1
|
Vareli A, Narayanan HV, Clark H, Jayawant E, Zhou H, Liu Y, Stott L, Simoes F, Hoffmann A, Pepper A, Pepper C, Mitchell S. Systems biology-enabled targeting of NF-κΒ and BCL2 overcomes microenvironment-mediated BH3-mimetic resistance in DLBCL. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.30.626166. [PMID: 39677808 PMCID: PMC11642794 DOI: 10.1101/2024.11.30.626166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
In Diffuse Large B-cell Lymphoma (DLBCL), elevated anti-apoptotic BCL2-family proteins (e.g., MCL1, BCL2, BCLXL) and NF-κB subunits (RelA, RelB, cRel) confer poor prognosis. Heterogeneous expression, regulatory complexity, and redundancy offsetting the inhibition of individual proteins, complicate the assignment of targeted therapy. We combined flow cytometry "fingerprinting", immunofluorescence imaging, and computational modeling to identify therapeutic vulnerabilities in DLBCL. The combined workflow predicted selective responses to BCL2 inhibition (venetoclax) and non-canonical NF-κB inhibition (Amgen16). Within the U2932 cell line we identified distinct resistance mechanisms to BCL2 inhibition in cellular sub-populations recapitulating intratumoral heterogeneity. Co-cultures with CD40L-expressing stromal cells, mimicking the tumor microenvironment (TME), induced resistance to BCL2 and BCLXL targeting BH3-mimetics via cell-type specific upregulation of BCLXL or MCL1. Computational models, validated experimentally, showed that basal NF-κB activation determined whether CD40 activation drove BH3-mimetic resistance through upregulation of RelB and BCLXL, or cRel and MCL1. High basal NF-κB activity could be overcome by inhibiting BTK to resensitize cells to BH3-mimetics in CD40L co-culture. Importantly, non-canonical NF-κB inhibition overcame heterogeneous compensatory BCL2 upregulation, restoring sensitivity to both BCL2- and BCLXL-targeting BH3-mimetics. Combined molecular fingerprinting and computational modelling provides a strategy for the precision use of BH3-mimetics and NF-κB inhibitors in DLBCL.
Collapse
|
2
|
Rodriguez BN, Huang H, Chia JJ, Hoffmann A. The noncanonical NFκB pathway: Regulatory mechanisms in health and disease. WIREs Mech Dis 2024; 16:e1646. [PMID: 38634218 PMCID: PMC11486840 DOI: 10.1002/wsbm.1646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024]
Abstract
The noncanonical NFκB signaling pathway mediates the biological functions of diverse cell survival, growth, maturation, and differentiation factors that are important for the development and maintenance of hematopoietic cells and immune organs. Its dysregulation is associated with a number of immune pathologies and malignancies. Originally described as the signaling pathway that controls the NFκB family member RelB, we now know that noncanonical signaling also controls NFκB RelA and cRel. Here, we aim to clarify our understanding of the molecular network that mediates noncanonical NFκB signaling and review the human diseases that result from a deficient or hyper-active noncanonical NFκB pathway. It turns out that dysregulation of RelA and cRel, not RelB, is often implicated in mediating the resulting pathology. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Cancer > Molecular and Cellular Physiology Immune System Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Benancio N. Rodriguez
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, CA; Molecular Biology Institute, Los Angeles, CA
| | - Helen Huang
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, CA; Institute for Quantitative and Computational Biosciences, Los Angeles, CA
| | - Jennifer J. Chia
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, CA; Molecular Biology Institute, Los Angeles, Calif; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics; Molecular Biology Institute; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA
| |
Collapse
|
3
|
Brombacher E, Kreutz C. RTF: an R package for modelling time course data. BIOINFORMATICS (OXFORD, ENGLAND) 2024; 40:btae597. [PMID: 39383522 DOI: 10.1093/bioinformatics/btae597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 10/11/2024]
Abstract
SUMMARY The retarded transient function (RTF) approach serves as a complementary method to ordinary differential equations (ODEs) for modelling dynamics typically observed in cellular signalling processes. We introduce an R package that implements the RTF approach, originally implemented within the MATLAB-based Data2Dynamics modelling framework. This package facilitates the modelling of time and dose dependencies, and it includes the possibility of model reduction to minimize overfitting. It can be applied to experimental data or trajectories of ODE models to characterize their dynamics. Additionally, it can generate a low-dimensional representation based on the fitted RTF parameters of a set of time-resolved data, aiding in the identification of key targets of experimental perturbations. AVAILABILITY AND IMPLEMENTATION The R package RTF is available at https://github.com/kreutz-lab/RTF.
Collapse
Affiliation(s)
- Eva Brombacher
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center-University of Freiburg, 79104 Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Clemens Kreutz
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center-University of Freiburg, 79104 Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
4
|
Mukherjee T, Kumar N, Chawla M, Philpott DJ, Basak S. The NF-κB signaling system in the immunopathogenesis of inflammatory bowel disease. Sci Signal 2024; 17:eadh1641. [PMID: 38194476 DOI: 10.1126/scisignal.adh1641] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic, chronic condition characterized by episodes of inflammation in the gastrointestinal tract. The nuclear factor κB (NF-κB) system describes a family of dimeric transcription factors. Canonical NF-κB signaling is stimulated by and enhances inflammation, whereas noncanonical NF-κB signaling contributes to immune organogenesis. Dysregulation of NF-κB factors drives various inflammatory pathologies, including IBD. Signals from many immune sensors activate NF-κB subunits in the intestine, which maintain an equilibrium between local microbiota and host responses. Genetic association studies of patients with IBD and preclinical mouse models confirm the importance of the NF-κB system in host defense in the gut. Other studies have investigated the roles of these factors in intestinal barrier function and in inflammatory gut pathologies associated with IBD. NF-κB signaling modulates innate and adaptive immune responses and the production of immunoregulatory proteins, anti-inflammatory cytokines, antimicrobial peptides, and other tolerogenic factors in the intestine. Furthermore, genetic studies have revealed critical cell type-specific roles for NF-κB proteins in intestinal immune homeostasis, inflammation, and restitution that contribute to the etiopathology of IBD-associated manifestations. Here, we summarize our knowledge of the roles of these NF-κB pathways, which are activated in different intestinal cell types by specific ligands, and their cross-talk, in fueling aberrant intestinal inflammation. We argue that an in-depth understanding of aberrant immune signaling mechanisms may hold the key to identifying predictive or prognostic biomarkers and developing better therapeutics against inflammatory gut pathologies.
Collapse
Affiliation(s)
- Tapas Mukherjee
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Naveen Kumar
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Meenakshi Chawla
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
5
|
Merino-Vico A, van Hamburg JP, Tuijnenburg P, Frazzei G, Al-Soudi A, Bonasia CG, Helder B, Rutgers A, Abdulahad WH, Stegeman CA, Sanders JS, Bergamaschi L, Lyons PA, Bijma T, van Keep L, Wesenhagen K, Jongejan A, Olsson H, de Vries N, Kuijpers TW, Heeringa P, Tas SW. Targeting NF-κB signaling in B cells as a potential new treatment modality for ANCA-associated vasculitis. J Autoimmun 2024; 142:103133. [PMID: 37931331 DOI: 10.1016/j.jaut.2023.103133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/08/2023]
Abstract
B lineage cells are critically involved in ANCA-associated vasculitis (AAV), evidenced by alterations in circulating B cell subsets and beneficial clinical effects of rituximab (anti-CD20) therapy. This treatment renders a long-term, peripheral B cell depletion, but allows for the survival of long-lived plasma cells. Therefore, there is an unmet need for more reversible and full B lineage cell targeting approaches. To find potential novel therapeutic targets, RNA sequencing of CD27+ memory B cells of patients with active AAV was performed, revealing an upregulated NF-κB-associated gene signature. NF-κB signaling pathways act downstream of various B cell surface receptors, including the BCR, CD40, BAFFR and TLRs, and are essential for B cell responses. Here we demonstrate that novel pharmacological inhibitors of NF-κB inducing kinase (NIK, non-canonical NF-κB signaling) and inhibitor-of-κB-kinase-β (IKKβ, canonical NF-κB signaling) can effectively inhibit NF-κB signaling in B cells, whereas T cell responses were largely unaffected. Moreover, both inhibitors significantly reduced B cell proliferation, differentiation and production of antibodies, including proteinase-3 (PR3) autoantibodies, in B lineage cells of AAV patients. These findings indicate that targeting NF-κB, particularly NIK, may be an effective, novel B lineage cell targeted therapy for AAV and other autoimmune diseases with prominent B cell involvement.
Collapse
Affiliation(s)
- Ana Merino-Vico
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan Piet van Hamburg
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul Tuijnenburg
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Giulia Frazzei
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Aram Al-Soudi
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Carlo G Bonasia
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Boy Helder
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Abraham Rutgers
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Wayel H Abdulahad
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Coen A Stegeman
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Jan-Stephan Sanders
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Laura Bergamaschi
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffre Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Paul A Lyons
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffre Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Theo Bijma
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Laura van Keep
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Kirsten Wesenhagen
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Department of Epidemiology and Data Science, Bioinformatics Laboratory, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Henric Olsson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Niek de Vries
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Sander W Tas
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Roy K, Chakraborty M, Kumar A, Manna AK, Roy NS. The NFκB signaling system in the generation of B-cell subsets: from germinal center B cells to memory B cells and plasma cells. Front Immunol 2023; 14:1185597. [PMID: 38169968 PMCID: PMC10758606 DOI: 10.3389/fimmu.2023.1185597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Memory B cells and antibody-secreting cells are the two prime effector B cell populations that drive infection- and vaccine-induced long-term antibody-mediated immunity. The antibody-mediated immunity mostly relies on the formation of specialized structures within secondary lymphoid organs, called germinal centers (GCs), that facilitate the interactions between B cells, T cells, and antigen-presenting cells. Antigen-activated B cells may proliferate and differentiate into GC-independent plasmablasts and memory B cells or differentiate into GC B cells. The GC B cells undergo proliferation coupled to somatic hypermutation of their immunoglobulin genes for antibody affinity maturation. Subsequently, affinity mature GC B cells differentiate into GC-dependent plasma cells and memory B cells. Here, we review how the NFκB signaling system controls B cell proliferation and the generation of GC B cells, plasmablasts/plasma cells, and memory B cells. We also identify and discuss some important unanswered questions in this connection.
