fluctuate in identity and are transcriptionally heterogeneous. However, despite many efforts, the maintenance and expansion of human naïve PSCs remains a challenge. Here, we discuss our recent strategy for the stabilization of human PSC in the naïve state based on the use of a single chemical inhibitor of the related kinases CDK8 and CDK19. These kinases phosphorylate and negatively regulate the multiprotein Mediator complex, which is critical for enhancer-driven recruitment of RNA Pol II. The net effect of CDK8/19 inhibition is a global stimulation of enhancers, which in turn reinforces transcriptional programs including those related to cellular identity. In the case of pluripotent cells, the presence of CDK8/19i efficiently stabilizes the naïve state. Importantly, in contrast to previous chemical methods to induced the naïve state based on the inhibition of the FGF-MEK-ERK pathway, CDK8/19i-naïve human PSCs are chromosomally stable and retain developmental potential after long-term expansion. We suggest this could be related to the fact that CDK8/19 inhibition does not induce DNA demethylation. These principles may apply to other fate decisions.
Collapse
Affiliation(s)
- Cian J Lynch
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Raquel Bernad
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Isabel Calvo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08010, Spain.
| |
Collapse
|
34
|
ZIC3 Controls the Transition from Naive to Primed Pluripotency. Cell Rep 2020; 27:3215-3227.e6. [PMID: 31189106 PMCID: PMC6581693 DOI: 10.1016/j.celrep.2019.05.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/14/2019] [Accepted: 05/06/2019] [Indexed: 01/06/2023] Open
Abstract
Embryonic stem cells (ESCs) must transition through a series of intermediate cell states before becoming terminally differentiated. Here, we investigated the early events in this transition by determining the changes in the open chromatin landscape as naive mouse ESCs transition to epiblast-like cells (EpiLCs). Motif enrichment analysis of the newly opening regions coupled with expression analysis identified ZIC3 as a potential regulator of this cell fate transition. Chromatin binding and genome-wide transcriptional profiling following Zic3 depletion confirmed ZIC3 as an important regulatory transcription factor, and among its targets are genes encoding a number of transcription factors. Among these is GRHL2, which acts through enhancer switching to maintain the expression of a subset of genes from the ESC state. Our data therefore place ZIC3 upstream of a set of pro-differentiation transcriptional regulators and provide an important advance in our understanding of the regulatory factors governing the early steps in ESC differentiation. Transcription factor ZIC3 regulates gene expression during the ESC to EpiLC transition Extensive changes occur in the open chromatin landscape as ESCs progress to EpiLCs ZIC3 activates the expression of a network of transcription factors ZIC3-activated genes in EpiLCs are upregulated in the post-implantation epiblast
Collapse
|
35
|
Martín-Alonso S, Frutos-Beltrán E, Menéndez-Arias L. Reverse Transcriptase: From Transcriptomics to Genome Editing. Trends Biotechnol 2020; 39:194-210. [PMID: 32653101 DOI: 10.1016/j.tibtech.2020.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 01/01/2023]
Abstract
Reverse transcriptases (RTs) are enzymes that can generate a complementary strand of DNA (cDNA) from RNA. Coupled with PCR, RTs have been widely used to detect RNAs and to clone expressed genes. Classical retroviral RTs have been improved by protein engineering. These enzymes and newly characterized RTs are key elements in the development of next-generation sequencing techniques that are now being applied to the study of transcriptomics. In addition, engineered RTs fused to a CRISPR/Cas9 nickase have recently shown great potential as tools to manipulate eukaryotic genomes. In this review, we discuss the properties and uses of wild type and engineered RTs in biotechnological applications, from conventional RT-PCR to recently introduced prime editing.
