1
|
Cheng X, Zeng T, Xu Y, Xiong Y. The emerging role of PANoptosis in viral infections disease. Cell Signal 2024; 125:111497. [PMID: 39489200 DOI: 10.1016/j.cellsig.2024.111497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
PANoptosis is a distinct inflammatory cell death mechanism that involves interactions between pyroptosis, apoptosis, and necroptosis. It can be regulated by diverse PANoptosome complexes built by integrating components from various cell death modalities. There is a rising interest in PANoptosis' process and functions. Viral infection is an important trigger of PANoptosis. Viruses invade host cells through their unique mechanisms and utilize host cell resources for replication and proliferation. In this process, viruses interfere with the normal physiological functions of host cells, including cell death mechanisms. A variety of viruses, such as influenza A virus (IAV), herpes simplex virus 1 (HSV1) and coronaviruses, have been found to induce PANoptosis in host cells. Given the importance of PANoptosis across the disease spectrum, this review briefly describes the relationships between pyroptosis, apoptosis, and necroptosis, highlights the key molecules in PANoptosome formation and activation, and outlines the multifaceted roles of PANoptosis in viral diseases, including potential therapeutic targets. We also talk about key principles and significant concerns for future PANoptosis research. Improved understanding of PANoptosis and its mechanisms is critical for discovering new treatment targets and methods.
Collapse
Affiliation(s)
- Xu Cheng
- Department of Pharmaceutics, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Taoyuan Zeng
- Department of Pharmaceutics, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yingshu Xu
- Department of Pharmaceutics, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Yongai Xiong
- Department of Pharmaceutics, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
2
|
Zhou B, Xiao K, Guo J, Xu Q, Xu Q, Lv Q, Zhu H, Zhao J, Liu Y. Necroptosis contributes to the intestinal toxicity of deoxynivalenol and is mediated by methyltransferase SETDB1. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134601. [PMID: 38823098 DOI: 10.1016/j.jhazmat.2024.134601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 06/03/2024]
Abstract
Deoxynivalenol (DON) is a secondary metabolite produced by fungi, which causes serious health issues worldwide due to its widespread presence in human and animal diets. Necroptosis is a newly proposed cell death mode and has been proposed as a potential mechanism of intestinal disease. This study aimed to investigate the role of necroptosis in intestinal damage caused by DON exposure. Piglets were fed diets with or without 4 mg/kg DON for 3 weeks or given a gavage of 2 mg/kg BW DON or sterile saline to investigate the effects of chronic or acute DON exposure on the gut, respectively. IPEC-1 cells were challenged with different concentrations of DON to investigate the effect of DON exposure on the intestinal epithelial cells (IECs) in vitro. Subsequently, the inhibitors of necroptosis were used to treat cells or piglets prior to DON challenge. Chronic and acute DON exposure both caused morphological damage, reduction of disaccharidase activity, decrease of tight junction protein expression, inflammation of the small intestine, and necroptosis of intestinal epithelial cells in piglets. Necroptosis was also detected when IPEC-1 cell damage was induced by DON in vitro. The suppression of necroptosis in IPEC-1 cells by inhibitors (necrostatin-1 (Nec-1), GSK'872, or GW806742X) alleviated cell death, the decrease of tight junction protein expression, oxidative stress, and the inflammatory response induced by DON. Furthermore, pre-treatment with Nec-1 in piglets was also observed to protect the intestine against DON-induced enterotoxicity. Additionally, the expression of histone methyltransferase SETDB1 was abnormally downregulated upon chronic and acute DON exposure in piglets, and necroptosis was activated in IPEC-1 cells due to knockout of SETDB1. Collectively, these results demonstrate that necroptosis of IECs is a mechanism of DON-induced enterotoxicity and SETDB1 mediates necroptosis upon DON exposure in IECs, suggesting the potential for targeted inhibition of necroptosis to alleviate mycotoxin-induced enterotoxicity and intestinal disease.
Collapse
Affiliation(s)
- Bei Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Junjie Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qilong Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qiao Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qingqing Lv
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
3
|
Shi Y, Wu C, Shi J, Gao T, Ma H, Li L, Zhao Y. Protein phosphorylation and kinases: Potential therapeutic targets in necroptosis. Eur J Pharmacol 2024; 970:176508. [PMID: 38493913 DOI: 10.1016/j.ejphar.2024.176508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Necroptosis is a pivotal contributor to the pathogenesis of various human diseases, including those affecting the nervous system, cardiovascular system, pulmonary system, and kidneys. Extensive investigations have elucidated the mechanisms and physiological ramifications of necroptosis. Among these, protein phosphorylation emerges as a paramount regulatory process, facilitating the activation or inhibition of specific proteins through the addition of phosphate groups to their corresponding amino acid residues. Currently, the targeting of kinases has gained recognition as a firmly established and efficacious therapeutic approach for diverse diseases, notably cancer. In this comprehensive review, we elucidate the intricate role of phosphorylation in governing key molecular players in the necroptotic pathway. Moreover, we provide an in-depth analysis of recent advancements in the development of kinase inhibitors aimed at modulating necroptosis. Lastly, we deliberate on the prospects and challenges associated with the utilization of kinase inhibitors to modulate necroptotic processes.
Collapse
Affiliation(s)
- Yihui Shi
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chengkun Wu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jiayi Shi
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Taotao Gao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Huabin Ma
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| | - Long Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
4
|
Jiang R, Xu B, Zhi S, Sun L, Yu B, Huang Q, Shi Y. Scaffold hopping derived novel benzoxazepinone receptor-interacting protein kinase 1 (RIP1) inhibitors as anti-necroptosis agents: Anti-inflammatory effect in systemic inflammatory response syndrome (SIRS) and epilepsy. Eur J Med Chem 2024; 269:116304. [PMID: 38484677 DOI: 10.1016/j.ejmech.2024.116304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/25/2024] [Accepted: 03/02/2024] [Indexed: 04/07/2024]
Abstract
Necroptosis is a type of regulated cell death known for its pro-inflammatory nature due to the substantial release of cellular contents. The phosphorylation of key proteins, namely RIP1, RIP3, and mixed lineage kinase domain-like protein (MLKL), plays a pivotal role in the processes associated with necroptosis. Consequently, inhibiting the phosphorylation of any of these three key protein kinases could effectively block necroptosis. Utilizing a scaffold hopping strategy, we have successfully designed and synthesized a series of novel RIP1 inhibitors with selective and anti-necrotic properties, using compound o1 as the lead compound. In comparison to o1, SY1 has demonstrated heightened antinecroptosis activity and binding affinity in vitro studies. Moreover, SY1 has exhibited superior efficacy in both in vivo studies, specifically in the context of SIRS, and pharmacokinetic assessments. Furthermore, SY1 has proven effective in significantly suppressing the central inflammatory response induced by epilepsy.
Collapse
Affiliation(s)
- Ruiqi Jiang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Bin Xu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Shumeng Zhi
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Lei Sun
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Baocong Yu
- Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Qing Huang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Ying Shi
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area (Ningxia Medical University), Ministry of Education, School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| |
Collapse
|
5
|
Hayashi Y. Signaling pathways regulating the immune function of cochlear supporting cells and their involvement in cochlear pathophysiology. Glia 2024; 72:665-676. [PMID: 37933494 DOI: 10.1002/glia.24476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 11/08/2023]
Abstract
The inner ear, including the cochlea, used to be regarded as an immune-privileged site because of its immunologically isolated environment caused by the blood-labyrinthine barrier. Cochlear resident macrophages, which originate from the yolk sac or fetal liver during the embryonic stage and are maintained after birth, are distributed throughout various regions of the cochlear duct. Intriguingly, these cells are absent in the organ of Corti, where hair cells (HCs) and supporting cells (SCs) are located, except for a limited number of ionized calcium-binding adapter molecule 1 (Iba1)-positive cells. Instead, SCs exert glial functions varying from a quiescent to an emergency state. Notably, SCs acquire the nature of macrophages and begin to secrete inflammatory cytokines during viral infection in the organ of Corti, which is ostensibly unprotected owing to the lack of general resident macrophages. This review provides an overview of both positive and negative functions of SCs enabled to acquire macrophage phenotypes upon viral infection focusing on the signaling pathways that regulate these functions. The former function protects HCs from viral infection by inducting type I interferons, and the latter function induces HC death by necroptosis, leading to sensorineural hearing loss. Thus, SCs play contradictory roles as immune cells with acquired macrophage phenotypes; thereby, they are favorable and unfavorable to HCs, which play a pivotal role in hearing function.
Collapse
Affiliation(s)
- Yushi Hayashi
- Department of Molecular and Medical Genetics, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
6
|
Gautam A, Boyd DF, Nikhar S, Zhang T, Siokas I, Van de Velde LA, Gaevert J, Meliopoulos V, Thapa B, Rodriguez DA, Cai KQ, Yin C, Schnepf D, Beer J, DeAntoneo C, Williams RM, Shubina M, Livingston B, Zhang D, Andrake MD, Lee S, Boda R, Duddupudi AL, Crawford JC, Vogel P, Loch C, Schwemmle M, Fritz LC, Schultz-Cherry S, Green DR, Cuny GD, Thomas PG, Degterev A, Balachandran S. Necroptosis blockade prevents lung injury in severe influenza. Nature 2024; 628:835-843. [PMID: 38600381 PMCID: PMC11151938 DOI: 10.1038/s41586-024-07265-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/01/2024] [Indexed: 04/12/2024]
Abstract
Severe influenza A virus (IAV) infections can result in hyper-inflammation, lung injury and acute respiratory distress syndrome1-5 (ARDS), for which there are no effective pharmacological therapies. Necroptosis is an attractive entry point for therapeutic intervention in ARDS and related inflammatory conditions because it drives pathogenic lung inflammation and lethality during severe IAV infection6-8 and can potentially be targeted by receptor interacting protein kinase 3 (RIPK3) inhibitors. Here we show that a newly developed RIPK3 inhibitor, UH15-38, potently and selectively blocked IAV-triggered necroptosis in alveolar epithelial cells in vivo. UH15-38 ameliorated lung inflammation and prevented mortality following infection with laboratory-adapted and pandemic strains of IAV, without compromising antiviral adaptive immune responses or impeding viral clearance. UH15-38 displayed robust therapeutic efficacy even when administered late in the course of infection, suggesting that RIPK3 blockade may provide clinical benefit in patients with IAV-driven ARDS and other hyper-inflammatory pathologies.
Collapse
Affiliation(s)
- Avishekh Gautam
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - David F Boyd
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Host-Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Sameer Nikhar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Ting Zhang
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ioannis Siokas
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Lee-Ann Van de Velde
- Department of Host-Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jessica Gaevert
- Department of Host-Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Victoria Meliopoulos
- Department of Host-Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Bikash Thapa
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Diego A Rodriguez
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Kathy Q Cai
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Chaoran Yin
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniel Schnepf
- Institute of Virology Department for Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julius Beer
- Institute of Virology Department for Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carly DeAntoneo
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Riley M Williams
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Maria Shubina
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Brandi Livingston
- Department of Host-Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Dingqiang Zhang
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Mark D Andrake
- Center for Immunology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Seungheon Lee
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Raghavender Boda
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Anantha L Duddupudi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Jeremy Chase Crawford
- Department of Host-Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter Vogel
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Martin Schwemmle
- Institute of Virology Department for Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Stacey Schultz-Cherry
- Department of Host-Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Gregory D Cuny
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA.
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Host-Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA.
| | | |
Collapse
|
7
|
Zhang C, Chen Y, Li Y, Shi N, Teng Y, Li N, Tang M, Ma Z, Deng D, Chen L. Discovery of 4-amino-1,6-dihydro-7H-pyrrolo[2,3-d]pyridazin-7-one derivatives as potential receptor-interacting serine/threonine-protein kinase 1 (RIPK1) inhibitors. Eur J Med Chem 2024; 265:116076. [PMID: 38171150 DOI: 10.1016/j.ejmech.2023.116076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is an important regulatory factor in the necroptosis signaling pathway, and is considered an attractive therapeutic target for treating multiple inflammatory diseases. Herein, we describe the design, synthesis, and structure-activity relationships of 4-amino-1,6-dihydro-7H-pyrrolo [2,3-d]pyridazin-7-one derivatives as RIPK1 inhibitors. Among them, 13c showed favorable RIPK1 kinase inhibition activity with an IC50 value of 59.8 nM, and high RIPK1 binding affinity compared with other regulatory kinases of necroptosis (RIPK1 Kd = 3.5 nM, RIPK3 Kd = 1700 nM, and MLKL Kd > 30,000 nM). 13c efficiently blocked TNFα-induced necroptosis in both human and murine cells (EC50 = 1.06-4.58 nM), and inhibited TSZ-induced phosphorylation of the RIPK1/RIPK3/MLKL pathway. In liver microsomal assay studies, the clearance rate and half-life of 13c were 18.40 mL/min/g and 75.33 min, respectively. 13c displayed acceptable pharmacokinetic characteristics, with oral bioavailability of 59.55%. In TNFα-induced systemic inflammatory response syndrome, pretreatment with 13c could effectively protect mice from loss of body temperature and death. Overall, these compounds are promising candidates for future optimization studies.