Collapse
Affiliation(s)
- Koushik Roy
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Mainak Chakraborty
- Division of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Ashok Kumar
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Asit Kumar Manna
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Neeladri Sekhar Roy
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
7
|
Jayawant E, Pack A, Clark H, Kennedy E, Ghodke A, Jones J, Pepper C, Pepper A, Mitchell S. NF-κB fingerprinting reveals heterogeneous NF-κB composition in diffuse large B-cell lymphoma. Front Oncol 2023; 13:1181660. [PMID: 37333821 PMCID: PMC10272839 DOI: 10.3389/fonc.2023.1181660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Improving treatments for Diffuse Large B-Cell Lymphoma (DLBCL) is challenged by the vast heterogeneity of the disease. Nuclear factor-κB (NF-κB) is frequently aberrantly activated in DLBCL. Transcriptionally active NF-κB is a dimer containing either RelA, RelB or cRel, but the variability in the composition of NF-κB between and within DLBCL cell populations is not known. Results Here we describe a new flow cytometry-based analysis technique termed "NF-κB fingerprinting" and demonstrate its applicability to DLBCL cell lines, DLBCL core-needle biopsy samples, and healthy donor blood samples. We find each of these cell populations has a unique NF-κB fingerprint and that widely used cell-of-origin classifications are inadequate to capture NF-κB heterogeneity in DLBCL. Computational modeling predicts that RelA is a key determinant of response to microenvironmental stimuli, and we experimentally identify substantial variability in RelA between and within ABC-DLBCL cell lines. We find that when we incorporate NF-κB fingerprints and mutational information into computational models we can predict how heterogeneous DLBCL cell populations respond to microenvironmental stimuli, and we validate these predictions experimentally. Discussion Our results show that the composition of NF-κB is highly heterogeneous in DLBCL and predictive of how DLBCL cells will respond to microenvironmental stimuli. We find that commonly occurring mutations in the NF-κB signaling pathway reduce DLBCL's response to microenvironmental stimuli. NF-κB fingerprinting is a widely applicable analysis technique to quantify NF-κB heterogeneity in B cell malignancies that reveals functionally significant differences in NF-κB composition within and between cell populations.
Collapse
|
8
|
O’Donnell A, Pepper C, Mitchell S, Pepper A. NF-kB and the CLL microenvironment. Front Oncol 2023; 13:1169397. [PMID: 37064123 PMCID: PMC10098180 DOI: 10.3389/fonc.2023.1169397] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most prevalent type of leukemia in the western world. Despite the positive clinical effects of new targeted therapies, CLL still remains an incurable and refractory disease and resistance to treatments are commonly encountered. The Nuclear Factor-Kappa B (NF-κB) transcription factor has been implicated in the pathology of CLL, with high levels of NF-κB associated with disease progression and drug resistance. This aberrant NF-κB activation can be caused by genetic mutations in the tumor cells and microenvironmental factors, which promote NF-κB signaling. Activation can be induced via two distinct pathways, the canonical and non-canonical pathway, which result in tumor cell proliferation, survival and drug resistance. Therefore, understanding how the CLL microenvironment drives NF-κB activation is important for deciphering how CLL cells evade treatment and may aid the development of novel targeting therapeutics. The CLL microenvironment is comprised of various cells, including nurse like cells, mesenchymal stromal cells, follicular dendritic cells and CD4+ T cells. By activating different receptors, including the B cell receptor and CD40, these cells cause overactivity of the canonical and non-canonical NF-κB pathways. Within this review, we will explore the different components of the CLL microenvironment that drive the NF-κB pathway, investigating how this knowledge is being translated in the development of new therapeutics.
Collapse
Affiliation(s)
- Alice O’Donnell
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
- Royal Sussex County Hospital, University Hospitals Sussex, Brighton, United Kingdom
| | - Chris Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Simon Mitchell
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Andrea Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| |
Collapse
|
9
|
Mitchell S, Tsui R, Tan ZC, Pack A, Hoffmann A. The NF-κB multidimer system model: A knowledge base to explore diverse biological contexts. Sci Signal 2023; 16:eabo2838. [PMID: 36917644 PMCID: PMC10195159 DOI: 10.1126/scisignal.abo2838] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023]
Abstract
The nuclear factor κB (NF-κB) system is critical for various biological functions in numerous cell types, including the inflammatory response, cell proliferation, survival, differentiation, and pathogenic responses. Each cell type is characterized by a subset of 15 NF-κB dimers whose activity is regulated in a stimulus-responsive manner. Numerous studies have produced different mathematical models that account for cell type-specific NF-κB activities. However, whereas the concentrations or abundances of NF-κB subunits may differ between cell types, the biochemical interactions that constitute the NF-κB signaling system do not. Here, we synthesized a consensus mathematical model of the NF-κB multidimer system, which could account for the cell type-specific repertoires of NF-κB dimers and their cell type-specific activation and cross-talk. Our review demonstrates that these distinct cell type-specific properties of NF-κB signaling can be explained largely as emergent effects of the cell type-specific expression of NF-κB monomers. The consensus systems model represents a knowledge base that may be used to gain insights into the control and function of NF-κB in diverse physiological and pathological scenarios and that describes a path for generating similar regulatory knowledge bases for other pleiotropic signaling systems.
Collapse
Affiliation(s)
- Simon Mitchell
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, CA 90095, USA
- Brighton and Sussex Medical School, Department of Clinical and Experimental Medicine, University of Sussex, Falmer, East Sussex, BN1 9PX, UK
| | - Rachel Tsui
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Zhixin Cyrillus Tan
- Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, CA 90095, USA
| | - Arran Pack
- Brighton and Sussex Medical School, Department of Clinical and Experimental Medicine, University of Sussex, Falmer, East Sussex, BN1 9PX, UK
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Analysis of NFKB1 and NFKB2 gene expression in the blood of patients with sudden sensorineural hearing loss. Int J Pediatr Otorhinolaryngol 2023; 166:111470. [PMID: 36773447 DOI: 10.1016/j.ijporl.2023.111470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Sudden Sensorineural Hearing Loss (SSNHL) is an increasingly common health problem today. Although the direct mortality rate of this disorder is relatively low, its impact on quality of life is enormous; this is why accurate identification of pathogenesis and influencing factors in the disease process can play an essential role in preventing and treating the disease. Acute inflammation, which leads to chronic inflammation due to aberrant expression of inflammation-mediating genes, may play a significant role in the pathogenesis of the disease. The essential Nuclear factor kappa B (NF-kB) pathway genes, NFKB1 and NFKB2, serve as prothrombotic agents when expressed abnormally, compromising the cochlea by disrupting the endolymphatic potential and causing SSNHL. METHODS This study investigates the expression levels of NFKB1 and NFKB2 in peripheral blood (PB) through a quantitative polymerase chain reaction in 50 Iranian patients with SSNHL, and 50 healthy volunteers were of the same age and sex as controls. RESULTS As a result, NFKB2 expression levels in patients were higher than in controls, regardless of sex or age (posterior beta = 0.619, adjusted P-value = 0.016), and NFKB1 expression levels did not show significant differences between patients and controls. The expression levels of NFKB1 and NFKB2 had significantly strong positive correlations in both SSNHL patients and healthy individuals (r = 0.620, P = 0.001 and r = 0.657, P 0.001, respectively), suggesting the presence of an interconnected network. CONCLUSION NFKB2 has been identified as a significant inflammatory factor in the pathophysiology of SSNHL disease. Inflammation can play an essential role in developing SSNHL, and our findings could be used as a guide for future research.
Collapse
|
11
|
D Lempicki M, Paul S, Serbulea V, Upchurch CM, Sahu S, Gray JA, Ailawadi G, Garcia BL, McNamara CA, Leitinger N, Meher AK. BAFF antagonism via the BAFF receptor 3 binding site attenuates BAFF 60-mer-induced classical NF-κB signaling and metabolic reprogramming of B cells. Cell Immunol 2022; 381:104603. [PMID: 36182705 PMCID: PMC10691782 DOI: 10.1016/j.cellimm.2022.104603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/03/2022]
Abstract
Human recombinant B cell activating factor (BAFF) is secreted as 3-mers, which can associate to form 60-mers in culture supernatants. However, the presence of BAFF multimers in humans is still debated and it is incompletely understood how BAFF multimers activate the B cells. Here, we demonstrate that BAFF can exist as 60-mers or higher order multimers in human plasma. In vitro, BAFF 60-mer strongly induced the transcriptome of B cells which was partly attenuated by antagonism using a soluble fragment of BAFF receptor 3. Furthermore, compared to BAFF 3-mer, BAFF 60-mer strongly induced a transient classical and prolonged alternate NF-κB signaling, glucose oxidation by both aerobic glycolysis and oxidative phosphorylation, and succinate utilization by mitochondria. BAFF antagonism selectively attenuated classical NF-κB signaling and glucose oxidation. Altogether, our results suggest critical roles of BAFF 60-mer and its BAFF receptor 3 binding site in hyperactivation of B cells.