Collapse
Affiliation(s)
- Samara Martín-Alonso
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - Estrella Frutos-Beltrán
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - Luis Menéndez-Arias
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/ Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain. @cbm.csic.es
| |
Collapse
|
36
|
Neagu A, van Genderen E, Escudero I, Verwegen L, Kurek D, Lehmann J, Stel J, Dirks RAM, van Mierlo G, Maas A, Eleveld C, Ge Y, den Dekker AT, Brouwer RWW, van IJcken WFJ, Modic M, Drukker M, Jansen JH, Rivron NC, Baart EB, Marks H, ten Berge D. In vitro capture and characterization of embryonic rosette-stage pluripotency between naive and primed states. Nat Cell Biol 2020; 22:534-545. [DOI: 10.1038/s41556-020-0508-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
|
37
|
Zhang M, Zou Y, Xu X, Zhang X, Gao M, Song J, Huang P, Chen Q, Zhu Z, Lin W, Zare RN, Yang C. Highly parallel and efficient single cell mRNA sequencing with paired picoliter chambers. Nat Commun 2020; 11:2118. [PMID: 32355211 PMCID: PMC7193604 DOI: 10.1038/s41467-020-15765-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
ScRNA-seq has the ability to reveal accurate and precise cell types and states. Existing scRNA-seq platforms utilize bead-based technologies uniquely barcoding individual cells, facing practical challenges for precious samples with limited cell number. Here, we present a scRNA-seq platform, named Paired-seq, with high cells/beads utilization efficiency, cell-free RNAs removal capability, high gene detection ability and low cost. We utilize the differential flow resistance principle to achieve single cell/barcoded bead pairing with high cell utilization efficiency (95%). The integration of valves and pumps enables the complete removal of cell-free RNAs, efficient cell lysis and mRNA capture, achieving highest mRNA detection accuracy (R = 0.955) and comparable sensitivity. Lower reaction volume and higher mRNA capture and barcoding efficiency significantly reduce the cost of reagents and sequencing. The single-cell expression profile of mES and drug treated cells reveal cell heterogeneity, demonstrating the enormous potential of Paired-seq for cell biology, developmental biology and precision medicine. Single-cell RNA-seq can reveal accurate and precise cell types and states. Here the authors present an scRNA-seq platform, Paired-seq, which uses differential flow resistance to achieve 95% cell utilisation efficiency for improved cell-free RNA removal and gene detection.
Collapse
Affiliation(s)
- Mingxia Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yuan Zou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.,Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Xing Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xuebing Zhang
- Hangzhou Weizhu Biological Technology Co., Ltd, Hangzhou, China
| | - Mingxuan Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jia Song
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peifeng Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Qin Chen
- Hangzhou Weizhu Biological Technology Co., Ltd, Hangzhou, China
| | - Zhi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Wei Lin
- Translational Genomics Research Institute, Molecular Medicine Division, Phoenix, AZ, USA.,Hunan Provincial Key Lab of Emergency and Critical Care, Hunan People's Hospital, Changsha, China
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Chaoyong Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China. .,Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
38
|
Verneri P, Vazquez Echegaray C, Oses C, Stortz M, Guberman A, Levi V. Dynamical reorganization of the pluripotency transcription factors Oct4 and Sox2 during early differentiation of embryonic stem cells. Sci Rep 2020; 10:5195. [PMID: 32251342 PMCID: PMC7089971 DOI: 10.1038/s41598-020-62235-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/11/2020] [Indexed: 01/29/2023] Open
Abstract
Pluripotency maintenance requires transcription factors (TFs) that induce genes necessary to preserve the undifferentiated state and repress others involved in differentiation. Recent observations support that the heterogeneous distribution of TFs in the nucleus impacts on gene expression. Thus, it is essential to explore how TFs dynamically organize to fully understand their role in transcription regulation. Here, we examine the distribution of pluripotency TFs Oct4 and Sox2 in the nucleus of embryonic stem (ES) cells and inquire whether their organization changes during early differentiation stages preceding their downregulation. Using ES cells expressing Oct4-YPet or Sox2-YPet, we show that Oct4 and Sox2 partition between nucleoplasm and a few chromatin-dense foci which restructure after inducing differentiation by 2i/LIF withdrawal. Fluorescence correlation spectroscopy showed distinct changes in Oct4 and Sox2 dynamics after differentiation induction. Specifically, we detected an impairment of Oct4-chromatin interactions whereas Sox2 only showed slight variations in its short-lived, and probably more unspecific, interactions with chromatin. Our results reveal that differentiation cues trigger early changes of Oct4 and Sox2 nuclear distributions that also include modifications in TF-chromatin interactions. This dynamical reorganization precedes Oct4 and Sox2 downregulation and may contribute to modulate their function at early differentiation stages.
