1
|
Antón-Fernández A, Cauchola RP, Hernández F, Ávila J. Hippocampal rejuvenation by a single intracerebral injection of one-carbon metabolites in C57BL6 old wild-type mice. Aging Cell 2024:e14365. [PMID: 39380362 DOI: 10.1111/acel.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
The Izpisua-Belmonte group identified a cocktail of metabolites that promote partial reprogramming in cultured muscle cells. We tested the effect of brain injection of these metabolites in the dentate gyrus of aged wild-type mice. The dentate gyrus is a brain region essential for memory function and is extremely vulnerable to aging. A single injection of the cocktail containing four compounds (putrescine, glycine, methionine and threonine) partially reversed brain aging phenotypes and epigenetic alterations in age-associated genes. Our analysis revealed three levels: chromatin methylation, RNA sequencing, and protein expression. Functional studies complemented the previous ones, showing cognitive improvement. In summary, we report the reversal of various age-associated epigenetic changes, such as the transcription factor Zic4, and several changes related to cellular rejuvenation in the dentate gyrus (DG). These changes include increased expression of the Sox2 protein. Finally, the increases in the survival of newly generated neurons and the levels of the NMDA receptor subunit GluN2B were accompanied by improvements in both short-term and long-term memory performance. Based on these results, we propose the use of these metabolites to explore new strategies for the development of potential treatments for age-related brain diseases.
Collapse
Affiliation(s)
| | | | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Kwak Y, Nam SK, Park Y, Suh YS, Ahn SH, Kong SH, Park DJ, Lee HJ, Kim HH, Yang HK, Lee HS. Distinctive Phenotypic and Microenvironmental Characteristics of Neuroendocrine Carcinoma and Adenocarcinoma Components in Gastric Mixed Adenoneuroendocrine Carcinoma. Mod Pathol 2024; 37:100568. [PMID: 39029904 DOI: 10.1016/j.modpat.2024.100568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
This study aimed to conduct an in-depth examination of gene expression and microenvironmental profiles of gastric neuroendocrine carcinoma (NEC) and mixed adeno-NEC (MANEC). Tissue microarrays from 55 patients with gastric MANEC (N = 32) or NEC (N = 23) were analyzed using digital spatial profiling (GeoMx DSP, NanoString Technologies). Representative regions of interest were selected from the adenocarcinoma (ADC) portion (ADC-MANEC) and the NEC portion (NEC-MANEC) of the MANEC cores, and pure NEC (pNEC) cores. All regions of interest were separated into epithelial components and stromal components using the masking procedure in the GeoMx platform, followed by transcriptome analysis. Comparison of gene expression between ADC-MANEC and NEC-MANEC/pNEC identified several differentially expressed genes in the epithelial (including PEG10, MAP1B, STMN3, and AKT3) and stromal (FN1, COL1A1, SPARC, and BGN) components. Gene set enrichment analysis revealed that pathways related to the E2F target and G2M checkpoint were more enriched in NEC-MANEC and pNEC than in ADC-MANEC. Deconvolution analysis showed that the microenvironmental profile varied according to histologic differentiation. In ADC-MANEC, intraepithelial infiltrating immune cells were relatively more numerous, whereas fibroblasts in the stroma were more abundant in NEC-MANEC and pNEC. This study confirmed the distinct expression profile of each histologic component of MANEC according to its tumor vs stromal compartment using the DSP platform. Although each component of MANEC shares the same genetic origin, distinctive phenotypes should not be overlooked when managing patients with MANEC. This study provides a useful validation data set for future studies.
Collapse
Affiliation(s)
- Yoonjin Kwak
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Soo Kyung Nam
- Department of Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Yujun Park
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Yun-Suhk Suh
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Sang-Hoon Ahn
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Do Joong Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyuk-Joon Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyung-Ho Kim
- Department of Surgery, Chung-Ang University College of Medicine, Seoul, Korea
| | - Han-Kwang Yang
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
3
|
Roes MV, Dick FA. A Genome Wide CRISPR Screen Reveals That HOXA9 Promotes Enzalutamide Resistance in Prostate Cancer. Mol Cell Biol 2024:1-14. [PMID: 39300912 DOI: 10.1080/10985549.2024.2401465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
Androgen receptor inhibitors are commonly used for prostate cancer treatment, but acquired resistance is a significant problem. Codeletion of RB and p53 is common in castration resistant prostate cancers, however they are difficult to target pharmacologically. To comprehensively identify gene loss events that contribute to enzalutamide response, we performed a genome-wide CRISPR knockout screen in LNCaP prostate cancer cells. This revealed novel genes implicated in resistance that are largely unstudied. Gene loss events that confer enzalutamide sensitivity are enriched for GSEA categories related to stem cell and epigenetic regulation. We investigated the myeloid lineage stem cell factor HOXA9 as a candidate gene whose loss promotes sensitivity to enzalutamide. Cancer genomic data reveals that HOXA9 overexpression correlates with poor prognosis and characteristics of advanced prostate cancer. In cell culture, HOXA9 depletion sensitizes cells to enzalutamide, whereas overexpression drives enzalutamide resistance. Combination of the HOXA9 inhibitor DB818 with enzalutamide demonstrates synergy. This demonstrates the utility of our CRISPR screen data in discovering new approaches for treating enzalutamide resistant prostate cancer.
Collapse
Affiliation(s)
- Michael V Roes
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- London Regional Cancer Program, London, Ontario, Canada
- London Health Sciences Research Institute, London, Ontario, Canada
| | - Frederick A Dick
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- London Regional Cancer Program, London, Ontario, Canada
- London Health Sciences Research Institute, London, Ontario, Canada
| |
Collapse
|
4
|
Hsieh CL, Do AD, Hsueh CY, Raboshakga MO, Thanh TN, Tai TT, Kung HJ, Sung SY. L1CAM mediates neuroendocrine phenotype acquisition in prostate cancer cells. Prostate 2024. [PMID: 39154281 DOI: 10.1002/pros.24782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/20/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND A specific type of prostate cancer (PC) that exhibits neuroendocrine (NE) differentiation is known as NEPC. NEPC has little to no response to androgen deprivation therapy and is associated with the development of metastatic castration-resistant PC (CRPC), which has an extremely poor prognosis. Our understanding of genetic drivers and activated pathways in NEPC is limited, which hinders precision medicine approaches. L1 cell adhesion molecule (L1CAM) is known to play an oncogenic role in metastatic cancers, including CRPC. However, the impact of L1CAM on NEPC progression remains elusive. METHODS L1CAM expression level was investigated using public gene expression databases of PC cohorts and patient-derived xenograft models. L1CAM knockdown was performed in different PC cells to study in vitro cell functions. A subline of CRPC cell line CWR22Rv1 was established after long-term exposure to abiraterone to induce NE differentiation. The androgen receptor-negative cell line PC3 was cultured under the tumor sphere-forming condition to enrich cancer stemness features. Several oxidative stress inducers were tested on PC cells to observe L1CAM-mediated gene expression and cell death. RESULTS L1CAM expression was remarkably high in NEPC compared to CRPC or adenocarcinoma tumors. L1CAM was also correlated with NE marker expressions and associated with the adenocarcinoma-to-NEPC progression in gene expression databases and CRPC cells with NE differentiation. L1CAM also promoted cancer stemness and NE phenotypes in PC3 cells under cancer stemness enrichment. L1CAM was also identified as a reactive oxygen species-induced gene, by which L1CAM counteracted CRPC cell death triggered by ionizing radiation. CONCLUSIONS Our results unveiled a new role of L1CAM in the acquisition of the NE phenotype in PC, contributing to the NE differentiation-related therapeutic resistance of CRPC.