Collapse
Affiliation(s)
- Melissa D Lempicki
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States
| | - Saikat Paul
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States
| | - Vlad Serbulea
- Department of Pharmacology, University of Virginia, VA 22908, United States
| | - Clint M Upchurch
- Department of Pharmacology, University of Virginia, VA 22908, United States
| | - Srabani Sahu
- Department of Pharmacology, University of Virginia, VA 22908, United States
| | - Jake A Gray
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States
| | - Gorav Ailawadi
- Department of Surgery, University of Virginia, VA 22908, United States
| | - Brandon L Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States
| | - Coleen A McNamara
- Robert M. Berne Cardiovascular Research Center, University of Virginia, VA 22908, United States
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia, VA 22908, United States
| | - Akshaya K Meher
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States; Department of Pharmacology, University of Virginia, VA 22908, United States.
| |
Collapse
|
12
|
Baughman HER, Narang D, Chen W, Villagrán Suárez AC, Lee J, Bachochin MJ, Gunther TR, Wolynes PG, Komives EA. An intrinsically disordered transcription activation domain increases the DNA binding affinity and reduces the specificity of NFκB p50/RelA. J Biol Chem 2022; 298:102349. [PMID: 35934050 PMCID: PMC9440430 DOI: 10.1016/j.jbc.2022.102349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022] Open
Abstract
Many transcription factors contain intrinsically disordered transcription activation domains (TADs), which mediate interactions with coactivators to activate transcription. Historically, DNA-binding domains and TADs have been considered as modular units, but recent studies have shown that TADs can influence DNA binding. Whether these results can be generalized to more TADs is not clear. Here, we biophysically characterized the NFκB p50/RelA heterodimer including the RelA TAD and investigated the TAD's influence on NFκB-DNA interactions. In solution, we show the RelA TAD is disordered but compact, with helical tendency in two regions that interact with coactivators. We determined that the presence of the TAD increased the stoichiometry of NFκB-DNA complexes containing promoter DNA sequences with tandem κB recognition motifs by promoting the binding of NFκB dimers in excess of the number of κB sites. In addition, we measured the binding affinity of p50/RelA for DNA containing tandem κB sites and single κB sites. While the presence of the TAD enhanced the binding affinity of p50/RelA for all κB sequences tested, it also increased the affinity for nonspecific DNA sequences by over 10-fold, leading to an overall decrease in specificity for κB DNA sequences. In contrast, previous studies have generally reported that TADs decrease DNA-binding affinity and increase sequence specificity. Our results reveal a novel function of the RelA TAD in promoting binding to nonconsensus DNA, which sheds light on previous observations of extensive nonconsensus DNA binding by NFκB in vivo in response to strong inflammatory signals.
Collapse
Affiliation(s)
- Hannah E R Baughman
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Dominic Narang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Wei Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Amalia C Villagrán Suárez
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Joan Lee
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Maxwell J Bachochin
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Tristan R Gunther
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Peter G Wolynes
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
13
|
Vaidehi Narayanan H, Hoffmann A. From Antibody Repertoires to Cell-Cell Interactions to Molecular Networks: Bridging Scales in the Germinal Center. Front Immunol 2022; 13:898078. [PMID: 35603162 PMCID: PMC9114758 DOI: 10.3389/fimmu.2022.898078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/08/2022] [Indexed: 01/02/2023] Open
Abstract
Antibody-mediated adaptive immunity must provide effective long-term protection with minimal adverse effects, against rapidly mutating pathogens, in a human population with diverse ages, genetics, and immune histories. In order to grasp and leverage the complexities of the antibody response, we advocate for a mechanistic understanding of the multiscale germinal center (GC) reaction - the process by which precursor B-cells evolve high-affinity antigen-specific antibodies, forming an effector repertoire of plasma and memory cells for decades-long protection. The regulatory dynamics of B-cells within the GC are complex, and unfold across multiple interacting spatial and temporal scales. At the organism scale, over weeks to years, the antibody sequence repertoire formed by various B-cell clonal lineages modulates antibody quantity and quality over time. At the tissue and cellular scale, over hours to weeks, B-cells undergo selection via spatially distributed interactions with local stroma, antigen, and helper T-cells. At the molecular scale, over seconds to days, intracellular signaling, transcriptional, and epigenetic networks modulate B-cell fates and shape their clonal lineages. We summarize our current understanding within each of these scales, and identify missing links in connecting them. We suggest that quantitative multi-scale mathematical models of B-cell and GC reaction dynamics provide predictive frameworks that can apply basic immunological knowledge to practical challenges such as rational vaccine design.
Collapse
Affiliation(s)
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
14
|
Ren A, Sun J, Yin W, Westerberg LS, Miller H, Lee P, Candotti F, Guan F, Lei J, Gong Q, Chen Y, Liu C. Signaling networks in B cell development and related therapeutic strategies. J Leukoc Biol 2021; 111:877-891. [PMID: 34528729 DOI: 10.1002/jlb.2ru0221-088rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
B cells are essential for Ab production during humoral immune responses. From decades of B cell research, there is now a detailed understanding of B cell subsets, development, functions, and most importantly, signaling pathways. The complicated pathways in B cells and their interactions with each other are stage-dependent, varying with surface marker expression during B cell development. With the increasing understanding of B cell development and signaling pathways, the mechanisms underlying B cell related diseases are being unraveled as well, making it possible to provide more precise and effective treatments. In this review, we describe several essential and recently discovered signaling pathways in B cell development and take a look at newly developed therapeutic strategies targeted at B cell signaling.
Collapse
Affiliation(s)
- Anwen Ren
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianxuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Heather Miller
- The Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Chappaz S, McArthur K, Kealy L, Law CW, Tailler M, Lane RM, Lieschke A, Ritchie ME, Good-Jacobson KL, Strasser A, Kile BT. Homeostatic apoptosis prevents competition-induced atrophy in follicular B cells. Cell Rep 2021; 36:109430. [PMID: 34289356 DOI: 10.1016/j.celrep.2021.109430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/13/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
While the intrinsic apoptosis pathway is thought to play a central role in shaping the B cell lineage, its precise role in mature B cell homeostasis remains elusive. Using mice in which mature B cells are unable to undergo apoptotic cell death, we show that apoptosis constrains follicular B (FoB) cell lifespan but plays no role in marginal zone B (MZB) cell homeostasis. In these mice, FoB cells accumulate abnormally. This intensifies intercellular competition for BAFF, resulting in a contraction of the MZB cell compartment, and reducing the growth, trafficking, and fitness of FoB cells. Diminished BAFF signaling dampens the non-canonical NF-κB pathway, undermining FoB cell growth despite the concurrent triggering of a protective p53 response. Thus, MZB and FoB cells exhibit a differential requirement for the intrinsic apoptosis pathway. Homeostatic apoptosis constrains the size of the FoB cell compartment, thereby preventing competition-induced FoB cell atrophy.
Collapse
Affiliation(s)
- Stéphane Chappaz
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia; ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia.
| | - Kate McArthur
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia; Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia
| | - Liam Kealy
- Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia; Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia
| | - Charity W Law
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia
| | - Maximilien Tailler
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia
| | - Rachael M Lane
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia
| | | | - Matthew E Ritchie
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia
| | - Kim L Good-Jacobson
- Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia; Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia
| | - Andreas Strasser
- Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia; Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia
| | - Benjamin T Kile
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia; ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010 VIC, Australia; Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, 5005 SA, Australia.
| |
Collapse
|
16
|
Chawla M, Mukherjee T, Deka A, Chatterjee B, Sarkar UA, Singh AK, Kedia S, Lum J, Dhillon MK, Banoth B, Biswas SK, Ahuja V, Basak S. An epithelial Nfkb2 pathway exacerbates intestinal inflammation by supplementing latent RelA dimers to the canonical NF-κB module. Proc Natl Acad Sci U S A 2021; 118:e2024828118. [PMID: 34155144 PMCID: PMC8237674 DOI: 10.1073/pnas.2024828118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aberrant inflammation, such as that associated with inflammatory bowel disease (IBD), is fueled by the inordinate activity of RelA/NF-κB factors. As such, the canonical NF-κB module mediates controlled nuclear activation of RelA dimers from the latent cytoplasmic complexes. What provokes pathological RelA activity in the colitogenic gut remains unclear. The noncanonical NF-κB pathway typically promotes immune organogenesis involving Nfkb2 gene products. Because NF-κB pathways are intertwined, we asked whether noncanonical signaling aggravated inflammatory RelA activity. Our investigation revealed frequent engagement of the noncanonical pathway in human IBD. In a mouse model of experimental colitis, we established that Nfkb2-mediated regulations escalated the RelA-driven proinflammatory gene response in intestinal epithelial cells, exacerbating the infiltration of inflammatory cells and colon pathologies. Our mechanistic studies clarified that cell-autonomous Nfkb2 signaling supplemented latent NF-κB dimers, leading to a hyperactive canonical RelA response in the inflamed colon. In sum, the regulation of latent NF-κB dimers appears to link noncanonical Nfkb2 signaling to RelA-driven inflammatory pathologies and may provide for therapeutic targets.