Collapse
Affiliation(s)
- Paula Verneri
- CONICET - Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica (IQUIBICEN), Buenos Aires, Argentina
| | - Camila Vazquez Echegaray
- CONICET - Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica (IQUIBICEN), Buenos Aires, Argentina
| | - Camila Oses
- CONICET - Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica (IQUIBICEN), Buenos Aires, Argentina
| | - Martin Stortz
- CONICET - Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica (IQUIBICEN), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Buenos Aires, Argentina
| | - Alejandra Guberman
- CONICET - Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica (IQUIBICEN), Buenos Aires, Argentina. .,Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Buenos Aires, Argentina.
| | - Valeria Levi
- CONICET - Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica (IQUIBICEN), Buenos Aires, Argentina.
| |
Collapse
|
39
|
Kim HJ, Osteil P, Humphrey SJ, Cinghu S, Oldfield AJ, Patrick E, Wilkie EE, Peng G, Suo S, Jothi R, Tam PPL, Yang P. Transcriptional network dynamics during the progression of pluripotency revealed by integrative statistical learning. Nucleic Acids Res 2020; 48:1828-1842. [PMID: 31853542 PMCID: PMC7038952 DOI: 10.1093/nar/gkz1179] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
The developmental potential of cells, termed pluripotency, is highly dynamic and progresses through a continuum of naive, formative and primed states. Pluripotency progression of mouse embryonic stem cells (ESCs) from naive to formative and primed state is governed by transcription factors (TFs) and their target genes. Genomic techniques have uncovered a multitude of TF binding sites in ESCs, yet a major challenge lies in identifying target genes from functional binding sites and reconstructing dynamic transcriptional networks underlying pluripotency progression. Here, we integrated time-resolved ‘trans-omic’ datasets together with TF binding profiles and chromatin conformation data to identify target genes of a panel of TFs. Our analyses revealed that naive TF target genes are more likely to be TFs themselves than those of formative TFs, suggesting denser hierarchies among naive TFs. We also discovered that formative TF target genes are marked by permissive epigenomic signatures in the naive state, indicating that they are poised for expression prior to the initiation of pluripotency transition to the formative state. Finally, our reconstructed transcriptional networks pinpointed the precise timing from naive to formative pluripotency progression and enabled the spatiotemporal mapping of differentiating ESCs to their in vivo counterparts in developing embryos.
Collapse
Affiliation(s)
- Hani Jieun Kim
- Charles Perkins Centre, School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia.,Computational Systems Biology Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Pierre Osteil
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia.,Embryology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Senthilkumar Cinghu
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Andrew J Oldfield
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | - Ellis Patrick
- Charles Perkins Centre, School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia.,Westmead Institute for Medical Research, University of Sydney, Westmead, NSW 2145, Australia
| | - Emilie E Wilkie
- Embryology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Guangdun Peng
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Shengbao Suo
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| | - Raja Jothi
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Patrick P L Tam
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia.,Embryology Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Pengyi Yang
- Charles Perkins Centre, School of Mathematics and Statistics, University of Sydney, Sydney, NSW 2006, Australia.,Computational Systems Biology Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| |
Collapse
|
40
|
Dynamic CpG methylation delineates subregions within super-enhancers selectively decommissioned at the exit from naive pluripotency. Nat Commun 2020; 11:1112. [PMID: 32111830 PMCID: PMC7048827 DOI: 10.1038/s41467-020-14916-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 02/08/2020] [Indexed: 12/29/2022] Open
Abstract
Clusters of enhancers, referred as to super-enhancers (SEs), control the expression of cell identity genes. The organisation of these clusters, and how they are remodelled upon developmental transitions remain poorly understood. Here, we report the existence of two types of enhancer units within SEs typified by distinctive CpG methylation dynamics in embryonic stem cells (ESCs). We find that these units are either prone for decommissioning or remain constitutively active in epiblast stem cells (EpiSCs), as further established in the peri-implantation epiblast in vivo. Mechanistically, we show a pivotal role for ESRRB in regulating the activity of ESC-specific enhancer units and propose that the developmentally regulated silencing of ESRRB triggers the selective inactivation of these units within SEs. Our study provides insights into the molecular events that follow the loss of ESRRB binding, and offers a mechanism by which the naive pluripotency transcriptional programme can be partially reset upon embryo implantation.