Collapse
Affiliation(s)
- Chia-Ling Hsieh
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- General Clinical Research Center, Chung Shan Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Anh Duy Do
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, Pathophysiology and Immunology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Chia-Yen Hsueh
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Mafewu Olga Raboshakga
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Department of Pre-Clinical Sciences, University of Limpopo, Sovenga, South Africa
| | - Tran Ngoc Thanh
- Department of Physiology, Pathophysiology and Immunology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Tran Tien Tai
- Department of Physiology, Pathophysiology and Immunology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Hsing-Jien Kung
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, University of California Davis Cancer Centre, Sacramento, California, USA
- Taipei Medical University, Taipei, Taiwan
| | - Shian-Ying Sung
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
Xu Y, Yang Y, Wang Z, Sjöström M, Jiang Y, Tang Y, Cheng S, Deng S, Wang C, Gonzalez J, Johnson NA, Li X, Li X, Metang LA, Mukherji A, Xu Q, Tirado CR, Wainwright G, Yu X, Barnes S, Hofstad M, Chen Y, Zhu H, Hanker AB, Raj GV, Zhu G, He HH, Wang Z, Arteaga CL, Liang H, Feng FY, Wang Y, Wang T, Mu P. ZNF397 Deficiency Triggers TET2-Driven Lineage Plasticity and AR-Targeted Therapy Resistance in Prostate Cancer. Cancer Discov 2024; 14:1496-1521. [PMID: 38591846 PMCID: PMC11285331 DOI: 10.1158/2159-8290.cd-23-0539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 02/26/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Cancer cells exhibit phenotypical plasticity and epigenetic reprogramming that allows them to evade lineage-dependent targeted treatments by adopting lineage plasticity. The underlying mechanisms by which cancer cells exploit the epigenetic regulatory machinery to acquire lineage plasticity and therapy resistance remain poorly understood. We identified zinc finger protein 397 (ZNF397) as a bona fide coactivator of the androgen receptor (AR), essential for the transcriptional program governing AR-driven luminal lineage. ZNF397 deficiency facilitates the transition of cancer cell from an AR-driven luminal lineage to a ten-eleven translocation 2 (TET2)-driven lineage plastic state, ultimately promoting resistance to therapies inhibiting AR signaling. Intriguingly, our findings indicate that a TET2 inhibitor can eliminate the resistance to AR-targeted therapies in ZNF397-deficient tumors. These insights uncover a novel mechanism through which prostate cancer acquires lineage plasticity via epigenetic rewiring and offer promising implications for clinical interventions designed to overcome therapy resistance dictated by lineage plasticity. Significance: This study reveals a bifurcated role of ZNF397, and a TET2-driven epigenetic mechanism regulating tumor lineage plasticity and therapy response in prostate cancer, enhances the understanding of drug resistance, and unveils a new therapeutic strategy for overcoming androgen receptor-targeted therapy resistance.
Collapse
Affiliation(s)
- Yaru Xu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Yuqiu Yang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, Texas.
| | - Zhaoning Wang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California.
| | - Martin Sjöström
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California.
| | - Yuyin Jiang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Yitao Tang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Siyuan Cheng
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Shreveport, Shreveport, Louisiana.
| | - Su Deng
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Choushi Wang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Julisa Gonzalez
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Nickolas A. Johnson
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Xiang Li
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Xiaoling Li
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Lauren A. Metang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Atreyi Mukherji
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Quanhui Xu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Carla R. Tirado
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Garrett Wainwright
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Xinzhe Yu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas.
| | - Spencer Barnes
- Bioinformatics Core Facility of the Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas.
| | - Mia Hofstad
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas.
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, NYC, New York, New York.
| | - Hong Zhu
- Division of Biostatistics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia.
| | - Ariella B. Hanker
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.
| | - Ganesh V. Raj
- Department of Urology, UT Southwestern Medical Center, Dallas, Texas.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.
| | - Guanghui Zhu
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada.
| | - Housheng H. He
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada.
| | - Zhao Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas.
| | - Carlos L. Arteaga
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Felix Y. Feng
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.
| | - Yunguan Wang
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229.
| | - Tao Wang
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, Texas.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.
| | - Ping Mu
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.
- Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
6
|
Cheng S, Li L, Yeh Y, Shi Y, Franco O, Corey E, Yu X. Unveiling novel double-negative prostate cancer subtypes through single-cell RNA sequencing analysis. NPJ Precis Oncol 2024; 8:171. [PMID: 39095562 PMCID: PMC11297170 DOI: 10.1038/s41698-024-00667-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Recent advancements in single-cell RNA sequencing (scRNAseq) have facilitated the discovery of previously unrecognized subtypes within prostate cancer (PCa), offering new insights into cancer heterogeneity and progression. In this study, we integrated scRNAseq data from multiple studies, comprising publicly available cohorts and data generated by our research team, and established the Human Prostate Single cell Atlas (HuPSA) and Mouse Prostate Single cell Atlas (MoPSA) datasets. Through comprehensive analysis, we identified two novel double-negative PCa populations: KRT7 cells characterized by elevated KRT7 expression and progenitor-like cells marked by SOX2 and FOXA2 expression, distinct from NEPCa, and displaying stem/progenitor features. Furthermore, HuPSA-based deconvolution re-classified human PCa specimens, validating the presence of these novel subtypes. We then developed a user-friendly web application, "HuPSA-MoPSA" ( https://pcatools.shinyapps.io/HuPSA-MoPSA/ ), for visualizing gene expression across all newly established datasets. Our study provides comprehensive tools for PCa research and uncovers novel cancer subtypes that can inform clinical diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Siyuan Cheng
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA, USA.
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA.
| | - Lin Li
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA, USA
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA
| | - Yunshin Yeh
- Pathology & Laboratory Medicine Service, Overton Brooks VA Medical Center, Shreveport, LA, USA
| | - Yingli Shi
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA, USA
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA
| | - Omar Franco
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA, USA
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Xiuping Yu
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, LA, USA.
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA.
- Department of Urology, LSU Health Shreveport, Shreveport, LA, USA.
| |
Collapse
|
7
|
Ma M, Zhu Y, Xiao C, Li R, Cao X, Kang R, Wang X, Li E. Novel insights into RB1 in prostate cancer lineage plasticity and drug resistance. TUMORI JOURNAL 2024; 110:252-263. [PMID: 38316605 DOI: 10.1177/03008916231225576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Prostate cancer is the second most common malignancy among men in the world, posing a serious threat to men's health and lives. RB1 is the first human tumor suppressor gene to be described, and it is closely associated with the development, progression, and suppression of a variety of tumors. It was found that the loss of RB1 is an early event in prostate cancer development and is closely related to prostate cancer development, progression and treatment resistance. This paper reviews the current status of research on the relationship between RB1 and prostate cancer from three aspects: RB1 and prostate cell lineage plasticity; biological behavior; and therapeutic resistance. Providing a novel perspective for developing new therapeutic strategies for RB1-loss prostate cancer.
