1
|
Ledda M, Pluchino A, Ragusa M. Exploring the Role of Genetic and Environmental Features in Colorectal Cancer Development: An Agent-Based Approach. ENTROPY (BASEL, SWITZERLAND) 2024; 26:923. [PMID: 39593869 PMCID: PMC11593013 DOI: 10.3390/e26110923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
The complexity of issues in cancer research has led to the introduction of powerful computational tools to help experimental in vivo and in vitro methods. These tools, which typically focus on studying cell behavior and dynamic cell populations, range from systems of differential equations that are solved numerically to lattice models and agent-based simulations. In particular, agent-based models (ABMs) are increasingly used due to their ability to incorporate multi-scale features, ranging from the individual to the population level. This approach allows for the combination of statistically aggregated assumptions with individual heterogeneity. In this work, we present an ABM that simulates tumor progression in a colonic crypt, to provide an experimental in silico environment for testing results achieved in traditional laboratory research and developing alternative scenarios of tumor development. The model also allows some speculations about causal relationships in biologically inspired systems.
Collapse
Affiliation(s)
- Marco Ledda
- Dipartimento di Fisica e Astronomia Ettore Majorana, Università di Catania, 95123 Catania, Italy;
| | - Alessandro Pluchino
- Dipartimento di Fisica e Astronomia Ettore Majorana, Università di Catania, 95123 Catania, Italy;
- INFN Sezione di Catania, 95123 Catania, Italy
| | - Marco Ragusa
- Dipartimento di Scienze Biomediche e Biotecnologiche, Sezione di Biologia e Genetica, Università di Catania, 95123 Catania, Italy;
| |
Collapse
|
2
|
Hodge RA, Bach EA. Mechanisms of Germline Stem Cell Competition across Species. Life (Basel) 2024; 14:1251. [PMID: 39459551 PMCID: PMC11509876 DOI: 10.3390/life14101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
In this review, we introduce the concept of cell competition, which occurs between heterogeneous neighboring cell populations. Cells with higher relative fitness become "winners" that outcompete cells of lower relative fitness ("losers"). We discuss the idea of super-competitors, mutant cells that expand at the expense of wild-type cells. Work on adult stem cells (ASCs) has revealed principles of neutral competition, wherein ASCs can be stochastically lost and replaced, and of biased competition, in which a winning ASC with a competitive advantage replaces its neighbors. Germline stem cells (GSCs) are ASCs that are uniquely endowed with the ability to produce gametes and, therefore, impact the next generation. Mechanisms of GSC competition have been elucidated by studies in Drosophila gonads, tunicates, and the mammalian testis. Competition between ASCs is thought to underlie various forms of cancer, including spermatocytic tumors in the human testis. Paternal age effect (PAE) disorders are caused by de novo mutations in human GSCs that increase their competitive ability and make them more likely to be inherited, leading to skeletal and craniofacial abnormalities in offspring. Given its widespread effects on human health, it is important to study GSC competition to elucidate how cells can become winners or losers.
Collapse
Affiliation(s)
| | - Erika A. Bach
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA;
| |
Collapse
|
3
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
4
|
Chen B, Ramazzotti D, Heide T, Spiteri I, Fernandez-Mateos J, James C, Magnani L, Graham TA, Sottoriva A. Contribution of pks + E. coli mutations to colorectal carcinogenesis. Nat Commun 2023; 14:7827. [PMID: 38030613 PMCID: PMC10687070 DOI: 10.1038/s41467-023-43329-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
The dominant mutational signature in colorectal cancer genomes is C > T deamination (COSMIC Signature 1) and, in a small subgroup, mismatch repair signature (COSMIC signatures 6 and 44). Mutations in common colorectal cancer driver genes are often not consistent with those signatures. Here we perform whole-genome sequencing of normal colon crypts from cancer patients, matched to a previous multi-omic tumour dataset. We analyse normal crypts that were distant vs adjacent to the cancer. In contrast to healthy individuals, normal crypts of colon cancer patients have a high incidence of pks + (polyketide synthases) E.coli (Escherichia coli) mutational and indel signatures, and this is confirmed by metagenomics. These signatures are compatible with many clonal driver mutations detected in the corresponding cancer samples, including in chromatin modifier genes, supporting their role in early tumourigenesis. These results provide evidence that pks + E.coli is a potential driver of carcinogenesis in the human gut.
Collapse
Affiliation(s)
- Bingjie Chen
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Daniele Ramazzotti
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Timon Heide
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Computational Biology Research Centre, Human Technopole, Milan, Italy
| | - Inmaculada Spiteri
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | | | - Chela James
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Computational Biology Research Centre, Human Technopole, Milan, Italy
| | - Luca Magnani
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Trevor A Graham
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
- Computational Biology Research Centre, Human Technopole, Milan, Italy.
| |
Collapse
|
5
|
Baglamis S, Sheraton VM, Meijer D, Qian H, Hoebe RA, Lenos KJ, Betjes MA, Betjes MA, Tans S, van Zon J, Vermeulen L, Krawczyk PM. Using picoliter droplet deposition to track clonal competition in adherent and organoid cancer cell cultures. Sci Rep 2023; 13:18832. [PMID: 37914743 PMCID: PMC10620187 DOI: 10.1038/s41598-023-42849-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023] Open
Abstract
Clonal growth and competition underlie processes of key relevance in etiology, progression and therapy response across all cancers. Here, we demonstrate a novel experimental approach, based on multi-color, fluorescent tagging of cell nuclei, in combination with picoliter droplet deposition, to study the clonal dynamics in two- and three-dimensional cell cultures. The method allows for the simultaneous visualization and analysis of multiple clones in individual multi-clonal colonies, providing a powerful tool for studying clonal dynamics and identifying clonal populations with distinct characteristics. Results of our experiments validate the utility of the method in studying clonal dynamics in vitro, and reveal differences in key aspects of clonal behavior of different cancer cell lines in monoculture conditions, as well as in co-cultures with stromal fibroblasts.
Collapse
Affiliation(s)
- Selami Baglamis
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Oncode Institute, 3521 AL, Utrecht, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, 1105 AZ, Amsterdam, The Netherlands
| | - Vivek M Sheraton
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Oncode Institute, 3521 AL, Utrecht, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, 1105 AZ, Amsterdam, The Netherlands
- Institute for Advanced Study, University of Amsterdam, 1012 WX, Amsterdam, The Netherlands
| | - Debora Meijer
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Haibin Qian
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Ron A Hoebe
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Kristiaan J Lenos
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Oncode Institute, 3521 AL, Utrecht, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, 1105 AZ, Amsterdam, The Netherlands
| | - Max A Betjes
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Oncode Institute, 3521 AL, Utrecht, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, 1105 AZ, Amsterdam, The Netherlands
| | | | | | | | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands.
- Oncode Institute, 3521 AL, Utrecht, The Netherlands.
- Amsterdam Gastroenterology Endocrinology Metabolism, 1105 AZ, Amsterdam, The Netherlands.
| | - Przemek M Krawczyk
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands.
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Mamis K, Zhang R, Bozic I. Stochastic model for cell population dynamics quantifies homeostasis in colonic crypts and its disruption in early tumorigenesis. Proc Biol Sci 2023; 290:20231020. [PMID: 37848058 PMCID: PMC10581771 DOI: 10.1098/rspb.2023.1020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023] Open
Abstract
The questions of how healthy colonic crypts maintain their size, and how homeostasis is disrupted by driver mutations, are central to understanding colorectal tumorigenesis. We propose a three-type stochastic branching process, which accounts for stem, transit-amplifying (TA) and fully differentiated (FD) cells, to model the dynamics of cell populations residing in colonic crypts. Our model is simple in its formulation, allowing us to estimate all but one of the model parameters from the literature. Fitting the single remaining parameter, we find that model results agree well with data from healthy human colonic crypts, capturing the considerable variance in population sizes observed experimentally. Importantly, our model predicts a steady-state population in healthy colonic crypts for relevant parameter values. We show that APC and KRAS mutations, the most significant early alterations leading to colorectal cancer, result in increased steady-state populations in mutated crypts, in agreement with experimental results. Finally, our model predicts a simple condition for unbounded growth of cells in a crypt, corresponding to colorectal malignancy. This is predicted to occur when the division rate of TA cells exceeds their differentiation rate, with implications for therapeutic cancer prevention strategies.
Collapse
Affiliation(s)
- Konstantinos Mamis
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
| | - Ruibo Zhang
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
| | - Ivana Bozic
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Li L, Hu Y, Xu Y, Tang S. Mathematical modeling the order of driver gene mutations in colorectal cancer. PLoS Comput Biol 2023; 19:e1011225. [PMID: 37368936 DOI: 10.1371/journal.pcbi.1011225] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Tumor heterogeneity is a large obstacle for cancer study and treatment. Different cancer patients may involve different combinations of gene mutations or the distinct regulatory pathways for inducing the progression of tumor. Investigating the pathways of gene mutations which can cause the formation of tumor can provide a basis for the personalized treatment of cancer. Studies suggested that KRAS, APC and TP53 are the most significant driver genes for colorectal cancer. However, it is still an open issue regarding the detailed mutation order of these genes in the development of colorectal cancer. For this purpose, we analyze the mathematical model considering all orders of mutations in oncogene, KRAS and tumor suppressor genes, APC and TP53, and fit it on data describing the incidence rates of colorectal cancer at different age from the Surveillance Epidemiology and End Results registry in the United States for the year 1973-2013. The specific orders that can induce the development of colorectal cancer are identified by the model fitting. The fitting results indicate that the mutation order with KRAS → APC → TP53, APC → TP53 → KRAS and APC → KRAS → TP53 explain the age-specific risk of colorectal cancer with very well. Furthermore, eleven pathways of gene mutations can be accepted for the mutation order of genes with KRAS → APC → TP53, APC → TP53 → KRAS and APC → KRAS → TP53, and the alternation of APC acts as the initiating or promoting event in the colorectal cancer. The estimated mutation rates of cells in the different pathways demonstrate that genetic instability must exist in colorectal cancer with alterations of genes, KRAS, APC and TP53.
Collapse
Affiliation(s)
- Lingling Li
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, China
- School of Science, Xi'an Polytechnic University, Xi'an, China
| | - Yulu Hu
- School of Science, Xi'an Polytechnic University, Xi'an, China
| | - Yunshan Xu
- Mathematics Department, Faculty of Science and Technology, University of Macau, Taipa, Macau, China
| | - Sanyi Tang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
8
|
Salavaty A, Azadian E, Naik SH, Currie PD. Clonal selection parallels between normal and cancer tissues. Trends Genet 2023; 39:358-380. [PMID: 36842901 DOI: 10.1016/j.tig.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 02/28/2023]
Abstract
Clonal selection and drift drive both normal tissue and cancer development. However, the biological mechanisms and environmental conditions underpinning these processes remain to be elucidated. Clonal selection models are centered in Darwinian evolutionary theory, where some clones with the fittest features are selected and populate the tissue or tumor. We suggest that different subclasses of stem cells, each of which is responsible for a distinct feature of the selection process, share common features between normal and cancer conditions. While active stem cells populate the tissue, dormant cells account for tissue replenishment/regeneration in both normal and cancerous tissues. We also discuss potential mechanisms that drive clonal drift, their interactions with clonal selection, and their similarities during normal and cancer tissue development.
