1
|
Joshi N, Vaidya B, Sharma SS. Transient receptor potential channels as an emerging target for the treatment of Alzheimer's disease: Unravelling the potential of pharmacological interventions. Basic Clin Pharmacol Toxicol 2024; 135:375-400. [PMID: 39209323 DOI: 10.1111/bcpt.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) is a devastating disorder with a multifaceted aetiology characterized by dementia, which later progresses to cognitive impairment. Significant efforts have been made to develop pharmacological interventions that slow down the pathogenesis of AD. However, conventional drugs have failed to satisfactorily treat AD and are more focussed towards symptomatic management. Thus, there is a gap in the literature regarding novel targets and modulators targeting them for the effective treatment of AD. Recent studies have demonstrated that modulation of transient receptor potential (TRP) channels has the potential to halt AD pathogenesis at an early stage and rescue hippocampal neurons from death. Amongst several members, TRP channels like TRPA1, TRPC6, TRPM2 and TRPV2 have shown promising results in the attenuation of neurobehavioural cognitive deficits as well as signalling pathways governing such cognitive decline. Furthermore, as these channels govern the ionic balance in the cell, their beneficial effects have also been known to maintain the homeostasis of Ca2+, which is the major culprit eliciting the vicious cycle of excitotoxicity, mitochondrial dysfunction, ROS generation and neurodegeneration. Despite such tremendous potential of TRP channel modulators, their clinical investigation remains elusive. Therefore, in the present review, we have discussed such agents in the light of TRP channels as molecular targets for the amelioration of AD both at the preclinical and clinical levels.
Collapse
Affiliation(s)
- Nishit Joshi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, India
| | - Bhupesh Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, India
| |
Collapse
|
2
|
Kanata E, Duffié R, Schulz EG. Establishment and maintenance of random monoallelic expression. Development 2024; 151:dev201741. [PMID: 38813842 PMCID: PMC11166465 DOI: 10.1242/dev.201741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
This Review elucidates the regulatory principles of random monoallelic expression by focusing on two well-studied examples: the X-chromosome inactivation regulator Xist and the olfactory receptor gene family. Although the choice of a single X chromosome or olfactory receptor occurs in different developmental contexts, common gene regulatory principles guide monoallelic expression in both systems. In both cases, an event breaks the symmetry between genetically and epigenetically identical copies of the gene, leading to the expression of one single random allele, stabilized through negative feedback control. Although many regulatory steps that govern the establishment and maintenance of monoallelic expression have been identified, key pieces of the puzzle are still missing. We provide an overview of the current knowledge and models for the monoallelic expression of Xist and olfactory receptors. We discuss their similarities and differences, and highlight open questions and approaches that could guide the study of other monoallelically expressed genes.
Collapse
Affiliation(s)
- Eleni Kanata
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Rachel Duffié
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Edda G. Schulz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| |
Collapse
|
3
|
Jiang HC, Park SJ, Wang IH, Bear DM, Nowlan A, Greer PL. CD20/MS4A1 is a mammalian olfactory receptor expressed in a subset of olfactory sensory neurons that mediates innate avoidance of predators. Nat Commun 2024; 15:3360. [PMID: 38637611 PMCID: PMC11026480 DOI: 10.1038/s41467-024-47698-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
The mammalian olfactory system detects and discriminates between millions of odorants to elicit appropriate behavioral responses. While much has been learned about how olfactory sensory neurons detect odorants and signal their presence, how specific innate, unlearned behaviors are initiated in response to ethologically relevant odors remains poorly understood. Here, we show that the 4-transmembrane protein CD20, also known as MS4A1, is expressed in a previously uncharacterized subpopulation of olfactory sensory neurons in the main olfactory epithelium of the murine nasal cavity and functions as a mammalian olfactory receptor that recognizes compounds produced by mouse predators. While wildtype mice avoid these predator odorants, mice genetically deleted of CD20 do not appropriately respond. Together, this work reveals a CD20-mediated odor-sensing mechanism in the mammalian olfactory system that triggers innate behaviors critical for organismal survival.
Collapse
Affiliation(s)
- Hao-Ching Jiang
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Program in Neuroscience, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sung Jin Park
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - I-Hao Wang
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Interdisciplinary Graduate Program, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Daniel M Bear
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Palo Alto, CA, USA
| | - Alexandra Nowlan
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Paul L Greer
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
4
|
Yohe LR, Krell NT. An updated synthesis of and outstanding questions in the olfactory and vomeronasal systems in bats: Genetics asks questions only anatomy can answer. Anat Rec (Hoboken) 2023; 306:2765-2780. [PMID: 37523493 DOI: 10.1002/ar.25290] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
The extensive diversity observed in bat nasal chemosensory systems has been well-documented at the histological level. Understanding how this diversity evolved and developing hypotheses as to why particular patterns exist require a phylogenetic perspective, which was first outlined in the work of anatomist Kunwar Bhatnagar. With the onset of genetics and genomics, it might be assumed that the puzzling patterns observed in the morphological data have been clarified. However, there is still a widespread mismatch of genetic and morphological correlations among bat chemosensory systems. Novel genomic evidence has set up new avenues to explore that demand more evidence from anatomical structures. Here, we outline the progress that has been made in both morphological and molecular studies on the olfactory and vomeronasal systems in bats since the work of Bhatnagar. Genomic data of olfactory and vomeronasal receptors demonstrate the strong need for further morphological sampling, with a particular focus on receiving brain regions, glands, and ducts.
Collapse
Affiliation(s)
- Laurel R Yohe
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
- North Carolina Research Campus, Kannapolis, North Carolina, USA
| | - Nicholas T Krell
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
5
|
Mier Quesada Z, Portillo W, Paredes RG. Behavioral evidence of the functional interaction between the main and accessory olfactory system suggests a large olfactory system with a high plastic capability. Front Neuroanat 2023; 17:1211644. [PMID: 37908970 PMCID: PMC10613685 DOI: 10.3389/fnana.2023.1211644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Olfaction is fundamental in many species of mammals. In rodents, the integrity of this system is required for the expression of parental and sexual behavior, mate recognition, identification of predators, and finding food. Different anatomical and physiological evidence initially indicated the existence of two anatomically distinct chemosensory systems: The main olfactory system (MOS) and the accessory olfactory system (AOS). It was originally conceived that the MOS detected volatile odorants related to food, giving the animal information about the environment. The AOS, on the other hand, detected non-volatile sexually relevant olfactory cues that influence reproductive behaviors and neuroendocrine functions such as intermale aggression, sexual preference, maternal aggression, pregnancy block (Bruce effect), puberty acceleration (Vandenbergh effect), induction of estrous (Whitten effect) and sexual behavior. Over the last decade, several lines of evidence have demonstrated that although these systems could be anatomically separated, there are neuronal areas in which they are interconnected. Moreover, it is now clear that both the MOS and the AOS process both volatile and no-volatile odorants, indicating that they are also functionally interconnected. In the first part of the review, we will describe the behavioral evidence. In the second part, we will summarize data from our laboratory and other research groups demonstrating that sexual behavior in male and female rodents induces the formation of new neurons that reach the main and accessory olfactory bulbs from the subventricular zone. Three factors are essential for the neurons to reach the AOS and the MOS: The stimulation frequency, the stimulus's temporal presentation, and the release of opioids induced by sexual behavior. We propose that the AOS and the MOS are part of a large olfactory system with a high plastic capability, which favors the adaptation of species to different environmental signals.
Collapse
Affiliation(s)
- Zacnite Mier Quesada
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Raúl G. Paredes
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| |
Collapse
|
6
|
Pfau DR, Baribeau S, Brown F, Khetarpal N, Marc Breedlove S, Jordan CL. Loss of TRPC2 function in mice alters sex differences in brain regions regulating social behaviors. J Comp Neurol 2023; 531:1550-1561. [PMID: 37496437 PMCID: PMC10642801 DOI: 10.1002/cne.25528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/15/2023] [Accepted: 06/29/2023] [Indexed: 07/28/2023]
Abstract
The transient receptor potential cation channel 2 (TRPC2) conveys pheromonal information from the vomeronasal organ (VNO) to the brain. Both male and female mice lacking this gene show altered sex-typical behavior as adults. We asked whether TRPC2, highly expressed in the VNO, normally participates in the development of VNO-recipient brain regions controlling mounting and aggression, two behaviors affected by TRPC2 loss. We now report significant effects of TRPC2 loss in both the posterodorsal aspect of the medial amygdala (MePD) and ventromedial nucleus of the hypothalamus (VMH) of male and female mice. In the MePD, a sex difference in neuron number was eliminated by the TRPC2 knockout (KO), but the effect was complex, with fewer neurons in the right MePD of females, and fewer neurons in the left MePD of males. In contrast, MePD astrocytes were unaffected by the KO. In the ventrolateral (vl) aspect of the VMH, KO females were like wildtype (WT) females, but TRPC2 loss had a dramatic effect in males, with fewer neurons than WT males and a smaller VMHvl overall. We also discovered a glial sex difference in VMHvl of WTs, with females having more astrocytes than males. Interestingly, TRPC2 loss increased astrocyte number in males in this region. We conclude that TRPC2 normally participates in the sexual differentiation of the mouse MePD and VMHvl. These changes in two key VNO-recipient regions may underlie the effects of the TRPC2 KO on behavior.
Collapse
Affiliation(s)
- Daniel R Pfau
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - Sarah Baribeau
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - Felix Brown
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - Niki Khetarpal
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - S Marc Breedlove
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - Cynthia L Jordan
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
7
|
Jiang HC, Park SJ, Wang IH, Bear DM, Nowlan A, Greer PL. CD20 is a mammalian odorant receptor expressed in a subset of olfactory sensory neurons that mediates innate avoidance of predators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552498. [PMID: 37609248 PMCID: PMC10441374 DOI: 10.1101/2023.08.08.552498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The mammalian olfactory system detects and discriminates between millions of odorants to elicit appropriate behavioral responses. While much has been learned about how olfactory sensory neurons detect odorants and signal their presence, how specific innate, unlearned behaviors are initiated in response to ethologically relevant odors remains poorly understood. Here, we show that the 4-transmembrane protein CD20, also known as MS4A1, is expressed in a previously uncharacterized subpopulation of olfactory sensory neurons in the main olfactory epithelium of the murine nasal cavity and functions as a mammalian odorant receptor that recognizes compounds produced by mouse predators. While wild-type mice avoid these predator odorants, mice genetically deleted of CD20 do not appropriately respond. Together, this work reveals a novel CD20-mediated odor-sensing mechanism in the mammalian olfactory system that triggers innate behaviors critical for organismal survival.