Collapse
Affiliation(s)
- Min Ma
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yazhi Zhu
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Changkai Xiao
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruidong Li
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xingyu Cao
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ran Kang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaolan Wang
- Department of Reproductive Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ermao Li
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
8
|
Bhattacharya S, Stillahn A, Smith K, Muders M, Datta K, Dutta S. Understanding the molecular regulators of neuroendocrine prostate cancer. Adv Cancer Res 2024; 161:403-429. [PMID: 39032955 DOI: 10.1016/bs.acr.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Worldwide, prostate cancer (PCa) remains a leading cause of death in men. Histologically, the majority of PCa cases are classified as adenocarcinomas, which are mainly composed of androgen receptor-positive luminal cells. PCa is initially driven by the androgen receptor axis, where androgen-mediated activation of the receptor is one of the primary culprits for disease progression. Therefore, in advanced stage PCa, patients are generally treated with androgen deprivation therapies alone or in combination with androgen receptor pathway inhibitors. However, after an initial decrease, the cancer recurs for majority patients. At this stage, cancer is known as castration-resistant prostate cancer (CRPC). Majority of CRPC tumors still depend on androgen receptor axis for its progression to metastasis. However, in around 20-30% of cases, CRPC progresses via an androgen receptor-independent pathway and is often presented as neuroendocrine cancer (NE). This NE phenotype is highly aggressive with poor overall survival as compared to CRPC adenocarcinoma. NE cancers are resistant to standard taxane chemotherapies, which are often used to treat metastatic disease. Pathologically and morphologically, NE cancers are highly diverse and often co-exist with adenocarcinoma. Due to the lack of proper biomarkers, it is often difficult to make an early diagnosis of this lethal disease. Moreover, increased tumor heterogeneity and admixtures of adeno and NE subtypes in the same tumor make early detection of NE tumors very difficult. With the advancement of our knowledge and sequencing technology, we are now able to better understand the molecular mediators of this transformation pathway. This current study will give an update on how various molecular regulators are involved in these lineage transformation processes and what challenges we are still facing to detect and treat this cancer.
Collapse
Affiliation(s)
- Sreyashi Bhattacharya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, United States; Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Avery Stillahn
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, United States
| | - Kaitlin Smith
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, United States
| | | | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
9
|
Cheng S, Li L, Yeh Y, Shi Y, Franco O, Corey E, Yu X. Unveiling Novel Double-Negative Prostate Cancer Subtypes Through Single-Cell RNA Sequencing Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.11.553009. [PMID: 38746150 PMCID: PMC11092429 DOI: 10.1101/2023.08.11.553009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Recent advancements in single-cell RNA sequencing (scRNAseq) have facilitated the discovery of previously unrecognized subtypes within prostate cancer (PCa), offering new insights into disease heterogeneity and progression. In this study, we integrated scRNAseq data from multiple studies, comprising both publicly available cohorts and data generated by our research team, and established the HuPSA (Human Prostate Single cell Atlas) and the MoPSA (Mouse Prostate Single cell Atlas) datasets. Through comprehensive analysis, we identified two novel double-negative PCa populations: KRT7 cells characterized by elevated KRT7 expression, and progenitor-like cells marked by SOX2 and FOXA2 expression, distinct from NEPCa, and displaying stem/progenitor features. Furthermore, HuPSA-based deconvolution allowed for the re-classification of human PCa specimens, validating the presence of these novel subtypes. Leveraging these findings, we developed a user-friendly web application, "HuPSA-MoPSA" (https://pcatools.shinyapps.io/HuPSA-MoPSA/), for visualizing gene expression across all newly-established datasets. Our study provides comprehensive tools for PCa research and uncovers novel cancer subtypes that can inform clinical diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Siyuan Cheng
- Department of Biochemistry and Molecular biology, LSU Health Shreveport, Shreveport, LA
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA
| | - Lin Li
- Department of Biochemistry and Molecular biology, LSU Health Shreveport, Shreveport, LA
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA
| | - Yunshin Yeh
- Pathology & Laboratory Medicine Service, Overton Brooks VA Medical Center, Shreveport, LA
| | - Yingli Shi
- Department of Biochemistry and Molecular biology, LSU Health Shreveport, Shreveport, LA
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA
| | - Omar Franco
- Department of Biochemistry and Molecular biology, LSU Health Shreveport, Shreveport, LA
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA
| | - Xiuping Yu
- Department of Biochemistry and Molecular biology, LSU Health Shreveport, Shreveport, LA
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA
- Department of Urology, LSU Health Shreveport, Shreveport, LA
| |
Collapse
|
10
|
Sunita Prajapati K, Gupta S, Chaudhri S, Kumar S. Role of ONECUT family transcription factors in cancer and other diseases. Exp Cell Res 2024; 438:114035. [PMID: 38593917 DOI: 10.1016/j.yexcr.2024.114035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Members of ONECUT transcription factor play an essential role in several developmental processes, however, the atypical expression of ONECUT proteins lead to numerous diseases, including cancer. ONECUT family proteins promote cell proliferation, progression, invasion, metastasis, angiogenesis, and stemness. This family of proteins interacts with other proteins such as KLF4, TGF-β, VEGFA, PRC2, SMAD3 and alters their expression involved in the regulation of various signaling pathways including Jak/Stat3, Akt/Erk, TGF-β, Smad2/3, and HIF-1α. Furthermore, ONECUT proteins are proposed as predictive biomarkers for pancreatic and gastric cancers. The present review summarizes the involvement of ONECUT family proteins in the development and progression of various human cancers and other diseases.
Collapse
Affiliation(s)
- Kumari Sunita Prajapati
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda, 151401, Punjab, India
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA
| | - Smriti Chaudhri
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda, 151401, Punjab, India
| | - Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda, 151401, Punjab, India.
| |
Collapse
|
11
|
Wang Y, Xue H, Zhu X, Lin D, Dong X, Chen Z, Chen J, Shi M, Ni Y, Cao J, Wu R, Kang N, Pang X, Crea F, Lin YY, Collins CC, Gleave ME, Parolia A, Chinnaiyan A, Ong CJ, Wang Y. Deciphering the Transcription Factor Landscape in Neuroendocrine Prostate Cancer Progression: A Novel Approach to Understand NE Transdifferentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.27.591428. [PMID: 38746377 PMCID: PMC11092479 DOI: 10.1101/2024.04.27.591428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background and Objective Prostate cancer (PCa) is a leading cause of cancer mortality in men, with neuroendocrine prostate cancer (NEPC) representing a particularly resistant subtype. The role of transcription factors (TFs) in the progression from prostatic adenocarcinoma (PRAD) to NEPC is poorly understood. This study aims to identify and analyze lineage-specific TF profiles in PRAD and NEPC and illustrate their dynamic shifts during NE transdifferentiation. Methods A novel algorithmic approach was developed to evaluate the weighted expression of TFs within patient samples, enabling a nuanced understanding of TF landscapes in PCa progression and TF dynamic shifts during NE transdifferentiation. Results unveiled TF profiles for PRAD and NEPC, identifying 126 shared TFs, 46 adenocarcinoma-TFs, and 56 NEPC-TFs. Enrichment analysis across multiple clinical cohorts confirmed the lineage specificity and clinical relevance of these lineage-TFs signatures. Functional analysis revealed that lineage-TFs are implicated in pathways critical to cell development, differentiation, and lineage determination. Novel lineage-TF candidates were identified, offering potential targets for therapeutic intervention. Furthermore, our longitudinal study on NE transdifferentiation highlighted dynamic TF expression shifts and delineated a three-phase hypothesis for the process comprised of de-differentiation, dormancy, and re-differentiation. and proposing novel insights into the mechanisms of PCa progression. Conclusion The lineage-specific TF profiles in PRAD and NEPC reveal a dynamic shift in the TF landscape during PCa progression, highlighting three distinct phases of NE transdifferentiation.