Collapse
Affiliation(s)
- Adrian Salavaty
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Systems Biology Institute Australia, Monash University, Clayton, VIC 3800, Australia.
| | - Esmaeel Azadian
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Shalin H Naik
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; EMBL Australia, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
9
|
Manojlovic Z, Wlodarczyk J, Okitsu C, Jin Y, Van Den Berg D, Lieber MR, Hsieh CL. Construction of high coverage whole-genome sequencing libraries from single colon crypts without DNA extraction or whole-genome amplification. BMC Res Notes 2023; 16:66. [PMID: 37106434 PMCID: PMC10142246 DOI: 10.1186/s13104-023-06333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
OBJECTIVE Comprehensive and reliable genome-wide variant analysis of a small number of cells has been challenging due to genome coverage bias, PCR over-cycling, and the requirement of expensive technologies. To comprehensively identify genome alterations in single colon crypts that reflect genome heterogeneity of stem cells, we developed a method to construct whole-genome sequencing libraries from single colon crypts without DNA extraction, whole-genome amplification, or increased PCR enrichment cycles. RESULTS We present post-alignment statistics of 81 single-crypts (each contains four- to eight-fold less DNA than the requirement of conventional methods) and 16 bulk-tissue libraries to demonstrate the consistent success in obtaining reliable coverage, both in depth (≥ 30X) and breadth (≥ 92% of the genome covered at ≥ 10X depth), of the human genome. These single-crypt libraries are of comparable quality as libraries generated with the conventional method using high quality and quantities of purified DNA. Conceivably, our method can be applied to small biopsy samples from many tissues and can be combined with single cell targeted sequencing to comprehensively profile cancer genomes and their evolution. The broad potential application of this method offers expanded possibilities in cost-effectively examining genome heterogeneity in small numbers of cells at high resolution.
Collapse
Affiliation(s)
- Zarko Manojlovic
- Department of Urology, University of Southern California, 1441 Eastlake Ave., NTT5420, Los Angeles, CA, USA
| | - Jordan Wlodarczyk
- Department of Surgery, University of Southern California, Los Angeles, CA, USA
| | - Cindy Okitsu
- Department of Pathology, University of Southern California, Los Angeles, CA, USA
| | - Yuxin Jin
- Department of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - David Van Den Berg
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Michael R Lieber
- Department of Pathology, University of Southern California, Los Angeles, CA, USA
| | - Chih-Lin Hsieh
- Department of Urology, University of Southern California, 1441 Eastlake Ave., NTT5420, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Otsuka K, Iwasaki T. Insights into radiation carcinogenesis based on dose-rate effects in tissue stem cells. Int J Radiat Biol 2023; 99:1503-1521. [PMID: 36971595 DOI: 10.1080/09553002.2023.2194398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE Increasing epidemiological and biological evidence suggests that radiation exposure enhances cancer risk in a dose-dependent manner. This can be attributed to the 'dose-rate effect,' where the biological effect of low dose-rate radiation is lower than that of the same dose at a high dose-rate. This effect has been reported in epidemiological studies and experimental biology, although the underlying biological mechanisms are not completely understood. In this review, we aim to propose a suitable model for radiation carcinogenesis based on the dose-rate effect in tissue stem cells. METHODS We surveyed and summarized the latest studies on the mechanisms of carcinogenesis. Next, we summarized the radiosensitivity of intestinal stem cells and the role of dose-rate in the modulation of stem-cell dynamics after irradiation. RESULTS Consistently, driver mutations can be detected in most cancers from past to present, supporting the hypothesis that cancer progression is initiated by the accumulation of driver mutations. Recent reports demonstrated that driver mutations can be observed even in normal tissues, which suggests that the accumulation of mutations is a necessary condition for cancer progression. In addition, driver mutations in tissue stem cells can cause tumors, whereas they are not sufficient when they occur in non-stem cells. For non-stem cells, tissue remodeling induced by marked inflammation after the loss of tissue cells is important in addition to the accumulation of mutations. Therefore, the mechanism of carcinogenesis differs according to the cell type and magnitude of stress. In addition, our results indicated that non-irradiated stem cells tend to be eliminated from three-dimensional cultures of intestinal stem cells (organoids) composed of irradiated and non-irradiated stem cells, supporting the stem-cell competition. CONCLUSIONS We propose a unique scheme in which the dose-rate dependent response of intestinal stem cells incorporates the concept of the threshold of stem-cell competition and context-dependent target shift from stem cells to whole tissue. The concept highlights four key issues that should be considered in radiation carcinogenesis: i.e. accumulation of mutations; tissue reconstitution; stem-cell competition; and environmental factors like epigenetic modifications.
Collapse
Affiliation(s)
- Kensuke Otsuka
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, Tokyo, Japan
| | - Toshiyasu Iwasaki
- Strategy and Planning Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, Tokyo, Japan
| |
Collapse
|
11
|
Suzuki K, Imaoka T, Tomita M, Sasatani M, Doi K, Tanaka S, Kai M, Yamada Y, Kakinuma S. Molecular and cellular basis of the dose-rate-dependent adverse effects of radiation exposure in animal models. Part I: Mammary gland and digestive tract. JOURNAL OF RADIATION RESEARCH 2023; 64:210-227. [PMID: 36773323 PMCID: PMC10036108 DOI: 10.1093/jrr/rrad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/04/2022] [Indexed: 06/18/2023]
Abstract
While epidemiological data are available for the dose and dose-rate effectiveness factor (DDREF) for human populations, animal models have contributed significantly to providing quantitative data with mechanistic insights. The aim of the current review is to compile both the in vitro experiments with reference to the dose-rate effects of DNA damage and repair, and the animal studies, specific to rodents, with reference to the dose-rate effects of cancer development. In particular, the review focuses especially on the results pertaining to underlying biological mechanisms and discusses their possible involvement in the process of radiation-induced carcinogenesis. Because the concept of adverse outcome pathway (AOP) together with the key events has been considered as a clue to estimate radiation risks at low doses and low dose-rates, the review scrutinized the dose-rate dependency of the key events related to carcinogenesis, which enables us to unify the underlying critical mechanisms to establish a connection between animal experimental studies with human epidemiological studies.
Collapse
Affiliation(s)
- Keiji Suzuki
- Corresponding author. Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan. Tel: +81-95-819-7116; Fax: +81-95-819-7117;
| | | | | | | | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Michiaki Kai
- Nippon Bunri University, 1727-162 Ichiki, Oita, Oita 870-0397, Japan
| | - Yutaka Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
12
|
Rubio CA, Vieth M, Lang-Schwarz C. The frequency of dysplastic branching crypts in colorectal polypoid tubular adenomas. Int J Exp Pathol 2023; 104:100-106. [PMID: 36734673 PMCID: PMC10182366 DOI: 10.1111/iep.12466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/08/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023] Open
Abstract
Dysplastic crypt branching (DCB) was recently found in ulcerative colitis-associated dysplasia. The aim was to assess the frequency and the branching phenotype of DCB in polypoid colorectal tubular adenomas (TA). A total of 3956 DCB were found in the 139 TA: 98% were in asymmetric branching (DCAB) and the remaining 2% in symmetric branching (DCSB). A linear correlation was found between DCB frequency and the increasing digital size in TA (p < .05). Using a digital ruler, adenomas were divided into small TA (<5 mm) and larger TA (≥5 mm). The difference between the frequency of DCB in small TA (n = 75) vs. larger TA (n = 64), was significant (p < .05). DCB frequency was not influenced by age, gender or TA localization. In the normal colorectal mucosa (≈2 m2 ), only occasional CSB is found and no CAB. And yet, multiple DCB (mean 16.7 DCB), mostly DCAB, was found in small TA, occupying <5 mm of the mucosal area. In larger TA, as many as 42.1 DCB (mean), mostly DCAB, occurred in merely 7.8 mm (mean) of the colon mucosa. Thus it is suggested that DCB is a standard histologic element of TA. The natural expansion of the adenomatous tissue in larger TA appears to be follow on from newly produced, mostly DCAB, by DCSB and by the accumulation of their dysplastic offspring's progenies. The findings strongly suggest that DCB is a central microstructure in the histological events unfolding in polypoid colorectal TA.
Collapse
Affiliation(s)
- Carlos A Rubio
- Department of Pathology, Karolinska Institute, University Hospital, Stockholm, Sweden
| | - Michael Vieth
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg, Bayreuth, Germany
| | - Corinna Lang-Schwarz
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg, Bayreuth, Germany
| |
Collapse
|
13
|
Shape-specific characterization of colorectal adenoma growth and transition to cancer with stochastic cell-based models. PLoS Comput Biol 2023; 19:e1010831. [PMID: 36689547 PMCID: PMC9894544 DOI: 10.1371/journal.pcbi.1010831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/02/2023] [Accepted: 12/21/2022] [Indexed: 01/24/2023] Open
Abstract
Colorectal adenoma are precursor lesions on the pathway to cancer. Their removal in screening colonoscopies has markedly reduced rates of cancer incidence and death. Generic models of adenoma growth and transition to cancer can guide the implementation of screening strategies. But adenoma shape has rarely featured as a relevant risk factor. Against this backdrop we aim to demonstrate that shape influences growth dynamics and cancer risk. Stochastic cell-based models are applied to a data set of 197,347 Bavarian outpatients who had colonoscopies from 2006-2009, 50,649 patients were reported with adenoma and 296 patients had cancer. For multi-stage clonal expansion (MSCE) models with up to three initiating stages parameters were estimated by fits to data sets of all shapes combined, and of sessile (70% of all adenoma), peduncular (17%) and flat (13%) adenoma separately for both sexes. Pertinent features of adenoma growth present themselves in contrast to previous assumptions. Stem cells with initial molecular changes residing in early adenoma predominantly multiply within two-dimensional structures such as crypts. For these cells mutation and division rates decrease with age. The absolute number of initiated cells in an adenoma of size 1 cm is small around 103, related to all bulk cells they constitute a share of about 10-5. The notion of very few proliferating stem cells with age-decreasing division rates is supported by cell marker experiments. The probability for adenoma transiting to cancer increases with squared linear size and shows a shape dependence. Compared to peduncular and flat adenoma, it is twice as high for sessile adenoma of the same size. We present a simple mathematical expression for the hazard ratio of interval cancers which provides a mechanistic understanding of this important quality indicator. We conclude that adenoma shape deserves closer consideration in screening strategies and as risk factor for transition to cancer.