Collapse
|
8
|
Weiss J, Vacher H, Trouillet AC, Leinders-Zufall T, Zufall F, Chamero P. Sensing and avoiding sick conspecifics requires Gαi2 + vomeronasal neurons. BMC Biol 2023; 21:152. [PMID: 37424020 DOI: 10.1186/s12915-023-01653-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Rodents utilize chemical cues to recognize and avoid other conspecifics infected with pathogens. Infection with pathogens and acute inflammation alter the repertoire and signature of olfactory stimuli emitted by a sick individual. These cues are recognized by healthy conspecifics via the vomeronasal or accessory olfactory system, triggering an innate form of avoidance behavior. However, the molecular identity of the sensory neurons and the higher neural circuits involved in the detection of sick conspecifics remain poorly understood. RESULTS We employed mice that are in an acute state of inflammation induced by systemic administration of lipopolysaccharide (LPS). Through conditional knockout of the G-protein Gαi2 and deletion of other key sensory transduction molecules (Trpc2 and a cluster of 16 vomeronasal type 1 receptors), in combination with behavioral testing, subcellular Ca2+ imaging, and pS6 and c-Fos neuronal activity mapping in freely behaving mice, we show that the Gαi2+ vomeronasal subsystem is required for the detection and avoidance of LPS-treated mice. The active components underlying this avoidance are contained in urine whereas feces extract and two selected bile acids, although detected in a Gαi2-dependent manner, failed to evoke avoidance behavior. Our analyses of dendritic Ca2+ responses in vomeronasal sensory neurons provide insight into the discrimination capabilities of these neurons for urine fractions from LPS-treated mice, and how this discrimination depends on Gαi2. We observed Gαi2-dependent stimulation of multiple brain areas including medial amygdala, ventromedial hypothalamus, and periaqueductal grey. We also identified the lateral habenula, a brain region implicated in negative reward prediction in aversive learning, as a previously unknown target involved in these tasks. CONCLUSIONS Our physiological and behavioral analyses indicate that the sensing and avoidance of LPS-treated sick conspecifics depend on the Gαi2 vomeronasal subsystem. Our observations point to a central role of brain circuits downstream of the olfactory periphery and in the lateral habenula in the detection and avoidance of sick conspecifics, providing new insights into the neural substrates and circuit logic of the sensing of inflammation in mice.
Collapse
Affiliation(s)
- Jan Weiss
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany.
| | - Hélène Vacher
- Laboratoire de Physiologie de la Reproduction et des Comportements, UMR 0085 INRAE-CNRS-IFCE-University of Tours, Nouzilly, France
| | - Anne-Charlotte Trouillet
- Laboratoire de Physiologie de la Reproduction et des Comportements, UMR 0085 INRAE-CNRS-IFCE-University of Tours, Nouzilly, France
| | - Trese Leinders-Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421, Homburg, Germany.
| | - Pablo Chamero
- Laboratoire de Physiologie de la Reproduction et des Comportements, UMR 0085 INRAE-CNRS-IFCE-University of Tours, Nouzilly, France.
| |
Collapse
|
9
|
Ojha NK, Zufall F, Leinders-Zufall T. Optical Activation of Photoswitchable TRPC Ligands in the Mammalian Olfactory System Using Laser Scanning Confocal Microscopy. Methods Mol Biol 2023; 2710:31-47. [PMID: 37688722 DOI: 10.1007/978-1-0716-3425-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
Abstract
The transient receptor potential canonical (TRPC) ion channels play important biological roles, but their activation mechanisms are incompletely understood. Here, we describe recent methodological advances using small molecular probes designed for photopharmacology of TRPC channels by focusing on results obtained from the mouse olfactory system. These studies developed and used photoswitchable diacylglycerol (DAG) analogs for ultrarapid activation of native TRPC2 channels in vomeronasal sensory neurons and type B cells of the main olfactory epithelium. Further studies investigated the role of TRPC5 channels in prolactin regulation of dopamine neurons in the arcuate nucleus of the hypothalamus. Here, the first photoswitchable TRPC5 modulator, BTDAzo, was developed and shown to control endogenous TRPC5-based neuronal Ca2+ responses in mouse brain slices. Thus, photoswitchable reagents are rapidly gaining widespread recognition for investigating various types of TRPC channels including TRPC2, TRPC3, TRPC5, and TRPC6, enabling to gain new insights into the gating mechanisms and functions of these channels.
Collapse
Affiliation(s)
- Navin K Ojha
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany.
| | - Trese Leinders-Zufall
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany.
| |
Collapse
|
10
|
Neural and Hormonal Basis of Opposite-Sex Preference by Chemosensory Signals. Int J Mol Sci 2021; 22:ijms22158311. [PMID: 34361077 PMCID: PMC8347621 DOI: 10.3390/ijms22158311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
In mammalian reproduction, sexually active males seek female conspecifics, while estrous females try to approach males. This sex-specific response tendency is called sexual preference. In small rodents, sexual preference cues are mainly chemosensory signals, including pheromones. In this article, we review the physiological mechanisms involved in sexual preference for opposite-sex chemosensory signals in well-studied laboratory rodents, mice, rats, and hamsters of both sexes, especially an overview of peripheral sensory receptors, and hormonal and central regulation. In the hormonal regulation section, we discuss potential rodent brain bisexuality, as it includes neural substrates controlling both masculine and feminine sexual preferences, i.e., masculine preference for female odors and the opposite. In the central regulation section, we show the substantial circuit regulating sexual preference and also the influence of sexual experience that innate attractants activate in the brain reward system to establish the learned attractant. Finally, we review the regulation of sexual preference by neuropeptides, oxytocin, vasopressin, and kisspeptin. Through this review, we clarified the contradictions and deficiencies in our current knowledge on the neuroendocrine regulation of sexual preference and sought to present problems requiring further study.
Collapse
|
11
|
Keller M, Chamero P. Is the Loss of Trpc2 Gene Function a Real Working Hypothesis for the Emergence of Same-Sex Sexual Behavior in Old World Primates? ARCHIVES OF SEXUAL BEHAVIOR 2021; 50:2293-2297. [PMID: 32100136 DOI: 10.1007/s10508-020-01664-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Affiliation(s)
- Matthieu Keller
- Laboratoire de Physiologie de la Reproduction & des Comportements, UMR INRAE/CNRS, Université de Tours/IFCE, 37380, Nouzilly, France.
| | - Pablo Chamero
- Laboratoire de Physiologie de la Reproduction & des Comportements, UMR INRAE/CNRS, Université de Tours/IFCE, 37380, Nouzilly, France
| |
Collapse
|
12
|
Pfau D, Jordan CL, Breedlove SM. The De-Scent of Sexuality: Did Loss of a Pheromone Signaling Protein Permit the Evolution of Same-Sex Sexual Behavior in Primates? ARCHIVES OF SEXUAL BEHAVIOR 2021; 50:2267-2276. [PMID: 31016493 DOI: 10.1007/s10508-018-1377-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 05/15/2023]
Abstract
Primate same-sex sexual behavior (SSSB) is rarely observed in strepsirrhine species, and only somewhat more common in platyrrhines, but is observed in nearly all catarrhine species, including humans, suggesting the common catarrhine ancestor as the origin of routine SSSB. In mice, disruption of the transient receptor potential cation channel 2 (TRPC2) gene, which is crucial for transducing chemosensory signals from pheromones in the vomeronasal organ, greatly increased the likelihood of SSSB. We note that catarrhine primates share a common deleterious mutation in this gene, indicating that the protein was dysfunctional in the common catarrhine ancestral primate approximately 25 mya (million years ago). We hypothesize that the loss of this protein for processing pheromonal signals in males and females made SSSB more likely in a primate ancestral species by effectively lifting a pheromonally mediated barrier to SSSB and that this was an important precursor to the evolution of such behavior in humans. Additional comparisons between SSSB and the functional status of the TRPC2 gene or related proteins across primate species could lend support to or falsify this hypothesis. Our current research indicates that loss of TRPC2 function in developing mice leads to the loss or attenuation of sexually dimorphisms in the adult brain, which may help us to understand the biological underpinnings of SSSB. Our hypothesis offers an ultimate evolutionary explanation for SSSB in humans.
Collapse
Affiliation(s)
- Daniel Pfau
- Neuroscience Program, Michigan State University, Giltner Hall, 293 Farm Lane, Room 108, East Lansing, MI, 48824-1101, USA.
| | - Cynthia L Jordan
- Neuroscience Program, Michigan State University, Giltner Hall, 293 Farm Lane, Room 108, East Lansing, MI, 48824-1101, USA
| | - S Marc Breedlove
- Neuroscience Program, Michigan State University, Giltner Hall, 293 Farm Lane, Room 108, East Lansing, MI, 48824-1101, USA
| |
Collapse
|
13
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
14
|
Danger perception and stress response through an olfactory sensor for the bacterial metabolite hydrogen sulfide. Neuron 2021; 109:2469-2484.e7. [PMID: 34186026 DOI: 10.1016/j.neuron.2021.05.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/01/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
The olfactory system serves a critical function as a danger detection system to trigger defense responses essential for survival. The cellular and molecular mechanisms that drive such defenses in mammals are incompletely understood. Here, we have discovered an ultrasensitive olfactory sensor for the highly poisonous bacterial metabolite hydrogen sulfide (H2S) in mice. An atypical class of sensory neurons in the main olfactory epithelium, the type B cells, is activated by both H2S and low O2. These two stimuli trigger, respectively, Cnga2- and Trpc2-signaling pathways, which operate in separate subcellular compartments, the cilia and the dendritic knob. This activation drives essential defensive responses: elevation of the stress hormone ACTH, stress-related self-grooming behavior, and conditioned place avoidance. Our findings identify a previously unknown signaling paradigm in mammalian olfaction and define type B cells as chemosensory neurons that integrate distinct danger inputs from the external environment with appropriate defense outputs.
Collapse
|
15
|
Villamayor PR, Robledo D, Fernández C, Gullón J, Quintela L, Sánchez-Quinteiro P, Martínez P. Analysis of the vomeronasal organ transcriptome reveals variable gene expression depending on age and function in rabbits. Genomics 2021; 113:2240-2252. [PMID: 34015461 DOI: 10.1016/j.ygeno.2021.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/23/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
The vomeronasal organ (VNO) is a chemosensory organ specialized in pheromone detection that shows a broad morphofunctional and genomic diversity among mammals. However, its expression patterns have only been well-characterized in mice. Here, we provide the first comprehensive RNA sequencing study of the rabbit VNO across gender and sexual maturation stages. We characterized the VNO transcriptome, updating the number and expression of the two main vomeronasal receptor families, including 128 V1Rs and 67 V2Rs. Further, we defined the expression of formyl-peptide receptor and transient receptor potential channel families, both known to have specific roles in the VNO. Several sex hormone-related pathways were consistently enriched in the VNO, highlighting the relevance of this organ in reproduction. Moreover, whereas juvenile and adult VNOs showed significant transcriptome differences, male and female did not. Overall, these results contribute to understand the genomic basis of behavioural responses mediated by the VNO in a non-rodent model.