Collapse
Affiliation(s)
- Chufeng Zhang
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yulian Chen
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yong Li
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China; Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Na Shi
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yaxin Teng
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Na Li
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ziyan Ma
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Dexin Deng
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China; Chengdu Zenitar Biomedical Technology Co., Ltd, Chengdu, 610041, China.
| |
Collapse
|
8
|
Bai Y, Qiao Y, Li M, Yang W, Chen H, Wu Y, Zhang H. RIPK1 inhibitors: A key to unlocking the potential of necroptosis in drug development. Eur J Med Chem 2024; 265:116123. [PMID: 38199165 DOI: 10.1016/j.ejmech.2024.116123] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Within the field of medical science, there is a great deal of interest in investigating cell death pathways in the hopes of discovering new drugs. Over the past two decades, pharmacological research has focused on necroptosis, a cell death process that has just been discovered. Receptor-interacting protein kinase 1 (RIPK1), an essential regulator in the cell death receptor signalling pathway, has been shown to be involved in the regulation of important events, including necrosis, inflammation, and apoptosis. Therefore, researching necroptosis inhibitors offers novel ways to treat a variety of disorders that are not well-treated by the therapeutic medications now on the market. The research and medicinal potential of RIPK1 inhibitors, a promising class of drugs, are thoroughly examined in this study. The journey from the discovery of Necrostatin-1 (Nec-1) to the recent advancements in RIPK1 inhibitors is marked by significant progress, highlighting the integration of traditional medicinal chemistry approaches with modern technologies like high-throughput screening and DNA-encoded library technology. This review presents a thorough exploration of the development and therapeutic potential of RIPK1 inhibitors, a promising class of compounds. Simultaneously, this review highlights the complex roles of RIPK1 in various pathological conditions and discusses potential inhibitors discovered through diverse pathways, emphasizing their efficacy against multiple disease models, providing significant guidance for the expansion of knowledge about RIPK1 and its inhibitors to develop more selective, potent, and safe therapeutic agents.
Collapse
Affiliation(s)
- Yinliang Bai
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China; School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yujun Qiao
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Mingming Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Wenzhen Yang
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Haile Chen
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Yanqing Wu
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Honghua Zhang
- Department of Pharmacy, National University of Singapore, Singapore, 117544, Singapore.
| |
Collapse
|
9
|
Zhou Y, Cai Z, Zhai Y, Yu J, He Q, He Y, Jitkaew S, Cai Z. Necroptosis inhibitors: mechanisms of action and therapeutic potential. Apoptosis 2024; 29:22-44. [PMID: 38001341 DOI: 10.1007/s10495-023-01905-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2023] [Indexed: 11/26/2023]
Abstract
Necroptosis is a type of programmed cell death that is morphologically similar to necrosis. This type of cell death is involved in various pathophysiological disorders, including inflammatory, neurodegenerative, infectious, and malignant diseases. Receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL) pseudokinase constitute the core components of the necroptosis signaling pathway and are considered the most promising targets for therapeutic intervention. The discovery and characterization of necroptosis inhibitors not only accelerate our understanding of the necroptosis signaling pathway but also provide important drug candidates for the treatment of necroptosis-related diseases. Here, we will review recent research progress on necroptosis inhibitors, mechanisms of action and their potential applications for disease treatment.
Collapse
Affiliation(s)
- Yingbo Zhou
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhangtao Cai
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yijia Zhai
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jintao Yu
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qiujing He
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yuan He
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Siriporn Jitkaew
- Center of Excellence for Cancer and Inflammation, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Zhenyu Cai
- School of Medicine, Tongji University, Shanghai, 200092, China.
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
10
|
Collie GW, Clark MA, Keefe AD, Madin A, Read JA, Rivers EL, Zhang Y. Screening Ultra-Large Encoded Compound Libraries Leads to Novel Protein-Ligand Interactions and High Selectivity. J Med Chem 2024; 67:864-884. [PMID: 38197367 PMCID: PMC10823476 DOI: 10.1021/acs.jmedchem.3c01861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
The DNA-encoded library (DEL) discovery platform has emerged as a powerful technology for hit identification in recent years. It has become one of the major parallel workstreams for small molecule drug discovery along with other strategies such as HTS and data mining. For many researchers working in the DEL field, it has become increasingly evident that many hits and leads discovered via DEL screening bind to target proteins with unique and unprecedented binding modes. This Perspective is our attempt to analyze reports of DEL screening with the purpose of providing a rigorous and useful account of the binding modes observed for DEL-derived ligands with a focus on binding mode novelty.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ying Zhang
- X-Chem,
Inc., Waltham, Massachusetts 02453, United States
| |
Collapse
|
11
|
Qin Y, Li D, Qi C, Xiang H, Meng H, Liu J, Zhou S, Gong X, Li Y, Xu G, Zu R, Xie H, Xu Y, Xu G, Zhang Z, Chen S, Pan L, Li Y, Tan L. Structure-based development of potent and selective type-II kinase inhibitors of RIPK1. Acta Pharm Sin B 2024; 14:319-334. [PMID: 38261830 PMCID: PMC10793102 DOI: 10.1016/j.apsb.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 01/25/2024] Open
Abstract
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) functions as a key regulator in inflammation and cell death and is involved in mediating a variety of inflammatory or degenerative diseases. A number of allosteric RIPK1 inhibitors (RIPK1i) have been developed, and some of them have already advanced into clinical evaluation. Recently, selective RIPK1i that interact with both the allosteric pocket and the ATP-binding site of RIPK1 have started to emerge. Here, we report the rational development of a new series of type-II RIPK1i based on the rediscovery of a reported but mechanistically atypical RIPK3i. We also describe the structure-guided lead optimization of a potent, selective, and orally bioavailable RIPK1i, 62, which exhibits extraordinary efficacies in mouse models of acute or chronic inflammatory diseases. Collectively, 62 provides a useful tool for evaluating RIPK1 in animal disease models and a promising lead for further drug development.
Collapse
Affiliation(s)
- Ying Qin
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dekang Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunting Qi
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Huaijiang Xiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huyan Meng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingli Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Shaoqing Zhou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Gong
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ying Li
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guifang Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Rui Zu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hang Xie
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yechun Xu
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Gang Xu
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China
| | - Zheng Zhang
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, the Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China
| | - Shi Chen
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Shenzhen University Medical School, Shenzhen Second People’s Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Lifeng Pan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ying Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
12
|
Wang L, Zhu Y, Zhang L, Guo L, Wang X, Pan Z, Jiang X, Wu F, He G. Mechanisms of PANoptosis and relevant small-molecule compounds for fighting diseases. Cell Death Dis 2023; 14:851. [PMID: 38129399 PMCID: PMC10739961 DOI: 10.1038/s41419-023-06370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/10/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Pyroptosis, apoptosis, and necroptosis are mainly programmed cell death (PCD) pathways for host defense and homeostasis. PANoptosis is a newly distinct inflammatory PCD pathway that is uniquely regulated by multifaceted PANoptosome complexes and highlights significant crosstalk and coordination among pyroptosis (P), apoptosis (A), and/or necroptosis(N). Although some studies have focused on the possible role of PANpoptosis in diseases, the pathogenesis of PANoptosis is complex and underestimated. Furthermore, the progress of PANoptosis and related agonists or inhibitors in disorders has not yet been thoroughly discussed. In this perspective, we provide perspectives on PANoptosome and PANoptosis in the context of diverse pathological conditions and human diseases. The treatment targeting on PANoptosis is also summarized. In conclusion, PANoptosis is involved in plenty of disorders including but not limited to microbial infections, cancers, acute lung injury/acute respiratory distress syndrome (ALI/ARDS), ischemia-reperfusion, and organic failure. PANoptosis seems to be a double-edged sword in diverse conditions, as PANoptosis induces a negative impact on treatment and prognosis in disorders like COVID-19 and ALI/ARDS, while PANoptosis provides host protection from HSV1 or Francisella novicida infection, and kills cancer cells and suppresses tumor growth in colorectal cancer, adrenocortical carcinoma, and other cancers. Compounds and endogenous molecules focused on PANoptosis are promising therapeutic strategies, which can act on PANoptosomes-associated members to regulate PANoptosis. More researches on PANoptosis are needed to better understand the pathology of human conditions and develop better treatment.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yanghui Zhu
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Lu Zhang
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Linghong Guo
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Xiaoyun Wang
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Zhaoping Pan
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Xian Jiang
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| | - Fengbo Wu
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| | - Gu He
- Department of Dermatology & Venerology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
13
|
Kim N, Park CJ, Kim Y, Ryu S, Cho H, Nam Y, Han M, Shin JS, Sim T. Identification of Pyrido[3,4-d]pyrimidine derivatives as RIPK3-Mediated necroptosis inhibitors. Eur J Med Chem 2023; 259:115635. [PMID: 37494773 DOI: 10.1016/j.ejmech.2023.115635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023]
Abstract
Necroptosis executed by RIPK3-mediated phosphorylation of MLKL is a programmed necrotic cell death and implicated with various diseases such as sterile inflammation. We designed and synthesized pyrido[3,4-d]pyrimidine derivatives as novel necroptosis inhibitors capable of suppressing the phosphorylation of MLKL. Our SAR studies reveal that 20 possesses comparable inhibitory activity against RIPK3-mediated pMLKL in HT-29 cells relative to GSK872 (2), a representative selective RIPK3 inhibitor. Based on biochemical kinase assay results, 20 is comparable to GSK872 (2) with regard to activity against RIPK3 and less potent against RIPK1 than GSK872, indicating selectivity of 20 towards RIPK3 over RIPK1 is higher than that of GSK872. In HT-29 cells, 20 inhibits necroptosis via MLKL oligomerization impediment. Moreover, 20 suppresses migration and invasion of AsPC-1 cells by necroptosis induced- CXCL5 secretion downregulation. Significantly, 20 could relieve the TNFα-induced systemic inflammatory response syndrome in vivo. Taken together, this study would provide a useful insight into the design of novel necroptosis inhibitors possessing RIPK3-mediated pMLKL inhibitory activity.
Collapse
Affiliation(s)
- Namkyoung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chan-Jung Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Younghoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - SeongShick Ryu
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hanna Cho
- Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yunju Nam
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Myeonggil Han
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
14
|
Xu L, Zhuang C. Profiling of small-molecule necroptosis inhibitors based on the subpockets of kinase-ligand interactions. Med Res Rev 2023; 43:1974-2024. [PMID: 37119044 DOI: 10.1002/med.21968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/13/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
Necroptosis is a highly regulated cell death (RCD) form in various inflammatory diseases. Receptor-interacting protein kinase 1 (RIPK1) and RIPK3 are involved in the pathway. Targeting the kinase domains of RIPK1 and/or 3 is a drug design strategy for related diseases. It is generally accepted that essential reoccurring features are observed across the human kinase domains, including RIPK1 and RIPK3. They present common N- and C-terminal domains that are built up mostly by α-helices and β-sheets, respectively. The current RIPK1/3 kinase inhibitors mainly interact with the kinase catalytic cleft. This article aims to present an in-depth profiling for ligand-kinase interactions in the crucial cleft areas by carefully aligning the kinase-ligand cocrystal complexes or molecular docking models. The similarity and differential structural segments of ligands are systematically evaluated. New insights on the adaption of the conserved and selective kinase domains to the diversity of chemical scaffolds are also provided. In a word, our analysis can provide a better structural requirement for RIPK1 and RIPK3 inhibition and a guide for inhibitor discovery and optimization of their potency and selectivity.