Collapse
|
14
|
Corominas-Murtra B, Hannezo E. Modelling the dynamics of mammalian gut homeostasis. Semin Cell Dev Biol 2022:S1084-9521(22)00317-2. [DOI: 10.1016/j.semcdb.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/26/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
|
15
|
Chen B, Wu X, Ruan Y, Zhang Y, Cai Q, Zapata L, Wu CI, Lan P, Wen H. Very large hidden genetic diversity in one single tumor: evidence for tumors-in-tumor. Natl Sci Rev 2022; 9:nwac250. [PMID: 36694802 PMCID: PMC9869076 DOI: 10.1093/nsr/nwac250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the concern of within-tumor genetic diversity, this diversity is in fact limited by the kinship among cells in the tumor. Indeed, genomic studies have amply supported the 'Nowell dogma' whereby cells of the same tumor descend from a single progenitor cell. In parallel, genomic data also suggest that the diversity could be >10-fold larger if tumor cells are of multiple origins. We develop an evolutionary hypothesis that a single tumor may often harbor multiple cell clones of independent origins, but only one would be large enough to be detected. To test the hypothesis, we search for independent tumors within a larger one (or tumors-in-tumor). Very high density sampling was done on two cases of colon tumors. Case 1 indeed has 13 independent clones of disparate sizes, many having heavy mutation burdens and potentially highly tumorigenic. In Case 2, despite a very intensive search, only two small independent clones could be found. The two cases show very similar movements and metastasis of the dominant clone. Cells initially move actively in the expanding tumor but become nearly immobile in late stages. In conclusion, tumors-in-tumor are plausible but could be very demanding to find. Despite their small sizes, they can enhance the within-tumor diversity by orders of magnitude. Such increases may contribute to the missing genetic diversity associated with the resistance to cancer therapy.
Collapse
Affiliation(s)
| | | | - Yongsen Ruan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
| | - Yulin Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
| | - Qichun Cai
- Cancer Center, Clifford Hospital, Jinan University, Guangzhou 511495, China
| | - Luis Zapata
- Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London SW7 3RP, UK
| | | | | | | |
Collapse
|
16
|
Heide T, Househam J, Cresswell GD, Spiteri I, Lynn C, Mossner M, Kimberley C, Fernandez-Mateos J, Chen B, Zapata L, James C, Barozzi I, Chkhaidze K, Nichol D, Gunasri V, Berner A, Schmidt M, Lakatos E, Baker AM, Costa H, Mitchinson M, Piazza R, Jansen M, Caravagna G, Ramazzotti D, Shibata D, Bridgewater J, Rodriguez-Justo M, Magnani L, Graham TA, Sottoriva A. The co-evolution of the genome and epigenome in colorectal cancer. Nature 2022; 611:733-743. [PMID: 36289335 PMCID: PMC9684080 DOI: 10.1038/s41586-022-05202-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/05/2022] [Indexed: 12/13/2022]
Abstract
Colorectal malignancies are a leading cause of cancer-related death1 and have undergone extensive genomic study2,3. However, DNA mutations alone do not fully explain malignant transformation4-7. Here we investigate the co-evolution of the genome and epigenome of colorectal tumours at single-clone resolution using spatial multi-omic profiling of individual glands. We collected 1,370 samples from 30 primary cancers and 8 concomitant adenomas and generated 1,207 chromatin accessibility profiles, 527 whole genomes and 297 whole transcriptomes. We found positive selection for DNA mutations in chromatin modifier genes and recurrent somatic chromatin accessibility alterations, including in regulatory regions of cancer driver genes that were otherwise devoid of genetic mutations. Genome-wide alterations in accessibility for transcription factor binding involved CTCF, downregulation of interferon and increased accessibility for SOX and HOX transcription factor families, suggesting the involvement of developmental genes during tumourigenesis. Somatic chromatin accessibility alterations were heritable and distinguished adenomas from cancers. Mutational signature analysis showed that the epigenome in turn influences the accumulation of DNA mutations. This study provides a map of genetic and epigenetic tumour heterogeneity, with fundamental implications for understanding colorectal cancer biology.
Collapse
Affiliation(s)
- Timon Heide
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Computational Biology Research Centre, Human Technopole, Milan, Italy
| | - Jacob Househam
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Evolution and Cancer Lab, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - George D Cresswell
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Inmaculada Spiteri
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Claire Lynn
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Maximilian Mossner
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Evolution and Cancer Lab, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Chris Kimberley
- Evolution and Cancer Lab, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Bingjie Chen
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Luis Zapata
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Chela James
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Iros Barozzi
- Department of Surgery and Cancer, Imperial College London, London, UK
- Centre for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Ketevan Chkhaidze
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Daniel Nichol
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Vinaya Gunasri
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Evolution and Cancer Lab, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Alison Berner
- Evolution and Cancer Lab, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Melissa Schmidt
- Evolution and Cancer Lab, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Eszter Lakatos
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Evolution and Cancer Lab, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ann-Marie Baker
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Evolution and Cancer Lab, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Helena Costa
- Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Miriam Mitchinson
- Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Marnix Jansen
- Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Giulio Caravagna
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Department of Mathematics and Geosciences, University of Triest, Triest, Italy
| | - Daniele Ramazzotti
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Darryl Shibata
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | | | | | - Luca Magnani
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Trevor A Graham
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
- Evolution and Cancer Lab, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
- Computational Biology Research Centre, Human Technopole, Milan, Italy.
| |
Collapse
|
17
|
Lange S, Mogwitz R, Hünniger D, Voß-Böhme A. Modeling age-specific incidence of colon cancer via niche competition. PLoS Comput Biol 2022; 18:e1010403. [PMID: 35984850 PMCID: PMC9432715 DOI: 10.1371/journal.pcbi.1010403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 08/31/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Cancer development is a multistep process often starting with a single cell in which a number of epigenetic and genetic alterations have accumulated thus transforming it into a tumor cell. The progeny of such a single benign tumor cell expands in the tissue and can at some point progress to malignant tumor cells until a detectable tumor is formed. The dynamics from the early phase of a single cell to a detectable tumor with billions of tumor cells are complex and still not fully resolved, not even for the well-known prototype of multistage carcinogenesis, the adenoma-adenocarcinoma sequence of colorectal cancer. Mathematical models of such carcinogenesis are frequently tested and calibrated based on reported age-specific incidence rates of cancer, but they usually require calibration of four or more parameters due to the wide range of processes these models aim to reflect. We present a cell-based model, which focuses on the competition between wild-type and tumor cells in colonic crypts, with which we are able reproduce epidemiological incidence rates of colon cancer. Additionally, the fraction of cancerous tumors with precancerous lesions predicted by the model agree with clinical estimates. The correspondence between model and reported data suggests that the fate of tumor development is majorly determined by the early phase of tumor growth and progression long before a tumor becomes detectable. Due to the focus on the early phase of tumor development, the model has only a single fit parameter, the time scale set by an effective replacement rate of stem cells in the crypt. We find this effective rate to be considerable smaller than the actual replacement rate, which implies that the time scale is limited by the processes succeeding clonal conversion of crypts. Cancer development is a multistep process often starting with a single cell turning into a tumor cell whose progeny growths via clonal expansion into a macroscopic tumor with billions of cells. While experimental insight exists on the cellular scale and cancer registries provide statistics on detectable tumors, the complex dynamics leading from the microscopic cellular scale to a macroscopic tumor is still not fully resolved. Models of cancer biology are commonly used to explain incidence rates but usually require the fit of several biological parameters due to the complexity of the incorporated processes. We employ a cell-based model based on the competition in colonic crypts, to reproduce epidemiological age-specific incidence rates of colon cancer. Due to the focus on the early stage of tumor development, only the time scale in the model has to be calibrated. The agreement between theoretical prediction and epidemiological observation suggests that the fate of tumor development is dominated by the early phase of tumor development long before a tumor becomes detectable.
Collapse
Affiliation(s)
- Steffen Lange
- DataMedAssist, HTW Dresden - University of Applied Sciences, Dresden, Germany
- Faculty of Informatics/Mathematics, HTW Dresden - University of Applied Sciences, Dresden, Germany
- * E-mail:
| | - Richard Mogwitz
- Faculty of Informatics/Mathematics, HTW Dresden - University of Applied Sciences, Dresden, Germany
| | - Denis Hünniger
- DataMedAssist, HTW Dresden - University of Applied Sciences, Dresden, Germany
- Faculty of Informatics/Mathematics, HTW Dresden - University of Applied Sciences, Dresden, Germany
| | - Anja Voß-Böhme
- DataMedAssist, HTW Dresden - University of Applied Sciences, Dresden, Germany
- Faculty of Informatics/Mathematics, HTW Dresden - University of Applied Sciences, Dresden, Germany
| |
Collapse
|
18
|
Coggan H, Page KM. The role of evolutionary game theory in spatial and non-spatial models of the survival of cooperation in cancer: a review. JOURNAL OF THE ROYAL SOCIETY, INTERFACE 2022; 19:20220346. [PMID: 35975562 PMCID: PMC9382458 DOI: 10.1098/rsif.2022.0346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evolutionary game theory (EGT) is a branch of mathematics which considers populations of individuals interacting with each other to receive pay-offs. An individual’s pay-off is dependent on the strategy of its opponent(s) as well as on its own, and the higher its pay-off, the higher its reproductive fitness. Its offspring generally inherit its interaction strategy, subject to random mutation. Over time, the composition of the population shifts as different strategies spread or are driven extinct. In the last 25 years there has been a flood of interest in applying EGT to cancer modelling, with the aim of explaining how cancerous mutations spread through healthy tissue and how intercellular cooperation persists in tumour-cell populations. This review traces this body of work from theoretical analyses of well-mixed infinite populations through to more realistic spatial models of the development of cooperation between epithelial cells. We also consider work in which EGT has been used to make experimental predictions about the evolution of cancer, and discuss work that remains to be done before EGT can make large-scale contributions to clinical treatment and patient outcomes.