Collapse
Affiliation(s)
- P R Villamayor
- Department of Zoology Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain; Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - D Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - C Fernández
- Department of Zoology Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - J Gullón
- Conejos Gallegos, COGAL SL, Rodeiro, Pontevedra, Spain
| | - L Quintela
- Department of Animal Pathology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - P Sánchez-Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain.
| | - P Martínez
- Department of Zoology Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| |
Collapse
|
16
|
Baxter BD, Larson ED, Merle L, Feinstein P, Polese AG, Bubak AN, Niemeyer CS, Hassell J, Shepherd D, Ramakrishnan VR, Nagel MA, Restrepo D. Transcriptional profiling reveals potential involvement of microvillous TRPM5-expressing cells in viral infection of the olfactory epithelium. BMC Genomics 2021; 22:224. [PMID: 33781205 PMCID: PMC8007386 DOI: 10.1186/s12864-021-07528-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Background Understanding viral infection of the olfactory epithelium is essential because the olfactory nerve is an important route of entry for viruses to the central nervous system. Specialized chemosensory epithelial cells that express the transient receptor potential cation channel subfamily M member 5 (TRPM5) are found throughout the airways and intestinal epithelium and are involved in responses to viral infection. Results Herein we performed deep transcriptional profiling of olfactory epithelial cells sorted by flow cytometry based on the expression of mCherry as a marker for olfactory sensory neurons and for eGFP in OMP-H2B::mCherry/TRPM5-eGFP transgenic mice (Mus musculus). We find profuse expression of transcripts involved in inflammation, immunity and viral infection in TRPM5-expressing microvillous cells compared to olfactory sensory neurons. Conclusion Our study provides new insights into a potential role for TRPM5-expressing microvillous cells in viral infection of the olfactory epithelium. We find that, as found for solitary chemosensory cells (SCCs) and brush cells in the airway epithelium, and for tuft cells in the intestine, the transcriptome of TRPM5-expressing microvillous cells indicates that they are likely involved in the inflammatory response elicited by viral infection of the olfactory epithelium. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07528-y.
Collapse
Affiliation(s)
- B Dnate' Baxter
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Eric D Larson
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Laetitia Merle
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Paul Feinstein
- The Graduate Center Biochemistry, Biology and CUNY-Neuroscience-Collaborative Programs and Biological Sciences Department, Hunter College, City University of New York, New York, NY, 10065, USA
| | - Arianna Gentile Polese
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Andrew N Bubak
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Christy S Niemeyer
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - James Hassell
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Doug Shepherd
- Department of Pharmacology, University of Colorado Anschutz Medical Campus and Center for Biological Physics and Department of Physics, Arizona State University, Tempe, USA
| | - Vijay R Ramakrishnan
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Maria A Nagel
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Diego Restrepo
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA. .,Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
17
|
Cross SKJ, Martin YH, Salia S, Gamba I, Major CA, Hassan S, Parsons KA, Swift-Gallant A. Puberty is a Critical Period for Vomeronasal Organ Mediation of Socio-sexual Behavior in Mice. Front Behav Neurosci 2021; 14:606788. [PMID: 33551763 PMCID: PMC7862124 DOI: 10.3389/fnbeh.2020.606788] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
Genetic disruption of the vomeronasal organ (VNO), an organ responsible for pheromone processing, drastically alters socio-sexual behavior in mice. However, it is not known whether the VNO has a role during the pubertal organizational period when sex-typical socio-sexual behaviors emerge, or if disruption of the organ in adulthood is sufficient to alter socio-sexual behavior. To bypass the lifelong VNO disruption of genetic knockout models, we surgically ablated the VNO of male and female mice either during the peripubertal period [postnatal day (PND) 28–30] or adulthood (PND 58–60), with sham controls at both ages. We ruled out anosmia via the buried food test and assessed sexual odor preferences by simultaneously exposing mice to same- and opposite-sex soiled-bedding. We then measured territorial aggression with the resident-intruder paradigm and assessed sexual behavior in response to an encounter with an estrus-induced female. Neural activity approximated by FOS-immunoreactivity along the VNO-accessory olfactory pathway was measured in response to opposite-sex odors. We found that peripubertal VNO ablation decreased sexual odor preferences and neural activity in response to opposite-sex odors, and drastically reduced territorial aggression in male mice. Conversely, adult VNO ablation resulted in subtle differences in sexual odor preferences compared with sham controls. Regardless of the VNO condition, mice displayed sex-typical copulatory behaviors. Together, these results suggest that puberty is a critical period in development whereby the VNO contributes to the sexual differentiation of behavior and neural response to conspecific odors.
Collapse
Affiliation(s)
- Sarah K J Cross
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Yellow H Martin
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Stephanie Salia
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Iain Gamba
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Christina A Major
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Suhail Hassan
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Katelyn A Parsons
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ashlyn Swift-Gallant
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
18
|
Zimmerman AD, Munger SD. Olfactory subsystems associated with the necklace glomeruli in rodents. Cell Tissue Res 2021; 383:549-557. [PMID: 33404845 DOI: 10.1007/s00441-020-03388-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/07/2020] [Indexed: 01/27/2023]
Abstract
The necklace glomeruli are a loosely defined group of glomeruli encircling the caudal main olfactory bulb in rodents. Initially defined by the expression of various immunohistochemical markers, they are now better understood in the context of the specialized chemosensory neurons of the main olfactory epithelium and Grueneberg ganglion that innervate them. It has become clear that the necklace region of the rodent main olfactory bulb is composed of multiple distinct groups of glomeruli, defined at least in part by their afferent inputs. In this review, we will explore the necklace glomeruli and the chemosensory neurons that innervate them.
Collapse
Affiliation(s)
- Arthur D Zimmerman
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, PO Box 100267, Gainesville, FL, 32610, USA
- Center for Smell and Taste, University of Florida, PO Box 100127, Gainesville, FL, 32610, USA
- Training Program in Chemosensory Science, University of Florida, PO Box 100127, Gainesville, FL, 32610, USA
| | - Steven D Munger
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, PO Box 100267, Gainesville, FL, 32610, USA.
- Center for Smell and Taste, University of Florida, PO Box 100127, Gainesville, FL, 32610, USA.
- Training Program in Chemosensory Science, University of Florida, PO Box 100127, Gainesville, FL, 32610, USA.
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, PO Box 100266, Gainesville, FL, 32610, USA.
| |
Collapse
|
19
|
Corey EA, Ukhanov K, Bobkov YV, McIntyre JC, Martens JR, Ache BW. Inhibitory signaling in mammalian olfactory transduction potentially mediated by Gα o. Mol Cell Neurosci 2020; 110:103585. [PMID: 33358996 DOI: 10.1016/j.mcn.2020.103585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/27/2020] [Accepted: 12/09/2020] [Indexed: 01/12/2023] Open
Abstract
Olfactory GPCRs (ORs) in mammalian olfactory receptor neurons (ORNs) mediate excitation through the Gαs family member Gαolf. Here we tentatively associate a second G protein, Gαo, with inhibitory signaling in mammalian olfactory transduction by first showing that odor evoked phosphoinositide 3-kinase (PI3K)-dependent inhibition of signal transduction is absent in the native ORNs of mice carrying a conditional OMP-Cre based knockout of Gαo. We then identify an OR from native rat ORNs that are activated by octanol through cyclic nucleotide signaling and inhibited by citral in a PI3K-dependent manner. We show that the OR activates cyclic nucleotide signaling and PI3K signaling in a manner that reflects its functionality in native ORNs. Our findings lay the groundwork to explore the interesting possibility that ORs can interact with two different G proteins in a functionally identified, ligand-dependent manner to mediate opponent signaling in mature mammalian ORNs.
Collapse
Affiliation(s)
- Elizabeth A Corey
- Whitney Laboratory, Center for Smell and Taste, University of Florida, Gainesville, FL 32610, United States of America
| | - Kirill Ukhanov
- Dept. of Pharmacology and Therapeutics, Center for Smell and Taste, University of Florida, Gainesville, FL 32610, United States of America
| | - Yuriy V Bobkov
- Whitney Laboratory, Center for Smell and Taste, University of Florida, Gainesville, FL 32610, United States of America
| | - Jeremy C McIntyre
- Dept. of Neuroscience, Center for Smell and Taste, University of Florida, Gainesville, FL 32610, United States of America
| | - Jeffrey R Martens
- Dept. of Pharmacology and Therapeutics, Center for Smell and Taste, University of Florida, Gainesville, FL 32610, United States of America
| | - Barry W Ache
- Whitney Laboratory, Dept. of Biology, Center for Smell and Taste, University of Florida, Gainesville, FL 32610, United States of America; Whitney Laboratory, Dept. of Neuroscience, Center for Smell and Taste, University of Florida, Gainesville, FL 32610, United States of America.
| |
Collapse
|
20
|
Baxter BD, Larson ED, Merle L, Feinstein P, Polese AG, Bubak AN, Niemeyer CS, Hassell J, Shepherd D, Ramakrishnan VR, Nagel MA, Restrepo D. Transcriptional profiling reveals potential involvement of microvillous TRPM5-expressing cells in viral infection of the olfactory epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511400 DOI: 10.1101/2020.05.14.096016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Understanding viral infection of the olfactory epithelium is essential because the olfactory nerve is an important route of entry for viruses to the central nervous system. Specialized chemosensory epithelial cells that express the transient receptor potential cation channel subfamily M member 5 (TRPM5) are found throughout the airways and intestinal epithelium and are involved in responses to viral infection. Results Herein we performed deep transcriptional profiling of olfactory epithelial cells sorted by flow cytometry based on the expression of mCherry as a marker for olfactory sensory neurons and for eGFP in OMP-H2B::mCherry/TRPM5-eGFP transgenic mice ( Mus musculus ). We find profuse expression of transcripts involved in inflammation, immunity and viral infection in TRPM5-expressing microvillous cells. Conclusion Our study provides new insights into a potential role for TRPM5-expressing microvillous cells in viral infection of the olfactory epithelium. We find that, as found for solitary chemosensory cells (SCCs) and brush cells in the airway epithelium, and for tuft cells in the intestine, the transcriptome of TRPM5-expressing microvillous cells indicates that they are likely involved in the inflammatory response elicited by viral infection of the olfactory epithelium.