Collapse
Affiliation(s)
- Lijuan Xu
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
15
|
Li M, Wei J, Zhu G, Fu S, He X, Hu X, Yu Y, Mou Y, Wang J, You X, Xiao X, Gu T, Ye Z, Zha Y. Quizartinib inhibits necroptosis by targeting receptor-interacting serine/threonine protein kinase 1. FASEB J 2023; 37:e23178. [PMID: 37698367 DOI: 10.1096/fj.202300600rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023]
Abstract
Systemic inflammatory response syndrome (SIRS), at least in part driven by necroptosis, is characterized by life-threatening multiple organ failure. Blocking the progression of SIRS and consequent multiple organ dysfunction is challenging. Receptor-interacting serine/threonine protein kinase 1 (RIPK1) is an important cell death and inflammatory mediator, making it a potential treatment target in several diseases. Here, using a drug repurposing approach, we show that inhibiting RIPK1 is also an effective treatment for SIRS. We performed cell-based high-throughput drug screening of an US Food and Drug Administration (FDA)-approved drug library that contains 1953 drugs to identify effective inhibitors of necroptotic cell death by SYTOX green staining. Dose-response validation of the top candidate, quizartinib, was conducted in two cell lines of HT-22 and MEFs. The effect of quizartinib on necroptosis-related proteins was evaluated using western blotting, immunoprecipitation, and an in vitro RIPK1 kinase assay. The in vivo effects of quizartinib were assessed in a murine tumor necrosis factor α (TNFα)-induced SIRS model. High-throughput screening identified quizartinib as the top "hit" in the compound library that rescued cells from necroptosis in vitro. Quizartinib inhibited necroptosis by directly inhibiting RIPK1 kinase activity and blocking downstream complex IIb formation. Furthermore, quizartinib protected mice against TNFα-induced SIRS. Quizartinib, as an FDA-approved drug with proven safety and efficacy, was repurposed for targeted inhibition of RIPK1. This work provides essential preclinical data for transferring quizartinib to the treatment of RIPK1-dependent necroptosis-induced inflammatory diseases, including SIRS.
Collapse
Affiliation(s)
- Min Li
- Institute of Neural Regeneration and Repair, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Neurology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Jun Wei
- Institute of Neural Regeneration and Repair, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Neurology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Guofeng Zhu
- Institute of Neural Regeneration and Repair, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Neurology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Shufang Fu
- Yichang Central People's Hospital, Yichang, China
- Department of Paediatrics, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Xiaoyan He
- Institute of Neural Regeneration and Repair, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Neurology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Xinqian Hu
- Institute of Neural Regeneration and Repair, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Neurology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Yajie Yu
- Institute of Neural Regeneration and Repair, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Neurology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Yan Mou
- Institute of Neural Regeneration and Repair, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Neurology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Jia Wang
- Institute of Neural Regeneration and Repair, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Neurology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Xiaoling You
- Institute of Neural Regeneration and Repair, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Neurology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Xin Xiao
- Institute of Neural Regeneration and Repair, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Neurology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Tanrong Gu
- Institute of Neural Regeneration and Repair, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Neurology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Zhi Ye
- Institute of Neural Regeneration and Repair, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Neurology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Yunhong Zha
- Institute of Neural Regeneration and Repair, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Neurology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| |
Collapse
|
16
|
Ling ZY, Lv QZ, Li J, Lu RY, Chen LL, Xu WH, Wang Y, Zhuang CL. Protective Effect of a Novel RIPK1 Inhibitor, Compound 4-155, in Systemic Inflammatory Response Syndrome and Sepsis. Inflammation 2023; 46:1796-1809. [PMID: 37227549 DOI: 10.1007/s10753-023-01842-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
Excessive inflammatory response is a critical pathogenic factor for the tissue damage and organ failure caused by systemic inflammatory response syndrome (SIRS) and sepsis. In recent years, drugs targeting RIPK1 have proved to be an effective anti-inflammatory strategy. In this study, we identified a novel anti-inflammatory lead compound 4-155 that selectively targets RIPK1. Compound 4-155 significantly inhibited necroptosis of cells, and its activity is about 10 times higher than the widely studied Nec-1 s. The anti-necroptosis effect of 4-155 was mainly dependent on the inhibition of phosphorylation of RIPK1, RIPK3, and MLKL. In addition, we demonstrated that 4-155 specifically binds RIPK1 by drug affinity responsive target stability (DARTS), immunoprecipitation, kinase assay, and immunofluorescence microscopy. More importantly, compound 4-155 could inhibit excessive inflammation in vivo by blocking RIPK1-mediated necroptosis and not influence the activation of MAPK and NF-κB, which is more potential for the subsequent drug development. Compound 4-155 effectively protected mice from TNF-induced SIRS and sepsis. Using different doses, we found that 6 mg/kg oral administration of compound 4-155 could increase the survival rate of SIRS mice from 0 to 90%, and the anti-inflammatory effect of 4-155 in vivo was significantly stronger than Nec-1 s at the same dose. Consistently, 4-155 significantly reduced serum levels of pro-inflammatory cytokines (TNF-α and IL-6) and protected the liver and kidney from excessive inflammatory damages. Taken together, our results suggested that compound 4-155 could inhibit excessive inflammation in vivo by blocking RIPK1-mediated necroptosis, providing a new lead compound for the treatment of SIRS and sepsis.
Collapse
Affiliation(s)
- Zhong-Yi Ling
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Quan-Zhen Lv
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jiao Li
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Ren-Yi Lu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Lin-Lin Chen
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Wei-Heng Xu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yan Wang
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Chun-Lin Zhuang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
17
|
Hadian K, Stockwell BR. The therapeutic potential of targeting regulated non-apoptotic cell death. Nat Rev Drug Discov 2023; 22:723-742. [PMID: 37550363 DOI: 10.1038/s41573-023-00749-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 08/09/2023]
Abstract
Cell death is critical for the development and homeostasis of almost all multicellular organisms. Moreover, its dysregulation leads to diverse disease states. Historically, apoptosis was thought to be the major regulated cell death pathway, whereas necrosis was considered to be an unregulated form of cell death. However, research in recent decades has uncovered several forms of regulated necrosis that are implicated in degenerative diseases, inflammatory conditions and cancer. The growing insight into these regulated, non-apoptotic cell death pathways has opened new avenues for therapeutic targeting. Here, we describe the regulatory pathways of necroptosis, pyroptosis, parthanatos, ferroptosis, cuproptosis, lysozincrosis and disulfidptosis. We discuss small-molecule inhibitors of the pathways and prospects for future drug discovery. Together, the complex mechanisms governing these pathways offer strategies to develop therapeutics that control non-apoptotic cell death.
Collapse
Affiliation(s)
- Kamyar Hadian
- Research Unit Signaling and Translation, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
18
|
Guo Y, Jin L, Dong L, Zhang M, Kuang Y, Chen X, Zhu W, Yin M. NHWD-1062 ameliorates inflammation and proliferation by the RIPK1/NF-κB/TLR1 axis in Psoriatic Keratinocytes. Biomed Pharmacother 2023; 162:114638. [PMID: 37011486 DOI: 10.1016/j.biopha.2023.114638] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/04/2023] Open
Abstract
Psoriasis is a common chronic inflammatory skin disease. RIPK1 plays an important role in inflammatory diseases. At present, the clinical efficacy of the RIPK1 inhibitor is limited and the regulatory mechanism is unclear in the treatment of psoriasis. Therefore, our team developed a new RIPK1 inhibitor, NHWD-1062, which showed a slightly lower IC50 in U937 cells than that of GSK'772 (a RIPK1 inhibitor in clinical trials) (11 nM vs. 14 nM), indicating that the new RIPK1 inhibitor was no less inhibitory than GSK'772. In this study, we evaluated the therapeutic effects of NHWD-1062 using an IMQ-induced mouse model of psoriasis and explored the precise regulatory mechanism involved. We found that gavage of NHWD-1062 significantly ameliorated the inflammatory response and inhibited the abnormal proliferation of the epidermis in IMQ-induced psoriatic mice. We then elucidated the mechanism of NHWD-1062, which was that suppressed the proliferation and inflammation of keratinocytes in vitro and in vivo through the RIPK1/NF-κB/TLR1 axis. Dual-luciferase reporter assay indicated that P65 can directly target the TLR1 promoter region and activate TLR1 expression, leading to inflammation. In summary, our study demonstrates that NHWD-1062 alleviates psoriasis-like inflammation by inhibiting the activation of the RIPK1/NF-κB/TLR1 axis, which has not been previously reported and further provides evidence for the clinical translation of NHWD-1062 in the treatment of psoriasis.
Collapse
Affiliation(s)
- Yiyan Guo
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan, China; Furong Laboratory, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha 410008, Hunan, China
| | - Liping Jin
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan, China; Furong Laboratory, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha 410008, Hunan, China
| | - Liang Dong
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan, China; Furong Laboratory, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha 410008, Hunan, China
| | - Mi Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan, China; Furong Laboratory, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha 410008, Hunan, China
| | - Yehong Kuang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan, China; Furong Laboratory, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha 410008, Hunan, China
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan, China; Furong Laboratory, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha 410008, Hunan, China
| | - Wu Zhu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan, China; Furong Laboratory, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha 410008, Hunan, China.
| | - Mingzhu Yin
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha 410008, Hunan, China; Furong Laboratory, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
19
|
You J, Wang Y, Chen H, Jin F. RIPK2: a promising target for cancer treatment. Front Pharmacol 2023; 14:1192970. [PMID: 37324457 PMCID: PMC10266216 DOI: 10.3389/fphar.2023.1192970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
As an essential mediator of inflammation and innate immunity, the receptor-interacting serine/threonine-protein kinase-2 (RIPK2) is responsible for transducing signaling downstream of the intracellular peptidoglycan sensors nucleotide oligomerization domain (NOD)-like receptors 1 and 2 (NOD1/2), which will further activate nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, leading to the transcription activation of pro-inflammatory cytokines and productive inflammatory response. Thus, the NOD2-RIPK2 signaling pathway has attracted extensive attention due to its significant role in numerous autoimmune diseases, making pharmacologic RIPK2 inhibition a promising strategy, but little is known about its role outside the immune system. Recently, RIPK2 has been related to tumorigenesis and malignant progression for which there is an urgent need for targeted therapies. Herein, we would like to evaluate the feasibility of RIPK2 being the anti-tumor drug target and summarize the research progress of RIPK2 inhibitors. More importantly, following the above contents, we will analyze the possibility of applying small molecule RIPK2 inhibitors to anti-tumor therapy.
Collapse
Affiliation(s)
- Jieqiong You
- Shanghai Frontier Health Pharmaceutical Technology Co. Ltd, Shanghai, China
- Shanghai Linnova Pharmaceuticals Co. Ltd, Shanghai, China
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- Shanghai Frontier Health Pharmaceutical Technology Co. Ltd, Shanghai, China
- Shanghai Linnova Pharmaceuticals Co. Ltd, Shanghai, China
| | - Haifeng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Jin
- Shanghai Frontier Health Pharmaceutical Technology Co. Ltd, Shanghai, China
- Shanghai Linnova Pharmaceuticals Co. Ltd, Shanghai, China
| |
Collapse
|
20
|
Mansour HM, Mohamed AF, El-Khatib AS, Khattab MM. Kinases control of regulated cell death revealing druggable targets for Parkinson's disease. Ageing Res Rev 2023; 85:101841. [PMID: 36608709 DOI: 10.1016/j.arr.2022.101841] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/31/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder in the world. Motor impairment seen in PD is associated with dopaminergic neurotoxicity in the striatum, and dopaminergic neuronal death in the substantia nigra pars compacta. Cell death has a significant effect on the development and progression of PD. Extensive research over the last few decades has unveiled new regulated cell death (RCD) mechanisms that are not dependent on apoptosis such as necroptosis, ferroptosis, and others. In this review, we will overview the mechanistic pathways of different types of RCD. Unlike accidental cell death, RCD subroutines can be regulated and the RCD-associated kinases are potential druggable targets. Hence, we will address an overview and analysis of different kinases regulating apoptosis such as receptor-interacting protein kinase 1 (RIPK-1), RIPK3, mixed lineage kinase (MLK), Ataxia telangiectasia muted (ATM), cyclin-dependent kinase (CDK), death-associated protein kinase 1 (DAPK1), Apoptosis-signaling kinase-1 (ASK-1), and Leucine-rich repeat kinase-2 (LRRK2). In addition to the role of RIPK1, RIPK3, and Mixed Lineage Kinase Domain like Pseudokinase (MLKL) in necroptosis. We also overview functions of AMP-kinase (AMPK), protein kinase C (PKC), RIPK3, and ATM in ferroptosis. We will recap the anti-apoptotic, anti-necroptotic, and anti-ferroptotic effects of different kinase inhibitors in different models of PD. Finally, we will discuss future challenges in the repositioning of kinase inhibitors in PD. In conclusion, this review kicks-start targeting RCD from a kinases perspective, opening novel therapeutic disease-modifying therapeutic avenues for PD.