Collapse
|
12
|
Xiong S, Liu F, Sun J, Gao S, Wong CCL, Tu P, Wang Y. Abrogation of USP9X Is a Potential Strategy to Decrease PEG10 Levels and Impede Tumor Progression in Cutaneous T-Cell Lymphoma. J Invest Dermatol 2024:S0022-202X(24)00307-5. [PMID: 38677662 DOI: 10.1016/j.jid.2024.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 04/29/2024]
Abstract
Advanced-stage cutaneous T-cell lymphomas (CTCLs) are notorious for their highly aggressive behavior, resistance to conventional treatments, and poor prognosis, particularly when large-cell transformation occurs. PEG10 has been recently proposed as a potent driver for large-cell transformation in CTCL. However, the targeting of PEG10 continues to present a formidable clinical challenge that has yet to be addressed. In this study, we report an important post-translational regulatory mechanism of PEG10 in CTCL. USP9X, a deubiquitinase, interacted with and deubiquitinated PEG10, thereby stabilizing PEG10. Knockdown of USP9X or pharmacological targeting of USP9X resulted in a prominent downregulation of PEG10 and its downstream pathway in CTCL. Moreover, USP9X inhibition conferred tumor cell growth disadvantage and enhanced apoptosis in vitro, an effect that occurred in part through its regulation on PEG10. Furthermore, we demonstrated that inhibition of USP9X obviously restrained CTCL tumor growth in vivo and that high expression of USP9X is associated with poor survival in patients with CTCL. Collectively, our findings uncover USP9X as a key post-translational regulator in the stabilization of PEG10 and suggest that targeting PEG10 stabilization through USP9X inhibition may represent a promising therapeutic strategy for advanced-stage CTCL.
Collapse
Affiliation(s)
- Shan Xiong
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Fengjie Liu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Jingru Sun
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Shuaixin Gao
- Department of Human Sciences & James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Ping Tu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China; National Clinical Research Center for Skin and Immune Diseases, Beijing, China.
| |
Collapse
|
13
|
Wang Z, Zeng S, Xu C. Re: Mingxiao Feng, Andres Matoso, Gabriel Epstein, et al. Identification of Lineage-specific Transcriptional Factor-defined Molecular Subtypes in Small Cell Bladder Cancer. Eur Urol. In press. https://doi.org/10.1016/j.eururo.2023.05.023. Eur Urol 2024; 85:e113-e114. [PMID: 37919193 DOI: 10.1016/j.eururo.2023.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/18/2023] [Indexed: 11/04/2023]
Affiliation(s)
- Ziwei Wang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Shuxiong Zeng
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
14
|
Bonilla G, Morris A, Kundu S, Ducasse A, Jeffries NE, Chetal K, Yvanovich EE, Barghout R, Scadden D, Mansour MK, Kingston RE, Sykes DB, Mercier FE, Sadreyev RI. Leukemia aggressiveness is driven by chromatin remodeling and expression changes of core regulators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582846. [PMID: 38496490 PMCID: PMC10942317 DOI: 10.1101/2024.02.29.582846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Molecular mechanisms driving clonal aggressiveness in leukemia are not fully understood. We tracked and analyzed two mouse MLL-rearranged leukemic clones independently evolving towards higher aggressiveness. More aggressive subclones lost their growth differential ex vivo but restored it upon secondary transplantation, suggesting molecular memory of aggressiveness. Development of aggressiveness was associated with clone-specific gradual modulation of chromatin states and expression levels across the genome, with a surprising preferential trend of reversing the earlier changes between normal and leukemic progenitors. To focus on the core aggressiveness program, we identified genes with consistent changes of expression and chromatin marks that were maintained in vivo and ex vivo in both clones. Overexpressing selected core genes (Smad1 as aggressiveness driver, Irx5 and Plag1 as suppressors) affected leukemic progenitor growth in the predicted way and had convergent downstream effects on central transcription factors and repressive epigenetic modifiers, suggesting a broader regulatory network of leukemic aggressiveness.
Collapse
|
15
|
Kouroukli O, Bravou V, Giannitsas K, Tzelepi V. Tissue-Based Diagnostic Biomarkers of Aggressive Variant Prostate Cancer: A Narrative Review. Cancers (Basel) 2024; 16:805. [PMID: 38398199 PMCID: PMC10887410 DOI: 10.3390/cancers16040805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Prostate cancer (PC) is a common malignancy among elderly men, characterized by great heterogeneity in its clinical course, ranging from an indolent to a highly aggressive disease. The aggressive variant of prostate cancer (AVPC) clinically shows an atypical pattern of disease progression, similar to that of small cell PC (SCPC), and also shares the chemo-responsiveness of SCPC. The term AVPC does not describe a specific histologic subtype of PC but rather the group of tumors that, irrespective of morphology, show an aggressive clinical course, dictated by androgen receptor (AR) indifference. AR indifference represents an adaptive response to androgen deprivation therapy (ADT), driven by epithelial plasticity, an inherent ability of tumor cells to adapt to their environment by changing their phenotypic characteristics in a bi-directional way. The molecular profile of AVPC entails combined alterations in the tumor suppressor genes retinoblastoma protein 1 (RB1), tumor protein 53 (TP53), and phosphatase and tensin homolog (PTEN). The understanding of the biologic heterogeneity of castration-resistant PC (CRPC) and the need to identify the subset of patients that would potentially benefit from specific therapies necessitate the development of prognostic and predictive biomarkers. This review aims to discuss the possible pathophysiologic mechanisms of AVPC development and the potential use of emerging tissue-based biomarkers in clinical practice.