Collapse
Affiliation(s)
- Meenakshi Chawla
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Tapas Mukherjee
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Alvina Deka
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Budhaditya Chatterjee
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Uday Aditya Sarkar
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Amit K Singh
- Department of Gastroenterology, All India Institute of Medical Science, New Delhi 110029, India
| | - Saurabh Kedia
- Department of Gastroenterology, All India Institute of Medical Science, New Delhi 110029, India
| | - Josephine Lum
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138632
| | - Manprit Kaur Dhillon
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138632
| | - Balaji Banoth
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Subhra K Biswas
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138632
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Science, New Delhi 110029, India
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India;
| |
Collapse
|
17
|
Zhan T, Wang B, Fu J, Shao Y, Ye L, Shi H, Zheng L. Artesunate inhibits Sjögren's syndrome-like autoimmune responses and BAFF-induced B cell hyperactivation via TRAF6-mediated NF-κB signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153381. [PMID: 33086170 DOI: 10.1016/j.phymed.2020.153381] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Hyperactivation of B cells by activators has been demonstrated to play a central role in the pathogenesis of Sjögren's syndrome (SS). In this study, we found that artesunate (ART) can attenuate BAFF-induced B cell hyperactivation and SS-like symptoms in NOD/Ltj mice. PURPOSE To determine the efficacy of ART in attenuating SS-like symptoms in vivo and explore the underlying mechanism in vitro. STUDY DESIGN ART was intragastrically injected into SS-like NOD/Ltj mice. The cytokine hsBAFF was used to activate Raji and Daudi B cells to mimic B cell hyperactivation in vitro. METHODS The efficacy of ART in inhibiting SS progression was studied in NOD/Ltj mice. Salivary flow rate, the number of lymphocytic infiltration foci, the level of autoantibodies and the extent of B cell infiltration were measured in the indicated groups. CCK-8 assays, flow cytometry-based EdU staining and Annexin V/PI staining were also used to detect the effect of ART on the survival and proliferation mechanism in BAFF-induced Raji and Daudi cells. Further studies determined that TRAF6 degradation is a potential mechanism by which ART determines B cell fate. RESULTS Treatment with ART inhibited lymphocytic foci formation, B cell infiltration and autoantibody secretion in SS-like NOD/Ltj mice. In vitro assay results indicated that ART effectively inhibited BAFF-induced viability, survival and proliferation of neoplastic B cells. Mechanistically, ART targeted BAFF-activated NFκB by regulating the proteasome-mediated degradation of TRAF6 in Raji and Daudi cells. CONCLUSION ART ameliorated murine SS-like symptoms and regulated TRAF6-NFκB signaling, thus determining survival and proliferation of B cells.
Collapse
Affiliation(s)
- Tianle Zhan
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center of Oral Disease, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Baoli Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center of Oral Disease, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiayao Fu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center of Oral Disease, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yanxiong Shao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center of Oral Disease, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lei Ye
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center of Oral Disease, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Huan Shi
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center of Oral Disease, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Lingyan Zheng
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center of Oral Disease, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
18
|
Detanico T, Virgen-Slane R, Steen-Fuentes S, Lin WW, Rhode-Kurnow A, Chappell E, Correa RG, DiCandido MJ, Mbow ML, Li J, Ware CF. Co-expression Networks Identify DHX15 RNA Helicase as a B Cell Regulatory Factor. Front Immunol 2019; 10:2903. [PMID: 31921164 PMCID: PMC6915936 DOI: 10.3389/fimmu.2019.02903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/26/2019] [Indexed: 12/30/2022] Open
Abstract
Genome-wide co-expression analysis is often used for annotating novel gene functions from high-dimensional data. Here, we developed an R package with a Shiny visualization app that creates immuno-networks from RNAseq data using a combination of Weighted Gene Co-expression Network Analysis (WGCNA), xCell immune cell signatures, and Bayesian Network Learning. Using a large publicly available RNAseq dataset we generated a Gene Module-Immune Cell (GMIC) network that predicted causal relationships between DEAH-box RNA helicase (DHX)15 and genes associated with humoral immunity, suggesting that DHX15 may regulate B cell fate. Deletion of DHX15 in mouse B cells led to impaired lymphocyte development, reduced peripheral B cell numbers, and dysregulated expression of genes linked to antibody-mediated immune responses similar to the genes predicted by the GMIC network. Moreover, antigen immunization of mice demonstrated that optimal primary IgG1 responses required DHX15. Intrinsic expression of DHX15 was necessary for proliferation and survival of activated of B cells. Altogether, these results support the use of co-expression networks to elucidate fundamental biological processes.
Collapse
Affiliation(s)
- Thiago Detanico
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Richard Virgen-Slane
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Seth Steen-Fuentes
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Wai W. Lin
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Antje Rhode-Kurnow
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Elizabeth Chappell
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Ricardo G. Correa
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Michael J. DiCandido
- Department of Immunology & Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - M. Lamine Mbow
- Department of Immunology & Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Jun Li
- Department of Immunology & Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Carl F. Ware
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
19
|
Jackson SW, Davidson A. BAFF inhibition in SLE-Is tolerance restored? Immunol Rev 2019; 292:102-119. [PMID: 31562657 PMCID: PMC6935406 DOI: 10.1111/imr.12810] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023]
Abstract
The B cell activating factor (BAFF) inhibitor, belimumab, is the first biologic drug approved for the treatment of SLE, and exhibits modest, but durable, efficacy in decreasing disease flares and organ damage. BAFF and its homolog APRIL are TNF-like cytokines that support the survival and differentiation of B cells at distinct developmental stages. BAFF is a crucial survival factor for transitional and mature B cells that acts as rheostat for the maturation of low-affinity autoreactive cells. In addition, BAFF augments innate B cell responses via complex interactions with the B cell receptor (BCR) and Toll like receptor (TLR) pathways. In this manner, BAFF impacts autoreactive B cell activation via extrafollicular pathways and fine tunes affinity selection within germinal centers (GC). Finally, BAFF and APRIL support plasma cell survival, with differential impacts on IgM- and IgG-producing populations. Therapeutically, BAFF and combined BAFF/APRIL inhibition delays disease onset in diverse murine lupus strains, although responsiveness to BAFF inhibition is model dependent, in keeping with heterogeneity in clinical responses to belimumab treatment in humans. In this review, we discuss the mechanisms whereby BAFF/APRIL signals promote autoreactive B cell activation, discuss whether altered selection accounts for therapeutic benefits of BAFF inhibition, and address whether new insights into BAFF/APRIL family complexity can be exploited to improve human lupus treatments.
Collapse
Affiliation(s)
- Shaun W Jackson
- Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Anne Davidson
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| |
Collapse
|
20
|
Dhar A, Chawla M, Chattopadhyay S, Oswal N, Umar D, Gupta S, Bal V, Rath S, George A, Arimbasseri GA, Basak S. Role of NF-kappaB2-p100 in regulatory T cell homeostasis and activation. Sci Rep 2019; 9:13867. [PMID: 31554891 PMCID: PMC6761191 DOI: 10.1038/s41598-019-50454-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
The immunological roles of the nuclear factor-kappaB (NF-κB) pathway are mediated via the canonical components in immune responses and via non-canonical components in immune organogenesis and homeostasis, although the two components are capable of crosstalk. Regulatory CD4 T cells (Tregs) are homeostatically functional and represent an interesting potential meeting point of these two NF-κB components. We show that mice deficient in the non-canonical NF-κB component gene Nfkb2 (p100) had normal thymic development and suppressive function of Tregs. However, they had enhanced frequencies of peripheral 'effector-phenotype' Tregs (eTregs). In bi-parental chimeras of wild-type (WT) and Nfkb2-/- mice, the Nfkb2-/- genotype was over-represented in Tregs, with a further increase in the relative prominence of eTregs. Consistent with distinct properties of eTregs, the Nfkb2-/- genotype was more prominent in Tregs in extra-lymphoid tissues such as liver in the bi-parental chimeras. The Nfkb2-/- Tregs also displayed greater survival, activation and proliferation in vivo. These Nfkb2-/- Tregs showed higher nuclear NF-κB activity mainly comprising of RelB-containing dimers, in contrast to the prominence of cRel- and RelA-containing dimers in WT Tregs. Since p100 is an inhibitor of RelB activation as well as a participant as cleaved p52 in RelB nuclear activity, we tested bi-parental chimeras of WT and Relb-/- mice, and found normal frequencies of Relb-/- Tregs and eTregs in these chimeric mice. Our findings confirm and extend recent data, and indicate that p100 normally restrains RelB-mediated Treg activation, and in the absence of p100, p50-RelB dimers can contribute to Treg activation.
Collapse
Affiliation(s)
- Atika Dhar
- National Institute of Immunology, New Delhi, India
| | | | | | - Neelam Oswal
- National Institute of Immunology, New Delhi, India
| | - Danish Umar
- National Institute of Immunology, New Delhi, India
| | - Suman Gupta
- National Institute of Immunology, New Delhi, India
| | - Vineeta Bal
- National Institute of Immunology, New Delhi, India
| | | | - Anna George
- National Institute of Immunology, New Delhi, India
| | | | - Soumen Basak
- National Institute of Immunology, New Delhi, India
| |
Collapse
|
21
|
He X, Jiang H, Gao F, Liang S, Wei M, Chen L. Indoxyl sulfate-induced calcification of vascular smooth muscle cells via the PI3K/Akt/NF-κB signaling pathway. Microsc Res Tech 2019; 82:2000-2006. [PMID: 31448474 DOI: 10.1002/jemt.23369] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/06/2019] [Accepted: 08/11/2019] [Indexed: 12/12/2022]
Abstract
Vascular calcification (VC) is highly prevalent in patients with chronic kidney disease (CKD) and contributes to their high rate of cardiovascular mortality. Indoxyl sulfate (IS) is a representative protein-bound uremic toxin in CKD patients, which has been recognized as a major risk factor for VC. Recent studies have demonstrated that nuclear factor-kappa B (NK-κB) is highly activated in the chronic inflammation conditions of CKD patients and participated in the pathogenesis of VC. However, whether NK-κB is involved in the progression of IS-induced VC remains without elucidation. Here, we showed that NK-κB activity was increased in the IS-induced calcification of human aortic smooth muscle cells (HASMCs). Blocking the NK-κB with a selective inhibitor (Bay-11-7082) significantly relieved the osteogenic transdifferentiation of HASMCs, characterized by the downregulation of early osteogenic-specific marker, core-binding factor alpha subunit 1 (Cbfα1), and upregulation of smooth muscle α-actin (α-SMA), a specific vascular smooth muscle cell marker. Besides, IS stimulated the activation of PI3K/Akt signaling. Furthermore, LY294002, a specific inhibitor of PI3K/Akt pathway, attenuated the activation of NK-κB and osteogenic differentiation of HASMCs. Together, these results suggest that PI3K/Akt/NK-κB signaling plays an important role in the pathogenesis of osteogenic transdifferentiation induced by IS.