Collapse
Affiliation(s)
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aiman S El-Khatib
- Egyptian Drug Authority, EDA, Giza, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
21
|
Gardner C, Davies KA, Zhang Y, Brzozowski M, Czabotar PE, Murphy JM, Lessene G. From (Tool)Bench to Bedside: The Potential of Necroptosis Inhibitors. J Med Chem 2023; 66:2361-2385. [PMID: 36781172 PMCID: PMC9969410 DOI: 10.1021/acs.jmedchem.2c01621] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Necroptosis is a regulated caspase-independent form of necrotic cell death that results in an inflammatory phenotype. This process contributes profoundly to the pathophysiology of numerous neurodegenerative, cardiovascular, infectious, malignant, and inflammatory diseases. Receptor-interacting protein kinase 1 (RIPK1), RIPK3, and the mixed lineage kinase domain-like protein (MLKL) pseudokinase have been identified as the key components of necroptosis signaling and are the most promising targets for therapeutic intervention. Here, we review recent developments in the field of small-molecule inhibitors of necroptosis signaling, provide guidelines for their use as chemical probes to study necroptosis, and assess the therapeutic challenges and opportunities of such inhibitors in the treatment of a range of clinical indications.
Collapse
Affiliation(s)
- Christopher
R. Gardner
- The
Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Katherine A. Davies
- The
Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Ying Zhang
- The
Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Martin Brzozowski
- The
Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Peter E. Czabotar
- The
Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - James M. Murphy
- The
Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Guillaume Lessene
- The
Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia,Department
of Pharmacology and Therapeutics, University
of Melbourne, Parkville, VIC 3052, Australia,Email;
| |
Collapse
|
22
|
Thomas PG, Shubina M, Balachandran S. ZBP1/DAI-Dependent Cell Death Pathways in Influenza A Virus Immunity and Pathogenesis. Curr Top Microbiol Immunol 2023; 442:41-63. [PMID: 31970498 DOI: 10.1007/82_2019_190] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Influenza A viruses (IAV) are members of the Orthomyxoviridae family of negative-sense RNA viruses. The greatest diversity of IAV strains is found in aquatic birds, but a subset of strains infects other avian as well as mammalian species, including humans. In aquatic birds, infection is largely restricted to the gastrointestinal tract and spread is through feces, while in humans and other mammals, respiratory epithelial cells are the primary sites supporting productive replication and transmission. IAV triggers the death of most cell types in which it replicates, both in culture and in vivo. When well controlled, such cell death is considered an effective host defense mechanism that eliminates infected cells and limits virus spread. Unchecked or inopportune cell death also results in immunopathology. In this chapter, we discuss the impact of cell death in restricting virus spread, supporting the adaptive immune response and driving pathogenesis in the mammalian respiratory tract. Recent studies have begun to shed light on the signaling pathways underlying IAV-activated cell death. These pathways, initiated by the pathogen sensor protein ZBP1 (also called DAI and DLM1), cause infected cells to undergo apoptosis, necroptosis, and pyroptosis. We outline mechanisms of ZBP1-mediated cell death signaling following IAV infection.
Collapse
Affiliation(s)
- Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, MS 351, 262 Danny Thomas Place, 38105, Memphis, TN, USA.
| | - Maria Shubina
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Room 224 Reimann Building, 333 Cottman Ave., 19111, Philadelphia, PA, USA
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Room 224 Reimann Building, 333 Cottman Ave., 19111, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Scarpellini C, Valembois S, Goossens K, Vadi M, Lanthier C, Klejborowska G, Van Der Veken P, De Winter H, Bertrand MJM, Augustyns K. From PERK to RIPK1: Design, synthesis and evaluation of novel potent and selective necroptosis inhibitors. Front Chem 2023; 11:1160164. [PMID: 37090247 PMCID: PMC10119423 DOI: 10.3389/fchem.2023.1160164] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Receptor-Interacting serine/threonine-Protein Kinase 1 (RIPK1) emerged as an important driver of inflammation and, consequently, inflammatory pathologies. The enzymatic activity of RIPK1 is known to indirectly promote inflammation by triggering cell death, in the form of apoptosis, necroptosis and pyroptosis. Small molecule Receptor-Interacting serine/threonine-Protein Kinase 1 inhibitors have therefore recently entered clinical trials for the treatment of a subset of inflammatory pathologies. We previously identified GSK2656157 (GSK'157), a supposedly specific inhibitor of protein kinase R (PKR)-like ER kinase (PERK), as a much more potent type II Receptor-Interacting serine/threonine-Protein Kinase 1 inhibitor. We now performed further structural optimisation on the GSK'157 scaffold in order to develop a novel class of more selective Receptor-Interacting serine/threonine-Protein Kinase 1 inhibitors. Based on a structure-activity relationship (SAR) reported in the literature, we anticipated that introducing a substituent on the para-position of the pyridinyl ring would decrease the interaction with PERK. Herein, we report a series of novel GSK'157 analogues with different para-substituents with increased selectivity for Receptor-Interacting serine/threonine-Protein Kinase 1. The optimisation led to UAMC-3861 as the best compound of this series in terms of activity and selectivity for Receptor-Interacting serine/threonine-Protein Kinase 1 over PERK. The most selective compounds were screened in vitro for their ability to inhibit RIPK1-dependent apoptosis and necroptosis. With this work, we successfully synthesised a novel series of potent and selective type II Receptor-Interacting serine/threonine-Protein Kinase 1 inhibitors based on the GSK'157 scaffold.
Collapse
Affiliation(s)
- Camilla Scarpellini
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Sophie Valembois
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Kenneth Goossens
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Mike Vadi
- Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Ghent, Belgium
- Laboratory Cell Death and Inflammation, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Caroline Lanthier
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Greta Klejborowska
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Pieter Van Der Veken
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Hans De Winter
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Mathieu J. M. Bertrand
- Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Ghent, Belgium
- Laboratory Cell Death and Inflammation, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- *Correspondence: Koen Augustyns,
| |
Collapse
|
24
|
Johnson JL, Yaron TM, Huntsman EM, Kerelsky A, Song J, Regev A, Lin TY, Liberatore K, Cizin DM, Cohen BM, Vasan N, Ma Y, Krismer K, Robles JT, van de Kooij B, van Vlimmeren AE, Andrée-Busch N, Käufer NF, Dorovkov MV, Ryazanov AG, Takagi Y, Kastenhuber ER, Goncalves MD, Hopkins BD, Elemento O, Taatjes DJ, Maucuer A, Yamashita A, Degterev A, Uduman M, Lu J, Landry SD, Zhang B, Cossentino I, Linding R, Blenis J, Hornbeck PV, Turk BE, Yaffe MB, Cantley LC. An atlas of substrate specificities for the human serine/threonine kinome. Nature 2023; 613:759-766. [PMID: 36631611 PMCID: PMC9876800 DOI: 10.1038/s41586-022-05575-3] [Citation(s) in RCA: 217] [Impact Index Per Article: 217.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 11/17/2022] [Indexed: 01/13/2023]
Abstract
Protein phosphorylation is one of the most widespread post-translational modifications in biology1,2. With advances in mass-spectrometry-based phosphoproteomics, 90,000 sites of serine and threonine phosphorylation have so far been identified, and several thousand have been associated with human diseases and biological processes3,4. For the vast majority of phosphorylation events, it is not yet known which of the more than 300 protein serine/threonine (Ser/Thr) kinases encoded in the human genome are responsible3. Here we used synthetic peptide libraries to profile the substrate sequence specificity of 303 Ser/Thr kinases, comprising more than 84% of those predicted to be active in humans. Viewed in its entirety, the substrate specificity of the kinome was substantially more diverse than expected and was driven extensively by negative selectivity. We used our kinome-wide dataset to computationally annotate and identify the kinases capable of phosphorylating every reported phosphorylation site in the human Ser/Thr phosphoproteome. For the small minority of phosphosites for which the putative protein kinases involved have been previously reported, our predictions were in excellent agreement. When this approach was applied to examine the signalling response of tissues and cell lines to hormones, growth factors, targeted inhibitors and environmental or genetic perturbations, it revealed unexpected insights into pathway complexity and compensation. Overall, these studies reveal the intrinsic substrate specificity of the human Ser/Thr kinome, illuminate cellular signalling responses and provide a resource to link phosphorylation events to biological pathways.
Collapse
Affiliation(s)
- Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tomer M Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biology & Medicine, Weill Cornell Medicine, Memorial Sloan Kettering Cancer Center and The Rockefeller University, New York, NY, USA
| | - Emily M Huntsman
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alexander Kerelsky
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Junho Song
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Amit Regev
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ting-Yu Lin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Cell and Developmental Biology Program, New York, NY, USA
| | - Katarina Liberatore
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Daniel M Cizin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin M Cohen
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Neil Vasan
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Yilun Ma
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Konstantin Krismer
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Biology, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jaylissa Torres Robles
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Bert van de Kooij
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Biology, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anne E van Vlimmeren
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Biology, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicole Andrée-Busch
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Norbert F Käufer
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maxim V Dorovkov
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Alexey G Ryazanov
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Yuichiro Takagi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edward R Kastenhuber
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Marcus D Goncalves
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Division of Endocrinology, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin D Hopkins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Alexandre Maucuer
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | - Akio Yamashita
- Department of Investigative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Japan
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Mohamed Uduman
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Jingyi Lu
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Sean D Landry
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Bin Zhang
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Ian Cossentino
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Rune Linding
- Rewire Tx, Humboldt-Universität zu Berlin, Berlin, Germany
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Peter V Hornbeck
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
| | - Michael B Yaffe
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Biology, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Divisions of Acute Care Surgery, Trauma, and Surgical Critical Care, and Surgical Oncology, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
25
|
Pereira WA, Nascimento ÉCM, Martins JBL. Electronic and structural study of T315I mutated form in DFG-out conformation of BCR-ABL inhibitors. J Biomol Struct Dyn 2022; 40:9774-9788. [PMID: 34121617 DOI: 10.1080/07391102.2021.1935320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this work, the four main drugs for the treatment of chronic myeloid leukemia were analyzed, being imatinib, dasatinib, nilotinib and ponatinib followed by four derivative molecules of nilotinib and ponatinib. For these derivative molecules, the fluorine atoms were replaced by hydrogen and chlorine atoms in order to shade light to the structural effects on this set of inhibitors. Electronic studies were performed at density functional theory level with the B3LYP functional and 6-311+G(d,p) basis set. The frontier molecular orbitals, gap HOMO-LUMO, and NBO were analyzed and compared to docking studies for mutant T315I tyrosine kinase protein structure code 3IK3, in the DFG-out conformation. Structural similarities were pointed out, such as the presence of groups common to all inhibitors and modifications raised up on new generations of imatinib-based inhibitors. One of them is the trifluoromethyl group present in nilotinib and later included in ponatinib, in addition to the 1-methylpiperazin-1-ium group that is present in imatinib and ponatinib. The frontier molecular orbitals of imatinib and ponatinib are contributing to the same amino acid residues, and the ineffectiveness of imatinib against the T315I mutation was discussed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Washington A Pereira
- Institute of Chemistry, Laboratory of Computational Chemistry, University of Brasília, Brasília, Federal District, Brazil
| | - Érica C M Nascimento
- Institute of Chemistry, Laboratory of Computational Chemistry, University of Brasília, Brasília, Federal District, Brazil
| | - João B L Martins
- Institute of Chemistry, Laboratory of Computational Chemistry, University of Brasília, Brasília, Federal District, Brazil
| |
Collapse
|
26
|
Li Y, Zhang L, Wang Y, Zou J, Yang R, Luo X, Wu C, Yang W, Tian C, Xu H, Wang F, Yang X, Li L, Yang S. Generative deep learning enables the discovery of a potent and selective RIPK1 inhibitor. Nat Commun 2022; 13:6891. [PMID: 36371441 PMCID: PMC9653409 DOI: 10.1038/s41467-022-34692-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
The retrieval of hit/lead compounds with novel scaffolds during early drug development is an important but challenging task. Various generative models have been proposed to create drug-like molecules. However, the capacity of these generative models to design wet-lab-validated and target-specific molecules with novel scaffolds has hardly been verified. We herein propose a generative deep learning (GDL) model, a distribution-learning conditional recurrent neural network (cRNN), to generate tailor-made virtual compound libraries for given biological targets. The GDL model is then applied to RIPK1. Virtual screening against the generated tailor-made compound library and subsequent bioactivity evaluation lead to the discovery of a potent and selective RIPK1 inhibitor with a previously unreported scaffold, RI-962. This compound displays potent in vitro activity in protecting cells from necroptosis, and good in vivo efficacy in two inflammatory models. Collectively, the findings prove the capacity of our GDL model in generating hit/lead compounds with unreported scaffolds, highlighting a great potential of deep learning in drug discovery.