Collapse
|
21
|
Bufe B, Teuchert Y, Schmid A, Pyrski M, Pérez-Gómez A, Eisenbeis J, Timm T, Ishii T, Lochnit G, Bischoff M, Mombaerts P, Leinders-Zufall T, Zufall F. Bacterial MgrB peptide activates chemoreceptor Fpr3 in mouse accessory olfactory system and drives avoidance behaviour. Nat Commun 2019; 10:4889. [PMID: 31653840 PMCID: PMC6814738 DOI: 10.1038/s41467-019-12842-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/02/2019] [Indexed: 12/31/2022] Open
Abstract
Innate immune chemoreceptors of the formyl peptide receptor (Fpr) family are expressed by vomeronasal sensory neurons (VSNs) in the accessory olfactory system. Their biological function and coding mechanisms remain unknown. We show that mouse Fpr3 (Fpr-rs1) recognizes the core peptide motif f-MKKFRW that is predominantly present in the signal sequence of the bacterial protein MgrB, a highly conserved regulator of virulence and antibiotic resistance in Enterobacteriaceae. MgrB peptide can be produced and secreted by bacteria, and is selectively recognized by a subset of VSNs. Exposure to the peptide also stimulates VSNs in freely behaving mice and drives innate avoidance. Our data shows that Fpr3 is required for neuronal detection and avoidance of peptides derived from a conserved master virulence regulator of enteric bacteria.
Collapse
Affiliation(s)
- Bernd Bufe
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66424, Homburg, Germany.,Molecular Immunology Section, Faculty of Computer Science and Microsystems Engineering, University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482, Zweibrücken, Germany
| | - Yannick Teuchert
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66424, Homburg, Germany
| | - Andreas Schmid
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66424, Homburg, Germany
| | - Martina Pyrski
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66424, Homburg, Germany
| | - Anabel Pérez-Gómez
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66424, Homburg, Germany.,Department of Molecular Medicine, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Janina Eisenbeis
- Institute for Medical Microbiology and Hygiene, Saarland University, 66424, Homburg, Germany
| | - Thomas Timm
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Tomohiro Ishii
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, 60438, Frankfurt, Germany.,Department of Cell Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Günter Lochnit
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Markus Bischoff
- Institute for Medical Microbiology and Hygiene, Saarland University, 66424, Homburg, Germany
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, 60438, Frankfurt, Germany
| | - Trese Leinders-Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66424, Homburg, Germany
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66424, Homburg, Germany.
| |
Collapse
|
22
|
Sequential Maturation of Olfactory Sensory Neurons in the Mature Olfactory Epithelium. eNeuro 2019; 6:ENEURO.0266-19.2019. [PMID: 31554664 PMCID: PMC6795559 DOI: 10.1523/eneuro.0266-19.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/10/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
The formation of the olfactory nerve and olfactory bulb (OB) glomeruli begins embryonically in mice. However, the development of the olfactory system continues throughout life with the addition of new olfactory sensory neurons (OSNs) in the olfactory epithelium (OE). Much attention has been given to the perinatal innervation of the OB by OSN axons, but in the young adult the process of OSN maturation and axon targeting to the OB remains controversial. To address this gap in understanding, we used BrdU to label late-born OSNs in young adult mice at postnatal day 25 (P25-born OSNs) and timed their molecular maturation following basal cell division. We show that OSNs in young adults undergo a sequential molecular development with the expression of GAP 43 (growth-associated protein 43) > AC3 (adenylyl cyclase 3) > OMP (olfactory marker protein), consecutively, in a time frame of ∼8 d. To assess OSN axon development, we implemented an in vivo fate-mapping strategy to label P25-born OSNs with ZsGreen. Using sampling intervals of 24 h, we demonstrate the progressive extension of OSN axons in the OE, through the foramen of the cribriform plate, and onto the surface of the OB. OSN axons reached the OB and began to target and robustly innervate specific glomeruli ∼10 d following basal cell division, a time point at which OMP expression becomes evident. Our data demonstrate a sequential process of correlated axon extension and molecular maturation that is similar to that seen in the neonate, but on a slightly longer timescale and with regional differences in the OE.
Collapse
|
23
|
Wang Y, Wu H, Sun ZS. The biological basis of sexual orientation: How hormonal, genetic, and environmental factors influence to whom we are sexually attracted. Front Neuroendocrinol 2019; 55:100798. [PMID: 31593707 DOI: 10.1016/j.yfrne.2019.100798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/29/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022]
Abstract
Humans develop relatively stable attractions to sexual partners during maturation and present a spectrum of sexual orientation from homosexuality to heterosexuality encompassing varying degrees of bisexuality, with some individuals also displaying asexuality. Sexual orientation represents a basic life phenomenon for humans. However, the molecular mechanisms underlying these diverse traits of sexual orientation remain highly controversial. In this review, we systematically discuss recent advancements in sexual orientation research, including those related to measurements and associated brain regions. Current findings regarding sexual orientation modulation by hormonal, genetic, maternal immune system, and environmental factors are summarized in both human and model systems. We also emphasize that future studies should recognize the differences between males and females and pay more attention to minor traits and the epigenetic regulation of sexual orientation. A comprehensive view of sexual orientation may promote our understanding of the biological basis of sex, and that of human reproduction, and evolution.
Collapse
Affiliation(s)
- Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Haoda Wu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Zhong Sheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of the Chinese Academy of Sciences, Beijing 100190, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
24
|
Abstract
The formation of the olfactory nerve and olfactory bulb (OB) glomeruli begins embryonically in mice. However, the development of the olfactory system continues throughout life with the addition of new olfactory sensory neurons (OSNs) in the olfactory epithelium (OE). Much attention has been given to the perinatal innervation of the OB by OSN axons, but in the young adult the process of OSN maturation and axon targeting to the OB remains controversial. To address this gap in understanding, we used BrdU to label late-born OSNs in young adult mice at postnatal day 25 (P25-born OSNs) and timed their molecular maturation following basal cell division. We show that OSNs in young adults undergo a sequential molecular development with the expression of GAP 43 (growth-associated protein 43) > AC3 (adenylyl cyclase 3) > OMP (olfactory marker protein), consecutively, in a time frame of ∼8 d. To assess OSN axon development, we implemented an in vivo fate-mapping strategy to label P25-born OSNs with ZsGreen. Using sampling intervals of 24 h, we demonstrate the progressive extension of OSN axons in the OE, through the foramen of the cribriform plate, and onto the surface of the OB. OSN axons reached the OB and began to target and robustly innervate specific glomeruli ∼10 d following basal cell division, a time point at which OMP expression becomes evident. Our data demonstrate a sequential process of correlated axon extension and molecular maturation that is similar to that seen in the neonate, but on a slightly longer timescale and with regional differences in the OE.
Collapse
|
25
|
Mohrhardt J, Nagel M, Fleck D, Ben-Shaul Y, Spehr M. Signal Detection and Coding in the Accessory Olfactory System. Chem Senses 2019; 43:667-695. [PMID: 30256909 PMCID: PMC6211456 DOI: 10.1093/chemse/bjy061] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In many mammalian species, the accessory olfactory system plays a central role in guiding behavioral and physiological responses to social and reproductive interactions. Because of its relatively compact structure and its direct access to amygdalar and hypothalamic nuclei, the accessory olfactory pathway provides an ideal system to study sensory control of complex mammalian behavior. During the last several years, many studies employing molecular, behavioral, and physiological approaches have significantly expanded and enhanced our understanding of this system. The purpose of the current review is to integrate older and newer studies to present an updated and comprehensive picture of vomeronasal signaling and coding with an emphasis on early accessory olfactory system processing stages. These include vomeronasal sensory neurons in the vomeronasal organ, and the circuitry of the accessory olfactory bulb. Because the overwhelming majority of studies on accessory olfactory system function employ rodents, this review is largely focused on this phylogenetic order, and on mice in particular. Taken together, the emerging view from both older literature and more recent studies is that the molecular, cellular, and circuit properties of chemosensory signaling along the accessory olfactory pathway are in many ways unique. Yet, it has also become evident that, like the main olfactory system, the accessory olfactory system also has the capacity for adaptive learning, experience, and state-dependent plasticity. In addition to describing what is currently known about accessory olfactory system function and physiology, we highlight what we believe are important gaps in our knowledge, which thus define exciting directions for future investigation.
Collapse
Affiliation(s)
- Julia Mohrhardt
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Maximilian Nagel
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - David Fleck
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, School of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
26
|
Nakashima A, Ihara N, Shigeta M, Kiyonari H, Ikegaya Y, Takeuchi H. Structured spike series specify gene expression patterns for olfactory circuit formation. Science 2019; 365:science.aaw5030. [PMID: 31171707 DOI: 10.1126/science.aaw5030] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022]
Abstract
Neural circuits emerge through the interplay of genetic programming and activity-dependent processes. During the development of the mouse olfactory map, axons segregate into distinct glomeruli in an olfactory receptor (OR)-dependent manner. ORs generate a combinatorial code of axon-sorting molecules whose expression is regulated by neural activity. However, it remains unclear how neural activity induces OR-specific expression patterns of axon-sorting molecules. We found that the temporal patterns of spontaneous neuronal spikes were not spatially organized but were correlated with the OR types. Receptor substitution experiments demonstrated that ORs determine spontaneous activity patterns. Moreover, optogenetically differentiated patterns of neuronal activity induced specific expression of the corresponding axon-sorting molecules and regulated axonal segregation. Thus, OR-dependent temporal patterns of spontaneous activity play instructive roles in generating the combinatorial code of axon-sorting molecules during olfactory map formation.