Collapse
Affiliation(s)
- Olga Kouroukli
- Department of Pathology, Evaggelismos General Hospital, 10676 Athens, Greece
| | - Vasiliki Bravou
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, 26504 Patras, Greece;
| | | | - Vasiliki Tzelepi
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
16
|
Kitazawa M. Evolution of the nervous system by acquisition of retrovirus-derived genes in mammals. Genes Genet Syst 2024; 98:321-336. [PMID: 38220159 DOI: 10.1266/ggs.23-00197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
In the course of evolution, the most highly developed organ is likely the brain, which has become more complex over time and acquired diverse forms and functions in different species. In particular, mammals have developed complex and high-functioning brains, and it has been reported that several genes derived from retroviruses were involved in mammalian brain evolution, that is, generating the complexity of the nervous system. Especially, the sushi-ichi-related retrotransposon homolog (SIRH)/retrotransposon gag-like (RTL) genes have been suggested to play a role in the evolutionary processes shaping brain morphology and function in mammals. Genetic mutation and altered expression of genes are linked to neurological disorders, highlighting how the acquisition of virus-derived genes in mammals has both driven brain evolution and imposed a susceptibility to diseases. This review provides an overview of the functions, diversity, evolution and diseases associated with SIRH/RTL genes in the nervous system. The contribution of retroviruses to brain evolution is an important research topic in evolutionary biology and neuroscience, and further insights are expected to be gained through future studies.
Collapse
Affiliation(s)
- Moe Kitazawa
- School of BioSciences, Faculty of Science, The University of Melbourne
| |
Collapse
|
17
|
Kaarijärvi R, Kaljunen H, Nappi L, Fazli L, Kung SHY, Hartikainen JM, Paakinaho V, Capra J, Rilla K, Malinen M, Mäkinen PI, Ylä-Herttuala S, Zoubeidi A, Wang Y, Gleave ME, Hiltunen M, Ketola K. DPYSL5 is highly expressed in treatment-induced neuroendocrine prostate cancer and promotes lineage plasticity via EZH2/PRC2. Commun Biol 2024; 7:108. [PMID: 38238517 PMCID: PMC10796342 DOI: 10.1038/s42003-023-05741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/22/2023] [Indexed: 01/22/2024] Open
Abstract
Treatment-induced neuroendocrine prostate cancer (t-NEPC) is a lethal subtype of castration-resistant prostate cancer resistant to androgen receptor (AR) inhibitors. Our study unveils that AR suppresses the neuronal development protein dihydropyrimidinase-related protein 5 (DPYSL5), providing a mechanism for neuroendocrine transformation under androgen deprivation therapy. Our unique CRPC-NEPC cohort, comprising 135 patient tumor samples, including 55 t-NEPC patient samples, exhibits a high expression of DPYSL5 in t-NEPC patient tumors. DPYSL5 correlates with neuroendocrine-related markers and inversely with AR and PSA. DPYSL5 overexpression in prostate cancer cells induces a neuron-like phenotype, enhances invasion, proliferation, and upregulates stemness and neuroendocrine-related markers. Mechanistically, DPYSL5 promotes prostate cancer cell plasticity via EZH2-mediated PRC2 activation. Depletion of DPYSL5 decreases proliferation, induces G1 phase cell cycle arrest, reverses neuroendocrine phenotype, and upregulates luminal genes. In conclusion, DPYSL5 plays a critical role in regulating prostate cancer cell plasticity, and we propose the AR/DPYSL5/EZH2/PRC2 axis as a driver of t-NEPC progression.
Collapse
Affiliation(s)
- Roosa Kaarijärvi
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Heidi Kaljunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Lucia Nappi
- The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ladan Fazli
- The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sonia H Y Kung
- The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jaana M Hartikainen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ville Paakinaho
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Janne Capra
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Kirsi Rilla
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Marjo Malinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Petri I Mäkinen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | - Amina Zoubeidi
- The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Yuzhuo Wang
- The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- BC Cancer Research Centre, Vancouver, BC, Canada
| | - Martin E Gleave
- The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Kirsi Ketola
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
18
|
Zhang J, Chen Z, Mao Y, He Y, Wu X, Wu J, Sheng L. ID2 Promotes Lineage Transition of Prostate Cancer through FGFR and JAK-STAT Signaling. Cancers (Basel) 2024; 16:392. [PMID: 38254880 PMCID: PMC10814654 DOI: 10.3390/cancers16020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/21/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The use of androgen receptor pathway inhibitors (ARPIs) has led to an increase in the proportion of AR-null prostate cancer, including neuroendocrine prostate cancer (NEPC) and double-negative prostate cancer (DNPC), but the mechanism underlying this lineage transition has not been elucidated. We found that ID2 expression was increased in AR-null prostate cancer. In vitro and in vivo studies confirmed that ID2 promotes PCa malignancy and can confer resistance to enzalutamide in PCa cells. We generated an ID2 UP50 signature, which is capable of determining resistance to enzalutamide and is valuable for predicting patient prognosis. Functional experiments showed that ID2 could activate stemness-associated JAK/STAT and FGFR signaling while inhibiting the AR signaling pathway. Our study indicates a potentially strong association between ID2 and the acquisition of a stem-like phenotype in adenocarcinoma cells, leading to resistance to androgen deprivation therapy (ADT) and next-generation ARPIs in prostate cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianhong Wu
- Department of Urology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; (J.Z.); (X.W.)
| | - Lu Sheng
- Department of Urology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; (J.Z.); (X.W.)
| |
Collapse
|
19
|
Li S, Kang Y, Zeng Y. Targeting tumor and bone microenvironment: Novel therapeutic opportunities for castration-resistant prostate cancer patients with bone metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189033. [PMID: 38040267 DOI: 10.1016/j.bbcan.2023.189033] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/22/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Despite standard hormonal therapy that targets the androgen receptor (AR) attenuates prostate cancer (PCa) effectively in the initial stage, the tumor ultimately converts to castration-resistant prostate cancer (CRPC), and the acquired resistance is still a great challenge for the management of advanced prostate cancer patients. The tumor microenvironment (TME) consists of multiple cellular and noncellular agents is well known as a vital role during the development and progression of CRPC by establishing communication between TME and tumor cells. Additionally, as primary prostate cancer progresses towards metastasis, and CRPC always experiences bone metastasis, the TME is conducive to the spread of tumors to the distant sits, particularly in bone. In addition, the bone microenvironment (BME) is also closely related to the survival, growth and colonization of metastatic tumor cells. The present review summarized the recent studies which mainly focused on the role of TME or BME in the CRPC patients with bone metastasis, and discussed the underlying mechanisms, as well as the potential therapeutic values of targeting TME and BME in the management of metastatic CRPC patients.
Collapse
Affiliation(s)
- Shenglong Li
- Second ward of Bone and Soft Tissue Tumor Surgery,Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China; The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, China
| | - Yue Kang
- Department of Breast Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yu Zeng
- Department of Urology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China.
| |
Collapse
|
20
|
Song B, Luo Y, Li Q, Pan H, Li D. Experience and Lessons Learned in the Treatment of Transforming Small Cell Neuroendocrine Carcinoma of the Prostate: A Case Report and Literature Review. Case Rep Oncol 2024; 17:247-255. [PMID: 38357684 PMCID: PMC10866612 DOI: 10.1159/000536351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Small cell neuroendocrine carcinoma of the prostate (SCNECP) is a rare and highly malignant tumor that commonly transforms into conventional prostate adenocarcinoma (CPAC). Most of SCNECP cases cannot be detected and diagnosed early, and SCNECP is often diagnosed when there is liver and lung metastasis. Therefore, the early detection of the process from CPAC to SCNECP is crucial. Case Report We present a case of a 73-year-old man who was initially admitted to our hospital with metastatic CPAC. He was administered goserelin acetate 3.6 mg combined with bicalutamide tablets (50 mg) once daily for endocrine therapy and docetaxel (100 mg) combined with prednisone (5 mg) twice a day. After treatment, the prostate-specific antigen (PSA) level decreased significantly, but the CEA, CA199, and CA125 levels began to increase progressively after a short decline. However, no solid tumor recurrence was observed in multiple reexaminations. It was not until 9 months after the elevation of tumor markers that multiple metastatic lesions appeared in the liver, which finally confirmed the diagnosis of metastatic SCNECP. After chemotherapy with etoposide 360 mg combined with carboplatin 200 mg, the tumor size was significantly reduced, and tumor markers decreased. However, the remission time was only 3 months. The patient's liver metastases continued to grow, and CEA, CA199, and CA125 levels continued to increase. Conclusion During CPAC treatment, PSA levels continued to decrease, whereas CEA, CA199, and CA125 levels continued to increase. This suggests the possibility of the transformation of CPAC into SCNECP.