Collapse
Affiliation(s)
- Xin He
- Dialysis Department of Nephrology Hospital, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hongli Jiang
- Dialysis Department of Nephrology Hospital, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fanfan Gao
- Dialysis Department of Nephrology Hospital, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shanshan Liang
- Dialysis Department of Nephrology Hospital, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Meng Wei
- Dialysis Department of Nephrology Hospital, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lei Chen
- Dialysis Department of Nephrology Hospital, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
22
|
Adelaja A, Hoffmann A. Signaling Crosstalk Mechanisms That May Fine-Tune Pathogen-Responsive NFκB. Front Immunol 2019; 10:433. [PMID: 31312197 PMCID: PMC6614373 DOI: 10.3389/fimmu.2019.00433] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 02/19/2019] [Indexed: 01/14/2023] Open
Abstract
Precise control of inflammatory gene expression is critical for effective host defense without excessive tissue damage. The principal regulator of inflammatory gene expression is nuclear factor kappa B (NFκB), a transcription factor. Nuclear NFκB activity is controlled by IκB proteins, whose stimulus-responsive degradation and re-synthesis provide for transient or dynamic regulation. The IκB-NFκB signaling module receives input signals from a variety of pathogen sensors, such as toll-like receptors (TLRs). The molecular components and mechanisms of NFκB signaling are well-understood and have been reviewed elsewhere in detail. Here we review the molecular mechanisms that mediate cross-regulation of TLR-IκB-NFκB signal transduction by signaling pathways that do not activate NFκB themselves, such as interferon signaling pathways. We distinguish between potential regulatory crosstalk mechanisms that (i) occur proximal to TLRs and thus may have stimulus-specific effects, (ii) affect the core IκB-NFκB signaling module to modulate NFκB activation in response to several stimuli. We review some well-documented examples of molecular crosstalk mechanisms and indicate other potential mechanisms whose physiological roles require further study.
Collapse
Affiliation(s)
- Adewunmi Adelaja
- UCLA-Caltech Medical Scientist Training Program, Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
23
|
Mitchell S, Hoffmann A. Substrate complex competition is a regulatory motif that allows NFκB RelA to license but not amplify NFκB RelB. Proc Natl Acad Sci U S A 2019; 116:10592-10597. [PMID: 31048505 PMCID: PMC6535030 DOI: 10.1073/pnas.1816000116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Signaling pathways often share molecular components, tying the activity of one pathway to the functioning of another. In the NFκB signaling system, distinct kinases mediate inflammatory and developmental signaling via RelA and RelB, respectively. Although the substrates of the developmental, so-called noncanonical, pathway are induced by inflammatory/canonical signaling, crosstalk is limited. Through dynamical systems modeling, we identified the underlying regulatory mechanism. We found that as the substrate of the noncanonical kinase NIK, the nfkb2 gene product p100, transitions from a monomer to a multimeric complex, it may compete with and inhibit p100 processing to the active p52. Although multimeric complexes of p100 (IκBδ) are known to inhibit preexisting RelA:p50 through sequestration, here we report that p100 complexes can inhibit the enzymatic formation of RelB:p52. We show that the dose-response systems properties of this complex substrate competition motif are poorly accounted for by standard Michaelis-Menten kinetics, but require more detailed mass action formulations. In sum, although tonic inflammatory signaling is required for adequate expression of the noncanonical pathway precursors, the substrate complex competition motif identified here can prevent amplification of the active RelB:p52 dimer in elevated inflammatory conditions to ensure reliable RelB-dependent developmental signaling independent of inflammatory context.
Collapse
Affiliation(s)
- Simon Mitchell
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095
| | - Alexander Hoffmann
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095;
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095
| |
Collapse
|
24
|
Roy K, Mitchell S, Liu Y, Ohta S, Lin YS, Metzig MO, Nutt SL, Hoffmann A. A Regulatory Circuit Controlling the Dynamics of NFκB cRel Transitions B Cells from Proliferation to Plasma Cell Differentiation. Immunity 2019; 50:616-628.e6. [PMID: 30850343 DOI: 10.1016/j.immuni.2019.02.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/20/2018] [Accepted: 02/06/2019] [Indexed: 01/05/2023]
Abstract
Humoral immunity depends on efficient activation of B cells and their subsequent differentiation into antibody-secreting cells (ASCs). The transcription factor NFκB cRel is critical for B cell proliferation, but incorporating its known regulatory interactions into a mathematical model of the ASC differentiation circuit prevented ASC generation in simulations. Indeed, experimental ectopic cRel expression blocked ASC differentiation by inhibiting the transcription factor Blimp1, and in wild-type (WT) cells cRel was dynamically repressed during ASC differentiation by Blimp1 binding the Rel locus. Including this bi-stable circuit of mutual cRel-Blimp1 antagonism into a multi-scale model revealed that dynamic repression of cRel controls the switch from B cell proliferation to ASC generation phases and hence the respective cell population dynamics. Our studies provide a mechanistic explanation of how dysregulation of this bi-stable circuit might result in pathologic B cell population phenotypes and thus offer new avenues for diagnostic stratification and treatment.
Collapse
Affiliation(s)
- Koushik Roy
- Signaling Systems Laboratory, Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Simon Mitchell
- Signaling Systems Laboratory, Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Liu
- Signaling Systems Laboratory, Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sho Ohta
- Signaling Systems Laboratory, Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yu-Sheng Lin
- Signaling Systems Laboratory, Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marie Oliver Metzig
- Signaling Systems Laboratory, Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3050, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Institute for Quantitative and Computational Biosciences and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
25
|
Roy P, Sarkar UA, Basak S. The NF-κB Activating Pathways in Multiple Myeloma. Biomedicines 2018; 6:biomedicines6020059. [PMID: 29772694 PMCID: PMC6027071 DOI: 10.3390/biomedicines6020059] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 12/29/2022] Open
Abstract
Multiple myeloma(MM), an incurable plasma cell cancer, represents the second most prevalent hematological malignancy. Deregulated activity of the nuclear factor kappaB (NF-κB) family of transcription factors has been implicated in the pathogenesis of multiple myeloma. Tumor microenvironment-derived cytokines and cancer-associated genetic mutations signal through the canonical as well as the non-canonical arms to activate the NF-κB system in myeloma cells. In fact, frequent engagement of both the NF-κB pathways constitutes a distinguishing characteristic of myeloma. In turn, NF-κB signaling promotes proliferation, survival and drug-resistance of myeloma cells. In this review article, we catalog NF-κB activating genetic mutations and microenvironmental cues associated with multiple myeloma. We then describe how the individual canonical and non-canonical pathways transduce signals and contribute towards NF-κB -driven gene-expressions in healthy and malignant cells. Furthermore, we discuss signaling crosstalk between concomitantly triggered NF-κB pathways, and its plausible implication for anomalous NF-κB activation and NF-κB driven pro-survival gene-expressions in multiple myeloma. Finally, we propose that mechanistic understanding of NF-κB deregulations may provide for improved therapeutic and prognostic tools in multiple myeloma.
Collapse
Affiliation(s)
- Payel Roy
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Uday Aditya Sarkar
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
26
|
Yang X, Sun R, Ci L, Wang N, Yang S, Shi J, Yang H, Zhang M, Fei J. Tracing the dynamic expression of the Nfκb2 gene during inflammatory processes by in vivo bioluminescence imaging in transgenic mice. Biochem Biophys Res Commun 2018; 501:41-47. [PMID: 29680659 DOI: 10.1016/j.bbrc.2018.04.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/16/2018] [Indexed: 02/08/2023]
Abstract
Nfκb2(p52/p100) plays essential roles in many chronic inflammatory diseases. Tracing the dynamic expression of Nfκb2 during different biological processes in vivo can provide valuable clues to understand the biological functions of this gene and develop anti-inflammatory drugs. In this study, B6-Tg(Nfκb2-luc)Mlit transgenic mouse line, a mouse model in which the expression of firefly luciferase gene is under the control of a 14.6-kb mouse Nfκb2 promoter, was generated to monitor the expression of p52/p100 in vivo. Bioluminescence imaging was used for tracking the luciferase signal in living mice in a variety of inflammatory processes, including LPS-induced sepsis and inflammatory bowel disease (IBD). The data of in vivo bioluminescence imaging in this mouse model showed that luciferase activity coincided with the endogenous p52/p100 expression. Moreover, dexamethasone or aspirin, two routine anti-inflammatory drugs, could decrease the high-level expression of luciferase induced by LPS. Overall, our results suggest that the B6-Tg(Nfκb2-luc)Mlit mice represent a valuable reporter mouse model not only to monitor the expression of p52/p100 in physiological or pathological processes but also to evaluate the effects of various anti-inflammatory drug treatments in vivo.