Collapse
Affiliation(s)
- Ai Nakashima
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Naoki Ihara
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Mayo Shigeta
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe 650-0047, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe 650-0047, Japan.,Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe 650-0047, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan.,Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka 565-0871, Japan
| | - Haruki Takeuchi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan. .,Social Cooperation Program of Evolutional Chemical Safety Assessment System, LECSAS, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
27
|
Bayless DW, Yang T, Mason MM, Susanto AAT, Lobdell A, Shah NM. Limbic Neurons Shape Sex Recognition and Social Behavior in Sexually Naive Males. Cell 2019; 176:1190-1205.e20. [PMID: 30712868 PMCID: PMC6453703 DOI: 10.1016/j.cell.2018.12.041] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/13/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022]
Abstract
Sexually naive animals have to distinguish between the sexes because they show species-typical interactions with males and females without meaningful prior experience. However, central neural pathways in naive mammals that recognize sex of other individuals remain poorly characterized. We examined the role of the principal component of the bed nucleus of stria terminalis (BNSTpr), a limbic center, in social interactions in mice. We find that activity of aromatase-expressing BNSTpr (AB) neurons appears to encode sex of other animals and subsequent displays of mating in sexually naive males. Silencing these neurons in males eliminates preference for female pheromones and abrogates mating success, whereas activating them even transiently promotes male-male mating. Surprisingly, female AB neurons do not appear to control sex recognition, mating, or maternal aggression. In summary, AB neurons represent sex of other animals and govern ensuing social behaviors in sexually naive males.
Collapse
Affiliation(s)
- Daniel W Bayless
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Taehong Yang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Matthew M Mason
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Albert A T Susanto
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Alexandra Lobdell
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Nirao M Shah
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
28
|
Pyrski M, Tusty M, Eckstein E, Oboti L, Rodriguez-Gil DJ, Greer CA, Zufall F. P/Q Type Calcium Channel Cav2.1 Defines a Unique Subset of Glomeruli in the Mouse Olfactory Bulb. Front Cell Neurosci 2018; 12:295. [PMID: 30233329 PMCID: PMC6131590 DOI: 10.3389/fncel.2018.00295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/16/2018] [Indexed: 11/24/2022] Open
Abstract
Voltage-gated calcium (Cav) channels are a prerequisite for signal transmission at the first olfactory sensory neuron (OSN) synapse within the glomeruli of the main olfactory bulb (MOB). We showed previously that the N-type Cav channel subunit Cav2.2 is present in the vast majority of glomeruli and plays a central role in presynaptic transmitter release. Here, we identify a distinct subset of glomeruli in the MOB of adult mice that is characterized by expression of the P/Q-type channel subunit Cav2.1. Immunolocalization shows that Cav2.1+ glomeruli reside predominantly in the medial and dorsal MOB, and in the vicinity of the necklace glomerular region close to the accessory olfactory bulb. Few glomeruli are detected on the ventral and lateral MOB. Cav2.1 labeling in glomeruli colocalizes with the presynaptic marker vGlut2 in the axon terminals of OSNs. Electron microscopy shows that Cav2.1+ presynaptic boutons establish characteristic asymmetrical synapses with the dendrites of second-order neurons in the glomerular neuropil. Cav2.1+ glomeruli receive axonal input from OSNs that express molecules of canonical OSNs: olfactory marker protein, the ion channel Cnga2, and the phosphodiesterase Pde4a. In the main olfactory epithelium, Cav2.1 labels a distinct subpopulation of OSNs whose distribution mirrors the topography of the MOB glomeruli, that shows the same molecular signature, and is already present at birth. Together, these experiments identify a unique Cav2.1+ multiglomerular domain in the MOB that may form a previously unrecognized olfactory subsystem distinct from other groups of necklace glomeruli that rely on cGMP signaling mechanisms.
Collapse
Affiliation(s)
- Martina Pyrski
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Mahbuba Tusty
- Department of Neuroscience and Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Eugenia Eckstein
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Livio Oboti
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Diego J. Rodriguez-Gil
- Department of Neuroscience and Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Charles A. Greer
- Department of Neuroscience and Department of Neurosurgery, School of Medicine, Yale University, New Haven, CT, United States
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
29
|
Kikusui T, Kajita M, Otsuka N, Hattori T, Kumazawa K, Watarai A, Nagasawa M, Inutsuka A, Yamanaka A, Matsuo N, Covington HE, Mogi K. Sex differences in olfactory-induced neural activation of the amygdala. Behav Brain Res 2018; 346:96-104. [DOI: 10.1016/j.bbr.2017.11.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 12/26/2022]
|
30
|
Yohe LR, Hoffmann S, Curtis A. Vomeronasal and Olfactory Structures in Bats Revealed by DiceCT Clarify Genetic Evidence of Function. Front Neuroanat 2018; 12:32. [PMID: 29867373 PMCID: PMC5953337 DOI: 10.3389/fnana.2018.00032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/11/2018] [Indexed: 11/13/2022] Open
Abstract
The degree to which molecular and morphological loss of function occurs synchronously during the vestigialization of traits is not well understood. The mammalian vomeronasal system, a sense critical for mediating many social and reproductive behaviors, is highly conserved across mammals. New World Leaf-nosed bats (Phyllostomidae) are under strong selection to maintain a functional vomeronasal system such that most phyllostomids possess a distinct vomeronasal organ and an intact TRPC2, a gene encoding a protein primarily involved in vomeronasal sensory neuron signal transduction. Recent genetic evidence, however, shows that TRPC2 is a pseudogene in some Caribbean nectarivorous phyllostomids. The loss-of-function mutations suggest the sensory neural tissue of the vomeronasal organ is absent in these species despite strong selection on this gene in its mainland relatives, but the anatomy was unknown in most Caribbean nectarivorous phyllostomids until this study. We used diffusible iodine-based contrast-enhanced computed tomography (diceCT) to test whether the vomeronasal and main olfactory anatomy of several phyllostomid species matched genetic evidence of function, providing insight into whether loss of a structure is linked to pseudogenization of a molecular component of the system. The vomeronasal organ is indeed rudimentary or absent in species with a disrupted TRPC2 gene. Caribbean nectar-feeders also exhibit derived olfactory turbinal morphology and a large olfactory recess that differs from closely related bats that have an intact vomeronasal organ, which may hint that the main olfactory system may compensate for loss. We emphasize non-invasive diceCT is capable of detecting the vomeronasal organ, providing a feasible approach for quantifying mammalian chemosensory anatomy across species.
Collapse
Affiliation(s)
- Laurel R Yohe
- Department of Ecology & Evolution, Stony Brook University, Stony Brook, NY, United States
| | - Simone Hoffmann
- Department of Anatomy, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Abigail Curtis
- Department of Biology, University of Washington, Seattle, WA, United States
| |
Collapse
|
31
|
Crespo C, Liberia T, Blasco-Ibáñez JM, Nácher J, Varea E. Cranial Pair I: The Olfactory Nerve. Anat Rec (Hoboken) 2018; 302:405-427. [PMID: 29659152 DOI: 10.1002/ar.23816] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/29/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022]
Abstract
The olfactory nerve constitutes the first cranial pair. Compared with other cranial nerves, it depicts some atypical features. First, the olfactory nerve does not form a unique bundle. The olfactory axons join other axons and form several small bundles or fascicles: the fila olfactoria. These fascicles leave the nasal cavity, pass through the lamina cribrosa of the ethmoid bone and enter the brain. The whole of these fascicles is what is known as the olfactory nerve. Second, the olfactory sensory neurons, whose axons integrate the olfactory nerve, connect the nasal cavity and the brain without any relay. Third, the olfactory nerve is composed by unmyelinated axons. Fourth, the olfactory nerve contains neither Schwann cells nor oligodendrocytes wrapping its axons. But it contains olfactory ensheathing glia, which is a type of glia unique to this nerve. Fifth, the olfactory axons participate in the circuitry of certain spherical structures of neuropil that are unique in the brain: the olfactory glomeruli. Sixth, the axons of the olfactory nerve are continuously replaced and their connections in the central nervous system are remodeled continuously. Therefore, the olfactory nerve is subject to lifelong plasticity. Finally seventh, the olfactory nerve can be a gateway for the direct entrance of viruses, neurotoxins and other xenobiotics to the brain. In the same way, it can be used as a portal of entry to the brain for therapeutic substances, bypassing the blood-brain barrier. In this article, we analyze some features of the anatomy and physiology of the first cranial pair. Anat Rec, 302:405-427, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Carlos Crespo
- Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Teresa Liberia
- Departments of Neurosurgery and Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - José Miguel Blasco-Ibáñez
- Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Juan Nácher
- Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| | - Emilio Varea
- Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain
| |
Collapse
|
32
|
Yohe LR, Dávalos LM. Strength of selection on the Trpc2 gene predicts accessory olfactory bulb form in bat vomeronasal evolution. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Laurel R Yohe
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
33
|
Leinders-Zufall T, Storch U, Bleymehl K, Mederos Y Schnitzler M, Frank JA, Konrad DB, Trauner D, Gudermann T, Zufall F. PhoDAGs Enable Optical Control of Diacylglycerol-Sensitive Transient Receptor Potential Channels. Cell Chem Biol 2017; 25:215-223.e3. [PMID: 29276045 DOI: 10.1016/j.chembiol.2017.11.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/02/2017] [Accepted: 11/16/2017] [Indexed: 01/09/2023]
Abstract
Diacylglycerol-sensitive transient receptor potential (TRP) channels play crucial roles in a wide variety of biological processes and systems, but their activation mechanism is not well understood. We describe an optical toolkit by which activation and deactivation of these ion channels can be controlled with unprecedented speed and precision through light stimuli. We show that the photoswitchable diacylglycerols PhoDAG-1 and PhoDAG-3 enable rapid photoactivation of two DAG-sensitive TRP channels, Trpc2 and TRPC6, upon stimulation with UV-A light, whereas exposure to blue light terminates channel activation. PhoDAG photoconversion can be applied in heterologous expression systems, in native cells, and even in mammalian tissue slices. Combined laser scanning-controlled photoswitching and Ca2+ imaging enables both large-scale mapping of TRP channel-mediated neuronal activation and localized mapping in small cellular compartments. Light-switchable PhoDAGs provide an important advance to explore the pathophysiological relevance of DAG-sensitive TRP channels in the maintenance of body homeostasis.
Collapse
Affiliation(s)
- Trese Leinders-Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Ursula Storch
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, 80336 München, Germany
| | - Katherin Bleymehl
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Michael Mederos Y Schnitzler
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, 80336 München, Germany
| | - James A Frank
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - David B Konrad
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Dirk Trauner
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 München, Germany; Department of Chemistry, New York University, New York, NY 10003, USA
| | - Thomas Gudermann
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, 80336 München, Germany
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany.
| |
Collapse
|
34
|
Zhou T, Matsunami H. Lessons from single-cell transcriptome analysis of oxygen-sensing cells. Cell Tissue Res 2017; 372:403-415. [PMID: 28887696 DOI: 10.1007/s00441-017-2682-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 08/07/2017] [Indexed: 12/15/2022]
Abstract
The advent of single-cell RNA-sequencing (RNA-Seq) technology has enabled transcriptome profiling of individual cells. Comprehensive gene expression analysis at the single-cell level has proven to be effective in characterizing the most fundamental aspects of cellular function and identity. This unbiased approach is revolutionary for small and/or heterogeneous tissues like oxygen-sensing cells in identifying key molecules. Here, we review the major methods of current single-cell RNA-Seq technology. We discuss how this technology has advanced the understanding of oxygen-sensing glomus cells in the carotid body and helped uncover novel oxygen-sensing cells and mechanisms in the mice olfactory system. We conclude by providing our perspective on future single-cell RNA-Seq research directed at oxygen-sensing cells.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 261 CARL Building, Box 3509, Durham, NC, USA.