Collapse
Affiliation(s)
- Yueshan Li
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Liting Zhang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Yifei Wang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Jun Zou
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Ruicheng Yang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Xinling Luo
- grid.13291.380000 0001 0807 1581Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, 610041 Chengdu, Sichuan China
| | - Chengyong Wu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Wei Yang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Chenyu Tian
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Haixing Xu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Falu Wang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Xin Yang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| | - Linli Li
- grid.13291.380000 0001 0807 1581Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, 610041 Chengdu, Sichuan China
| | - Shengyong Yang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, 610041 Chengdu, Sichuan China
| |
Collapse
|
27
|
Shi K, Zhang J, Zhou E, Wang J, Wang Y. Small-Molecule Receptor-Interacting Protein 1 (RIP1) Inhibitors as Therapeutic Agents for Multifaceted Diseases: Current Medicinal Chemistry Insights and Emerging Opportunities. J Med Chem 2022; 65:14971-14999. [DOI: 10.1021/acs.jmedchem.2c01518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kunyu Shi
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- Tianfu Jincheng Laboratory, Chengdu, 610041 Sichuan, China
| | - Enda Zhou
- West China School of Pharmacy, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- Tianfu Jincheng Laboratory, Chengdu, 610041 Sichuan, China
| |
Collapse
|
28
|
Chen L, Zhang X, Ou Y, Liu M, Yu D, Song Z, Niu L, Zhang L, Shi J. Advances in RIPK1 kinase inhibitors. Front Pharmacol 2022; 13:976435. [PMID: 36249746 PMCID: PMC9554302 DOI: 10.3389/fphar.2022.976435] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 01/27/2023] Open
Abstract
Programmed necrosis is a new modulated cell death mode with necrotizing morphological characteristics. Receptor interacting protein 1 (RIPK1) is a critical mediator of the programmed necrosis pathway that is involved in stroke, myocardial infarction, fatal systemic inflammatory response syndrome, Alzheimer's disease, and malignancy. At present, the reported inhibitors are divided into four categories. The first category is the type I ATP-competitive kinase inhibitors that targets the area occupied by the ATP adenylate ring; The second category is type Ⅱ ATP competitive kinase inhibitors targeting the DLG-out conformation of RIPK1; The third category is type Ⅲ kinase inhibitors that compete for binding to allosteric sites near ATP pockets; The last category is others. This paper reviews the structure, biological function, and recent research progress of receptor interaction protein-1 kinase inhibitors.
Collapse
Affiliation(s)
- Lu Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoqin Zhang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yaqing Ou
- Department of Pharmacy, The Affiliated Chengdu 363 Hospital of Southwest Medical University, Chengdu, Sichuan, China
| | - Maoyu Liu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dongke Yu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhiheng Song
- Suzhou University of Science and Technology, Suzhou, Jiangsu, China
| | - Lihong Niu
- Institute of Laboratory Animal Sciences, Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China,*Correspondence: Lihong Niu, ; Lijuan Zhang, ; Jianyou Shi,
| | - Lijuan Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Lihong Niu, ; Lijuan Zhang, ; Jianyou Shi,
| | - Jianyou Shi
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Lihong Niu, ; Lijuan Zhang, ; Jianyou Shi,
| |
Collapse
|
29
|
Pandrala M, Bruyneel AAN, Hnatiuk AP, Mercola M, Malhotra SV. Designing Novel BCR-ABL Inhibitors for Chronic Myeloid Leukemia with Improved Cardiac Safety. J Med Chem 2022; 65:10898-10919. [PMID: 35944901 PMCID: PMC9421657 DOI: 10.1021/acs.jmedchem.1c01853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Development of tyrosine kinase inhibitors (TKIs) targeting the BCR-ABL oncogene constitutes an effective approach for the treatment of chronic myeloid leukemia (CML) and/or acute lymphoblastic leukemia. However, currently available inhibitors are limited by drug resistance and toxicity. Ponatinib, a third-generation inhibitor, has demonstrated excellent efficacy against both wild type and mutant BCR-ABL kinase, including the "gatekeeper" T315I mutation that is resistant to all other currently available TKIs. However, it is one of the most cardiotoxic of the FDA-approved TKIs. Herein, we report the structure-guided design of a novel series of potent BCR-ABL inhibitors, particularly for the T315I mutation. Our drug design paradigm was coupled to iPSC-cardiomyocyte models. Systematic structure-activity relationship studies identified two compounds, 33a and 36a, that significantly inhibit the kinase activity of both native BCR-ABL and the T315I mutant. We have identified the most cardiac-safe TKIs reported to date, and they may be used to effectively treat CML patients with the T315I mutation.
Collapse
Affiliation(s)
- Mallesh Pandrala
- Department
of Cell, Developmental and Cancer Biology, Center for Experimental
Therapeutics, Knight Cancer Institute, Oregon
Health and Science University, Portland, Oregon 97201, United States
| | - Arne Antoon N. Bruyneel
- Cardiovascular
Institute and Department of Medicine, Stanford
University, Stanford, California 94305, United States
| | - Anna P. Hnatiuk
- Cardiovascular
Institute and Department of Medicine, Stanford
University, Stanford, California 94305, United States
| | - Mark Mercola
- Cardiovascular
Institute and Department of Medicine, Stanford
University, Stanford, California 94305, United States,
| | - Sanjay V. Malhotra
- Department
of Cell, Developmental and Cancer Biology, Center for Experimental
Therapeutics, Knight Cancer Institute, Oregon
Health and Science University, Portland, Oregon 97201, United States,
| |
Collapse
|
30
|
Srivastava A, Tomar B, Sharma P, Kumari S, Prakash S, Rath SK, Kulkarni OP, Gupta SK, Mulay SR. RIPK3-MLKL signaling activates mitochondrial CaMKII and drives intrarenal extracellular matrix production during CKD. Matrix Biol 2022; 112:72-89. [PMID: 35964866 DOI: 10.1016/j.matbio.2022.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/19/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022]
Abstract
Intrarenal extracellular matrix production is a prevalent feature of all forms of chronic kidney disease (CKD). The transforming growth factor-beta (TGFβ) is believed to be a major driver of extracellular matrix production. Nevertheless, anti-TGFβ therapies have consistently failed to reduce extracellular matrix production in CKD patients indicating the need for novel therapeutic strategies. We have previously shown that necroinflammation contributes to acute kidney injury. Here, we show that chronic/persistent necroinflammation drives intrarenal extracellular matrix production during CKD. We found that renal expression of receptor-interacting protein kinase-1 (RIPK1), RIPK3, and mixed lineage kinase domain-like (MLKL) increases with the expansion of intrarenal extracellular matrix production and declined kidney function in both humans and mice. Furthermore, we found that TGFβ exposure induces the translocation of RIPK3 and MLKL to mitochondria resulting in mitochondrial dysfunction and ROS production. Mitochondrial ROS activates the serine-threonine kinase calcium/calmodulin-dependent protein kinases-II (CaMKII) that increases phosphorylation of Smad2/3 and subsequent production of alpha-smooth muscle actin (αSMA), collagen (Col) 1α1, etc. in response to TGFβ during the intrarenal extracellular matrix production. Consistent with this, deficiency or knockdown of RIPK3 or MLKL as well as pharmacological inhibition of RIPK1, RIPK3, and CaMKII prevents the intrarenal extracellular matrix production in oxalate-induced CKD and unilateral ureteral obstruction (UUO). Together, RIPK1, RIPK3, MLKL, CaMKII, and Smad2/3 are molecular targets to inhibit intrarenal extracellular matrix production and preserve kidney function during CKD.
Collapse
Affiliation(s)
- Anjali Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Bhawna Tomar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Pravesh Sharma
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, 500078, India
| | - Sunaina Kumari
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Shakti Prakash
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Srikanta Kumar Rath
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Onkar Prakash Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, 500078, India
| | - Shashi Kumar Gupta
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shrikant R Mulay
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
31
|
Hnatiuk AP, Bruyneel AA, Tailor D, Pandrala M, Dheeraj A, Li W, Serrano R, Feyen DA, Vu MM, Amatya P, Gupta S, Nakauchi Y, Morgado I, Wiebking V, Liao R, Porteus MH, Majeti R, Malhotra SV, Mercola M. Reengineering Ponatinib to Minimize Cardiovascular Toxicity. Cancer Res 2022; 82:2777-2791. [PMID: 35763671 PMCID: PMC9620869 DOI: 10.1158/0008-5472.can-21-3652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/29/2022] [Accepted: 05/24/2022] [Indexed: 01/07/2023]
Abstract
Small molecule tyrosine kinase inhibitors (TKI) have revolutionized cancer treatment and greatly improved patient survival. However, life-threatening cardiotoxicity of many TKIs has become a major concern. Ponatinib (ICLUSIG) was developed as an inhibitor of the BCR-ABL oncogene and is among the most cardiotoxic of TKIs. Consequently, use of ponatinib is restricted to the treatment of tumors carrying T315I-mutated BCR-ABL, which occurs in chronic myeloid leukemia (CML) and confers resistance to first- and second-generation inhibitors such as imatinib and nilotinib. Through parallel screening of cardiovascular toxicity and antitumor efficacy assays, we engineered safer analogs of ponatinib that retained potency against T315I BCR-ABL kinase activity and suppressed T315I mutant CML tumor growth. The new compounds were substantially less toxic in human cardiac vasculogenesis and cardiomyocyte contractility assays in vitro. The compounds showed a larger therapeutic window in vivo, leading to regression of human T315I mutant CML xenografts without cardiotoxicity. Comparison of the kinase inhibition profiles of ponatinib and the new compounds suggested that ponatinib cardiotoxicity is mediated by a few kinases, some of which were previously unassociated with cardiovascular disease. Overall, the study develops an approach using complex phenotypic assays to reduce the high risk of cardiovascular toxicity that is prevalent among small molecule oncology therapeutics. SIGNIFICANCE Newly developed ponatinib analogs retain antitumor efficacy but elicit significantly decreased cardiotoxicity, representing a therapeutic opportunity for safer CML treatment.
Collapse
MESH Headings
- Antineoplastic Agents/adverse effects
- Cardiotoxicity/drug therapy
- Cardiotoxicity/etiology
- Cardiotoxicity/prevention & control
- Drug Resistance, Neoplasm
- Fusion Proteins, bcr-abl/genetics
- Humans
- Imidazoles
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Protein Kinase Inhibitors/adverse effects
- Pyridazines/pharmacology
- Pyridazines/therapeutic use
Collapse
Affiliation(s)
- Anna P. Hnatiuk
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Arne A.N. Bruyneel
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Dhanir Tailor
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health Sciences University School of Medicine, Portland, Oregon
| | - Mallesh Pandrala
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health Sciences University School of Medicine, Portland, Oregon
| | - Arpit Dheeraj
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health Sciences University School of Medicine, Portland, Oregon
| | - Wenqi Li
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health Sciences University School of Medicine, Portland, Oregon
| | - Ricardo Serrano
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Dries A.M. Feyen
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Michelle M. Vu
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Prashila Amatya
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Saloni Gupta
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health Sciences University School of Medicine, Portland, Oregon
| | - Yusuke Nakauchi
- Division of Hematology Institute for Stem cell Biology and Regenerative Medicine, Stanford School of Medicine, California
| | - Isabel Morgado
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Volker Wiebking
- Department of Pediatrics, Stanford School of Medicine, Stanford, California
| | - Ronglih Liao
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| | - Matthew H. Porteus
- Department of Pediatrics, Stanford School of Medicine, Stanford, California
| | - Ravindra Majeti
- Division of Hematology Institute for Stem cell Biology and Regenerative Medicine, Stanford School of Medicine, California
| | - Sanjay V. Malhotra
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health Sciences University School of Medicine, Portland, Oregon
| | - Mark Mercola
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, California
| |
Collapse
|
32
|
Zhang G, Wang J, Zhao Z, Xin T, Fan X, Shen Q, Raheem A, Lee CR, Jiang H, Ding J. Regulated necrosis, a proinflammatory cell death, potentially counteracts pathogenic infections. Cell Death Dis 2022; 13:637. [PMID: 35869043 PMCID: PMC9307826 DOI: 10.1038/s41419-022-05066-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023]
Abstract
Since the discovery of cell apoptosis, other gene-regulated cell deaths are gradually appreciated, including pyroptosis, ferroptosis, and necroptosis. Necroptosis is, so far, one of the best-characterized regulated necrosis. In response to diverse stimuli (death receptor or toll-like receptor stimulation, pathogenic infection, or other factors), necroptosis is initiated and precisely regulated by the receptor-interacting protein kinase 3 (RIPK3) with the involvement of its partners (RIPK1, TRIF, DAI, or others), ultimately leading to the activation of its downstream substrate, mixed lineage kinase domain-like (MLKL). Necroptosis plays a significant role in the host's defense against pathogenic infections. Although much has been recognized regarding modulatory mechanisms of necroptosis during pathogenic infection, the exact role of necroptosis at different stages of infectious diseases is still being unveiled, e.g., how and when pathogens utilize or evade necroptosis to facilitate their invasion and how hosts manipulate necroptosis to counteract these detrimental effects brought by pathogenic infections and further eliminate the encroaching pathogens. In this review, we summarize and discuss the recent progress in the role of necroptosis during a series of viral, bacterial, and parasitic infections with zoonotic potentials, aiming to provide references and directions for the prevention and control of infectious diseases of both human and animals.