Collapse
|
41
|
Yang F, Chen S, He S, Huo Q, Hu Y, Xie N. YB-1 interplays with ERα to regulate the stemness and differentiation of ER-positive breast cancer stem cells. Theranostics 2020; 10:3816-3832. [PMID: 32206124 PMCID: PMC7069074 DOI: 10.7150/thno.41014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Some stemness-associated transcription factors consistently play essential roles in the maintenance of pluripotency or induce the differentiation of cancer stem cells (CSCs). However, the regulatory mechanism of CSC stemness mediated by transcription factors has not been extensively explored. Here, we show that two transcription factors (YB-1 and ERα), which are simultaneously highly expressed in estrogen receptor (ER)-positive CSCs, interact with each other to regulate the stemness and differentiation of ER-positive CSCs. Methods: The expression of YB-1 was examined in ER-positive CSCs and patient specimens. Western blot, real-time PCR, cell viability analysis, tumorsphere formation assay and subcutaneous tumorigenesis assays were used to study the stemness functions of YB-1 and ERα in CSCs. The relationship between YB-1 and ERα in cells was studied by promoter activity analysis, the electrophoretic mobility shift assay (EMSA) and the Co-IP assay. The mechanisms and functional significance of YB-1 in the sensitivity of CSCs to tamoxifen were further investigated with both in vitro and in vivo models. Results: YB-1 was aberrantly upregulated in the cancerous tissue of ER-positive breast cancer patients and in CSCs. Knockdown of YB-1 in ER-positive CSCs significantly inhibited cell stemness and induced differentiation, and the expression of YB-1 could be regulated by estrogen signaling and ERα in ER-positive breast CSCs. The Co-IP results showed that YB-1 interacted directly with ERα specifically in ER-positive non-CSCs and that YB-1 induced ERα degradation by ubiquitination via direct interaction in differentiated cells. Cell differentiation induced by FBS could inhibit YB-1 phosphorylation and promote YB-1 protein transfer from the nucleus to the cytoplasm. Moreover, cell differentiation induced by targeting inhibited the expression of YB-1 in ER-positive CSCs, which increased the sensitivity of cells to tamoxifen in vitro and in vivo. Conclusion: The ERα/YB-1 axis has an important role in the regulation of ER-positive breast cancer stemness. The dephosphorylation of YB-1 and the interaction between YB-1 and ERα may be the switch that initiates the differentiation of ER-positive CSCs. Targeting YB-1 to sensitize ER-positive CSCs to antiestrogen therapy might represent a new therapeutic strategy that warrants further exploration.
Collapse
Affiliation(s)
- Fan Yang
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People's Republic of China
- Shenzhen institute of advanced technology, Chinese academy of sciences, Shenzhen 518035, People's Republic of China
| | - Siqi Chen
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People's Republic of China
| | - Shengnan He
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People's Republic of China
| | - Qin Huo
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People's Republic of China
| | - Ye Hu
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People's Republic of China
| | - Ni Xie
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, People's Republic of China
| |
Collapse
|
42
|
Gao J, Petraki S, Sun X, Brooks LA, Lynch TJ, Hsieh CL, Elteriefi R, Lorenzana Z, Punj V, Engelhardt JF, Parekh KR, Ryan AL. Derivation of induced pluripotent stem cells from ferret somatic cells. Am J Physiol Lung Cell Mol Physiol 2020; 318:L671-L683. [PMID: 32073882 DOI: 10.1152/ajplung.00456.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ferrets are an attractive mammalian model for several diseases, especially those affecting the lungs, liver, brain, and kidneys. Many chronic human diseases have been difficult to model in rodents due to differences in size and cellular anatomy. This is particularly the case for the lung, where ferrets provide an attractive mammalian model of both acute and chronic lung diseases, such as influenza, cystic fibrosis, A1A emphysema, and obliterative bronchiolitis, closely recapitulating disease pathogenesis, as it occurs in humans. As such, ferrets have the potential to be a valuable preclinical model for the evaluation of cell-based therapies for lung regeneration and, likely, for other tissues. Induced pluripotent stem cells (iPSCs) provide a great option for provision of enough autologous cells to make patient-specific cell therapies a reality. Unfortunately, they have not been successfully created from ferrets. In this study, we demonstrate the generation of ferret iPSCs that reflect the primed pluripotent state of human iPSCs. Ferret fetal fibroblasts were reprogrammed and acquired core features of pluripotency, having the capacity for self-renewal, multilineage differentiation, and a high-level expression of the core pluripotency genes and pathways at both the transcriptional and protein level. In conclusion, we have generated ferret pluripotent stem cells that provide an opportunity for advancing our capacity to evaluate autologous cell engraftment in ferrets.