Collapse
Affiliation(s)
- Xingyu Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China; Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruilin Sun
- Shanghai Engineering Research Center for Model Organisms, SRCMO/SMOC, Shanghai, 201203, China
| | - Lei Ci
- Shanghai Engineering Research Center for Model Organisms, SRCMO/SMOC, Shanghai, 201203, China
| | - Ning Wang
- School of Life Science & Technology, Tongji University, Shanghai, 200092, China
| | - Sai Yang
- School of Life Science & Technology, Tongji University, Shanghai, 200092, China
| | - Jiahao Shi
- School of Life Science & Technology, Tongji University, Shanghai, 200092, China
| | - Hua Yang
- School of Life Science & Technology, Tongji University, Shanghai, 200092, China
| | - Mengjie Zhang
- School of Life Science & Technology, Tongji University, Shanghai, 200092, China.
| | - Jian Fei
- School of Life Science & Technology, Tongji University, Shanghai, 200092, China; Shanghai Engineering Research Center for Model Organisms, SRCMO/SMOC, Shanghai, 201203, China.
| |
Collapse
|
27
|
Jaimes Suarez J, Vidal Conde L, Collazos Robles R, Grande Gomez J, Martin Díaz V, Parra Rodriguez O, Pérez-González YC. Zoon Vulvitis Treated Successfully With Platelet-Rich Plasma: First Case Reported. J Low Genit Tract Dis 2017; 21:e48-e51. [PMID: 28857965 PMCID: PMC5625965 DOI: 10.1097/lgt.0000000000000330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chronic Zoon vulvitis was successfully treated with platelet-rich plasma achieving a considerable reduction of the clinical symptoms and signs of an evident lesion.
Collapse
Affiliation(s)
- July Jaimes Suarez
- Gynecology Department, Hospital San Rafael, Madrid, Spain, Soluciones Bioregenerativas SL, Barcelona, Spain; and Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Luis Vidal Conde
- Gynecology Department, Hospital San Rafael, Madrid, Spain, Soluciones Bioregenerativas SL, Barcelona, Spain; and Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Rafael Collazos Robles
- Gynecology Department, Hospital San Rafael, Madrid, Spain, Soluciones Bioregenerativas SL, Barcelona, Spain; and Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Joaquin Grande Gomez
- Gynecology Department, Hospital San Rafael, Madrid, Spain, Soluciones Bioregenerativas SL, Barcelona, Spain; and Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Victor Martin Díaz
- Gynecology Department, Hospital San Rafael, Madrid, Spain, Soluciones Bioregenerativas SL, Barcelona, Spain; and Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Oscar Parra Rodriguez
- Gynecology Department, Hospital San Rafael, Madrid, Spain, Soluciones Bioregenerativas SL, Barcelona, Spain; and Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Yosmar Carolina Pérez-González
- Gynecology Department, Hospital San Rafael, Madrid, Spain, Soluciones Bioregenerativas SL, Barcelona, Spain; and Hospital Fundación Jiménez Díaz, Madrid, Spain
| |
Collapse
|
28
|
Mediation of transitional B cell maturation in the absence of functional Bruton's tyrosine kinase. Sci Rep 2017; 7:46029. [PMID: 28378771 PMCID: PMC5380950 DOI: 10.1038/srep46029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/08/2017] [Indexed: 01/09/2023] Open
Abstract
X-linked immune-deficient (Xid) mice, carrying a mutation in Bruton’s tyrosine kinase (Btk), have multiple B cell lineage differentiation defects. We now show that, while Xid mice showed only mild reduction in the frequency of the late transitional (T2) stage of peripheral B cells, the defect became severe when the Xid genotype was combined with either a CD40-null, a TCRbeta-null or an MHC class II (MHCII)-null genotype. Purified Xid T1 and T2 B cells survived poorly in vitro compared to wild-type (WT) cells. BAFF rescued WT but not Xid T1 and T2 B cells from death in culture, while CD40 ligation equivalently rescued both. Xid transitional B cells ex vivo showed low levels of the p100 protein substrate for non-canonical NF-kappaB signalling. In vitro, CD40 ligation induced equivalent activation of the canonical but not of the non-canonical NF-kappaB pathway in Xid and WT T1 and T2 B cells. CD40 ligation efficiently rescued p100-null T1 B cells from neglect-induced death in vitro. These data indicate that CD40-mediated signals, likely from CD4 T cells, can mediate peripheral transitional B cell maturation independent of Btk and the non-canonical NF-kappaB pathway, and thus contribute to the understanding of the complexities of peripheral B cell maturation.
Collapse
|
29
|
Chatterjee B, Banoth B, Mukherjee T, Taye N, Vijayaragavan B, Chattopadhyay S, Gomes J, Basak S. Late-phase synthesis of IκBα insulates the TLR4-activated canonical NF-κB pathway from noncanonical NF-κB signaling in macrophages. Sci Signal 2016; 9:ra120. [PMID: 27923915 DOI: 10.1126/scisignal.aaf1129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The nuclear factor κB (NF-κB) transcription factors coordinate the inflammatory immune response during microbial infection. Pathogenic substances engage canonical NF-κB signaling through the heterodimer RelA:p50, which is subjected to rapid negative feedback by inhibitor of κBα (IκBα). The noncanonical NF-κB pathway is required for the differentiation of immune cells; however, cross-talk between both pathways can occur. Concomitantly activated noncanonical signaling generates p52 from the p100 precursor. The synthesis of p100 is induced by canonical signaling, leading to the formation of the late-acting RelA:p52 heterodimer. This cross-talk prolongs inflammatory RelA activity in epithelial cells to ensure pathogen clearance. We found that the Toll-like receptor 4 (TLR4)-activated canonical NF-κB signaling pathway is insulated from lymphotoxin β receptor (LTβR)-induced noncanonical signaling in mouse macrophage cell lines. Combined computational and biochemical studies indicated that the extent of NF-κB-responsive expression of Nfkbia, which encodes IκBα, inversely correlated with cross-talk. The Nfkbia promoter showed enhanced responsiveness to NF-κB activation in macrophages compared to that in fibroblasts. We found that this hyperresponsive promoter engaged the RelA:p52 dimer generated during costimulation of macrophages through TLR4 and LTβR to trigger synthesis of IκBα at late time points, which prevented the late-acting RelA cross-talk response. Together, these data suggest that, despite the presence of identical signaling networks in cells of diverse lineages, emergent cross-talk between signaling pathways is subject to cell type-specific regulation. We propose that the insulation of canonical and noncanonical NF-κB pathways limits the deleterious effects of macrophage-mediated inflammation.
Collapse
Affiliation(s)
- Budhaditya Chatterjee
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India.,Kusuma School of Biological Sciences, IIT-Delhi, Hauz Khas, New Delhi, India
| | - Balaji Banoth
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Tapas Mukherjee
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | | | - Bharath Vijayaragavan
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | | | - James Gomes
- Kusuma School of Biological Sciences, IIT-Delhi, Hauz Khas, New Delhi, India
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
30
|
Fusco AJ, Mazumder A, Wang VYF, Tao Z, Ware C, Ghosh G. The NF-κB subunit RelB controls p100 processing by competing with the kinases NIK and IKK1 for binding to p100. Sci Signal 2016; 9:ra96. [PMID: 27678221 DOI: 10.1126/scisignal.aad9413] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The heterodimer formed by the nuclear factor κB (NF-κB) subunits p52 and RelB is the product of noncanonical signaling in which the key event is the proteolytic processing of p100 to generate p52. The kinases NF-κB-inducing kinase (NIK) and inhibitor of κB kinase 1 (IKK1; also known as IKKα) are activated during noncanonical signaling and play essential roles in p100 processing. In resting cells, RelB remains associated with unprocessed p100 as a transcriptionally inert p100:RelB complex, which is part of a larger assembly with other NF-κB factors known as the "kappaBsome." We investigated how these two different RelB-containing complexes with opposing effects on target gene transcription are formed. We found that RelB controls the extent of both p100 processing and kappaBsome formation during noncanonical signaling. Within an apparently "transitional" complex that contains RelB, NIK, IKK1, and p100, RelB and the NIK:IKK1 complex competed with each other for binding to a region of p100. A fraction of p100 in the transitional complex was refractory to processing, which resulted in the formation of the kappaBsome. However, another fraction of p100 protein underwent NIK:IKK1-mediated phosphorylation and processing while remaining bound to RelB, thus forming the p52:RelB heterodimer. Our results suggest that changes in the relative concentrations of RelB, NIK:IKK1, and p100 during noncanonical signaling modulate this transitional complex and are critical for maintaining the fine balance between the processing and protection of p100.
Collapse
Affiliation(s)
- Amanda J Fusco
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093, USA
| | - Anup Mazumder
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093, USA
| | - Vivien Ya-Fan Wang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Zhihua Tao
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093, USA
| | - Carl Ware
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
31
|
Metzler G, Kolhatkar NS, Rawlings DJ. BCR and co-receptor crosstalk facilitate the positive selection of self-reactive transitional B cells. Curr Opin Immunol 2016; 37:46-53. [PMID: 26605835 DOI: 10.1016/j.coi.2015.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/22/2015] [Accepted: 10/08/2015] [Indexed: 12/31/2022]
Abstract
The establishment of a diverse B cell repertoire requires fine-tuning of antigen receptor selection during development in order to permit sufficient diversity while reducing the potential for autoimmunity. In this review, we highlight recent studies demonstrating the central role of the B cell antigen receptor (BCR), in coordination with other key pro-survival signals mediated by CD40, BAFF-R, TACI and/or TLRs, in regulating both negative and positive selection of autoreactive B cells. In particular, we show how altered antigen or co-stimulatory signaling can facilitate positive selection of transitional B cells with self-reactive BCRs, ultimately leading to their entry into the mature, naive B cell compartment. We propose a model wherein altered receptor signals (due to inherited genetic changes) leads: first, to enhanced positive selection of autoreactive cells into the naïve B cell repertoire; subsequently, to an increased probability of pathogenic germinal center responses in individuals with a broad range of autoimmune disorders.