Collapse
Affiliation(s)
- Guangzhi Zhang
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jinyong Wang
- grid.508381.70000 0004 0647 272XShenzhen Bay Laboratory, Institute of Infectious Diseases, Shenzhen, 518000 China ,grid.258164.c0000 0004 1790 3548Institute of Respiratory Diseases, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, Shenzhen, 518020 Guangdong China
| | - Zhanran Zhao
- grid.47840.3f0000 0001 2181 7878Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, CA 94720-3200 USA
| | - Ting Xin
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Xuezheng Fan
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Qingchun Shen
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Abdul Raheem
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China ,grid.35155.370000 0004 1790 4137Present Address: Huazhong Agricultural University, Wuhan, China
| | - Chae Rhim Lee
- grid.47840.3f0000 0001 2181 7878Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, CA 94720-3200 USA ,grid.266093.80000 0001 0668 7243Present Address: University of California, Irvine, CA USA
| | - Hui Jiang
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jiabo Ding
- grid.464332.4Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
33
|
Huang T, Gu J, Jiang H, Liang Q, Perlmutter JS, Tu Z. Radiosynthesis and characterization of a carbon-11 PET tracer for receptor-interacting protein kinase 1. Nucl Med Biol 2022; 110-111:18-27. [PMID: 35472678 PMCID: PMC11071064 DOI: 10.1016/j.nucmedbio.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Receptor-interacting protein kinase 1 (RIPK1) has emerged as a crucial regulator of necroptosis and the inflammatory response by activating a group of downstream immune receptors. It has been recognized as a pivotal contributor to cell death and inflammation in various physiological and pathological processes. RIPK1 deficiency or dysregulation in humans can cause severe immunodeficiency and neurodegenerative diseases such as multiple sclerosis and amyotrophic lateral sclerosis. Recently, diverse structures of RIPK1 inhibitors have been developed as potential therapeutics for neurodegenerative diseases and other pathological inflammatory processes. 7-oxo-2,4,5,7-tetrahydro-6H-pyrazolo[3,4-c]pyridine (Compound 5 or TZ7774) was reported as a novel RIPK1 inhibitor with a Ki of 0.91 nM that can suppress necroptosis in mouse and human cells. To develop a radiotracer for investigating the RIPK1 in vivo, we radiosynthesized [11C]TZ7774 and performed preliminary in vitro and in vivo evaluations in rodents and macaque. METHODS Synthesis of the desmethyl precursor TZ7790 was performed and optimized. The radiosynthesis of [11C]TZ7774 was achieved through TZ7790 reacting with [11C]methyl iodide via N-methylation. Ex vivo biodistribution of [11C]TZ7774 was performed in normal Sprague-Dawley rats. Characterization of [11C]TZ7774 in response to inflammation was performed using ex vivo biodistribution study in normal and LPS treated (10 mg/kg) C57BL/6 mice, and in vitro autoradiography and immunohistochemistry of the spleen. MicroPET brain study of [11C]TZ7774 in the macaque was also performed. RESULTS AND CONCLUSIONS The radiosynthesis of [11C]TZ7774 was achieved with good radiochemical yield (30-40%, decay corrected to the end of bombardment (EOB)), high chemical purity (>90%), high radiochemical purity (>99%), and high molar activity (>207 GBq/μmol, decay corrected to EOB). Biodistribution studies in Sprague-Dawley rats showed [11C]TZ7774 has a high brain uptake of 0.53 (%ID/g) at 5 min post injection; pancreas, spleen, kidney, and liver also showed a relatively high initial uptake of 0.49, 0.41, 0.62, and 0.95 at 5 min respectively. Uptake of [11C]TZ7774 increased in LPS-treated C57BL/6 mice by 40.9%, 90.4%, and 54.9% in liver, spleen, and kidney respectively. In vitro autoradiography study also revealed increased uptake of [11C]TZ7774 in the spleen of LPS-treated mice. Further characterization with immunohistochemistry confirmed increased expression of RIPK1 in red and white pulp of the spleen for mice pre-treated with LPS. MicroPET demonstrated that [11C]TZ7774 had good initial brain uptake in macaque with an (SUV) of ∼3.7 at 6-10 min, and quickly washed out from brain. These data confirm successful radiosynthesis of a RIPK1 specific radiotracer [11C]TZ7774. Our preliminary studies showed good response to LPS-induced inflammation in rodents and good uptake in macaque brain. [11C]TZ7774 has a potential to image RIPK1 related necroptosis and inflammatory processes.
Collapse
Affiliation(s)
- Tianyu Huang
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jiwei Gu
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Hao Jiang
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Qianwa Liang
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St Louis, MO 63110, USA; Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA; Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
34
|
Jung SY, Park JI, Jeong JH, Song KH, Ahn J, Hwang SG, Kim J, Park JK, Lim DS, Song JY. Receptor interacting protein 1 knockdown induces cell death in liver cancer by suppressing STAT3/ATR activation in a p53-dependent manner. Am J Cancer Res 2022; 12:2594-2611. [PMID: 35812053 PMCID: PMC9251686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023] Open
Abstract
The survival and death of eukaryotic cells are tightly controlled by a variety of proteins in response to the cellular environment. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is a receptor-interacting Ser/Thr kinase that has recently been reported as an important regulator of cell survival, apoptosis, and necroptosis; however, its role in liver cancer remains unclear. In this study, we examined the effect of siRNA-mediated RIPK1 knockdown on the survival and death of liver cancer cells. Treatment with siRIPK1 decreased the growth rate of liver cancer cells and increased apoptotic, but not necrotic cell death, which was higher in wild-type p53 (wt-p53) cells than in mutant-type p53 (mt-p53) cells. In addition, RIPK1 knockdown increased p53 expression and G1 phase arrest in wt-p53 cells. Although suppressing p53 did not alter RIPK1 expression, it did attenuate siRIPK1-induced cell death. Interestingly, RIPK1 knockdown also increased the generation of reactive oxygen species and DNA damage by inhibiting signal transduced and activator of transcription 3 (STAT3) and ATM and RAD3-related (ATR) in wt-p53 cells but not in mt-p53 cells. Moreover, STAT3 or ATR inhibition in p53 mutant cells restored siRIPK1-mediated cell death. Together, the results of this study suggest that RIPK1 suppression induces apoptotic cell death by inhibiting the STAT3/ATR axis in a p53-dependent manner. Furthermore, these findings suggest that RIPK1, alone or in combination, may be a promising target for treating liver cancer.
Collapse
Affiliation(s)
- Seung-Youn Jung
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical SciencesSeoul 01812, Republic of Korea
| | - Jeong-In Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical SciencesSeoul 01812, Republic of Korea
| | - Jae-Hoon Jeong
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical SciencesSeoul 01812, Republic of Korea
| | - Kyung-Hee Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical SciencesSeoul 01812, Republic of Korea
| | - Jiyeon Ahn
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical SciencesSeoul 01812, Republic of Korea
| | - Sang-Gu Hwang
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical SciencesSeoul 01812, Republic of Korea
| | - Jaesung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical SciencesSeoul 01812, Republic of Korea
| | - Jong-Kuk Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical SciencesSeoul 01812, Republic of Korea
| | - Dae-Seog Lim
- Department of Biotechnology, CHA UniversityGyeonggi-do 13488, Republic of Korea
| | - Jie-Young Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical SciencesSeoul 01812, Republic of Korea
| |
Collapse
|
35
|
Vissers MFJM, Heuberger JAAC, Groeneveld GJ, Oude Nijhuis J, De Deyn PP, Hadi S, Harris J, Tsai RM, Cruz-Herranz A, Huang F, Tong V, Erickson R, Zhu Y, Scearce-Levie K, Hsiao-Nakamoto J, Tang X, Chang M, Fox BM, Pomponio RJ, Alonso-Alonso M, Zilberstein M, Atassi N, Troyer MD, Ho C. Safety, pharmacokinetics and target engagement of novel RIPK1 inhibitor SAR443060 (DNL747) for neurodegenerative disorders: Randomized, placebo-controlled, double-blind phase I/Ib studies in healthy subjects and patients. Clin Transl Sci 2022; 15:2010-2023. [PMID: 35649245 PMCID: PMC9372423 DOI: 10.1111/cts.13317] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 01/15/2023] Open
Abstract
RIPK1 is a master regulator of inflammatory signaling and cell death and increased RIPK1 activity is observed in human diseases, including Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS). RIPK1 inhibition has been shown to protect against cell death in a range of preclinical cellular and animal models of diseases. SAR443060 (previously DNL747) is a selective, orally bioavailable, central nervous system (CNS)–penetrant, small‐molecule, reversible inhibitor of RIPK1. In three early‐stage clinical trials in healthy subjects and patients with AD or ALS (NCT03757325 and NCT03757351), SAR443060 distributed into the cerebrospinal fluid (CSF) after oral administration and demonstrated robust peripheral target engagement as measured by a reduction in phosphorylation of RIPK1 at serine 166 (pRIPK1) in human peripheral blood mononuclear cells compared to baseline. RIPK1 inhibition was generally safe and well‐tolerated in healthy volunteers and patients with AD or ALS. Taken together, the distribution into the CSF after oral administration, the peripheral proof‐of‐mechanism, and the safety profile of RIPK1 inhibition to date, suggest that therapeutic modulation of RIPK1 in the CNS is possible, conferring potential therapeutic promise for AD and ALS, as well as other neurodegenerative conditions. However, SAR443060 development was discontinued due to long‐term nonclinical toxicology findings, although these nonclinical toxicology signals were not observed in the short duration dosing in any of the three early‐stage clinical trials. The dose‐limiting toxicities observed for SAR443060 preclinically have not been reported for other RIPK1‐inhibitors, suggesting that these toxicities are compound‐specific (related to SAR443060) rather than RIPK1 pathway‐specific.
Collapse
Affiliation(s)
- Maurits F J M Vissers
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Center, Leiden, The Netherlands
| | | | - Geert Jan Groeneveld
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Center, Leiden, The Netherlands
| | - Jerome Oude Nijhuis
- Department of Neurology and Alzheimer Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter Paul De Deyn
- Department of Neurology and Alzheimer Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences and Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Salah Hadi
- PRA Health Sciences, Groningen, The Netherlands
| | - Jeffrey Harris
- Denali Therapeutics Inc., South San Francisco, California, USA
| | - Richard M Tsai
- Denali Therapeutics Inc., South San Francisco, California, USA
| | | | - Fen Huang
- Denali Therapeutics Inc., South San Francisco, California, USA
| | - Vincent Tong
- Denali Therapeutics Inc., South San Francisco, California, USA
| | | | - Yuda Zhu
- Denali Therapeutics Inc., South San Francisco, California, USA
| | | | | | - Xinyan Tang
- Denali Therapeutics Inc., South San Francisco, California, USA
| | - Megan Chang
- Denali Therapeutics Inc., South San Francisco, California, USA
| | - Brian M Fox
- Denali Therapeutics Inc., South San Francisco, California, USA
| | | | | | | | | | | | - Carole Ho
- Denali Therapeutics Inc., South San Francisco, California, USA
| |
Collapse
|
36
|
Zhao W, Liu Y, Xu L, He Y, Cai Z, Yu J, Zhang W, Xing C, Zhuang C, Qu Z. Targeting Necroptosis as a Promising Therapy for Alzheimer's Disease. ACS Chem Neurosci 2022; 13:1697-1713. [PMID: 35607807 DOI: 10.1021/acschemneuro.2c00172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible and progressive neurodegenerative disorder featured by memory loss and cognitive default. However, there has been no effective therapeutic approach to prevent the development of AD and the available therapies are only to alleviate some symptoms with limited efficacy and severe side effects. Necroptosis is a new kind of cell death, being regarded as a genetically programmed and regulated pattern of necrosis. Increasing evidence reveals that necroptosis is tightly related to the occurrence and development of AD. This review aims to summarize the potential role of necroptosis in AD progression and the therapeutic capacity of targeting necroptosis for AD patients.