Collapse
Affiliation(s)
- Helena Coggan
- Department of Mathematics, University College London, London, UK
| | - Karen M Page
- Department of Mathematics, University College London, London, UK
| |
Collapse
|
19
|
Gabbutt C, Wright NA, Baker A, Shibata D, Graham TA. Lineage tracing in human tissues. J Pathol 2022; 257:501-512. [PMID: 35415852 PMCID: PMC9253082 DOI: 10.1002/path.5911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/21/2022] [Accepted: 04/09/2022] [Indexed: 11/11/2022]
Abstract
The dynamical process of cell division that underpins homeostasis in the human body cannot be directly observed in vivo, but instead is measurable from the pattern of somatic genetic or epigenetic mutations that accrue in tissues over an individual's lifetime. Because somatic mutations are heritable, they serve as natural lineage tracing markers that delineate clonal expansions. Mathematical analysis of the distribution of somatic clone sizes gives a quantitative readout of the rates of cell birth, death, and replacement. In this review we explore the broad range of somatic mutation types that have been used for lineage tracing in human tissues, introduce the mathematical concepts used to infer dynamical information from these clone size data, and discuss the insights of this lineage tracing approach for our understanding of homeostasis and cancer development. We use the human colon as a particularly instructive exemplar tissue. There is a rich history of human somatic cell dynamics surreptitiously written into the cell genomes that is being uncovered by advances in sequencing and careful mathematical analysis lineage of tracing data. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Calum Gabbutt
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Centre for Evolution and CancerInstitute of Cancer ResearchSuttonUK
- London Interdisciplinary Doctoral Training Programme (LIDo)LondonUK
| | - Nicholas A Wright
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Ann‐Marie Baker
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Centre for Evolution and CancerInstitute of Cancer ResearchSuttonUK
| | - Darryl Shibata
- Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Trevor A Graham
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK
- Centre for Evolution and CancerInstitute of Cancer ResearchSuttonUK
| |
Collapse
|
20
|
Maheden K, Zhang VW, Shakiba N. The Field of Cell Competition Comes of Age: Semantics and Technological Synergy. Front Cell Dev Biol 2022; 10:891569. [PMID: 35646896 PMCID: PMC9132545 DOI: 10.3389/fcell.2022.891569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Stem cells experience many selective pressures which shape their cellular populations, potentially pushing them to skew towards dominance of a few break-through clones. An evolutionarily conserved answer to curb these aberrant selective pressures is cell competition, the elimination of a subset of cells by their neighbours in a seemingly homogenous population. Cell competition in mammalian systems is a relatively recent discovery that has now been observed across many tissue systems, such as embryonic, haematopoietic, intestinal, and epithelial compartments. With this rapidly growing field, there is a need to revisit and standardize the terminology used, much of which has been co-opted from evolutionary biology. Further, the implications of cell competition across biological scales in organisms have been difficult to capture. In this review, we make three key points. One, we propose new nomenclature to standardize concepts across dispersed studies of different types of competition, each of which currently use the same terminology to describe different phenomena. Second, we highlight the challenges in capturing information flow across biological scales. Third, we challenge the field to incorporate next generation technologies into the cell competition toolkit to bridge these gaps. As the field of cell competition matures, synergy between cutting edge tools will help elucidate the molecular events which shape cellular growth and death dynamics, allowing a deeper examination of this evolutionarily conserved mechanism at the core of multicellularity.
Collapse
Affiliation(s)
| | | | - Nika Shakiba
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Rubio CA, Vieth M, Lang-Schwarz C. Dysplastic Crypts in Asymmetric Branching in Ulcerative Colitis: A Preliminary Report. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:305-307. [PMID: 35530655 PMCID: PMC9066528 DOI: 10.21873/cdp.10109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
AIM To report the detection of dysplastic crypts in asymmetric branching (DCAB) in biopsies from patients with ulcerative colitis (UC). PATIENTS AND METHODS One hundred consecutive endoscopic biopsies from patients with UC undergoing surveillance were reviewed. RESULTS Three biopsy/cases showed DCAB. The frequency of DCAB varied from two in one case, three in another case, and five in the remaining case. CONCLUSION The final outcome of DCAB is to generate two or more dysplastic asymmetric offspring-crypts. Repeated DCAB offspring formation, together with new DCAB, would boost the pool of dysplastic crypts, resulting in an exponential expansion of the mucosal area occupied by dysplasia in UC.
Collapse
Affiliation(s)
- Carlos A Rubio
- Department of Pathology, Karolinska Institute, and University Hospital, Stockholm, Sweden
| | - Michael Vieth
- Friedrich-Alexander-University Erlangen-Nuremberg, Bayreuth, Germany
| | | |
Collapse
|
22
|
Gabbutt C, Schenck RO, Weisenberger DJ, Kimberley C, Berner A, Househam J, Lakatos E, Robertson-Tessi M, Martin I, Patel R, Clark SK, Latchford A, Barnes CP, Leedham SJ, Anderson ARA, Graham TA, Shibata D. Fluctuating methylation clocks for cell lineage tracing at high temporal resolution in human tissues. Nat Biotechnol 2022; 40:720-730. [PMID: 34980912 PMCID: PMC9110299 DOI: 10.1038/s41587-021-01109-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
Molecular clocks that record cell ancestry mutate too slowly to measure the short-timescale dynamics of cell renewal in adult tissues. Here, we show that fluctuating DNA methylation marks can be used as clocks in cells where ongoing methylation and demethylation cause repeated 'flip-flops' between methylated and unmethylated states. We identify endogenous fluctuating CpG (fCpG) sites using standard methylation arrays and develop a mathematical model to quantitatively measure human adult stem cell dynamics from these data. Small intestinal crypts were inferred to contain slightly more stem cells than the colon, with slower stem cell replacement in the small intestine. Germline APC mutation increased the number of replacements per crypt. In blood, we measured rapid expansion of acute leukemia and slower growth of chronic disease. Thus, the patterns of human somatic cell birth and death are measurable with fluctuating methylation clocks (FMCs).
Collapse
Affiliation(s)
- Calum Gabbutt
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Cell and Developmental Biology, University College London, London, UK
- London Interdisciplinary Doctoral Training Programme (LIDo), London, UK
| | - Ryan O Schenck
- Integrated Mathematical Oncology Department, Moffitt Cancer Center, Tampa, FL, USA
- Intestinal Stem Cell Biology Lab, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christopher Kimberley
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Alison Berner
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jacob Househam
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Eszter Lakatos
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mark Robertson-Tessi
- Integrated Mathematical Oncology Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Isabel Martin
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- St. Mark's Hospital, Harrow, London, UK
| | - Roshani Patel
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- St. Mark's Hospital, Harrow, London, UK
| | - Susan K Clark
- St. Mark's Hospital, Harrow, London, UK
- Department of Surgery and Cancer, Imperial College, London, UK
| | - Andrew Latchford
- St. Mark's Hospital, Harrow, London, UK
- Department of Surgery and Cancer, Imperial College, London, UK
| | - Chris P Barnes
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Simon J Leedham
- Intestinal Stem Cell Biology Lab, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Trevor A Graham
- Evolution and Cancer Laboratory, Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Darryl Shibata
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Bowes A, Tarabichi M, Pillay N, Van Loo P. Leveraging single cell sequencing to unravel intra-tumour heterogeneity and tumour evolution in human cancers. J Pathol 2022; 257:466-478. [PMID: 35438189 PMCID: PMC9322001 DOI: 10.1002/path.5914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/11/2022]
Abstract
Intra-tumour heterogeneity and tumour evolution are well-documented phenomena in human cancers. While the advent of next-generation sequencing technologies has facilitated the large-scale capture of genomic data, the field of single cell genomics is nascent but rapidly advancing and generating many new insights into the complex molecular mechanisms of tumour biology. In this review, we provide an overview of current single cell DNA sequencing technologies, exploring how recent methodological advancements have enumerated new insights into intra-tumour heterogeneity and tumour evolution. Areas highlighted include the potential power of single cell genome sequencing studies to explore evolutionary dynamics contributing to tumourigenesis through to progression, metastasis and therapy resistance. We also explore the use of in-situ sequencing technologies to study intra-tumour heterogeneity in a spatial context, as well as examining the use of single cell genomics to perform lineage tracing in both normal and malignant tissues. Finally, we consider the use of multi-modal single cell sequencing technologies. Taken together, it is hoped that these many facets of single cell genome sequencing will improve our understanding of tumourigenesis, progression and lethality in cancer leading to the development of novel therapies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Amy Bowes
- Cancer Genomics Group, The Francis Crick Institute, London, UK.,Sarcoma Biology and Genomics Group, UCL Cancer Institute, London, UK
| | - Maxime Tarabichi
- Cancer Genomics Group, The Francis Crick Institute, London, UK.,Institute for Interdisciplinary Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Nischalan Pillay
- Sarcoma Biology and Genomics Group, UCL Cancer Institute, London, UK.,Department of Histopathology, The Royal National Orthopaedic Hospital NHS Trust, London, UK
| | - Peter Van Loo
- Cancer Genomics Group, The Francis Crick Institute, London, UK.,Department of Genetics, The University of Texas MD Anderson Cancer Centre, Houston, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Centre, Houston, USA
| |
Collapse
|
24
|
Wang Y, Boland CR, Goel A, Wodarz D, Komarova NL. Aspirin's effect on kinetic parameters of cells contributes to its role in reducing incidence of advanced colorectal adenomas, shown by a multiscale computational study. eLife 2022; 11:71953. [PMID: 35416770 PMCID: PMC9007589 DOI: 10.7554/elife.71953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Aspirin intake has been shown to lead to significant protection against colorectal cancer, for example with an up to twofold reduction in colorectal adenoma incidence rates at higher doses. The mechanisms contributing to protection are not yet fully understood. While aspirin is an anti-inflammatory drug and can thus influence the tumor microenvironment, in vitro and in vivo experiments have recently shown that aspirin can also have a direct effect on cellular kinetics and fitness. It reduces the rate of tumor cell division and increases the rate of cell death. The question arises whether such changes in cellular fitness are sufficient to significantly contribute to the epidemiologically observed protection. To investigate this, we constructed a class of mathematical models of in vivo evolution of advanced adenomas, parameterized it with available estimates, and calculated population level incidence. Fitting the predictions to age incidence data revealed that only a model that included colonic crypt competition can account for the observed age-incidence curve. This model was then used to predict modified incidence patterns if cellular kinetics were altered as a result of aspirin treatment. We found that changes in cellular fitness that were within the experimentally observed ranges could reduce advanced adenoma incidence by a sufficient amount to account for age incidence data in aspirin-treated patient cohorts. While the mechanisms that contribute to the protective effect of aspirin are likely complex and multi-factorial, our study demonstrates that direct aspirin-induced changes of tumor cell fitness can significantly contribute to epidemiologically observed reduced incidence patterns.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Mathematics, University of California Irvine, Irvine, United States
| | - C Richard Boland
- Department of Medicine, University of California San Diego School of Medicine, San Diego, United States
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, United States
| | - Dominik Wodarz
- Department of Mathematics, University of California Irvine, Irvine, United States.,Department of Population Health and Disease Prevention, University of California Irvine, Irvine, United States
| | - Natalia L Komarova
- Department of Mathematics, University of California Irvine, Irvine, United States
| |
Collapse
|
25
|
Evans JA, Carlotti E, Lin ML, Hackett RJ, Haughey MJ, Passman AM, Dunn L, Elia G, Porter RJ, McLean MH, Hughes F, ChinAleong J, Woodland P, Preston SL, Griffin SM, Lovat L, Rodriguez-Justo M, Huang W, Wright NA, Jansen M, McDonald SAC. Clonal Transitions and Phenotypic Evolution in Barrett's Esophagus. Gastroenterology 2022; 162:1197-1209.e13. [PMID: 34973296 PMCID: PMC8972067 DOI: 10.1053/j.gastro.2021.12.271] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS Barrett's esophagus (BE) is a risk factor for esophageal adenocarcinoma but our understanding of how it evolves is poorly understood. We investigated BE gland phenotype distribution, the clonal nature of phenotypic change, and how phenotypic diversity plays a role in progression. METHODS Using immunohistochemistry and histology, we analyzed the distribution and the diversity of gland phenotype between and within biopsy specimens from patients with nondysplastic BE and those who had progressed to dysplasia or had developed postesophagectomy BE. Clonal relationships were determined by the presence of shared mutations between distinct gland types using laser capture microdissection sequencing of the mitochondrial genome. RESULTS We identified 5 different gland phenotypes in a cohort of 51 nondysplastic patients where biopsy specimens were taken at the same anatomic site (1.0-2.0 cm superior to the gastroesophageal junction. Here, we observed the same number of glands with 1 and 2 phenotypes, but 3 phenotypes were rare. We showed a common ancestor between parietal cell-containing, mature gastric (oxyntocardiac) and goblet cell-containing, intestinal (specialized) gland phenotypes. Similarly, we have shown a clonal relationship between cardiac-type glands and specialized and mature intestinal glands. Using the Shannon diversity index as a marker of gland diversity, we observed significantly increased phenotypic diversity in patients with BE adjacent to dysplasia and predysplasia compared to nondysplastic BE and postesophagectomy BE, suggesting that diversity develops over time. CONCLUSIONS We showed that the range of BE phenotypes represents an evolutionary process and that changes in gland diversity may play a role in progression. Furthermore, we showed a common ancestry between gastric and intestinal-type glands in BE.