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 261 CARL Building, Box 3509, Durham, NC, USA.,Department of Neurobiology and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
35
|
Type 3 inositol 1,4,5-trisphosphate receptor is dispensable for sensory activation of the mammalian vomeronasal organ. Sci Rep 2017; 7:10260. [PMID: 28860523 PMCID: PMC5579292 DOI: 10.1038/s41598-017-09638-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/21/2017] [Indexed: 12/31/2022] Open
Abstract
Signal transduction in sensory neurons of the mammalian vomeronasal organ (VNO) involves the opening of the canonical transient receptor potential channel Trpc2, a Ca2+-permeable cation channel that is activated by diacylglycerol and inhibited by Ca2+-calmodulin. There has been a long-standing debate about the extent to which the second messenger inositol 1,4,5-trisphosphate (InsP3) and type 3 InsP3 receptor (InsP3R3) are involved in the opening of Trpc2 channels and in sensory activation of the VNO. To address this question, we investigated VNO function of mice carrying a knockout mutation in the Itpr3 locus causing a loss of InsP3R3. We established a new method to monitor Ca2+ in the endoplasmic reticulum of vomeronasal sensory neurons (VSNs) by employing the GFP-aequorin protein sensor erGAP2. We also performed simultaneous InsP3 photorelease and Ca2+ monitoring experiments, and analysed Ca2+ dynamics, sensory currents, and action potential or field potential responses in InsP3R3-deficient VSNs. Disruption of Itpr3 abolished or minimized the Ca2+ transients evoked by photoactivated InsP3, but there was virtually no effect on sensory activation of VSNs. Therefore, InsP3R3 is dispensable for primary chemoelectrical transduction in mouse VNO. We conclude that InsP3R3 is not required for gating of Trpc2 in VSNs.
Collapse
|
36
|
Experience-Dependent Plasticity in Accessory Olfactory Bulb Interneurons following Male-Male Social Interaction. J Neurosci 2017; 37:7240-7252. [PMID: 28659282 DOI: 10.1523/jneurosci.1031-17.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/01/2017] [Accepted: 06/22/2017] [Indexed: 12/19/2022] Open
Abstract
Chemosensory information processing in the mouse accessory olfactory system guides the expression of social behavior. After salient chemosensory encounters, the accessory olfactory bulb (AOB) experiences changes in the balance of excitation and inhibition at reciprocal synapses between mitral cells (MCs) and local interneurons. The mechanisms underlying these changes remain controversial. Moreover, it remains unclear whether MC-interneuron plasticity is unique to specific behaviors, such as mating, or whether it is a more general feature of the AOB circuit. Here, we describe targeted electrophysiological studies of AOB inhibitory internal granule cells (IGCs), many of which upregulate the immediate-early gene Arc after male-male social experience. Following the resident-intruder paradigm, Arc-expressing IGCs in acute AOB slices from resident males displayed stronger excitation than nonexpressing neighbors when sensory inputs were stimulated. The increased excitability of Arc-expressing IGCs was not correlated with changes in the strength or number of excitatory synapses with MCs but was instead associated with increased intrinsic excitability and decreased HCN channel-mediated IH currents. Consistent with increased inhibition by IGCs, MCs responded to sensory input stimulation with decreased depolarization and spiking following resident-intruder encounters. These results reveal that nonmating behaviors drive AOB inhibitory plasticity and indicate that increased MC inhibition involves intrinsic excitability changes in Arc-expressing interneurons.SIGNIFICANCE STATEMENT The accessory olfactory bulb (AOB) is a site of experience-dependent plasticity between excitatory mitral cells (MCs) and inhibitory internal granule cells (IGCs), but the physiological mechanisms and behavioral conditions driving this plasticity remain unclear. Here, we report studies of AOB neuronal plasticity following male-male social chemosensory encounters. We show that the plasticity-associated immediate-early gene Arc is selectively expressed in IGCs from resident males following the resident-intruder assay. After behavior, Arc-expressing IGCs are more strongly excited by sensory input stimulation and MC activation is suppressed. Arc-expressing IGCs do not show increased excitatory synaptic drive but instead show increased intrinsic excitability. These data indicate that MC-IGC plasticity is induced after male-male social chemosensory encounters, resulting in enhanced MC suppression by Arc-expressing IGCs.
Collapse
|
37
|
Yohe LR, Abubakar R, Giordano C, Dumont E, Sears KE, Rossiter SJ, Dávalos LM. Trpc2 pseudogenization dynamics in bats reveal ancestral vomeronasal signaling, then pervasive loss. Evolution 2017; 71:923-935. [PMID: 28128447 DOI: 10.1111/evo.13187] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/30/2016] [Indexed: 01/08/2023]
Abstract
Comparative methods are often used to infer loss or gain of complex phenotypes, but few studies take advantage of genes tightly linked with complex traits to test for shifts in the strength of selection. In mammals, vomerolfaction detects chemical cues mediating many social and reproductive behaviors and is highly conserved, but all bats exhibit degraded vomeronasal structures with the exception of two families (Phyllostomidae and Miniopteridae). These families either regained vomerolfaction after ancestral loss, or there were many independent losses after diversification from an ancestor with functional vomerolfaction. In this study, we use the Transient receptor potential cation channel 2 (Trpc2) as a molecular marker for testing the evolutionary mechanisms of loss and gain of the mammalian vomeronasal system. We sequenced Trpc2 exon 2 in over 100 bat species across 17 of 20 chiropteran families. Most families showed independent pseudogenizing mutations in Trpc2, but the reading frame was highly conserved in phyllostomids and miniopterids. Phylogeny-based simulations suggest loss of function occurred after bat families diverged, and purifying selection in two families has persisted since bats shared a common ancestor. As most bats still display pheromone-mediated behavior, they might detect pheromones through the main olfactory system without using the Trpc2 signaling mechanism.
Collapse
Affiliation(s)
- Laurel R Yohe
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794
| | - Ramatu Abubakar
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794
| | - Christina Giordano
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794
| | - Elizabeth Dumont
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, 01003
| | - Karen E Sears
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, 61801.,School of Integrative Biology, Institute for Genome Biology, University of Illinois, Urbana, Illinois, 61801
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794.,Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, New York, 11794
| |
Collapse
|
38
|
Bleymehl K, Pérez-Gómez A, Omura M, Moreno-Pérez A, Macías D, Bai Z, Johnson RS, Leinders-Zufall T, Zufall F, Mombaerts P. A Sensor for Low Environmental Oxygen in the Mouse Main Olfactory Epithelium. Neuron 2016; 92:1196-1203. [PMID: 27916458 PMCID: PMC5196021 DOI: 10.1016/j.neuron.2016.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/21/2016] [Accepted: 10/20/2016] [Indexed: 11/24/2022]
Abstract
Sensing the level of oxygen in the external and internal environments is essential for survival. Organisms have evolved multiple mechanisms to sense oxygen. No function in oxygen sensing has been attributed to any mammalian olfactory system. Here, we demonstrate that low environmental oxygen directly activates a subpopulation of sensory neurons in the mouse main olfactory epithelium. These neurons express the soluble guanylate cyclase Gucy1b2 and the cation channel Trpc2. Low oxygen induces calcium influx in these neurons, and Gucy1b2 and Trpc2 are required for these responses. In vivo exposure of a mouse to low environmental oxygen causes Gucy1b2-dependent activation of olfactory bulb neurons in the vicinity of the glomeruli formed by axons of Gucy1b2+ sensory neurons. Low environmental oxygen also induces conditioned place aversion, for which Gucy1b2 and Trpc2 are required. We propose that this chemosensory function enables a mouse to rapidly assess the oxygen level in the external environment.
Collapse
Affiliation(s)
- Katherin Bleymehl
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Anabel Pérez-Gómez
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Masayo Omura
- Max Planck Research Unit for Neurogenetics, 60438 Frankfurt, Germany
| | - Ana Moreno-Pérez
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - David Macías
- Department of Physiology, Development & Neuroscience, University of Cambridge, Physiological Laboratory, Cambridge CB2 3EG, UK
| | - Zhaodai Bai
- Max Planck Research Unit for Neurogenetics, 60438 Frankfurt, Germany
| | - Randall S Johnson
- Department of Physiology, Development & Neuroscience, University of Cambridge, Physiological Laboratory, Cambridge CB2 3EG, UK; Department of Cell and Molecular Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Trese Leinders-Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, 66421 Homburg, Germany.
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, 60438 Frankfurt, Germany.
| |
Collapse
|
39
|
Neuropilin-1 and the Positions of Glomeruli in the Mouse Olfactory Bulb. eNeuro 2016; 3:eN-NWR-0123-16. [PMID: 27844052 PMCID: PMC5089123 DOI: 10.1523/eneuro.0123-16.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 09/26/2016] [Accepted: 09/30/2016] [Indexed: 11/21/2022] Open
Abstract
It is known since 1996 that mouse odorant receptors (ORs) are involved in determining the positions of the sites of coalescence of axons of olfactory sensory neurons (OSNs)—the thousands of glomeruli in the olfactory bulb. But the molecular and cellular mechanisms of OR-mediated axonal coalescence into glomeruli remain unclear. A model was proposed in 2006–2009 whereby OR-derived cAMP signals, rather than direct action of OR molecules, determine the target destinations (glomeruli) of OSNs in the bulb. This model hypothesizes that OR-derived cAMP signals determine the expression levels of neuropilin 1 (Nrp1) in OSN axon termini; that levels of Nrp1 in glomeruli form a gradient from anterior-low to posterior-high throughout the bulb; and that these Nrp1 levels mechanistically determine anterior-posterior patterning of glomeruli. Here, we describe the first independent evaluation of the Nrp1 model since it was formulated a decade ago. We tested the model for the well-characterized mouse OR M71 using our gene-targeted mouse strains, which are publicly available. In contradiction to the model, we observed a variety of configurations for the M71 glomeruli in the conditional Nrp1 knockout. We then reassessed the model for the original OR transgene with which the model was developed, using the same publicly available mouse strains. We discovered that glomerular positions do not undergo the simple anterior shift that has been reported in the conditional Nrp1 knockout for this OR transgene. Taken together, our findings do not support the Nrp1 model for the anterior-posterior patterning of glomerular positions in the olfactory bulb.