Collapse
Affiliation(s)
- Wenli Zhao
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Yue Liu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lijuan Xu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yuan He
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China
| | - Zhenyu Cai
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200070, China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Wannian Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhuo Qu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| |
Collapse
|
37
|
Maremonti F, Meyer C, Linkermann A. Mechanisms and Models of Kidney Tubular Necrosis and Nephron Loss. J Am Soc Nephrol 2022; 33:472-486. [PMID: 35022311 PMCID: PMC8975069 DOI: 10.1681/asn.2021101293] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding nephron loss is a primary strategy for preventing CKD progression. Death of renal tubular cells may occur by apoptosis during developmental and regenerative processes. However, during AKI, the transition of AKI to CKD, sepsis-associated AKI, and kidney transplantation ferroptosis and necroptosis, two pathways associated with the loss of plasma membrane integrity, kill renal cells. This necrotic type of cell death is associated with an inflammatory response, which is referred to as necroinflammation. Importantly, the necroinflammatory response to cells that die by necroptosis may be fundamentally different from the tissue response to ferroptosis. Although mechanisms of ferroptosis and necroptosis have recently been investigated in detail, the cell death propagation during tubular necrosis, although described morphologically, remains incompletely understood. Here, we argue that a molecular switch downstream of tubular necrosis determines nephron regeneration versus nephron loss. Unraveling the details of this "switch" must include the inflammatory response to tubular necrosis and regenerative signals potentially controlled by inflammatory cells, including the stimulation of myofibroblasts as the origin of fibrosis. Understanding in detail the molecular switch and the inflammatory responses to tubular necrosis can inform the discussion of therapeutic options.
Collapse
Affiliation(s)
- Francesca Maremonti
- Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Claudia Meyer
- Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Andreas Linkermann
- Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany .,Biotechnology Center, Technical University of Dresden, Dresden, Germany
| |
Collapse
|
38
|
Focosi D, Maggi F, McConnell S, Casadevall A. Very low levels of remdesivir resistance in SARS-COV-2 genomes after 18 months of massive usage during the COVID19 pandemic: A GISAID exploratory analysis. Antiviral Res 2022; 198:105247. [PMID: 35033572 PMCID: PMC8755559 DOI: 10.1016/j.antiviral.2022.105247] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/12/2022]
Abstract
Massive usage of antiviral compounds during a pandemic creates an ideal ground for emergence of resistant strains. Remdesivir, a broad-spectrum inhibitor of the viral RNA-dependent RNA polymerase (RdRp), was extensively prescribed under emergency use authorization during the first 18 months of the COVID19 pandemic, before randomized controlled trials showed poor efficacy in hospitalized patients. RdRp mutations conferring resistance to remdesivir are well known from in vitro studies, and the huge SARS-CoV-2 sequencing effort during the ongoing COVID19 pandemic represents an unprecedented opportunity to assess emergence and fitness of antiviral resistance in vivo. We mined the GISAID database to extrapolate the frequency of remdesivir escape mutations. Our analysis reveals very low levels of remdesivir resistance worldwide despite massive usage.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy.
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy; Laboratory of Microbiology, ASST Sette Laghi, Varese, Italy.
| | - Scott McConnell
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, MD, USA.
| | - Arturo Casadevall
- Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
39
|
Yu Z, Efstathiou NE, Correa VSMC, Chen X, Ishihara K, Iesato Y, Narimatsu T, Ntentakis D, Chen Y, Vavvas DG. Receptor interacting protein 3 kinase, not 1 kinase, through MLKL-mediated necroptosis is involved in UVA-induced corneal endothelium cell death. Cell Death Dis 2021; 7:366. [PMID: 34815387 PMCID: PMC8611008 DOI: 10.1038/s41420-021-00757-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/09/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022]
Abstract
Ultraviolet (UV) is one of the most energetic radiations in the solar spectrum that can result in various tissue injury disorders. Previous studies demonstrated that UVA, which represents 95% of incident photovoltaic radiation, induces corneal endothelial cells (CECs) death. Programmed cell death (PCD) has been implicated in numerous ophthalmologic diseases. Here, we investigated receptor-interacting protein 3 kinase (RIPK3), a key signaling molecule of PCD, in UVA-induced injury using a short-term corneal endothelium (CE) culture model. UVA irradiation activated RIPK3 and mediated necroptosis both in mouse CE and primary human CECs (pHCECs). UVA irradiation was associated with upregulation of key necroptotic molecules (DAI, TRIF, and MLKL) that lie downstream of RIPK3. Moreover, RIPK3 inhibition or silencing in primary corneal endothelial cells suppresses UVA-induced cell death, along with downregulation of MLKL in pHCECs. In addition, genetic inhibition or knockout of RIPK3 in mice (RIPK3K51A and RIPK3-/- mice) similarly attenuates cell death and the levels of necroptosis in ex vivo UVA irradiation experiments. In conclusion, these results identify RIPK3, not RIPK1, as a critical regulator of UVA-induced cell death in CE and indicate its potential as a future protective target.
Collapse
Affiliation(s)
- Zhen Yu
- grid.38142.3c000000041936754XRetina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114 USA ,grid.258164.c0000 0004 1790 3548Shenzhen Eye Hospital, Shenzhen Key Ophthalmic Laboratory, Jinan University, 518040 Shenzhen, China
| | - Nikolaos E. Efstathiou
- grid.38142.3c000000041936754XRetina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114 USA
| | - Victor S. M. C. Correa
- grid.38142.3c000000041936754XRetina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114 USA
| | - Xiaohong Chen
- grid.38142.3c000000041936754XRetina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114 USA
| | - Kenji Ishihara
- grid.38142.3c000000041936754XRetina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114 USA
| | - Yasuhiro Iesato
- grid.38142.3c000000041936754XRetina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114 USA
| | - Toshio Narimatsu
- grid.38142.3c000000041936754XRetina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114 USA
| | - Dimitrios Ntentakis
- grid.38142.3c000000041936754XRetina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114 USA
| | - Yanyun Chen
- grid.38142.3c000000041936754XRetina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114 USA
| | - Demetrios G. Vavvas
- grid.38142.3c000000041936754XRetina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114 USA ,grid.38142.3c000000041936754XDepartment of Ophthalmology, Retina Service, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
40
|
Jantas D, Lasoń W. Preclinical Evidence for the Interplay between Oxidative Stress and RIP1-Dependent Cell Death in Neurodegeneration: State of the Art and Possible Therapeutic Implications. Antioxidants (Basel) 2021; 10:antiox10101518. [PMID: 34679652 PMCID: PMC8532910 DOI: 10.3390/antiox10101518] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases are the most frequent chronic, age-associated neurological pathologies having a major impact on the patient’s quality of life. Despite a heavy medical, social and economic burden they pose, no causative treatment is available for these diseases. Among the important pathogenic factors contributing to neuronal loss during neurodegeneration is elevated oxidative stress resulting from a disturbed balance between endogenous prooxidant and antioxidant systems. For many years, it was thought that increased oxidative stress was a cause of neuronal cell death executed via an apoptotic mechanism. However, in recent years it has been postulated that rather programmed necrosis (necroptosis) is the key form of neuronal death in the course of neurodegenerative diseases. Such assumption was supported by biochemical and morphological features of the dying cells as well as by the fact that various necroptosis inhibitors were neuroprotective in cellular and animal models of neurodegenerative diseases. In this review, we discuss the relationship between oxidative stress and RIP1-dependent necroptosis and apoptosis in the context of the pathomechanism of neurodegenerative disorders. Based on the published data mainly from cellular models of neurodegeneration linking oxidative stress and necroptosis, we postulate that administration of multipotential neuroprotectants with antioxidant and antinecroptotic properties may constitute an efficient pharmacotherapeutic strategy for the treatment of neurodegenerative diseases.
Collapse
|
41
|
Li S, Qu L, Wang X, Kong L. Novel insights into RIPK1 as a promising target for future Alzheimer's disease treatment. Pharmacol Ther 2021; 231:107979. [PMID: 34480965 DOI: 10.1016/j.pharmthera.2021.107979] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/30/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an intractable neurodegenerative disease showing a clinical manifestation with memory loss, cognitive impairment and behavioral dysfunction. The predominant pathological characteristics of AD include neuronal loss, β-amyloid (Aβ) deposition and hyperphosphorylated Tau induced neurofibrillary tangles (NFTs), while considerable studies proved these could be triggered by neuronal death and neuroinflammation. Receptor-interacting protein kinase 1 (RIPK1) is a serine/threonine kinase existed at the cross-point of cell death and inflammatory signaling pathways. Emerging investigations have shed light on RIPK1 for its potential role in AD progression. The present review makes a bird's eye view on the functions of RIPK1 and mainly focus on the underlying linkages between RIPK1 and AD from comprehensive aspects including neuronal death, Aβ and Tau, inflammasome activation, BBB rupture, AMPK/mTOR, mitochondrial dysfunction and O-glcNAcylation. Moreover, the discovery of RIPK1 inhibitors, ongoing clinical trials along with future RIPK1-targeted therapeutics are also reviewed.
Collapse
Affiliation(s)
- Shang Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lailiang Qu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
42
|
Meng H, Wu G, Zhao X, Wang A, Li D, Tong Y, Jin T, Cao Y, Shan B, Hu S, Li Y, Pan L, Tian X, Wu P, Peng C, Yuan J, Li G, Tan L, Wang Z, Li Y. Discovery of a cooperative mode of inhibiting RIPK1 kinase. Cell Discov 2021; 7:41. [PMID: 34075030 PMCID: PMC8169668 DOI: 10.1038/s41421-021-00278-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 11/09/2022] Open
Abstract
RIPK1, a death domain-containing kinase, has been recognized as an important therapeutic target for inhibiting apoptosis, necroptosis, and inflammation under pathological conditions. RIPK1 kinase inhibitors have been advanced into clinical studies for the treatment of various human diseases. One of the current bottlenecks in developing RIPK1 inhibitors is to discover new approaches to inhibit this kinase as only limited chemotypes have been developed. Here we describe Necrostatin-34 (Nec-34), a small molecule that inhibits RIPK1 kinase with a mechanism distinct from known RIPK1 inhibitors such as Nec-1s. Mechanistic studies suggest that Nec-34 stabilizes RIPK1 kinase in an inactive conformation by occupying a distinct binding pocket in the kinase domain. Furthermore, we show that Nec-34 series of compounds can synergize with Nec-1s to inhibit RIPK1 in vitro and in vivo. Thus, Nec-34 defines a new strategy to target RIPK1 kinase and provides a potential option of combinatorial therapy for RIPK1-mediated diseases.
Collapse
Affiliation(s)
- Huyan Meng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guowei Wu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinsuo Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Anhui Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Dekang Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yilun Tong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Taijie Jin
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ye Cao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Shichen Hu
- University of Chinese Academy of Sciences, Beijing, China.,Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Ying Li
- University of Chinese Academy of Sciences, Beijing, China.,Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Lifeng Pan
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxu Tian
- National Facility for Protein Science, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Ping Wu
- National Facility for Protein Science, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Chao Peng
- National Facility for Protein Science, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Guohui Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China.
| | - Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Zhaoyin Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Ying Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
43
|
Recent progress in small-molecule inhibitors for critical therapeutic targets of necroptosis. Future Med Chem 2021; 13:817-837. [PMID: 33845591 DOI: 10.4155/fmc-2020-0386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nonapoptotic types of regulated cell death have attracted widespread interest since the discovery that certain forms of cell necrosis can be regulated. In particular, research into cell necroptosis has made significant progress in connection with kidney, inflammatory, degenerative and neoplastic diseases. Inhibitors targeting the critical necroptosis-associated proteins RIPK1/3 and MLKL have been in development for more than a decade. Herein the authors compile a list of the known small-molecule inhibitors of these enzymes and representative structures of compounds co-crystallized with these proteins and put forward some thoughts regarding their future development.