Collapse
Affiliation(s)
- Jinghui Gao
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Sophia Petraki
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Leonard A Brooks
- Division of Cardiothoracic Surgery, University of Iowa, Iowa City, Iowa
| | - Thomas J Lynch
- Division of Cardiothoracic Surgery, University of Iowa, Iowa City, Iowa
| | - Chih-Lin Hsieh
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Reem Elteriefi
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Zareeb Lorenzana
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - Vasu Punj
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa
| | - Kalpaj R Parekh
- Division of Cardiothoracic Surgery, University of Iowa, Iowa City, Iowa
| | - Amy L Ryan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California, Los Angeles, California.,Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
43
|
Li M, Yu JSL, Tilgner K, Ong SH, Koike-Yusa H, Yusa K. Genome-wide CRISPR-KO Screen Uncovers mTORC1-Mediated Gsk3 Regulation in Naive Pluripotency Maintenance and Dissolution. Cell Rep 2019; 24:489-502. [PMID: 29996108 PMCID: PMC6057492 DOI: 10.1016/j.celrep.2018.06.027] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/26/2018] [Accepted: 06/06/2018] [Indexed: 01/12/2023] Open
Abstract
The genetic basis of naive pluripotency maintenance and loss is a central question in embryonic stem cell biology. Here, we deploy CRISPR-knockout-based screens in mouse embryonic stem cells to interrogate this question through a genome-wide, non-biased approach using the Rex1GFP reporter as a phenotypic readout. This highly sensitive and efficient method identified genes in diverse biological processes and pathways. We uncovered a key role for negative regulators of mTORC1 in maintenance and exit from naive pluripotency and provided an integrated account of how mTORC1 activity influences naive pluripotency through Gsk3. Our study therefore reinforces Gsk3 as the central node and provides a comprehensive, data-rich resource that will improve our understanding of mechanisms regulating pluripotency and stimulate avenues for further mechanistic studies. Genome-wide CRISPR screening identifies naive pluripotency regulators in mouse ESCs mTORC1-negative regulators from two axes show opposing phenotypes Gator1 is required for proper self-renewal and differentiation via Gsk3 regulation Tsc2 loss causes Akt-dependent, mTORC1-dependent Gsk3 suppression
Collapse
Affiliation(s)
- Meng Li
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Jason S L Yu
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | - Swee Hoe Ong
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | - Kosuke Yusa
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.
| |
Collapse
|
44
|
Abstract
Mouse primordial germ cells (PGCs), originate from the early post-implantation epiblast in response to BMP4 secreted by the extraembryonic ectoderm. However, how BMP4 acts here has remained unclear. Recent work has identified the transcription factor (TF), OTX2 as a key determinant of the segregation of the germline from the soma. OTX2 is expressed ubiquitously in the early post-implantation epiblast, decreasing rapidly in cells that initiate the PGC programme. Otx2 mRNA is also rapidly repressed by BMP4 in vitro, in germline competent cells. Supporting a model in which BMP4 represses Otx2, enforcing sustained OTX2 expression in competent cells blocks germline entry. In contrast, Otx2-null epiblast cells enter the germline with increased efficiency in vitro and in vivo and can do so independently of BMP4. Also, Otx2-null cells can initiate germline entry even without the crucial PGC TF, BLIMP1. In this review, we survey recent advances and propose hypotheses concerning germline entry.