Collapse
Affiliation(s)
- Genita Metzler
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, United States; Seattle Children's Research Institute, Seattle, WA, United States
| | - Nikita S Kolhatkar
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, United States; Seattle Children's Research Institute, Seattle, WA, United States
| | - David J Rawlings
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States; Department of Immunology, University of Washington School of Medicine, Seattle, WA, United States; Seattle Children's Research Institute, Seattle, WA, United States.
| |
Collapse
|
32
|
Non-canonical NFκB mutations reinforce pro-survival TNF response in multiple myeloma through an autoregulatory RelB:p50 NFκB pathway. Oncogene 2016; 36:1417-1429. [PMID: 27641334 PMCID: PMC5346295 DOI: 10.1038/onc.2016.309] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 07/01/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022]
Abstract
Environmental drug resistance constitutes a serious impediment for therapeutic intervention in multiple myeloma. Tumor-promoting cytokines, such as tumor necrosis factor (TNF), induce nuclear factor-κB (NFκB)- driven expression of pro-survival factors, which confer resistance in myeloma cells to apoptotic insults from TNF-related apoptosis-inducing ligand (TRAIL) and other chemotherapeutic drugs. It is thought that RelA:p50 dimer, activated from IκBα-inhibited complex in response to TNF-induced canonical NFκB signal, mediates the pro-survival NFκB function in cancerous cells. Myeloma cells additionally acquire gain-of-function mutations in the non-canonical NFκB module, which induces partial proteolysis of p100 into p52 to promote RelB:p52/NFκB activation from p100-inhibited complex during immune cell differentiation. However, role of non-canonical NFκB signaling in the drug resistance in multiple myeloma remains unclear. Here we report that myeloma-associated non-canonical aberrations reinforce pro-survival TNF signaling in producing a protracted TRAIL-refractory state. These mutations did not act through a typical p52 NFκB complex, but completely degraded p100 to reposition RelB under IκBα control, whose degradation during TNF signaling induced an early RelB:p50 containing NFκB activity. More so, autoregulatory RelB synthesis prolonged this TNF-induced RelB:p50 activity in myeloma cells harboring non-canonical mutations. Intriguingly, TNF-activated RelB:p50 dimer was both necessary and sufficient, and RelA was not required, for NFκB-dependent pro-survival gene expressions and suppression of apoptosis. Indeed, high RelB mRNA expressions in myeloma patients correlated with the augmented level of pro-survival factors and resistance to therapeutic intervention. In sum, we provide evidence that cancer-associated mutations perpetuate TNF-induced pro-survival NFκB activity through autoregulatory RelB control and thereby exacerbate environmental drug resistance in multiple myeloma.
Collapse
|
33
|
Myles A, Cancro MP. The NIK of time for B cells. Eur J Immunol 2016; 46:547-51. [PMID: 26873522 DOI: 10.1002/eji.201646294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/03/2016] [Accepted: 02/10/2016] [Indexed: 01/05/2023]
Abstract
NF-κB-inducing kinase (NIK) is a key mediator of the noncanonical NF-κB signaling pathway, which is critical for B-cell development and function. Although complete deletion of NIK in mice has been shown to result in defective B cells and impaired secondary lymphoid organogenesis, the consequences of deleting NIK exclusively in B cells have not been determined. In this issue of the European Journal of Immunology, Hahn et al. [Eur. J. Immunol. 2016. 46: 732-741] describe mice in which the NF-κB2 pathway mediator, NIK, is deleted at different points in B-cell lineage differentiation and activation. The results show that the survival of mature peripheral B cells, as well as appropriate kinetics of germinal center reactions, rely on noncanonical NF-κB signaling. These findings confirm and extend prior observations implicating a nonredundant role for NF-κB2 downstream of BAFF signaling via BAFF-R, and prompt assessment of the growing literature regarding the relative roles of BCR and BAFF signals in B-cell homeostasis, as well as the downstream pathways responsible.
Collapse
Affiliation(s)
- Arpita Myles
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Cancro
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Negative role of TAK1 in marginal zone B-cell development incidental to NF-κB noncanonical pathway activation. Immunol Cell Biol 2016; 94:821-829. [PMID: 27121163 PMCID: PMC5073155 DOI: 10.1038/icb.2016.44] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/21/2016] [Accepted: 04/23/2016] [Indexed: 12/16/2022]
Abstract
The transcription factor nuclear factor-κB (NF-κB) signaling pathway is crucial in B-cell physiology. One key molecule regulating this pathway is the serine/threonine kinase TAK1 (MAP3K7). TAK1 is responsible for positive feedback mechanisms in B-cell receptor signaling that serve as an NF-κB activation threshold. This study aimed to better understand the correlation between TAK1-mediated signaling and B-cell development and humoral immune responses. Here we showed that a B-cell conditional deletion of TAK1 using mb1-cre resulted in a dramatic elimination of the humoral immune response, consistent with the absence of the B-1 B-cell subset. When monitoring the self-reactive B-cell system (the immunoglobulin hen egg lysozyme/soluble hen egg lysozyme double-transgenic mouse model), we found that TAK1-deficient B cells exhibited an enhanced susceptibility to cell death that might explain the disappearance of the B1 subset. In contrast, these mice gained numerous marginal zone (MZ) B cells. We consequently examined the basal and B-cell receptor-induced activity of NF-κB2 that is reported to regulate MZ B-cell development, and demonstrated that the activity of NF-κB2 increased in TAK1-deficient B cells. Thus, our results present a novel in vivo function, the negative role of TAK1 in MZ B-cell development that is likely associated with NF-κB2 activation.
Collapse
|
35
|
Mitchell S, Vargas J, Hoffmann A. Signaling via the NFκB system. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:227-41. [PMID: 26990581 DOI: 10.1002/wsbm.1331] [Citation(s) in RCA: 725] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 12/25/2022]
Abstract
The nuclear factor kappa B (NFκB) family of transcription factors is a key regulator of immune development, immune responses, inflammation, and cancer. The NFκB signaling system (defined by the interactions between NFκB dimers, IκB regulators, and IKK complexes) is responsive to a number of stimuli, and upon ligand-receptor engagement, distinct cellular outcomes, appropriate to the specific signal received, are set into motion. After almost three decades of study, many signaling mechanisms are well understood, rendering them amenable to mathematical modeling, which can reveal deeper insights about the regulatory design principles. While other reviews have focused on upstream, receptor proximal signaling (Hayden MS, Ghosh S. Signaling to NF-κB. Genes Dev 2004, 18:2195-2224; Verstrepen L, Bekaert T, Chau TL, Tavernier J, Chariot A, Beyaert R. TLR-4, IL-1R and TNF-R signaling to NF-κB: variations on a common theme. Cell Mol Life Sci 2008, 65:2964-2978), and advances through computational modeling (Basak S, Behar M, Hoffmann A. Lessons from mathematically modeling the NF-κB pathway. Immunol Rev 2012, 246:221-238; Williams R, Timmis J, Qwarnstrom E. Computational models of the NF-KB signalling pathway. Computation 2014, 2:131), in this review we aim to summarize the current understanding of the NFκB signaling system itself, the molecular mechanisms, and systems properties that are key to its diverse biological functions, and we discuss remaining questions in the field. WIREs Syst Biol Med 2016, 8:227-241. doi: 10.1002/wsbm.1331 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Simon Mitchell
- Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jesse Vargas
- Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
36
|
De Silva NS, Silva K, Anderson MM, Bhagat G, Klein U. Impairment of Mature B Cell Maintenance upon Combined Deletion of the Alternative NF-κB Transcription Factors RELB and NF-κB2 in B Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:2591-601. [PMID: 26851215 DOI: 10.4049/jimmunol.1501120] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 01/05/2016] [Indexed: 02/06/2023]
Abstract
BAFF is critical for the survival and maturation of mature B cells. BAFF, via BAFFR, activates multiple signaling pathways in B cells, including the alternative NF-κB pathway. The transcription factors RELB and NF-κB2 (p100/p52) are the downstream mediators of the alternative pathway; however, the B cell-intrinsic functions of these NF-κB subunits have not been studied in vivo using conditional alleles, either individually or in combination. We in this study report that B cell-specific deletion of relb led to only a slight decrease in the fraction of mature splenic B cells, whereas deletion of nfkb2 caused a marked reduction. This phenotype was further exacerbated upon combined deletion of relb and nfkb2 and most dramatically affected the maintenance of marginal zone B cells. BAFF stimulation, in contrast to CD40 activation, was unable to rescue relb/nfkb2-deleted B cells in vitro. RNA-sequencing analysis of BAFF-stimulated nfkb2-deleted versus normal B cells suggests that the alternative NF-κB pathway, in addition to its critical role in BAFF-mediated cell survival, may control the expression of genes involved in the positioning of B cells within the lymphoid microenvironment and in the establishment of T cell-B cell interactions. Thus, by ablating the downstream transcription factors of the alternative NF-κB pathway specifically in B cells, we identify in this study a critical role for the combined activity of the RELB and NF-κB2 subunits in B cell homeostasis that cannot be compensated for by the canonical NF-κB pathway under physiological conditions.