Collapse
|
44
|
Rui C, Shi SN, Ren W, Qin X, Zhuang C, Chen X, Chen G, Yu J, Wang HY, Cai Z. The multitargeted kinase inhibitor KW-2449 ameliorates cisplatin-induced nephrotoxicity by targeting RIPK1-mediated necroptosis. Biochem Pharmacol 2021; 188:114542. [PMID: 33819469 DOI: 10.1016/j.bcp.2021.114542] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Cisplatin (cis-dichloro-diammine platinum, CDDP) is a well-known chemotherapeutic drug against a broad spectrum of human malignancies. However, the clinical utility of this effective chemotherapy agent is dose limited by its toxic side effects such as nephrotoxicity and ototoxicity. Necroptosis is a form of programmed necrotic cell death that is mediated by serine/threonine kinases, RIPK1 and RIPK3, together with MLKL. In this study, we identified that the multitargeted kinase inhibitor KW-2449 inhibited cisplatin-induced necroptosis, while potentiated cisplatin-induced apoptosis in cancer cells. Mechanistic studies indicated that KW-2449 directly inhibited RIPK1 kinase activity to block necroptosis. Oral administration of KW-2449 attenuated renal cell necrosis and reduced pro-inflammatory responses in mouse models of cisplatin-induced nephrotoxicity. Taken together, our study shows that KW-2449 is a novel necroptosis inhibitor by targeting RIPK1 kinase activity and has great clinic potential for the treatment of cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Chunhua Rui
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shen-Nan Shi
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wenqing Ren
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xia Qin
- Department of General Surgery, The First Naval Hospital of Southern Theater Command, Zhanjiang 440803, China
| | - Chunlin Zhuang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China; School of Pharmacy, Second Military Medical University, Shanghai 200433, China; College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Xiaofei Chen
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Gang Chen
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jianqiang Yu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Hong-Yang Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China; National Center for Liver Cancer, Second Military Medical University, Shanghai 201805, China; The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China.
| | - Zhenyu Cai
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China; College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China.
| |
Collapse
|
45
|
c-Abl activates RIPK3 signaling in Gaucher disease. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166089. [PMID: 33549745 DOI: 10.1016/j.bbadis.2021.166089] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 01/11/2023]
Abstract
Gaucher disease (GD) is caused by homozygous mutations in the GBA1 gene, which encodes the lysosomal β-glucosidase (GBA) enzyme. GD affects several organs and tissues, including the brain in certain variants of the disease. Heterozygous GBA1 variants are a major genetic risk factor for developing Parkinson's disease. The RIPK3 kinase is relevant in GD and its deficiency improves the neurological and visceral symptoms in a murine GD model. RIPK3 mediates necroptotic-like cell death: it is unknown whether the role of RIPK3 in GD is the direct induction of necroptosis or if it has a more indirect function by mediating necrosis-independent. Also, the mechanisms that activate RIPK3 in GD are currently unknown. In this study, we show that c-Abl tyrosine kinase participates upstream of RIPK3 in GD. We found that the active, phosphorylated form of c-Abl is increased in several GD models, including patient's fibroblasts and GBA null mice. Furthermore, its pharmacological inhibition with the FDA-approved drug Imatinib decreased RIPK3 signaling. We found that c-Abl interacts with RIPK3, that RIPK3 is phosphorylated at a tyrosine site, and that this phosphorylation is reduced when c-Abl is inhibited. Genetic ablation of c-Abl in neuronal GD and GD mice models significantly reduced RIPK3 activation and MLKL downstream signaling. These results showed that c-Abl signaling is a new upstream pathway that activates RIPK3 and that its inhibition is an attractive therapeutic approach for the treatment of GD.
Collapse
|
46
|
Inhibition of MLKL Attenuates Necroptotic Cell Death in a Murine Cell Model of Ischaemia Injury. J Clin Med 2021; 10:jcm10020212. [PMID: 33435617 PMCID: PMC7826539 DOI: 10.3390/jcm10020212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/01/2021] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Steatosis in donor livers poses a major risk of organ dysfunction due to their susceptibility to ischaemia-reperfusion (I/R) injury during transplant. Necroptosis, a novel form of programmed cell death, is orchestrated by receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3) and mixed-lineage kinase domain-like pseudokinase (MLKL), has been implicated in I/R injury. Here we investigated the mechanisms of cell death pathways in an in vitro model of hepato-steatotic ischaemia. METHODS Free fatty acid (FFA) treated alpha mouse liver 12 (AML-12) cells were incubated in oxygen-glucose-deprivation (OGD) conditions as seen during ischaemia. RESULTS We found that OGD triggered upregulation of insoluble fraction of RIPK3 and MLKL in FFA + OGD cells compared to FFA control cells. We report that intervention with small interfering (si) MLKL and siRIPK3 significantly attenuated cell death in FFA + OGD cells. Absence of activated CASPASE8 and cleaved-CASPASE3, no change in the expression of CASPASE1 and prostaglandin-endoperoxide synthase 2 (Ptgs2) in FFA + OGD treated cells compared to FFA control cells indicated that apoptosis, pyroptosis and ferroptosis, respectively, are unlikely to be active in this model. CONCLUSION Our findings indicate that RIPK3-MLKL dependent necroptosis contributed to cell death in our in vitro model. Both MLKL and RIPK3 are promising therapeutic targets to inhibit necroptosis during ischaemic injury in fatty liver.
Collapse
|
47
|
Wang Y, Ma H, Huang J, Yao Z, Yu J, Zhang W, Zhang L, Wang Z, Zhuang C. Discovery of bardoxolone derivatives as novel orally active necroptosis inhibitors. Eur J Med Chem 2020; 212:113030. [PMID: 33248849 DOI: 10.1016/j.ejmech.2020.113030] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/15/2020] [Accepted: 11/15/2020] [Indexed: 01/16/2023]
Abstract
Necroptosis is a form of programmed cell death that contributes to the pathophysiology of cerebral ischemia/reperfusion (I/R) injury. In this study, bardoxolone (CDDO, 7) was an inhibitor of necroptosis identified from an in-house natural product library. Further optimization led to identify a more potent analogue 20. Compound 20 could effectively protect against necroptosis in human and mouse cells. The antinecroptotic effect could also be synergized with other necroptosis inhibitors. It blocked necrosome formation by targeting Hsp90 to inhibit the phosphorylation of RIPK1 and RIPK3 in necroptotic cells. In vivo, this compound was orally active to alleviate TNF-induced systemic inflammatory response syndrome (SIRS) and cerebral I/R injury. Our results suggested that 20 could be a lead compound for discovering necroptosis inhibitors in I/R treatment.
Collapse
Affiliation(s)
- Yuanyuan Wang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China; Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai, 200071, China
| | - Hao Ma
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China; Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nan Wei Road, Beijing, 100050, China
| | - Jiaxuan Huang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China; School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Zhengguang Yao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Wannian Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China; School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Lichao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, 274 Middle Zhijiang Road, Shanghai, 200071, China.
| | - Zhibin Wang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China; School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| |
Collapse
|
48
|
Alexander SP, Armstrong JF, Davenport AP, Davies JA, Faccenda E, Harding SD, Levi‐Schaffer F, Maguire JJ, Pawson AJ, Southan C, Spedding M. A rational roadmap for SARS-CoV-2/COVID-19 pharmacotherapeutic research and development: IUPHAR Review 29. Br J Pharmacol 2020; 177:4942-4966. [PMID: 32358833 PMCID: PMC7267163 DOI: 10.1111/bph.15094] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
In this review, we identify opportunities for drug discovery in the treatment of COVID-19 and, in so doing, provide a rational roadmap whereby pharmacology and pharmacologists can mitigate against the global pandemic. We assess the scope for targeting key host and viral targets in the mid-term, by first screening these targets against drugs already licensed, an agenda for drug repurposing, which should allow rapid translation to clinical trials. A simultaneous, multi-pronged approach using conventional drug discovery methods aimed at discovering novel chemical and biological means of targeting a short list of host and viral entities which should extend the arsenal of anti-SARS-CoV-2 agents. This longer term strategy would provide a deeper pool of drug choices for future-proofing against acquired drug resistance. Second, there will be further viral threats, which will inevitably evade existing vaccines. This will require a coherent therapeutic strategy which pharmacology and pharmacologists are best placed to provide. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
- Steve P.H. Alexander
- Chair, Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC‐IUPHAR), School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Jane F. Armstrong
- Curator, Guide to PHARMACOLOGY (GtoPdb), Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUK
| | | | - Jamie A. Davies
- Principal Investigator, Guide to PHARMACOLOGY (GtoPdb), Executive Committee, NC‐IUPHAR, Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUK
| | - Elena Faccenda
- Curator, Guide to PHARMACOLOGY (GtoPdb), Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUK
| | - Simon D. Harding
- Database Developer, Guide to PHARMACOLOGY (GtoPdb), Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUK
| | - Francesca Levi‐Schaffer
- First Vice‐President and Chair of Immunopharmacology Section, International Union of Basic and Clinical Pharmacology (IUPHAR)Hebrew University of JerusalemJerusalemIsrael
| | | | - Adam J. Pawson
- Senior Curator, Guide to PHARMACOLOGY (GtoPdb), Executive Committee, NC‐IUPHAR, Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUK
| | - Christopher Southan
- Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUK
- TW2Informatics LtdGothenburgSweden
| | - Michael Spedding
- Secretary‐General, International Union of Basic and Clinical Pharmacology (IUPHAR) and Spedding Research Solutions SASLe VesinetFrance
| |
Collapse
|
49
|
DeRoo E, Zhou T, Liu B. The Role of RIPK1 and RIPK3 in Cardiovascular Disease. Int J Mol Sci 2020; 21:E8174. [PMID: 33142926 PMCID: PMC7663726 DOI: 10.3390/ijms21218174] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases, including peripheral arterial and venous disease, myocardial infarction, and stroke, are the number one cause of death worldwide annually. In the last 20 years, the role of necroptosis, a newly identified form of regulated necrotic cell death, in cardiovascular disease has come to light. Specifically, the damaging role of two kinase proteins pivotal in the necroptosis pathway, Receptor Interacting Protein Kinase 1 (RIPK1) and Receptor Interacting Protein Kinase 3 (RIPK3), in cardiovascular disease has become a subject of great interest and importance. In this review, we provide an overview of the current evidence supporting a pathologic role of RIPK1 and RIPK3 in cardiovascular disease. Moreover, we highlight the evidence behind the efficacy of targeted RIPK1 and RIPK3 inhibitors in the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
| | | | - Bo Liu
- Department of Surgery, Division of Vascular Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (E.D.); (T.Z.)
| |
Collapse
|
50
|
Benn CL, Dawson LA. Clinically Precedented Protein Kinases: Rationale for Their Use in Neurodegenerative Disease. Front Aging Neurosci 2020; 12:242. [PMID: 33117143 PMCID: PMC7494159 DOI: 10.3389/fnagi.2020.00242] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Kinases are an intensively studied drug target class in current pharmacological research as evidenced by the large number of kinase inhibitors being assessed in clinical trials. Kinase-targeted therapies have potential for treatment of a broad array of indications including central nervous system (CNS) disorders. In addition to the many variables which contribute to identification of a successful therapeutic molecule, drug discovery for CNS-related disorders also requires significant consideration of access to the target organ and specifically crossing the blood-brain barrier (BBB). To date, only a small number of kinase inhibitors have been reported that are specifically designed to be BBB permeable, which nonetheless demonstrates the potential for success. This review considers the potential for kinase inhibitors in the context of unmet medical need for neurodegenerative disease. A subset of kinases that have been the focus of clinical investigations over a 10-year period have been identified and discussed individually. For each kinase target, the data underpinning the validity of each in the context of neurodegenerative disease is critically evaluated. Selected molecules for each kinase are identified with information on modality, binding site and CNS penetrance, if known. Current clinical development in neurodegenerative disease are summarized. Collectively, the review indicates that kinase targets with sufficient rationale warrant careful design approaches with an emphasis on improving brain penetrance and selectivity.
Collapse
|