Collapse
Affiliation(s)
- Man Zhang
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh , Edinburgh , Scotland
| | - Ian Chambers
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh , Edinburgh , Scotland
| |
Collapse
|
45
|
Yang F, Cui P, Lu Y, Zhang X. Requirement of the transcription factor YB-1 for maintaining the stemness of cancer stem cells and reverting differentiated cancer cells into cancer stem cells. Stem Cell Res Ther 2019; 10:233. [PMID: 31375149 PMCID: PMC6679460 DOI: 10.1186/s13287-019-1360-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/12/2019] [Accepted: 07/24/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Cancer stem cells always express high levels of stemness-associated transcription factors to maintain their features. However, the regulatory mechanism of the stemness of cancer stem cells mediated by transcription factors has not been extensively explored. METHODS The YB-1 gene in cancer stem cells was knocked out by the CRISPR/Cas9 system. The YB-1 knockout cancer stem cells were transfected with a vector expressing YB-1 to rescue YB-1, and then the cell proliferation, cell cycle, apoptosis, and stemness, as well as tumorigenesis in nude mice, were assessed to examine the effect of YB-1 in cancer stem cells. The target genes of YB-1 were confirmed by CHIP-seq. The totipotency or pluripotency of differentiated cancer stem cells were detected by tumorsphere formation assay and quantitative real-time PCR. RESULTS The deletion of YB-1 gene inhibited the proliferation of breast cancer stem cells and melanoma stem cells, leading to cell cycle arrest and apoptosis, and induced irreversible differentiation of cancer stem cells. The tumorigenicity ability of YB-1-deleted cancer stem cells was significantly reduced in vitro and in vivo. The results of ChIP-seq showed that YB-1 maintained the stemness of cancer stem cells by promoting the expressions of stemness-associated genes (FZD-1, p21, GLP-1, GINS1, and Notch2). Furthermore, simultaneous expressions of YB-1 and the other four (SOX2, POU3F2, OCT-4, and OLIG1) or five (SOX2, SALL2, OCT-4, POU3F2, and Bmi-1) transcription factors in YB-1 knockout cancer stem cells restored the stemness of YB-1 knockout cancer stem cells. CONCLUSIONS Our study indicated that YB-1 was required for maintaining the stemness of cancer stem cells and reverting the differentiated tumor cells into cancer stem cells.
Collapse
Affiliation(s)
- Fan Yang
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Pei Cui
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yu Lu
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiaobo Zhang
- College of Life Sciences and Laboratory for Marine Biology and Biotechnology of Qingdao National Laboratory for Marine Science and Technology, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
46
|
Wang Y, Guo B, Xiao Z, Lin H, Zhang X, Song Y, Li Y, Gao X, Yu J, Shao Z, Li X, Luo Y, Li S. Long noncoding RNA CCDC144NL-AS1 knockdown induces naïve-like state conversion of human pluripotent stem cells. Stem Cell Res Ther 2019; 10:220. [PMID: 31358062 PMCID: PMC6664583 DOI: 10.1186/s13287-019-1323-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/18/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Human naïve pluripotency state cells can be derived from direct isolation of inner cell mass or primed-to-naïve resetting of human embryonic stem cells (hESCs) through different combinations of transcription factors, small molecular inhibitors, and growth factors. Long noncoding RNAs (lncRNAs) have been identified to be crucial in diverse biological processes, including pluripotency regulatory circuit of mouse pluripotent stem cells (PSCs), but few are involved in human PSCs' regulation of pluripotency and naïve pluripotency derivation. This study initially planned to discover more lncRNAs possibly playing significant roles in the regulation of human PSCs' pluripotency, but accidently identified a lncRNA whose knockdown in human PSCs induced naïve-like pluripotency conversion. METHODS Candidate lncRNAs tightly correlated with human pluripotency were screened from 55 RNA-seq data containing human ESC, human induced pluripotent stem cell (iPSC), and somatic tissue samples. Then loss-of-function experiments in human PSCs were performed to investigate the function of these candidate lncRNAs. The naïve-like pluripotency conversion caused by CCDC144NL-AS1 knockdown (KD) was characterized by quantitative real-time PCR, immunofluorescence staining, western blotting, differentiation of hESCs in vitro and in vivo, RNA-seq, and chromatin immunoprecipitation. Finally, the signaling pathways in CCDC144NL-AS1-KD human PSCs were examined through western blotting and analysis of RNA-seq data. RESULTS The results indicated that knockdown of CCDC144NL-AS1 induces naïve-like state conversion of human PSCs in the absence of additional transcription factors or small molecular inhibitors. CCDC144NL-AS1-KD human PSCs reveal naïve-like pluripotency features, such as elevated expression of naïve pluripotency-associated genes, increased developmental capacity, analogous transcriptional profiles to human naïve PSCs, and global reduction of repressive chromatin modification marks. Furthermore, CCDC144NL-AS1-KD human PSCs display inhibition of MAPK (ERK), accumulation of active β-catenin, and upregulation of some LIF/STAT3 target genes, and all of these are concordant with previously reported traits of human naïve PSCs. CONCLUSIONS Our study unveils an unexpected role of a lncRNA, CCDC144NL-AS1, in the naïve-like state conversion of human PSCs, providing a new perspective to further understand the regulation process of human early pluripotency states conversion. It is suggested that CCDC144NL-AS1 can be potentially valuable for future research on deriving higher quality naïve state human PSCs and promoting their therapeutic applications.