Collapse
Affiliation(s)
- James A Evans
- Clonal Dynamics in Epithelia Laboratory, Queen Mary University of London, London, United Kingdom
| | - Emanuela Carlotti
- Clonal Dynamics in Epithelia Laboratory, Queen Mary University of London, London, United Kingdom
| | - Meng-Lay Lin
- Clonal Dynamics in Epithelia Laboratory, Queen Mary University of London, London, United Kingdom
| | - Richard J Hackett
- Clonal Dynamics in Epithelia Laboratory, Queen Mary University of London, London, United Kingdom
| | - Magnus J Haughey
- School of Mathematical Sciences, Queen Mary University of London, London, United Kingdom
| | - Adam M Passman
- Clonal Dynamics in Epithelia Laboratory, Queen Mary University of London, London, United Kingdom
| | - Lorna Dunn
- Northern Institute for Cancer Research, Newcastle University, Newcastle, United Kingdom
| | - George Elia
- Clonal Dynamics in Epithelia Laboratory, Queen Mary University of London, London, United Kingdom
| | - Ross J Porter
- Department of Gastroenterology, University of Aberdeen, Aberdeen, United Kingdom
| | - Mairi H McLean
- Department of Gastroenterology, University of Aberdeen, Aberdeen, United Kingdom
| | - Frances Hughes
- Department of Surgery, Barts Health NHS Trust, Royal London Hospital, London, United Kingdom
| | - Joanne ChinAleong
- Department of Histopathology, Barts Health NHS Trust, Royal London Hospital, London, United Kingdom
| | - Philip Woodland
- Endoscopy Unit, Barts Health NHS Trust, Royal London Hospital, London, United Kingdom
| | - Sean L Preston
- Endoscopy Unit, Barts Health NHS Trust, Royal London Hospital, London, United Kingdom
| | - S Michael Griffin
- School of Mathematical Sciences, Queen Mary University of London, London, United Kingdom; Royal College of Surgeons of Edinburgh, Edinburgh, United Kingdom
| | - Laurence Lovat
- Oeosophagogastric Disorders Centre, Department of Gastroenterology, University College London Hospitals, London, United Kingdom; Research Department of Tissue and Energy, University College London Division of Surgical and Interventional Science, University College London, London, United Kingdom
| | - Manuel Rodriguez-Justo
- Department of Cellular Pathology, University College London Hospitals, London, United Kingdom
| | - Weini Huang
- School of Mathematical Sciences, Queen Mary University of London, London, United Kingdom
| | - Nicholas A Wright
- Epithelial Stem Cell Laboratory, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Marnix Jansen
- Department of Cellular Pathology, University College London Hospitals, London, United Kingdom; UCL Cancer Institute, University College London, London, United Kingdom
| | - Stuart A C McDonald
- Clonal Dynamics in Epithelia Laboratory, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
26
|
Ramadan R, van Driel MS, Vermeulen L, van Neerven SM. Intestinal stem cell dynamics in homeostasis and cancer. Trends Cancer 2022; 8:416-425. [DOI: 10.1016/j.trecan.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 12/31/2022]
|
27
|
Kahn M. Taking the road less traveled - the therapeutic potential of CBP/β-catenin antagonists. Expert Opin Ther Targets 2021; 25:701-719. [PMID: 34633266 PMCID: PMC8745629 DOI: 10.1080/14728222.2021.1992386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
AREAS COVERED This perspective discusses the challenges of targeting the Wnt signaling cascade, the safety, efficacy, and therapeutic potential of specific CBP/β-catenin antagonists and a rationale for the pleiotropic effects of CBP/β-catenin antagonists beyond Wnt signaling. EXPERT OPINION CBP/β-catenin antagonists can correct lineage infidelity, enhance wound healing, both normal and aberrant (e.g. fibrosis) and force the differentiation and lineage commitment of stem cells and cancer stem cells by regulating enhancer and super-enhancer coactivator occupancy. Small molecule CBP/β-catenin antagonists rebalance the equilibrium between CBP/β-catenin versus p300/β-catenin dependent transcription and may be able to treat or prevent many diseases of aging, via maintenance of our somatic stem cell pool, and regulating mitochondrial function and metabolism involved in differentiation and immune cell function.
Collapse
Affiliation(s)
- Michael Kahn
- Department of Molecular Medicine, City of Hope, Beckman Research Institute, 1500 East Duarte Road Flower Building, Duarte, CA, USA
| |
Collapse
|
28
|
Yalchin M, Baker AM, Graham TA, Hart A. Predicting Colorectal Cancer Occurrence in IBD. Cancers (Basel) 2021; 13:2908. [PMID: 34200768 PMCID: PMC8230430 DOI: 10.3390/cancers13122908] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Patients with colonic inflammatory bowel disease (IBD) are at an increased risk of developing colorectal cancer (CRC), and are therefore enrolled into a surveillance programme aimed at detecting dysplasia or early cancer. Current surveillance programmes are guided by clinical, endoscopic or histological predictors of colitis-associated CRC (CA-CRC). We have seen great progress in our understanding of these predictors of disease progression, and advances in endoscopic technique and management, along with improved medical care, has been mirrored by the falling incidence of CA-CRC over the last 50 years. However, more could be done to improve our molecular understanding of CA-CRC progression and enable better risk stratification for patients with IBD. This review summarises the known risk factors associated with CA-CRC and explores the molecular landscape that has the potential to complement and optimise the existing IBD surveillance programme.
Collapse
Affiliation(s)
- Mehmet Yalchin
- Inflammatory Bowel Disease Department, St. Mark’s Hospital, Watford R.d., Harrow HA1 3UJ, UK
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse S.q., London EC1M 6BQ, UK; (A.-M.B.); (T.A.G.)
| | - Ann-Marie Baker
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse S.q., London EC1M 6BQ, UK; (A.-M.B.); (T.A.G.)
| | - Trevor A. Graham
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse S.q., London EC1M 6BQ, UK; (A.-M.B.); (T.A.G.)
| | - Ailsa Hart
- Inflammatory Bowel Disease Department, St. Mark’s Hospital, Watford R.d., Harrow HA1 3UJ, UK
| |
Collapse
|
29
|
Jennelle LT, Dampier CH, Tring S, Powell S, Casey G. Colon Crypts of Subjects With Familial Adenomatous Polyposis Show an Increased Number of LGR5+ Ectopic Stem Cells. Clin Transl Gastroenterol 2021; 12:e00353. [PMID: 33999013 PMCID: PMC8133103 DOI: 10.14309/ctg.0000000000000353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/29/2021] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Familial adenomatous polyposis (FAP) is a hereditary colorectal cancer (CRC) syndrome characterized by accelerated adenoma development due to inherited (or de novo) mutations in the APC regulator of WNT signaling pathway (APC) gene. The mechanism underlying this accelerated polyp development in subjects with FAP has not been defined. Given that LGR5+ stem cells drive crypt cell proliferation, we hypothesized that FAP crypts would demonstrate aberrant leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) staining patterns. METHODS Biopsies were taken from 11 healthy subjects, 7 subjects with Lynch syndrome, 4 subjects with FAP, and 1 subject with MUTYH-associated polyposis syndrome during routine screening or surveillance colonoscopy. Crypt staining was evaluated by immunohistochemistry of paraffin-embedded tissue sections. Stem cell numbers were estimated by immunofluorescence staining of isolated crypts using antibodies against LGR5 and other proteins. RESULTS Subjects with FAP exhibited a greater number of LGR5+ stem cells in their crypts than healthy subjects and subjects with Lynch syndrome and MUTYH-associated polyposis syndrome. Most crypts of subjects with FAP harbored LGR5+ cells located above the lower third of the crypts. DISCUSSION These findings support a model in which inactivation of one copy of APC leads to increased numbers of LGR5+ stem cells, many of which are ectopic, in colon crypts of subjects with FAP. Overabundant and ectopic LGR5+ stem cells could lead to an expanded proliferative zone of dividing cells more likely to develop mutations that would contribute to the accelerated adenoma development observed in FAP.
Collapse
Affiliation(s)
- Lucas T. Jennelle
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Christopher H. Dampier
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
- Department of General Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Stephanie Tring
- USC Genomics Core, University of Southern California, Los Angeles, California, USA
| | - Steven Powell
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Graham Casey
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
30
|
Marca JEL, Somers WG. The Drosophila gonads: models for stem cell proliferation, self-renewal, and differentiation. AIMS GENETICS 2021. [DOI: 10.3934/genet.2014.1.55] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractThe male and female gonads of Drosophila melanogaster have developed into powerful model systems for both the study of stem cell behaviours, and for understanding how stem cell misregulation can lead to cancers. Using these systems, one is able to observe and manipulate the resident stem cell populations in vivo with a great deal of licence. The tractability of the testis and ovary also allow researchers to explore a range of cellular mechanisms, such as proliferation and polarity, as well as the influence exerted by the local environment through a host of highly-conserved signalling pathways. Importantly, many of the cellular behaviours and processes studied in the Drosophila testis and ovary are known to be disrupted, or otherwise misregulated, in human tumourigenic cells. Here, we review the mechanisms relating to stem cell behaviour, though we acknowledge there are many other fascinating aspects of gametogenesis, including the invasive behaviour of migratory border cells in the Drosophila ovary that, though relevant to the study of tumourigenesis, will unfortunately not be covered.