Collapse
|
40
|
Beny Y, Kimchi T. Conditioned odor aversion induces social anxiety towards females in wild-type and TrpC2 knockout male mice. GENES BRAIN AND BEHAVIOR 2016; 15:722-732. [PMID: 27535696 DOI: 10.1111/gbb.12320] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/14/2016] [Accepted: 08/15/2016] [Indexed: 01/08/2023]
Abstract
Female-emitted pheromonal inputs possess an intrinsic rewarding value for conspecific males, promoting approach and investigation of the potential mating partner. In mice these inputs are detected mainly by the vomeronasal organ (VNO) and the main olfactory epithelium (MOE). We investigated the role of VNO-mediated inputs in experience-dependent plasticity of reproductive responses. We applied a sex-specific conditioned odor aversion (COA) paradigm on adult, wild-type (WT) male mice and on male mice impaired in VNO-mediated signal transduction (TrpC2-/- ). We found that WT males, which underwent COA to female-soiled bedding, lost their innate preference to female odors and presented lower motivation to approach a sexually receptive female. COA also abolished the testosterone surge normally seen following exposure to female odors. Moreover, the conditioned males displayed impairments in copulatory behaviors, which lasted for several weeks. Surprisingly, these males also exhibited phobic behaviors towards receptive females, including freezing and fleeing responses. In contrast, WT males which underwent COA specifically to male pheromones showed no change in olfactory preference and only a marginally significant elevation in intermale aggression. Finally, we show that TrpC2-/- males were able to acquire aversion to female-soiled bedding and presented similar behavioral alterations following COA in their responses to female cues. Our results demonstrate that the intrinsic rewarding value of female pheromones can be overridden through associative olfactory learning, which occurs independently of VNO inputs, probably through MOE signaling.
Collapse
Affiliation(s)
- Y Beny
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - T Kimchi
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
41
|
Development of the main olfactory system and main olfactory epithelium-dependent male mating behavior are altered in Go-deficient mice. Proc Natl Acad Sci U S A 2016; 113:10974-9. [PMID: 27625425 DOI: 10.1073/pnas.1613026113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In mammals, initial detection of olfactory stimuli is mediated by sensory neurons in the main olfactory epithelium (MOE) and the vomeronasal organ (VNO). The heterotrimeric GTP-binding protein Go is widely expressed in the MOE and VNO of mice. Early studies indicated that Go expression in VNO sensory neurons is critical for directing social and sexual behaviors in female mice [Oboti L, et al. (2014) BMC Biol 12:31]. However, the physiological functions of Go in the MOE have remained poorly defined. Here, we examined the role of Go in the MOE using mice lacking the α subunit of Go Development of the olfactory bulb (OB) was perturbed in mutant mice as a result of reduced neurogenesis and increased cell death. The balance between cell types of OB interneurons was altered in mutant mice, with an increase in the number of tyrosine hydroxylase-positive interneurons at the expense of calbindin-positive interneurons. Sexual behavior toward female mice and preference for female urine odors by olfactory sensory neurons in the MOE were abolished in mutant male mice. Our data suggest that Go signaling is essential for the structural and functional integrity of the MOE and for specification of OB interneurons, which in turn are required for the transmission of pheromone signals and the initiation of mating behavior with the opposite sex.
Collapse
|
42
|
Kjærner-Semb E, Ayllon F, Furmanek T, Wennevik V, Dahle G, Niemelä E, Ozerov M, Vähä JP, Glover KA, Rubin CJ, Wargelius A, Edvardsen RB. Atlantic salmon populations reveal adaptive divergence of immune related genes - a duplicated genome under selection. BMC Genomics 2016; 17:610. [PMID: 27515098 PMCID: PMC4982270 DOI: 10.1186/s12864-016-2867-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/30/2016] [Indexed: 12/31/2022] Open
Abstract
Background Populations of Atlantic salmon display highly significant genetic differences with unresolved molecular basis. These differences may result from separate postglacial colonization patterns, diversifying natural selection and adaptation, or a combination. Adaptation could be influenced or even facilitated by the recent whole genome duplication in the salmonid lineage which resulted in a partly tetraploid species with duplicated genes and regions. Results In order to elucidate the genes and genomic regions underlying the genetic differences, we conducted a genome wide association study using whole genome resequencing data from eight populations from Northern and Southern Norway. From a total of ~4.5 million sequencing-derived SNPs, more than 10 % showed significant differentiation between populations from these two regions and ten selective sweeps on chromosomes 5, 10, 11, 13–15, 21, 24 and 25 were identified. These comprised 59 genes, of which 15 had one or more differentiated missense mutation. Our analysis showed that most sweeps have paralogous regions in the partially tetraploid genome, each lacking the high number of significant SNPs found in the sweeps. The most significant sweep was found on Chr 25 and carried several missense mutations in the antiviral mx genes, suggesting that these populations have experienced differing viral pressures. Interestingly the second most significant sweep, found on Chr 5, contains two genes involved in the NF-KB pathway (nkap and nkrf), which is also a known pathogen target that controls a large number of processes in animals. Conclusion Our results show that natural selection acting on immune related genes has contributed to genetic divergence between salmon populations in Norway. The differences between populations may have been facilitated by the plasticity of the salmon genome. The observed signatures of selection in duplicated genomic regions suggest that the recently duplicated genome has provided raw material for evolutionary adaptation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2867-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erik Kjærner-Semb
- Institute of Marine Research, Bergen, Norway. .,Department of Biology, University of Bergen, Bergen, Norway.
| | | | | | | | - Geir Dahle
- Institute of Marine Research, Bergen, Norway
| | - Eero Niemelä
- Natural Resources Institute Finland, Helsinki, Finland
| | - Mikhail Ozerov
- Kevo Subarctic Research Institute, University of Turku, Turku, Finland
| | - Juha-Pekka Vähä
- Kevo Subarctic Research Institute, University of Turku, Turku, Finland.,Association for Water and Environment of Western Uusimaa, Uusimaa, Finland
| | - Kevin A Glover
- Institute of Marine Research, Bergen, Norway.,Department of Biology, University of Bergen, Bergen, Norway
| | - Carl J Rubin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
43
|
Parrilla M, Chang I, Degl'Innocenti A, Omura M. Expression of homeobox genes in the mouse olfactory epithelium. J Comp Neurol 2016; 524:2713-39. [PMID: 27243442 DOI: 10.1002/cne.24051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/16/2015] [Accepted: 05/25/2016] [Indexed: 01/22/2023]
Abstract
Homeobox genes constitute a large family of genes widely studied because of their role in the establishment of the body pattern. However, they are also involved in many other events during development and adulthood. The main olfactory epithelium (MOE) is an excellent model to study neurogenesis in the adult nervous system. Analyses of homeobox genes during development show that some of these genes are involved in the formation and establishment of cell diversity in the MOE. Moreover, the mechanisms of expression of odorant receptors (ORs) constitute one of the biggest enigmas in the field. Analyses of OR promoters revealed the presence of homeodomain binding sites in their sequences. Here we characterize the expression patterns of a set of 49 homeobox genes in the MOE with in situ hybridization. We found that seven of them (Dlx3, Dlx5, Dlx6, Msx1, Meis1, Isl1, and Pitx1) are zonally expressed. The homeobox gene Emx1 is expressed in three guanylate cyclase(+) populations, two located in the MOE and the third one in an olfactory subsystem known as Grüneberg ganglion located at the entrance of the nasal cavity. The homeobox gene Tshz1 is expressed in a unique patchy pattern across the MOE. Our findings provide new insights to guide functional studies that aim to understand the complexity of transcription factor expression and gene regulation in the MOE. J. Comp. Neurol. 524:2713-2739, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marta Parrilla
- Max Planck Institut für Biophysik, Frankfurt am Main, Germany
| | - Isabelle Chang
- Max Planck Institut für Biophysik, Frankfurt am Main, Germany
| | - Andrea Degl'Innocenti
- Max Planck Institut für Biophysik, Frankfurt am Main, Germany.,Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Masayo Omura
- Max Planck Institut für Biophysik, Frankfurt am Main, Germany
| |
Collapse
|
44
|
CD36 is expressed in a defined subpopulation of neurons in the olfactory epithelium. Sci Rep 2016; 6:25507. [PMID: 27145700 PMCID: PMC4857125 DOI: 10.1038/srep25507] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 04/19/2016] [Indexed: 11/08/2022] Open
Abstract
The sensory neurons in the olfactory epithelium (OSNs) are equipped with a large repertoire of olfactory receptors and the associated signal transduction machinery. In addition to the canonical OSNs, which express odorant receptors (ORs), the epithelium contains specialized subpopulations of sensory neurons that can detect specific information from environmental cues and relay it to relevant neuronal circuitries. Here we describe a subpopulation of mature OSNs in the main olfactory epithelium (MOE) which expresses CD36, a multifunctional receptor involved in a series of biological processes, including sensory perception of lipid ligands. The Cd36 expressing neurons coexpress markers of mature OSNs and are dispersed throughout the MOE. Unlike several ORs analyzed in our study, we found frequent coexpression of the OR Olfr287 in these neurons, suggesting that only a specific set of ORs may be coexpressed with CD36 in OSNs. We also show that CD36 is expressed in the cilia of OSNs, indicating a possible role in odorant detection. CD36-deficient mice display no signs of gross changes in the organization of the olfactory epithelium, but show impaired preference for a lipid mixture odor. Our results show that CD36-expressing neurons represent a distinct population of OSNs, which may have specific functions in olfaction.