Collapse
Affiliation(s)
- Yingying Wang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Baosen Guo
- College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Zengrong Xiao
- College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Haijun Lin
- College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Xi Zhang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yueqiang Song
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yalei Li
- College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Xuehu Gao
- College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Jinjun Yu
- College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Zhihua Shao
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xuekun Li
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Yuping Luo
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China. .,Human Aging Research Institute and School of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Siguang Li
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China. .,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
47
|
OTX2 Signals from the Choroid Plexus to Regulate Adult Neurogenesis. eNeuro 2019; 6:ENEURO.0262-18.2019. [PMID: 31064838 PMCID: PMC6506823 DOI: 10.1523/eneuro.0262-18.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 01/09/2023] Open
Abstract
Proliferation and migration during adult neurogenesis are regulated by a microenvironment of signaling molecules originating from local vasculature, from CSF produced by the choroid plexus, and from local supporting cells including astrocytes. Here, we focus on the function of OTX2 homeoprotein transcription factor in the mouse adult ventricular-subventricular zone (V-SVZ), which generates olfactory bulb neurons. We find that OTX2 secreted by choroid plexus is transferred to the supporting cells of the V-SVZ and rostral migratory stream. Deletion of Otx2 in choroid plexus affects neuroblast migration and reduces the number of olfactory bulb newborn neurons. Adult neurogenesis was also decreased by expressing secreted single-chain antibodies to sequester OTX2 in the CSF, demonstrating the importance of non-cell-autonomous OTX2. We show that OTX2 activity modifies extracellular matrix components and signaling molecules produced by supporting astrocytes. Thus, we reveal a multilevel and non-cell-autonomous role of a homeoprotein and reinforce the choroid plexus and astrocytes as key niche compartments affecting adult neurogenesis.
Collapse
|
48
|
Complementary Activity of ETV5, RBPJ, and TCF3 Drives Formative Transition from Naive Pluripotency. Cell Stem Cell 2019; 24:785-801.e7. [PMID: 31031137 PMCID: PMC6509416 DOI: 10.1016/j.stem.2019.03.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 11/01/2018] [Accepted: 03/21/2019] [Indexed: 02/02/2023]
Abstract
The gene regulatory network (GRN) of naive mouse embryonic stem cells (ESCs) must be reconfigured to enable lineage commitment. TCF3 sanctions rewiring by suppressing components of the ESC transcription factor circuitry. However, TCF3 depletion only delays and does not prevent transition to formative pluripotency. Here, we delineate additional contributions of the ETS-family transcription factor ETV5 and the repressor RBPJ. In response to ERK signaling, ETV5 switches activity from supporting self-renewal and undergoes genome relocation linked to commissioning of enhancers activated in formative epiblast. Independent upregulation of RBPJ prevents re-expression of potent naive factors, TBX3 and NANOG, to secure exit from the naive state. Triple deletion of Etv5, Rbpj, and Tcf3 disables ESCs, such that they remain largely undifferentiated and locked in self-renewal, even in the presence of differentiation stimuli. Thus, genetic elimination of three complementary drivers of network transition stalls developmental progression, emulating environmental insulation by small-molecule inhibitors.