Collapse
Affiliation(s)
- Binbin Song
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Oncology, People’s Liberation Army the General Hospital of Western Theater Command, Chengdu, China
| | - Yan Luo
- Department of Oncology, People’s Liberation Army the General Hospital of Western Theater Command, Chengdu, China
| | - Qing Li
- Department of Oncology, People’s Liberation Army the General Hospital of Western Theater Command, Chengdu, China
| | - Hong Pan
- Department of Oncology, People’s Liberation Army the General Hospital of Western Theater Command, Chengdu, China
| | - Dong Li
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Oncology, People’s Liberation Army the General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
21
|
Stumpo S, Formelli MG, Persano I, Parlagreco E, Lauricella E, Rodriquenz MG, Guerrera LP, Zurlo IV, Campana D, Brizzi MP, Cives M, La Salvia A, Lamberti G. Extrapulmonary Neuroendocrine Carcinomas: Current Management and Future Perspectives. J Clin Med 2023; 12:7715. [PMID: 38137784 PMCID: PMC10743506 DOI: 10.3390/jcm12247715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Neuroendocrine carcinomas (NECs) are poorly differentiated and highly aggressive epithelial neuroendocrine neoplasms. The most common primary site is the lung, but they may arise in every organ. Approximately 37% of extrapulmonary NECs (EP-NECs) occur in the gastroenteropancreatic (GEP) tract, followed by the genitourinary (GU) system and gynecological tract. As a result of their rarity, there is scant evidence to guide treatment recommendations, and a multidisciplinary approach is essential for the management of such patients. Platinum-based chemotherapy currently represents the standard of care for EP-NECs of any site, mirroring the management of small-cell lung cancer (SCLC), but further approaches are still under investigation. Indeed, ongoing trials evaluating targeted therapies, immune checkpoint inhibitors (ICIs), and radionuclide therapy could provide potentially breakthrough therapeutic options. Given the relative dearth of evidence-based literature on these orphan diseases, the aim of this review is to provide an overview of the pathology and current treatment options, as well as to shed light on the most pressing unmet needs in the field.
Collapse
Affiliation(s)
- Sara Stumpo
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum–University of Bologna, Via Zamboni 33, 40126 Bologna, Italy; (S.S.); (M.G.F.); (D.C.); (G.L.)
| | - Maria Giovanna Formelli
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum–University of Bologna, Via Zamboni 33, 40126 Bologna, Italy; (S.S.); (M.G.F.); (D.C.); (G.L.)
| | - Irene Persano
- Medical Oncology, AO S. Croce e Carle, 12100 Cuneo, Italy; (I.P.); (E.P.)
| | - Elena Parlagreco
- Medical Oncology, AO S. Croce e Carle, 12100 Cuneo, Italy; (I.P.); (E.P.)
| | - Eleonora Lauricella
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, 70124 Bari, Italy; (E.L.); (M.C.)
| | - Maria Grazia Rodriquenz
- Oncology Unit, Ospedale IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Luigi Pio Guerrera
- Division of Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
- Sarcomas and Rare Tumors Unit, Istituto Nazionale Tumori, IRCCS-Fondazione “G. Pascale”, 80131 Naples, Italy
| | | | - Davide Campana
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum–University of Bologna, Via Zamboni 33, 40126 Bologna, Italy; (S.S.); (M.G.F.); (D.C.); (G.L.)
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via P. Albertoni 15, 40138 Bologna, Italy
| | - Maria Pia Brizzi
- Department of Oncology, A.O.U. San Luigi Gonzaga Hospital, 10043 Orbassano, Italy;
| | - Mauro Cives
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, 70124 Bari, Italy; (E.L.); (M.C.)
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Anna La Salvia
- National Center for Drug Research and Evaluation, National Institute of Health (ISS), 00161 Rome, Italy
| | - Giuseppe Lamberti
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum–University of Bologna, Via Zamboni 33, 40126 Bologna, Italy; (S.S.); (M.G.F.); (D.C.); (G.L.)
- Medical Oncology Unit, Vito Fazzi Hospital, 73100 Lecce, Italy;
| |
Collapse
|
22
|
Katuwal NB, Kang MS, Ghosh M, Hong SD, Jeong YG, Park SM, Kim SG, Sohn J, Kim TH, Moon YW. Targeting PEG10 as a novel therapeutic approach to overcome CDK4/6 inhibitor resistance in breast cancer. J Exp Clin Cancer Res 2023; 42:325. [PMID: 38017459 PMCID: PMC10683152 DOI: 10.1186/s13046-023-02903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Breast cancer is the global leading cancer burden in women and the hormone receptor-positive (HR+) subtype is a major part of breast cancer. Though cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors are highly effective therapy for HR+ subtype, acquired resistance is inevitable in most cases. Herein, we investigated the paternally expressed gene 10 (PEG10)-associated mechanism of acquired resistance to CDK4/6 inhibitors. METHODS Palbociclib-resistant cells were generated by exposing human HR+ breast cancer cell lines to palbociclib for 7-9 months. In vitro mechanistic study and in vivo xenograft assay were performed. For clinical relevance, public mRNA microarray data sets of early breast cancer were analyzed and PEG10 immunohistochemical staining was performed using pre-CDK4/6 inhibitor tumor samples. RESULTS We observed that PEG10 was significantly upregulated in palbociclib-resistant cells. Ectopic overexpression of PEG10 in parental cells caused CDK4/6 inhibitor resistance and enhanced epithelial-mesenchymal transition (EMT). On the contrary, PEG10-targeting siRNA or antisense oligonucleotides (ASOs) combined with palbociclib synergistically inhibited proliferation of palbociclib-resistant cells and growth of palbociclib-resistant xenograft in mice and suppressed EMT as well. The mechanistic study confirmed that high PEG10 expression suppressed p21, a natural CDK inhibitor, and SIAH1, a post-translational degrader of ZEB1, augmenting CDK4/6 inhibitor resistance. Then PEG10 siRNA combined with palbociclib suppressed cell cycle progression and EMT via activating p21 and SIAH1, respectively. Consequently, combined PEG10 inhibition and palbociclib overcame CDK4/6 inhibitor resistance. Furthermore, high PEG10 expression was significantly associated with a shorter recurrence-free survival (RFS) based on public mRNA expression data. In pre-CDK4/6 inhibitor treatment tissues, PEG10 positivity by IHC also showed a trend toward a shorter progression-free survival (PFS) with CDK4/6 inhibitor. These results support clinical relevance of PEG10 as a therapeutic target. CONCLUSIONS We demonstrated a novel PEG10-associated mechanism of CDK4/6 inhibitor resistance. We propose PEG10 as a promising therapeutic target for overcoming PEG10-associated resistance to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Nar Bahadur Katuwal
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam-Si, 13488, Republic of Korea
| | - Min Sil Kang
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam-Si, 13488, Republic of Korea
| | - Mithun Ghosh
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam-Si, 13488, Republic of Korea
| | - Sa Deok Hong
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam-Si, 13488, Republic of Korea
| | - Yeong Gyu Jeong
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam-Si, 13488, Republic of Korea
| | - Seong Min Park
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam-Si, 13488, Republic of Korea
| | - Seul-Gi Kim
- Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, 59 Yatap-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13496, Republic of Korea
| | - Joohyuk Sohn
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei, University College of Medicine, Seoul, 03080, Korea
| | - Tae Hoen Kim
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam-Si, 13496, Republic of Korea
| | - Yong Wha Moon
- Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, 59 Yatap-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13496, Republic of Korea.