Collapse
Affiliation(s)
- John E. La Marca
- Department of Genetics, La Trobe University, Melbourne, VIC 3086, Australia
| | | |
Collapse
|
31
|
Haupt S, Zeilmann A, Ahadova A, Bläker H, von Knebel Doeberitz M, Kloor M, Heuveline V. Mathematical modeling of multiple pathways in colorectal carcinogenesis using dynamical systems with Kronecker structure. PLoS Comput Biol 2021; 17:e1008970. [PMID: 34003820 PMCID: PMC8162698 DOI: 10.1371/journal.pcbi.1008970] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 05/28/2021] [Accepted: 04/16/2021] [Indexed: 01/02/2023] Open
Abstract
Like many other types of cancer, colorectal cancer (CRC) develops through multiple pathways of carcinogenesis. This is also true for colorectal carcinogenesis in Lynch syndrome (LS), the most common inherited CRC syndrome. However, a comprehensive understanding of the distribution of these pathways of carcinogenesis, which allows for tailored clinical treatment and even prevention, is still lacking. We suggest a linear dynamical system modeling the evolution of different pathways of colorectal carcinogenesis based on the involved driver mutations. The model consists of different components accounting for independent and dependent mutational processes. We define the driver gene mutation graphs and combine them using the Cartesian graph product. This leads to matrix components built by the Kronecker sum and product of the adjacency matrices of the gene mutation graphs enabling a thorough mathematical analysis and medical interpretation. Using the Kronecker structure, we developed a mathematical model which we applied exemplarily to the three pathways of colorectal carcinogenesis in LS. Beside a pathogenic germline variant in one of the DNA mismatch repair (MMR) genes, driver mutations in APC, CTNNB1, KRAS and TP53 are considered. We exemplarily incorporate mutational dependencies, such as increased point mutation rates after MMR deficiency, and based on recent experimental data, biallelic somatic CTNNB1 mutations as common drivers of LS-associated CRCs. With the model and parameter choice, we obtained simulation results that are in concordance with clinical observations. These include the evolution of MMR-deficient crypts as early precursors in LS carcinogenesis and the influence of variants in MMR genes thereon. The proportions of MMR-deficient and MMR-proficient APC-inactivated crypts as first measure for the distribution among the pathways in LS-associated colorectal carcinogenesis are compatible with clinical observations. The approach provides a modular framework for modeling multiple pathways of carcinogenesis yielding promising results in concordance with clinical observations in LS CRCs.
Collapse
Affiliation(s)
- Saskia Haupt
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
- Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Alexander Zeilmann
- Image and Pattern Analysis Group (IPA), Heidelberg University, Heidelberg, Germany
| | - Aysel Ahadova
- Department of Applied Tumor Biology (ATB), Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hendrik Bläker
- Institute of Pathology, University Hospital Leipzig, Leipzig, Germany
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumor Biology (ATB), Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology (ATB), Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Vincent Heuveline
- Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
- Data Mining and Uncertainty Quantification (DMQ), Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| |
Collapse
|
32
|
Tallapragada NP, Cambra HM, Wald T, Keough Jalbert S, Abraham DM, Klein OD, Klein AM. Inflation-collapse dynamics drive patterning and morphogenesis in intestinal organoids. Cell Stem Cell 2021; 28:1516-1532.e14. [PMID: 33915079 DOI: 10.1016/j.stem.2021.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 12/29/2020] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
How stem cells self-organize to form structured tissues is an unsolved problem. Intestinal organoids offer a model of self-organization as they generate stem cell zones (SCZs) of typical size even without a spatially structured environment. Here we examine processes governing the size of SCZs. We improve the viability and homogeneity of intestinal organoid cultures to enable long-term time-lapse imaging of multiple organoids in parallel. We find that SCZs are shaped by fission events under strong control of ion channel-mediated inflation and mechanosensitive Piezo-family channels. Fission occurs through stereotyped modes of dynamic behavior that differ in their coordination of budding and differentiation. Imaging and single-cell transcriptomics show that inflation drives acute stem cell differentiation and induces a stretch-responsive cell state characterized by large transcriptional changes, including upregulation of Piezo1. Our results reveal an intrinsic capacity of the intestinal epithelium to self-organize by modulating and then responding to its mechanical state.
Collapse
Affiliation(s)
- Naren P Tallapragada
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Hailey M Cambra
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tomas Wald
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Samantha Keough Jalbert
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Diana M Abraham
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Allon M Klein
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
33
|
West J, Schenck RO, Gatenbee C, Robertson-Tessi M, Anderson ARA. Normal tissue architecture determines the evolutionary course of cancer. Nat Commun 2021; 12:2060. [PMID: 33824323 PMCID: PMC8024392 DOI: 10.1038/s41467-021-22123-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer growth can be described as a caricature of the renewal process of the tissue of origin, where the tissue architecture has a strong influence on the evolutionary dynamics within the tumor. Using a classic, well-studied model of tumor evolution (a passenger-driver mutation model) we systematically alter spatial constraints and cell mixing rates to show how tissue structure influences functional (driver) mutations and genetic heterogeneity over time. This approach explores a key mechanism behind both inter-patient and intratumoral tumor heterogeneity: competition for space. Time-varying competition leads to an emergent transition from Darwinian premalignant growth to subsequent invasive neutral tumor growth. Initial spatial constraints determine the emergent mode of evolution (Darwinian to neutral) without a change in cell-specific mutation rate or fitness effects. Driver acquisition during the Darwinian precancerous stage may be modulated en route to neutral evolution by the combination of two factors: spatial constraints and limited cellular mixing. These two factors occur naturally in ductal carcinomas, where the branching topology of the ductal network dictates spatial constraints and mixing rates.
Collapse
Affiliation(s)
- Jeffrey West
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| | - Ryan O Schenck
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Chandler Gatenbee
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Mark Robertson-Tessi
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alexander R A Anderson
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| |
Collapse
|
34
|
Rubio CA. Two histologic compartments in nonpolypoid conventional colon adenomas. J Gastroenterol Hepatol 2021; 36:910-917. [PMID: 32757480 DOI: 10.1111/jgh.15210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 08/02/2020] [Indexed: 12/09/2022]
Abstract
Two intertwined compartments coexisting in nonpolypoid conventional (i.e. tubular or villous) adenomas are highlighted in this review: one built of dysplastic tissue on top and the other portraying crypts with irregular, corrupted shapes, albeit lined with normal epithelium, below. The latter compartment has remained unattended in the literature. Recently, however, the histologic characteristics of the nondysplastic compartment in nonpolypoid conventional adenomas were closely examined, and some of its biological attributes were unveiled. Studies with the proliferation marker ki67 showed that the crypts with irregular, corrupted shapes in the nondysplastic compartment displayed haphazardly distributed proliferating cell-domains. Given that the proliferating cells are generated by stem cells, the relocation of proliferating cell-domains in those crypts seems to be the result of a reorganization of the stem cells within the crypts. The abnormal distribution of proliferating cells, the finding of p53-upregulated cells, and of crypts in asymmetric fission suggest that the crypts in that compartment are histo-biologically altered, probably somatically mutated. This new information might contribute to unravel the riddle of crypto-histogenesis of nonpolypoid conventional adenomas of the colon. More research along these lines is necessary, before the biology of the crypts in the nondysplastic compartment can be fully translated into molecular terms.
Collapse
Affiliation(s)
- Carlos A Rubio
- Gastrointestinal Research Laboratory, Department of Pathology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
35
|
Abstract
Cancer is a clonal disorder derived from a single ancestor cell and its progenies that are positively selected by acquisition of 'driver mutations'. However, the evolution of positively selected clones does not necessarily imply the presence of cancer. On the contrary, it has become clear that expansion of these clones in phenotypically normal or non-cancer tissues is commonly seen in association with ageing and/or in response to environmental insults and chronic inflammation. Recent studies have reported expansion of clones harbouring mutations in cancer driver genes in the blood, skin, oesophagus, bronchus, liver, endometrium and bladder, where the expansion could be so extensive that tissues undergo remodelling of an almost entire tissue. The presence of common cancer driver mutations in normal tissues suggests a strong link to cancer development, providing an opportunity to understand early carcinogenic processes. Nevertheless, some driver mutations are unique to normal tissues or have a mutation frequency that is much higher in normal tissue than in cancer, indicating that the respective clones may not necessarily be destined for evolution to cancer but even negatively selected for carcinogenesis depending on the mutated gene. Moreover, tissues that are remodelled by genetically altered clones might define functionalities of aged tissues or modified inflammatory processes. In this Review, we provide an overview of major findings on clonal expansion in phenotypically normal or non-cancer tissues and discuss their biological significance not only in cancer development but also in ageing and inflammatory diseases.
Collapse
Affiliation(s)
- Nobuyuki Kakiuchi
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, Japan.
- Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
36
|
Ternet C, Kiel C. Signaling pathways in intestinal homeostasis and colorectal cancer: KRAS at centre stage. Cell Commun Signal 2021; 19:31. [PMID: 33691728 PMCID: PMC7945333 DOI: 10.1186/s12964-021-00712-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelium acts as a physical barrier that separates the intestinal microbiota from the host and is critical for preserving intestinal homeostasis. The barrier is formed by tightly linked intestinal epithelial cells (IECs) (i.e. enterocytes, goblet cells, neuroendocrine cells, tuft cells, Paneth cells, and M cells), which constantly self-renew and shed. IECs also communicate with microbiota, coordinate innate and adaptive effector cell functions. In this review, we summarize the signaling pathways contributing to intestinal cell fates and homeostasis functions. We focus especially on intestinal stem cell proliferation, cell junction formation, remodelling, hypoxia, the impact of intestinal microbiota, the immune system, inflammation, and metabolism. Recognizing the critical role of KRAS mutants in colorectal cancer, we highlight the connections of KRAS signaling pathways in coordinating these functions. Furthermore, we review the impact of KRAS colorectal cancer mutants on pathway rewiring associated with disruption and dysfunction of the normal intestinal homeostasis. Given that KRAS is still considered undruggable and the development of treatments that directly target KRAS are unlikely, we discuss the suitability of targeting pathways downstream of KRAS as well as alterations of cell extrinsic/microenvironmental factors as possible targets for modulating signaling pathways in colorectal cancer. Video Abstract
Collapse
Affiliation(s)
- Camille Ternet
- School of Medicine, Systems Biology Ireland, and UCD Charles Institute of Dermatology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christina Kiel
- School of Medicine, Systems Biology Ireland, and UCD Charles Institute of Dermatology, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
37
|
Sphyris N, Hodder MC, Sansom OJ. Subversion of Niche-Signalling Pathways in Colorectal Cancer: What Makes and Breaks the Intestinal Stem Cell. Cancers (Basel) 2021; 13:1000. [PMID: 33673710 PMCID: PMC7957493 DOI: 10.3390/cancers13051000] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium fulfils pleiotropic functions in nutrient uptake, waste elimination, and immune surveillance while also forming a barrier against luminal toxins and gut-resident microbiota. Incessantly barraged by extraneous stresses, the intestine must continuously replenish its epithelial lining and regenerate the full gamut of specialized cell types that underpin its functions. Homeostatic remodelling is orchestrated by the intestinal stem cell (ISC) niche: a convergence of epithelial- and stromal-derived cues, which maintains ISCs in a multipotent state. Following demise of homeostatic ISCs post injury, plasticity is pervasive among multiple populations of reserve stem-like cells, lineage-committed progenitors, and/or fully differentiated cell types, all of which can contribute to regeneration and repair. Failure to restore the epithelial barrier risks seepage of toxic luminal contents, resulting in inflammation and likely predisposing to tumour formation. Here, we explore how homeostatic niche-signalling pathways are subverted in tumorigenesis, enabling ISCs to gain autonomy from niche restraints ("ISC emancipation") and transform into cancer stem cells capable of driving tumour initiation, progression, and therapy resistance. We further consider the implications of the pervasive plasticity of the intestinal epithelium for the trajectory of colorectal cancer, the emergence of distinct molecular subtypes, the propensity to metastasize, and the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Nathalie Sphyris
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
| | - Michael C. Hodder
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| |
Collapse
|
38
|
Kay JE, Mirabal S, Briley WE, Kimoto T, Poutahidis T, Ragan T, So PT, Wadduwage DN, Erdman SE, Engelward BP. Analysis of mutations in tumor and normal adjacent tissue via fluorescence detection. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:108-123. [PMID: 33314311 PMCID: PMC7880898 DOI: 10.1002/em.22419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Inflammation is a major risk factor for many types of cancer, including colorectal. There are two fundamentally different mechanisms by which inflammation can contribute to carcinogenesis. First, reactive oxygen and nitrogen species (RONS) can damage DNA to cause mutations that initiate cancer. Second, inflammatory cytokines and chemokines promote proliferation, migration, and invasion. Although it is known that inflammation-associated RONS can be mutagenic, the extent to which they induce mutations in intestinal stem cells has been little explored. Furthermore, it is now widely accepted that cancer is caused by successive rounds of clonal expansion with associated de novo mutations that further promote tumor development. As such, we aimed to understand the extent to which inflammation promotes clonal expansion in normal and tumor tissue. Using an engineered mouse model that is prone to cancer and within which mutant cells fluoresce, here we have explored the impact of inflammation on de novo mutagenesis and clonal expansion in normal and tumor tissue. While inflammation is strongly associated with susceptibility to cancer and a concomitant increase in the overall proportion of mutant cells in the tissue, we did not observe an increase in mutations in normal adjacent tissue. These results are consistent with opportunities for de novo mutations and clonal expansion during tumor growth, and they suggest protective mechanisms that suppress the risk of inflammation-induced accumulation of mutant cells in normal tissue.