Collapse
|
49
|
Clarke R, Heler R, MacDougall MS, Yeo NC, Chavez A, Regan M, Hanakahi L, Church GM, Marraffini LA, Merrill BJ. Enhanced Bacterial Immunity and Mammalian Genome Editing via RNA-Polymerase-Mediated Dislodging of Cas9 from Double-Strand DNA Breaks. Mol Cell 2019; 71:42-55.e8. [PMID: 29979968 DOI: 10.1016/j.molcel.2018.06.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/06/2018] [Accepted: 06/01/2018] [Indexed: 12/26/2022]
Abstract
The ability to target the Cas9 nuclease to DNA sequences via Watson-Crick base pairing with a single guide RNA (sgRNA) has provided a dynamic tool for genome editing and an essential component of adaptive immune systems in bacteria. After generating a double-stranded break (DSB), Cas9 remains stably bound to DNA. Here, we show persistent Cas9 binding blocks access to the DSB by repair enzymes, reducing genome editing efficiency. Cas9 can be dislodged by translocating RNA polymerases, but only if the polymerase approaches from one direction toward the Cas9-DSB complex. By exploiting these RNA-polymerase/Cas9 interactions, Cas9 can be conditionally converted into a multi-turnover nuclease, mediating increased mutagenesis frequencies in mammalian cells and enhancing bacterial immunity to bacteriophages. These consequences of a stable Cas9-DSB complex provide insights into the evolution of protospacer adjacent motif (PAM) sequences and a simple method of improving selection of highly active sgRNAs for genome editing.
Collapse
Affiliation(s)
- Ryan Clarke
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Robert Heler
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA
| | - Matthew S MacDougall
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Nan Cher Yeo
- Department of Genetics, Harvard Medical School, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Alejandro Chavez
- Department of Genetics, Harvard Medical School, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Maureen Regan
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA; Genome Editing Core, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Leslyn Hanakahi
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Rockford Health Science Campus, Rockford, IL 61107, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | | | - Bradley J Merrill
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA; Genome Editing Core, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
50
|
Xie Y, Cao H, Zhang Z, Zhang S, Wang H. Molecular network of miR-1343 regulates the pluripotency of porcine pluripotent stem cells via repressing OTX2 expression. RNA Biol 2018; 16:82-92. [PMID: 30567463 DOI: 10.1080/15476286.2018.1559688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Porcine OTX2 was found to be highly activated in porcine iPS cells (piPSCs) that were reported by different laboratories worldwide. To reveal the regulatory function of OTX2 in porcine reprogrammed cells, we screened porcine miRNA-seq databases and found two miRNAs, miR-1343 and miR-545, that could specifically bind to 3'UTR of OTX2 and suppress endogenous OTX2 expression in piPSCs. Knockdown of OTX2 by miR-1343 and miR-545 could significantly increase the expression of SOX2 and ESRRB, but did not alter the expressions of OCT4 and KLF4, and improve the pluripotency of piPSCs. The promoter-based assays showed that OTX2 potentially bound to the promoter region of SOX2 and ESRRB and suppressed their expression. On the other hand, SOX2 could interact with OTX2 promoter. Ectopic expression of SOX2 could significantly decrease OTX2 promoter activity, showing that there is a negative feedback loop between SOX2 and OTX2. Additionally, SOX2 and ESRRB significantly stimulated miR-1343 expression in piPSCs, but OTX2 down regulated the expression of miR-1343 in either direct or indirect manners. In summary, this study demonstrates that there is a regulatory network mediated by miR-1343, in which downregulation of OTX2 by miR-1343 can elevate the expression of pluripotent genes that were then sustain the pluripotency of piPSCs.
Collapse
Affiliation(s)
- Youlong Xie
- a Department of Animal Biotechnology , College of Veterinary Medicine, Northwest A&F University , Yangling , Shaanxi , China
| | - Hongxia Cao
- a Department of Animal Biotechnology , College of Veterinary Medicine, Northwest A&F University , Yangling , Shaanxi , China
| | - Zhiyi Zhang
- a Department of Animal Biotechnology , College of Veterinary Medicine, Northwest A&F University , Yangling , Shaanxi , China
| | - Shiqiang Zhang
- a Department of Animal Biotechnology , College of Veterinary Medicine, Northwest A&F University , Yangling , Shaanxi , China
| | - Huayan Wang
- a Department of Animal Biotechnology , College of Veterinary Medicine, Northwest A&F University , Yangling , Shaanxi , China
| |
Collapse
|