| |
Collapse
|
23
|
Crowell PD, Giafaglione JM, Jones AE, Nunley NM, Hashimoto T, Delcourt AML, Petcherski A, Agrawal R, Bernard MJ, Diaz JA, Heering KY, Huang RR, Low JY, Matulionis N, Navone NM, Ye H, Zoubeidi A, Christofk HR, Rettig MB, Reiter RE, Haffner MC, Boutros PC, Shirihai OS, Divakaruni AS, Goldstein AS. MYC is a regulator of androgen receptor inhibition-induced metabolic requirements in prostate cancer. Cell Rep 2023; 42:113221. [PMID: 37815914 DOI: 10.1016/j.celrep.2023.113221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/17/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023] Open
Abstract
Advanced prostate cancers are treated with therapies targeting the androgen receptor (AR) signaling pathway. While many tumors initially respond to AR inhibition, nearly all develop resistance. It is critical to understand how prostate tumor cells respond to AR inhibition in order to exploit therapy-induced phenotypes prior to the outgrowth of treatment-resistant disease. Here, we comprehensively characterize the effects of AR blockade on prostate cancer metabolism using transcriptomics, metabolomics, and bioenergetics approaches. The metabolic response to AR inhibition is defined by reduced glycolysis, robust elongation of mitochondria, and increased reliance on mitochondrial oxidative metabolism. We establish DRP1 activity and MYC signaling as mediators of AR-blockade-induced metabolic phenotypes. Rescuing DRP1 phosphorylation after AR inhibition restores mitochondrial fission, while rescuing MYC restores glycolytic activity and prevents sensitivity to complex I inhibition. Our study provides insight into the regulation of treatment-induced metabolic phenotypes and vulnerabilities in prostate cancer.
Collapse
Affiliation(s)
- Preston D Crowell
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jenna M Giafaglione
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anthony E Jones
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nicholas M Nunley
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Takao Hashimoto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amelie M L Delcourt
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anton Petcherski
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Raag Agrawal
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew J Bernard
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Johnny A Diaz
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kylie Y Heering
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rong Rong Huang
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jin-Yih Low
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nedas Matulionis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nora M Navone
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huihui Ye
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amina Zoubeidi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Heather R Christofk
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew B Rettig
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Robert E Reiter
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael C Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Paul C Boutros
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Orian S Shirihai
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Clinical Biochemistry, School of Medicine, Ben Gurion University of The Negev, Beer-Sheva, Israel
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andrew S Goldstein
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
24
|
Xu Y, Wang Z, Sjöström M, Deng S, Wang C, Johnson NA, Gonzalez J, Li X, Metang LA, Tirado CR, Mukherji A, Wainwright G, Yu X, Yang Y, Barnes S, Hofstad M, Zhu H, Hanker A, He HH, Chen Y, Wang Z, Raj G, Arteaga C, Feng F, Wang Y, Wang T, Mu P. ZNF397 Loss Triggers TET2-driven Epigenetic Rewiring, Lineage Plasticity, and AR-targeted Therapy Resistance in AR-dependent Cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563645. [PMID: 37961351 PMCID: PMC10634771 DOI: 10.1101/2023.10.24.563645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cancer cells exhibit phenotypical plasticity and epigenetic reprogramming, which allows them to evade lineage-dependent targeted treatments by adopting lineage plasticity. The underlying mechanisms by which cancer cells exploit the epigenetic regulatory machinery to acquire lineage plasticity and therapy resistance remain poorly understood. We identified Zinc Finger Protein 397 (ZNF397) as a bona fide co-activator of the androgen receptor (AR), essential for the transcriptional program governing AR-driven luminal lineage. ZNF397 deficiency facilitates the transition of cancer cell from an AR-driven luminal lineage to a Ten-Eleven Translocation 2 (TET2)-driven lineage plastic state, ultimately promoting resistance to therapies inhibiting AR signaling. Intriguingly, our findings indicate that TET2 inhibitor can eliminate the AR targeted therapies resistance in ZNF397-deficient tumors. These insights uncover a novel mechanism through which prostate and breast cancers acquire lineage plasticity via epigenetic rewiring and offer promising implications for clinical interventions designed to overcome therapy resistance dictated by lineage plasticity. Statement of Significance This study reveals a novel epigenetic mechanism regulating tumor lineage plasticity and therapy response, enhances understanding of drug resistance and unveils a new therapeutic strategy for prostate cancer and other malignancies. Our findings also illuminate TET2's oncogenic role and mechanistically connect TET2-driven epigenetic rewiring to lineage plasticity and therapy resistance.
Collapse
|
25
|
Song Z, Cao Q, Guo B, Zhao Y, Li X, Lou N, Zhu C, Luo G, Peng S, Li G, Chen K, Wang Y, Ruan H, Guo Y. Overexpression of RACGAP1 by E2F1 Promotes Neuroendocrine Differentiation of Prostate Cancer by Stabilizing EZH2 Expression. Aging Dis 2023; 14:1757-1774. [PMID: 37196108 PMCID: PMC10529746 DOI: 10.14336/ad.2023.0202] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/02/2023] [Indexed: 05/19/2023] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is a lethal subtype of prostate cancer. It is characterized by the loss of androgen receptor (AR) signaling in neuroendocrine transdifferentiation, and finally, resistance to AR-targeted therapy. With the application of a new generation of potent AR inhibitors, the incidence of NEPC is gradually increasing. The molecular mechanism of neuroendocrine differentiation (NED) after androgen deprivation therapy (ADT) remains largely unclear. In this study, using NEPC-related genome sequencing database analyses, we screened RACGAP1, a common differentially expressed gene. We investigated RACGAP1 expression in clinical prostate cancer specimens by IHC. Regulated pathways were examined by Western blotting, qRT-PCR, luciferase reporter, chromatin immunoprecipitation, and immunoprecipitation assays. The corresponding function of RACGAP1 in prostate cancer was analyzed by CCK-8 and Transwell assays. The changes of neuroendocrine markers and AR expression in C4-2-R and C4-2B-R cells were detected in vitro. We confirmed that RACGAP1 contributed to NE transdifferentiation of prostate cancer. Patients with high tumor RACGAP1 expression had shorter relapse-free survival time. The expression of RACGAP1 was induced by E2F1. RACGAP1 promoted neuroendocrine transdifferentiation of prostate cancer by stabilizing EZH2 expression in the ubiquitin-proteasome pathway. Moreover, overexpression of RACGAP1 promoted enzalutamide resistance of castration-resistant prostate cancer (CRPC) cells. Our results showed that the upregulation of RACGAP1 by E2F1 increased EZH2 expression, which drove NEPC progression. This study explored the molecular mechanism of NED and may provide novel methods and ideas for targeted therapy of NEPC.