Collapse
Affiliation(s)
- Nilushi S De Silva
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032; Department of Microbiology and Immunology, Columbia University, New York, NY 10032; and
| | - Kathryn Silva
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032
| | - Michael M Anderson
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032
| | - Govind Bhagat
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Ulf Klein
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032; Department of Microbiology and Immunology, Columbia University, New York, NY 10032; and Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| |
Collapse
|
37
|
B-cell survival and development controlled by the coordination of NF-κB family members RelB and cRel. Blood 2016; 127:1276-86. [PMID: 26773039 PMCID: PMC4786837 DOI: 10.1182/blood-2014-10-606988] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 12/29/2015] [Indexed: 11/20/2022] Open
Abstract
Targeted deletion of BAFF causes severe deficiency of splenic B cells. BAFF-R is commonly thought to signal to nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB)-inducing kinase dependent noncanonical NF-κB RelB. However, RelB-deficient mice have normal B-cell numbers. Recent studies showed that BAFF also signals to the canonical NF-κB pathway, and we found that both RelB and cRel are persistently activated, suggesting BAFF signaling coordinates both pathways to ensure robust B-cell development. Indeed, we report now that combined loss of these 2 NF-κB family members leads to impaired BAFF-mediated survival and development in vitro. Although single deletion of RelB and cRel was dispensable for normal B-cell development, double knockout mice displayed an early B-cell developmental blockade and decreased mature B cells. Despite disorganized splenic architecture in Relb(-/-)cRel(-/-) mice, generation of mixed-mouse chimeras established the developmental phenotype to be B-cell intrinsic. Together, our results indicate that BAFF signals coordinate both RelB and cRel activities to ensure survival during peripheral B-cell maturation.
Collapse
|
38
|
Cofunctional Subpathways Were Regulated by Transcription Factor with Common Motif, Common Family, or Common Tissue. BIOMED RESEARCH INTERNATIONAL 2015; 2015:780357. [PMID: 26688819 PMCID: PMC4672121 DOI: 10.1155/2015/780357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 11/17/2022]
Abstract
Dissecting the characteristics of the transcription factor (TF) regulatory subpathway is helpful for understanding the TF underlying regulatory function in complex biological systems. To gain insight into the influence of TFs on their regulatory subpathways, we constructed a global TF-subpathways network (TSN) to analyze systematically the regulatory effect of common-motif, common-family, or common-tissue TFs on subpathways. We performed cluster analysis to show that the common-motif, common-family, or common-tissue TFs that regulated the same pathway classes tended to cluster together and contribute to the same biological function that led to disease initiation and progression. We analyzed the Jaccard coefficient to show that the functional consistency of subpathways regulated by the TF pairs with common motif, common family, or common tissue was significantly greater than the random TF pairs at the subpathway level, pathway level, and pathway class level. For example, HNF4A (hepatocyte nuclear factor 4, alpha) and NR1I3 (nuclear receptor subfamily 1, group I, member 3) were a pair of TFs with common motif, common family, and common tissue. They were involved in drug metabolism pathways and were liver-specific factors required for physiological transcription. In short, we inferred that the cofunctional subpathways were regulated by common-motif, common-family, or common-tissue TFs.
Collapse
|
39
|
Jamshidi M, Fagerholm R, Khan S, Aittomäki K, Czene K, Darabi H, Li J, Andrulis IL, Chang-Claude J, Devilee P, Fasching PA, Michailidou K, Bolla MK, Dennis J, Wang Q, Guo Q, Rhenius V, Cornelissen S, Rudolph A, Knight JA, Loehberg CR, Burwinkel B, Marme F, Hopper JL, Southey MC, Bojesen SE, Flyger H, Brenner H, Holleczek B, Margolin S, Mannermaa A, Kosma VM, Dyck LV, Nevelsteen I, Couch FJ, Olson JE, Giles GG, McLean C, Haiman CA, Henderson BE, Winqvist R, Pylkäs K, Tollenaar RA, García-Closas M, Figueroa J, Hooning MJ, Martens JW, Cox A, Cross SS, Simard J, Dunning AM, Easton DF, Pharoah PD, Hall P, Blomqvist C, Schmidt MK, Nevanlinna H. SNP-SNP interaction analysis of NF-κB signaling pathway on breast cancer survival. Oncotarget 2015; 6:37979-94. [PMID: 26317411 PMCID: PMC4741978 DOI: 10.18632/oncotarget.4991] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/16/2015] [Indexed: 12/03/2022] Open
Abstract
In breast cancer, constitutive activation of NF-κB has been reported, however, the impact of genetic variation of the pathway on patient prognosis has been little studied. Furthermore, a combination of genetic variants, rather than single polymorphisms, may affect disease prognosis. Here, in an extensive dataset (n = 30,431) from the Breast Cancer Association Consortium, we investigated the association of 917 SNPs in 75 genes in the NF-κB pathway with breast cancer prognosis. We explored SNP-SNP interactions on survival using the likelihood-ratio test comparing multivariate Cox' regression models of SNP pairs without and with an interaction term. We found two interacting pairs associating with prognosis: patients simultaneously homozygous for the rare alleles of rs5996080 and rs7973914 had worse survival (HRinteraction 6.98, 95% CI=3.3-14.4, P=1.42E-07), and patients carrying at least one rare allele for rs17243893 and rs57890595 had better survival (HRinteraction 0.51, 95% CI=0.3-0.6, P = 2.19E-05). Based on in silico functional analyses and literature, we speculate that the rs5996080 and rs7973914 loci may affect the BAFFR and TNFR1/TNFR3 receptors and breast cancer survival, possibly by disturbing both the canonical and non-canonical NF-κB pathways or their dynamics, whereas, rs17243893-rs57890595 interaction on survival may be mediated through TRAF2-TRAIL-R4 interplay. These results warrant further validation and functional analyses.
Collapse
Affiliation(s)
- Maral Jamshidi
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, FI-00029 HUS, Finland
| | - Rainer Fagerholm
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, FI-00029 HUS, Finland
| | - Sofia Khan
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, FI-00029 HUS, Finland
| | - Kristiina Aittomäki
- Department of Clinical Genetics, University of Helsinki and Helsinki University Hospital, Helsinki, FI-00029 HUS, Finland
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Hatef Darabi
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Jingmei Li
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Irene L. Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jenny Chang-Claude
- Department of Obstetrics and Gynecology, University of Ulm, Ulm, Germany
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Department of Medicine, Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Manjeet K. Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Qi Guo
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Valerie Rhenius
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Sten Cornelissen
- Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Anja Rudolph
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia A. Knight
- Prosserman Centre for Health Research, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Christian R. Loehberg
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Barbara Burwinkel
- Molecular Epidemiology Group, German Cancer Research Center, Heidelberg, Germany
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| | - Frederik Marme
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Melissa C. Southey
- Department of Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stig E. Bojesen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Henrik Flyger
- Department of Breast Surgery, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Sara Margolin
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Arto Mannermaa
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Veli-Matti Kosma
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | | | - Laurien Van Dyck
- Vesalius Research Center (VRC), VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Ines Nevelsteen
- Multidisciplinary Breast Center, Medical Oncology, University Hospital Leuven, Leuven, Belgium
| | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Janet E. Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Graham G. Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, School of Population and Global health, The University of Melbourne, Melbourne, Australia
| | - Catriona McLean
- Anatomical Pathology, The Alfred Hospital, Melbourne, Australia
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brian E. Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer Research and Translational Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre NordLab, Oulu, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer Research and Translational Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre NordLab, Oulu, Finland
| | - Rob A.E.M. Tollenaar
- Department of Surgical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Montserrat García-Closas
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, SM2 5NG, UK
- Breakthrough Breast Cancer Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Maartje J. Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, AE Rotterdam, The Netherlands
| | - John W.M. Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, AE Rotterdam, The Netherlands
| | - Angela Cox
- Sheffield Cancer Research, Department of Oncology, University of Sheffield, Sheffield, UK
| | - Simon S. Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Jacques Simard
- Centre Hospitalier Universitaire de Québec Research Center, Laval University, Québec City, Canada
| | - Alison M. Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Paul D.P. Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Carl Blomqvist
- Department of Oncology, University of Helsinki and Helsinki University Central Hospital, Helsinki, HUS, Finland
| | - Marjanka K. Schmidt
- Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, FI-00029 HUS, Finland
| |
Collapse
|
40
|
Tsui R, Kearns JD, Lynch C, Vu D, Ngo K, Basak S, Ghosh G, Hoffmann A. IκBβ enhances the generation of the low-affinity NFκB/RelA homodimer. Nat Commun 2015; 6:7068. [PMID: 25946967 PMCID: PMC4425231 DOI: 10.1038/ncomms8068] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 03/27/2015] [Indexed: 01/21/2023] Open
Abstract
The NFκB family of dimeric transcription factors regulate inflammatory and immune responses. While the dynamic control of NFκB dimer activity via the IκB-NFκB signalling module is well understood, there is little information on how specific dimer repertoires are generated from Rel family polypeptides. Here we report the iterative construction-guided by in vitro and in vivo experimentation-of a mathematical model of the Rel-NFκB generation module. Our study reveals that IκBβ has essential functions within the Rel-NFκB generation module, specifically for the RelA:RelA homodimer, which controls a subset of NFκB target genes. Our findings revise the current dogma of the three classical, functionally related IκB proteins by distinguishing between a positive 'licensing' factor (IκBβ) that contributes to determining the available NFκB dimer repertoire in a cell's steady state, and negative feedback regulators (IκBα and -ɛ) that determine the duration and dynamics of the cellular response to an inflammatory stimulus.
Collapse
Affiliation(s)
- Rachel Tsui
- Signaling Systems Laboratory, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- The San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
| | - Jeffrey D. Kearns
- Signaling Systems Laboratory, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
| | - Candace Lynch
- Signaling Systems Laboratory, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
| | - Don Vu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
| | - Kim Ngo
- Signaling Systems Laboratory, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- The San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
| | - Soumen Basak
- Signaling Systems Laboratory, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
| | - Alexander Hoffmann
- Signaling Systems Laboratory, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- The San Diego Center for Systems Biology, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr. M/C 0375, La Jolla, CA 92093-0375
- Department of Microbiology, Immunology and Molecular Genetics (MIMG), and the Institute for Quantitative and Computational Biosciences (QCB), University of California, Los Angeles, CA 90095
| |
Collapse
|