Collapse
Affiliation(s)
- Jennifer E. Kay
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Sheyla Mirabal
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
| | | | - Takafumi Kimoto
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Theofilos Poutahidis
- Laboratory of Pathology, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Greece
| | | | - Peter T. So
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Dushan N. Wadduwage
- The John Harvard Distinguished Science Fellows Program, Harvard University, Cambridge, MA
- Center for Advanced Imaging, Harvard University, Cambridge, MA, USA
| | - Susan E. Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
| | - Bevin P. Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
39
|
Scott JG, Maini PK, Anderson ARA, Fletcher AG. Inferring Tumor Proliferative Organization from Phylogenetic Tree Measures in a Computational Model. Syst Biol 2021; 69:623-637. [PMID: 31665523 DOI: 10.1093/sysbio/syz070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 09/23/2019] [Accepted: 10/02/2019] [Indexed: 01/15/2023] Open
Abstract
We use a computational modeling approach to explore whether it is possible to infer a solid tumor's cellular proliferative hierarchy under the assumptions of the cancer stem cell hypothesis and neutral evolution. We work towards inferring the symmetric division probability for cancer stem cells, since this is believed to be a key driver of progression and therapeutic response. Motivated by the advent of multiregion sampling and resulting opportunities to infer tumor evolutionary history, we focus on a suite of statistical measures of the phylogenetic trees resulting from the tumor's evolution in different regions of parameter space and through time. We find strikingly different patterns in these measures for changing symmetric division probability which hinge on the inclusion of spatial constraints. These results give us a starting point to begin stratifying tumors by this biological parameter and also generate a number of actionable clinical and biological hypotheses regarding changes during therapy, and through tumor evolutionary time. [Cancer; evolution; phylogenetics.].
Collapse
Affiliation(s)
- Jacob G Scott
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK.,Departments of Translational Hematology and Oncology Research and Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
| | - Alexander R A Anderson
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alexander G Fletcher
- School of Mathematics and Statistics, University of Sheffield, Sheffield, UK.,Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
40
|
Hinman SS, Wang Y, Kim R, Allbritton NL. In vitro generation of self-renewing human intestinal epithelia over planar and shaped collagen hydrogels. Nat Protoc 2021; 16:352-382. [PMID: 33299154 PMCID: PMC8420814 DOI: 10.1038/s41596-020-00419-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
Abstract
The large intestine, with its array of crypts lining the epithelium and diverse luminal contents, regulates homeostasis throughout the body. In vitro crypts formed from primary human intestinal epithelial stem cells on a 3D shaped hydrogel scaffold replicate the functional and architectural features of in vivo crypts. Collagen scaffolding assembly methods are provided, along with the microfabrication and soft lithography protocols necessary to shape these hydrogels to match the dimensions and density of in vivo crypts. In addition, stem-cell scale-up protocols are provided so that even ultrasmall primary samples can be used as starting material. Initially, these cells are seeded as a proliferative monolayer over the shaped scaffold and cultured as stem/proliferative cells to expand them and cover the scaffold surface with the crypt-shaped structures. To convert these immature crypts into fully polarized, functional units with a basal stem cell niche and luminal differentiated cell zone, stable, linear gradients of growth factors are formed across the crypts. This platform supports the formation of chemical gradients across the crypts, including those of growth and differentiation factors, inflammatory compounds, bile and food metabolites and bacterial products. All microfabrication and device assembly steps are expected to take 8 d, with the primary cells cultured for 12 d to form mature in vitro crypts.
Collapse
Affiliation(s)
- Samuel S Hinman
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Yuli Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Raehyun Kim
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
41
|
Uchinomiya K, Yoshida K, Kondo M, Tomita M, Iwasaki T. A Mathematical Model for Stem Cell Competition to Maintain a Cell Pool Injured by Radiation. Radiat Res 2020; 194:379-389. [PMID: 32936901 DOI: 10.1667/rade-20-00034.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/23/2020] [Indexed: 11/03/2022]
Abstract
The effect of low-dose-rate exposure to ionizing radiation on cancer risk is a major issue associated with radiation protection. Tissue stem cells are regarded as one of the targets of radiation-induced carcinogenesis. However, it is hypothesized that the effect of radiation may be reduced if damaged stem cells are eliminated via stem cell competition between damaged and intact stem cells. This would be particularly effective under very low-dose-rate conditions, in which only a few stem cells in a stem cell pool may be affected by radiation. Following this hypothesis, we constructed a simple mathematical model to discuss the influence of stem cell competition attenuating the accumulation of damaged cells under very low-dose-rate conditions. In this model, a constant number of cells were introduced into a cell pool, and the numbers of intact and damaged cells were calculated via transition and turnover events. A transition event emulates radiation dose, whereby an intact cell is changed into a damaged cell with a given probability. On the other hand, a turnover event expresses cell competition, where reproduction and elimination of cells occur depending on the properties of cells. Under very low-dose-rate conditions, this model showed that radiation damage to the stem cell pool was strongly suppressed when the damaged cells were less reproductive and tended to be eliminated compared to the intact cells. Furthermore, the size of the stem cell pool was positively correlated with reduction in radiation damage.
Collapse
Affiliation(s)
- Kouki Uchinomiya
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, Tokyo, Japan
| | - Kazuo Yoshida
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, Tokyo, Japan
| | - Masahiro Kondo
- Integrated Macroscopic Simulation Team, Research Center for Computational Design of Advanced Functional Materials, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Masanori Tomita
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, Tokyo, Japan
| | - Toshiyasu Iwasaki
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, Tokyo, Japan
| |
Collapse
|
42
|
Bhardwaj M, Leli NM, Koumenis C, Amaravadi RK. Regulation of autophagy by canonical and non-canonical ER stress responses. Semin Cancer Biol 2020; 66:116-128. [PMID: 31838023 PMCID: PMC7325862 DOI: 10.1016/j.semcancer.2019.11.007] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/05/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
Abstract
Cancer cells encounter numerous stresses that pose a threat to their survival. Tumor microenviroment stresses that perturb protein homeostasis can produce endoplasmic reticulum (ER) stress, which can be counterbalanced by triggering the unfolded protein response (UPR) which is considered the canonical ER stress response. The UPR is characterized by three major proteins that lead to specific changes in transcriptional and translational programs in stressed cells. Activation of the UPR can induce apoptosis, but also can induce cytoprotective programs such as autophagy. There is increasing appreciation for the role that UPR-induced autophagy plays in supporting tumorigenesis and cancer therapy resistance. More recently several new pathways that connect cell stresses, components of the UPR and autophagy have been reported, which together can be viewed as non-canonical ER stress responses. Here we review recent findings on the molecular mechanisms by which canonical and non-canonical ER stress responses can activate cytoprotective autophagy and contribute to tumor growth and therapy resistance. Autophagy has been identified as a druggable pathway, however the components of autophagy (ATG genes) have proven difficult to drug. It may be the case that targeting the UPR or non-canonical ER stress programs can more effectively block cytoprotective autophagy to enhance cancer therapy. A deeper understanding of these pathways could provide new therapeutic targets in cancer.
Collapse
Affiliation(s)
- Monika Bhardwaj
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nektaria Maria Leli
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ravi K Amaravadi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
43
|
Almet AA, Maini PK, Moulton DE, Byrne HM. Modeling perspectives on the intestinal crypt, a canonical system for growth, mechanics, and remodeling. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2019.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Paterson C, Clevers H, Bozic I. Mathematical model of colorectal cancer initiation. Proc Natl Acad Sci U S A 2020; 117:20681-20688. [PMID: 32788368 PMCID: PMC7456111 DOI: 10.1073/pnas.2003771117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Quantifying evolutionary dynamics of cancer initiation and progression can provide insights into more effective strategies of early detection and treatment. Here we develop a mathematical model of colorectal cancer initiation through inactivation of two tumor suppressor genes and activation of one oncogene, accounting for the well-known path to colorectal cancer through loss of tumor suppressors APC and TP53 and gain of the KRAS oncogene. In the model, we allow mutations to occur in any order, leading to a complex network of premalignant mutational genotypes on the way to colorectal cancer. We parameterize the model using experimentally measured parameter values, many of them only recently available, and compare its predictions to epidemiological data on colorectal cancer incidence. We find that the reported lifetime risk of colorectal cancer can be recovered using a mathematical model of colorectal cancer initiation together with experimentally measured mutation rates in colorectal tissues and proliferation rates of premalignant lesions. We demonstrate that the order of driver events in colorectal cancer is determined primarily by the fitness effects that they provide, rather than their mutation rates. Our results imply that there may not be significant immune suppression of untreated benign and malignant colorectal lesions.