Collapse
|
45
|
Nakahara TS, Cardozo LM, Ibarra-Soria X, Bard AD, Carvalho VMA, Trintinalia GZ, Logan DW, Papes F. Detection of pup odors by non-canonical adult vomeronasal neurons expressing an odorant receptor gene is influenced by sex and parenting status. BMC Biol 2016; 14:12. [PMID: 26878847 PMCID: PMC4753656 DOI: 10.1186/s12915-016-0234-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/04/2016] [Indexed: 11/21/2022] Open
Abstract
Background Olfaction is a fundamental sense through which most animals perceive the external world. The olfactory system detects odors via specialized sensory organs such as the main olfactory epithelium and the vomeronasal organ. Sensory neurons in these organs use G-protein coupled receptors to detect chemosensory stimuli. The odorant receptor (OR) family is expressed in sensory neurons of the main olfactory epithelium, while the adult vomeronasal organ is thought to express other types of receptors. Results Here, we describe Olfr692, a member of the OR gene family identified by next-generation RNA sequencing, which is highly upregulated and non-canonically expressed in the vomeronasal organ. We show that neurons expressing this gene are activated by odors emanating from pups. Surprisingly, activity in Olfr692-positive cells is sexually dimorphic, being very low in females. Our results also show that juvenile odors activate a large number of Olfr692 vomeronasal neurons in virgin males, which is correlated with the display of infanticide behavior. . In contrast, activity substantially decreases in parenting males (fathers), where infanticidal aggressive behavior is not frequently observed. Conclusions Our results describe, for the first time, a sensory neural population with a specific molecular identity involved in the detection of pup odors. Moreover, it is one of the first reports of a group of sensory neurons the activity of which is sexually dimorphic and depends on social status. Our data suggest that the Olfr692 population is involved in mediating pup-oriented behaviors in mice. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0234-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thiago S Nakahara
- Department of Genetics and Evolution, Institute of Biology, University of Campinas, Rua Monteiro Lobato, Campinas, SP, 13083-862, Brazil. .,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil.
| | - Leonardo M Cardozo
- Department of Genetics and Evolution, Institute of Biology, University of Campinas, Rua Monteiro Lobato, Campinas, SP, 13083-862, Brazil. .,Current affiliation: Neurosciences Graduate Program, University of California San Diego, 9500 Gilman Drive 0634, La Jolla, CA, 92093-0634, USA.
| | - Ximena Ibarra-Soria
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Andrew D Bard
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK. .,Current affiliation: MRC Centre for Developmental Neurobiology, King's College London, Strand, London, WC2R 2LS, UK.
| | - Vinicius M A Carvalho
- Department of Genetics and Evolution, Institute of Biology, University of Campinas, Rua Monteiro Lobato, Campinas, SP, 13083-862, Brazil. .,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil.
| | - Guilherme Z Trintinalia
- Department of Genetics and Evolution, Institute of Biology, University of Campinas, Rua Monteiro Lobato, Campinas, SP, 13083-862, Brazil. .,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil.
| | - Darren W Logan
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK. .,Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA, 19104, USA.
| | - Fabio Papes
- Department of Genetics and Evolution, Institute of Biology, University of Campinas, Rua Monteiro Lobato, Campinas, SP, 13083-862, Brazil.
| |
Collapse
|
46
|
Bayless DW, Shah NM. Genetic dissection of neural circuits underlying sexually dimorphic social behaviours. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150109. [PMID: 26833830 DOI: 10.1098/rstb.2015.0109] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2015] [Indexed: 11/12/2022] Open
Abstract
The unique hormonal, genetic and epigenetic environments of males and females during development and adulthood shape the neural circuitry of the brain. These differences in neural circuitry result in sex-typical displays of social behaviours such as mating and aggression. Like other neural circuits, those underlying sex-typical social behaviours weave through complex brain regions that control a variety of diverse behaviours. For this reason, the functional dissection of neural circuits underlying sex-typical social behaviours has proved to be difficult. However, molecularly discrete neuronal subpopulations can be identified in the heterogeneous brain regions that control sex-typical social behaviours. In addition, the actions of oestrogens and androgens produce sex differences in gene expression within these brain regions, thereby highlighting the neuronal subpopulations most likely to control sexually dimorphic social behaviours. These conditions permit the implementation of innovative genetic approaches that, in mammals, are most highly advanced in the laboratory mouse. Such approaches have greatly advanced our understanding of the functional significance of sexually dimorphic neural circuits in the brain. In this review, we discuss the neural circuitry of sex-typical social behaviours in mice while highlighting the genetic technical innovations that have advanced the field.
Collapse
Affiliation(s)
- Daniel W Bayless
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nirao M Shah
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
47
|
Saraiva LR, Ibarra-Soria X, Khan M, Omura M, Scialdone A, Mombaerts P, Marioni JC, Logan DW. Hierarchical deconstruction of mouse olfactory sensory neurons: from whole mucosa to single-cell RNA-seq. Sci Rep 2015; 5:18178. [PMID: 26670777 PMCID: PMC4680959 DOI: 10.1038/srep18178] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/13/2015] [Indexed: 12/16/2022] Open
Abstract
The mouse olfactory mucosa is a complex chemosensory tissue composed of multiple cell types, neuronal and non-neuronal. We have here applied RNA-seq hierarchically, in three steps of decreasing cellular heterogeneity: starting with crude tissue samples dissected from the nose, proceeding to flow-cytometrically sorted pools of mature olfactory sensory neurons (OSNs), and finally arriving at single mature OSNs. We show that 98.9% of intact olfactory receptor (OR) genes are expressed in mature OSNs. We uncover a hitherto unknown bipartition among mature OSNs. We find that 19 of 21 single mature OSNs each express a single intact OR gene abundantly, consistent with the one neuron-one receptor rule. For the 9 single OSNs where the two alleles of the abundantly expressed OR gene exhibit single-nucleotide polymorphisms, we demonstrate that monoallelic expression of the abundantly expressed OR gene is extremely tight. The remaining two single mature OSNs lack OR gene expression but express Trpc2 and Gucy1b2. We establish these two cells as a neuronal cell type that is fundamentally distinct from canonical, OR-expressing OSNs and that is defined by the differential, higher expression of 55 genes. We propose this tiered experimental approach as a paradigm to unravel gene expression in other cellularly heterogeneous systems.
Collapse
Affiliation(s)
- Luis R Saraiva
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton-Cambridge, CB10 1SA, United Kingdom.,European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton-Cambridge, CB10 1SD, United Kingdom.,Department of Experimental Genetics, Sidra Medical &Research Center, Qatar Foundation, PO Box 26999, Doha, Qatar
| | - Ximena Ibarra-Soria
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton-Cambridge, CB10 1SA, United Kingdom
| | - Mona Khan
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, 60438 Frankfurt, Germany
| | - Masayo Omura
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, 60438 Frankfurt, Germany
| | - Antonio Scialdone
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton-Cambridge, CB10 1SA, United Kingdom.,European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton-Cambridge, CB10 1SD, United Kingdom
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, 60438 Frankfurt, Germany
| | - John C Marioni
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton-Cambridge, CB10 1SA, United Kingdom.,European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton-Cambridge, CB10 1SD, United Kingdom
| | - Darren W Logan
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton-Cambridge, CB10 1SA, United Kingdom.,Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| |
Collapse
|
48
|
Fu X, Yan Y, Xu PS, Geerlof-Vidavsky I, Chong W, Gross ML, Holy TE. A Molecular Code for Identity in the Vomeronasal System. Cell 2015; 163:313-23. [PMID: 26435105 PMCID: PMC4642884 DOI: 10.1016/j.cell.2015.09.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/30/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
Abstract
In social interactions among mammals, individuals are recognized by olfactory cues, but identifying the key signals among thousands of compounds remains a major challenge. To address this need, we developed a new technique, component-activity matching (CAM), to select candidate ligands that "explain" patterns of bioactivity across diverse complex mixtures. Using mouse urine from eight different sexes and strains, we identified 23 components to explain firing rates in seven of eight functional classes of vomeronasal sensory neurons. Focusing on a class of neurons selective for females, we identified a novel family of vomeronasal ligands, steroid carboxylic acids. These ligands accounted for much of the neuronal activity of urine from some female strains, were necessary for normal levels of male investigatory behavior of female scents, and were sufficient to trigger mounting behavior. CAM represents the first step toward an exhaustive characterization of the molecular cues for natural behavior in a mammalian olfactory system.
Collapse
Affiliation(s)
- Xiaoyan Fu
- Department of Anatomy and Neurobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Yuetian Yan
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Pei S Xu
- Department of Anatomy and Neurobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ilan Geerlof-Vidavsky
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Wongi Chong
- Department of Anatomy and Neurobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Timothy E Holy
- Department of Anatomy and Neurobiology, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
49
|
Abstract
The vomeronasal organ, a sensory structure within the olfactory system, detects chemical signals that affect social and sexual behaviors and that elicit responses to predator odors. A recent study demonstrates that innate avoidance of sick conspecifics requires an intact vomeronasal organ, expanding the repertoire of biological functions known to be mediated by this olfactory subsystem.
Collapse
|
50
|
Saraiva LR, Ahuja G, Ivandic I, Syed AS, Marioni JC, Korsching SI, Logan DW. Molecular and neuronal homology between the olfactory systems of zebrafish and mouse. Sci Rep 2015; 5:11487. [PMID: 26108469 PMCID: PMC4480006 DOI: 10.1038/srep11487] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/27/2015] [Indexed: 11/09/2022] Open
Abstract
Studies of the two major olfactory organs of rodents, the olfactory mucosa (OM) and the vomeronasal organ (VNO), unraveled the molecular basis of smell in vertebrates. However, some vertebrates lack a VNO. Here we generated and analyzed the olfactory transcriptome of the zebrafish and compared it to the olfactory transcriptomes of mouse to investigate the evolutionary and molecular relationship between single and dual olfactory systems. Our analyses revealed a high degree of molecular conservation, with orthologs of mouse olfactory cell-specific markers and all but one of their chemosensory receptor classes expressed in the single zebrafish olfactory organ. Zebrafish chemosensory receptor genes are expressed across a large dynamic range and their RNA abundance correlates positively with the number of neurons expressing that RNA. Thus we estimate the relative proportions of neuronal sub-types expressing different chemosensory receptors. Receptor repertoire size drives the absolute abundance of different classes of neurons, but we find similar underlying patterns in both species. Finally, we identified novel marker genes that characterize rare neuronal populations in both mouse and zebrafish. In sum, we find that the molecular and cellular mechanisms underpinning olfaction in teleosts and mammals are similar despite 430 million years of evolutionary divergence.
Collapse
Affiliation(s)
- Luis R Saraiva
- 1] Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton-Cambridge, CB10 1SA, United Kingdom [2] European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton-Cambridge, CB10 1SD, United Kingdom
| | - Gaurav Ahuja
- Institut für Genetik, Universität zu Köln, Cologne, 50674, Germany
| | - Ivan Ivandic
- Institut für Genetik, Universität zu Köln, Cologne, 50674, Germany
| | - Adnan S Syed
- Institut für Genetik, Universität zu Köln, Cologne, 50674, Germany
| | - John C Marioni
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton-Cambridge, CB10 1SD, United Kingdom
| | | | - Darren W Logan
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton-Cambridge, CB10 1SA, United Kingdom
| |
Collapse
|