Collapse
Affiliation(s)
- Chay Paterson
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195
| | - Hans Clevers
- Oncode Institute, 3521 AL Utrecht, The Netherlands;
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, 3584 CT Utrecht, The Netherlands
- University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Ivana Bozic
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195;
| |
Collapse
|
45
|
Bozic I, Wu CJ. Delineating the evolutionary dynamics of cancer from theory to reality. ACTA ACUST UNITED AC 2020; 1:580-588. [DOI: 10.1038/s43018-020-0079-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/18/2020] [Indexed: 01/08/2023]
|
46
|
Cockrell C, Teague J, Axelrod DE. Prevention of Colon Cancer Recurrence From Minimal Residual Disease: Computer Optimized Dose Schedules of Intermittent Apoptotic Adjuvant Therapy. JCO Clin Cancer Inform 2020; 4:514-520. [PMID: 32510974 DOI: 10.1200/cci.20.00016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
PURPOSE Adjuvant chemotherapy is used after surgery for stages II and III colorectal cancer to reduce recurrence. Nevertheless, recurrence may occur years later with the emergence of initially undetected minimal residual disease (MRD). Attempts to reduce recurrence by increasing the dose intensity and increasing the time of adjuvant therapy have been limited by the adverse effects of the recommended cytotoxic agents. The goals of this study were to suggest an alternative to the recommended cytotoxic agents and to determine optimal adjuvant therapy dose schedules that would reduce the percentage of recurrence at 5 years while retaining colon crypt function. METHODS A total of 84,400 dose schedules with different duration, interval between doses, and intensity of treatment were simulated with a high-performance computer. Simulated treatments used the drug sulindac, which had previously been used in primary prevention. With appropriate dose schedules, it can induce apoptosis at the crypt lumen surface while retaining crypt function. We used a computer model of cell dynamics in colon crypts that had been calibrated with measurements of human biopsy specimens. Proliferating mutant cells were assumed to emerge from MRD within crypts. Simulated outcomes included the recurrence percentage at 5 years and the retention of crypt function. RESULTS Optimal dose schedules were determined for adjuvant treatment of MRD that reduced the percentage of recurrence at 5 years of stages I, II, and III colon cancer to zero. CONCLUSION A new adjuvant therapy for colon cancer based upon optimum dose schedules of intermittent apoptotic treatment may prevent the recurrence of colon cancer from MRD and avoid the adverse effects of cytotoxic treatments.
Collapse
Affiliation(s)
- Chase Cockrell
- Department of Surgery, University of Vermont College of Medicine, Burlington, VT
| | - Joseph Teague
- Department of Surgery, University of Vermont College of Medicine, Burlington, VT
| | - David E Axelrod
- Department of Genetics and Rutgers Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ
| |
Collapse
|
47
|
Krndija D, El Marjou F, Guirao B, Richon S, Leroy O, Bellaiche Y, Hannezo E, Matic Vignjevic D. Active cell migration is critical for steady-state epithelial turnover in the gut. Science 2020; 365:705-710. [PMID: 31416964 DOI: 10.1126/science.aau3429] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 05/06/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
Steady-state turnover is a hallmark of epithelial tissues throughout adult life. Intestinal epithelial turnover is marked by continuous cell migration, which is assumed to be driven by mitotic pressure from the crypts. However, the balance of forces in renewal remains ill-defined. Combining biophysical modeling and quantitative three-dimensional tissue imaging with genetic and physical manipulations, we revealed the existence of an actin-related protein 2/3 complex-dependent active migratory force, which explains quantitatively the profiles of cell speed, density, and tissue tension along the villi. Cells migrate collectively with minimal rearrangements while displaying dual-apicobasal and front-back-polarity characterized by actin-rich basal protrusions oriented in the direction of migration. We propose that active migration is a critical component of gut epithelial turnover.
Collapse
Affiliation(s)
- Denis Krndija
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005 Paris, France.
| | - Fatima El Marjou
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005 Paris, France
| | - Boris Guirao
- Institut Curie, PSL Research University, U934/UMR3215, F-75005 Paris, France
| | - Sophie Richon
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005 Paris, France
| | - Olivier Leroy
- Institut Curie, PSL Research University, U934/UMR3215, F-75005 Paris, France
| | - Yohanns Bellaiche
- Institut Curie, PSL Research University, U934/UMR3215, F-75005 Paris, France
| | - Edouard Hannezo
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | | |
Collapse
|
48
|
Ward D, Montes Olivas S, Fletcher A, Homer M, Marucci L. Cross-talk between Hippo and Wnt signalling pathways in intestinal crypts: Insights from an agent-based model. Comput Struct Biotechnol J 2020; 18:230-240. [PMID: 33489001 PMCID: PMC7790739 DOI: 10.1016/j.csbj.2019.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 12/01/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023] Open
Abstract
Intestinal crypts are responsible for the total cell renewal of the lining of the intestines; this turnover is governed by the interplay between signalling pathways and the cell cycle. The role of Wnt signalling in cell proliferation and differentiation in the intestinal crypt has been extensively studied, with increased signalling found towards the lower regions of the crypt. Recent studies have shown that the Wnt signalling gradient found within the crypt may arise as a result of division-based spreading from a Wnt ‘reservoir’ at the crypt base. The discovery of the Hippo pathway’s involvement in maintaining crypt homeostasis is more recent; a mechanistic understanding of Hippo pathway dynamics, and its possible cross-talk with the Wnt pathway, remains lacking. To explore how the interplay between these pathways may control crypt homeostasis, we extended an ordinary differential equation model of the Wnt signalling pathway to include a phenomenological description of Hippo signalling in single cells, and then coupled it to a cell-based description of cell movement, proliferation and contact inhibition in agent-based simulations. Furthermore, we compared an imposed Wnt gradient with a division-based Wnt gradient model. Our results suggest that Hippo signalling affects the Wnt pathway by reducing the presence of free cytoplasmic β-catenin, causing cell cycle arrest. We also show that a division-based spreading of Wnt can form a Wnt gradient, resulting in proliferative dynamics comparable to imposed-gradient models. Finally, a simulated APC double mutant, with misregulated Wnt and Hippo signalling activity, is predicted to cause monoclonal conversion of the crypt.
Collapse
Affiliation(s)
- Daniel Ward
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
| | - Sandra Montes Olivas
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
| | - Alexander Fletcher
- School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK.,Bateson Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Martin Homer
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
| | - Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK.,School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK.,BrisSynBio, Bristol BS8 1TQ, UK
| |
Collapse
|
49
|
Boone PG, Rochelle LK, Ginzel JD, Lubkov V, Roberts WL, Nicholls PJ, Bock C, Flowers ML, von Furstenberg RJ, Stripp BR, Agarwal P, Borowsky AD, Cardiff RD, Barak LS, Caron MG, Lyerly HK, Snyder JC. A cancer rainbow mouse for visualizing the functional genomics of oncogenic clonal expansion. Nat Commun 2019; 10:5490. [PMID: 31792216 PMCID: PMC6889384 DOI: 10.1038/s41467-019-13330-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 11/04/2019] [Indexed: 12/15/2022] Open
Abstract
Field cancerization is a premalignant process marked by clones of oncogenic mutations spreading through the epithelium. The timescales of intestinal field cancerization can be variable and the mechanisms driving the rapid spread of oncogenic clones are unknown. Here we use a Cancer rainbow (Crainbow) modelling system for fluorescently barcoding somatic mutations and directly visualizing the clonal expansion and spread of oncogenes. Crainbow shows that mutations of ß-catenin (Ctnnb1) within the intestinal stem cell results in widespread expansion of oncogenes during perinatal development but not in adults. In contrast, mutations that extrinsically disrupt the stem cell microenvironment can spread in adult intestine without delay. We observe the rapid spread of premalignant clones in Crainbow mice expressing oncogenic Rspondin-3 (RSPO3), which occurs by increasing crypt fission and inhibiting crypt fixation. Crainbow modelling provides insight into how somatic mutations rapidly spread and a plausible mechanism for predetermining the intratumor heterogeneity found in colon cancers.
Collapse
Affiliation(s)
- Peter G Boone
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Lauren K Rochelle
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Joshua D Ginzel
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Veronica Lubkov
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Wendy L Roberts
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - P J Nicholls
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Cheryl Bock
- Transgenic Mouse Facility, Duke Cancer Institute, Durham, NC, USA
| | - Mei Lang Flowers
- Transgenic Mouse Facility, Duke Cancer Institute, Durham, NC, USA
| | - Richard J von Furstenberg
- Division of Gastroenterology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Barry R Stripp
- Department of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Pankaj Agarwal
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Alexander D Borowsky
- Department of Pathology and Laboratory Medicine and The Center for Comparative Medicine, University of California-Davis, Davis, CA, USA
| | - Robert D Cardiff
- Department of Pathology and Laboratory Medicine and The Center for Comparative Medicine, University of California-Davis, Davis, CA, USA
| | - Larry S Barak
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Marc G Caron
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - H Kim Lyerly
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Joshua C Snyder
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
50
|
Hinman SS, Wang Y, Allbritton NL. Photopatterned Membranes and Chemical Gradients Enable Scalable Phenotypic Organization of Primary Human Colon Epithelial Models. Anal Chem 2019; 91:15240-15247. [PMID: 31692334 DOI: 10.1021/acs.analchem.9b04217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Biochemical gradients across the intestinal epithelium play a major role in governing intestinal stem cell compartmentalization, differentiation dynamics, and organ-level self-renewal. However, scalable platforms that recapitulate the architecture and gradients present in vivo are absent. We present a platform in which individually addressable arrays of chemical gradients along the intestinal crypt long axis can be generated, enabling scalable culture of primary in vitro colonic epithelial replicas. The platform utilizes standardized well plate spacing, maintains access to basal and luminal compartments, and relies on a photopatterned porous membrane to act as diffusion windows while supporting the in vitro crypts. Simultaneous fabrication of 3875 crypts over a single membrane was developed. Growth factor gradients were modeled and then experimentally optimized to promote long-term health and self-renewal of the crypts which were assayed in situ by confocal fluorescence microscopy. The cultured in vitro crypt arrays successfully recapitulated the architecture and luminal-to-basal phenotypic polarity observed in vivo. Furthermore, known signaling regulators (e.g., butyrate and DAPT) produced measurable and predictable effects on the organized cell compartments, each decreasing crypt proliferation in the basal regions to negligible values. This platform is readily adaptable to the screening of tissue from individual patients to assay the impact of food and bacterial metabolites and/or drugs on colonic crypt dynamics. Importantly, the cassette is compatible with a wide range of sensing/detection modalities, and the developed fabrication methods should find applications for other cell and tissue types.
Collapse
Affiliation(s)
- Samuel S Hinman
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Yuli Wang
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Nancy L Allbritton
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States.,Joint Department of Biomedical Engineering , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States , and North Carolina State University, Raleigh, North Carolina 27607, United States
| |
Collapse
|