Collapse
Affiliation(s)
- Zhengshuai Song
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Institute of Urology, Wuhan 430030, China
| | - Qi Cao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Institute of Urology, Wuhan 430030, China
| | - Bin Guo
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Institute of Urology, Wuhan 430030, China
| | - Ye Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Institute of Urology, Wuhan 430030, China
| | - Xuechao Li
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Institute of Urology, Wuhan 430030, China
| | - Ning Lou
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Institute of Urology, Wuhan 430030, China
| | - Chenxi Zhu
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Institute of Urology, Wuhan 430030, China
| | - Gang Luo
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Institute of Urology, Wuhan 430030, China
| | - Song Peng
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Institute of Urology, Wuhan 430030, China
| | - Guohao Li
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Institute of Urology, Wuhan 430030, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Institute of Urology, Wuhan 430030, China
| | - Yong Wang
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Institute of Urology, Wuhan 430030, China
| | - Hailong Ruan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Institute of Urology, Wuhan 430030, China
| | - Yonglian Guo
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Institute of Urology, Wuhan 430030, China
| |
Collapse
|
26
|
Huang J, Liu D, Li J, Xu J, Dong S, Zhang H. A 12-gene panel in estimating hormone-treatment responses of castration-resistant prostate cancer patients generated using a combined analysis of bulk and single-cell sequencing data. Ann Med 2023; 55:2260387. [PMID: 37729607 PMCID: PMC10512812 DOI: 10.1080/07853890.2023.2260387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Castration-resistant prostate cancer (CRPC) represents one type of advanced prostate cancer (PCa) with a median survival time of 1-2 years. Currently, there is a lack of reliable gene panels in predicting hormone treatment (HT) responses due to limited knowledge of CRPC-specific tumor-microenvironment (TME) characteristics. METHODS In this study, we first screened for up-regulated genes in CRPC samples using bulk-sequencing data retrieved from TCGA online database, and further investigated the expression status of these genes in four sets of downloaded single-cell RNA sequencing (scRNAseq) data: GSE117403 containing 16 normal human prostate samples; GSE141445 containing 13 PCa samples; GSE176031 containing 11 PCa samples and GSE137829 containing 6 CRPC samples. RESULTS We identified a series of CRPC-specific TME characteristics including an enriched number of PEG10+ neuroendocrine cells, elevated expression of PPIB/CCDC74A/GAPDH/AR genes in tumor cells, increased expression of FAP/TGFB1 in cancer-associated fibroblasts (CAFs), suppressed immune environment featured by enhanced M2 macrophage polarization, T cell exhaustion and increased number of regulatory B cells. We further established a 12-gene panel using these characteristics and showed that this panel could separate CRPC samples from PCa samples (AUC of 0.78), and CRPC patients with higher panel scores tended to have treatment failure or progression (R = -0.47, p = 0.019). CONCLUSIONS Based on these unique TME characteristics of CRPC, we established a prediction tool for estimating the duration of HT responses in PCa treatment. Our results suggest mechanisms by which prostate cancer becomes castrate resistant. Further study of PEG10 (and/or others) to evaluate therapeutic efficacy should be considered.
Collapse
Affiliation(s)
- Juanlan Huang
- Department of Health Management, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Guangzhou, China
- The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Dale Liu
- The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Guangzhou, China
| | - Jun Li
- Department of Hematology and Oncology, Shenzhen Children's Hospital of China Medical University, Shenzhen, China
| | - Jing Xu
- The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Department of Pathology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, Guangzhou, China
| | - Shaowei Dong
- Department of Hematology and Oncology, Shenzhen Children's Hospital of China Medical University, Shenzhen, China
| | - Hao Zhang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
27
|
Zamora I, Freeman MR, Encío IJ, Rotinen M. Targeting Key Players of Neuroendocrine Differentiation in Prostate Cancer. Int J Mol Sci 2023; 24:13673. [PMID: 37761978 PMCID: PMC10531052 DOI: 10.3390/ijms241813673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is a highly aggressive subtype of prostate cancer (PC) that commonly emerges through a transdifferentiation process from prostate adenocarcinoma and evades conventional therapies. Extensive molecular research has revealed factors that drive lineage plasticity, uncovering novel therapeutic targets to be explored. A diverse array of targeting agents is currently under evaluation in pre-clinical and clinical studies with promising results in suppressing or reversing the neuroendocrine phenotype and inhibiting tumor growth and metastasis. This new knowledge has the potential to contribute to the development of novel therapeutic approaches that may enhance the clinical management and prognosis of this lethal disease. In the present review, we discuss molecular players involved in the neuroendocrine phenotype, and we explore therapeutic strategies that are currently under investigation for NEPC.
Collapse
Affiliation(s)
- Irene Zamora
- Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Michael R. Freeman
- Departments of Urology and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ignacio J. Encío
- Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarre Institute for Health Research, 31008 Pamplona, Spain
| | - Mirja Rotinen
- Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarre Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
28
|
Nyquist MD, Coleman IM, Lucas JM, Li D, Hanratty B, Meade H, Mostaghel EA, Plymate SR, Corey E, Haffner MC, Nelson PS. Supraphysiological Androgens Promote the Tumor Suppressive Activity of the Androgen Receptor through cMYC Repression and Recruitment of the DREAM Complex. Cancer Res 2023; 83:2938-2951. [PMID: 37352376 PMCID: PMC10472100 DOI: 10.1158/0008-5472.can-22-2613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/24/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
The androgen receptor (AR) pathway regulates key cell survival programs in prostate epithelium. The AR represents a near-universal driver and therapeutic vulnerability in metastatic prostate cancer, and targeting AR has a remarkable therapeutic index. Though most approaches directed toward AR focus on inhibiting AR signaling, laboratory and now clinical data have shown that high dose, supraphysiological androgen treatment (SPA) results in growth repression and improved outcomes in subsets of patients with prostate cancer. A better understanding of the mechanisms contributing to SPA response and resistance could help guide patient selection and combination therapies to improve efficacy. To characterize SPA signaling, we integrated metrics of gene expression changes induced by SPA together with cistrome data and protein-interactomes. These analyses indicated that the dimerization partner, RB-like, E2F, and multivulval class B (DREAM) complex mediates growth repression and downregulation of E2F targets in response to SPA. Notably, prostate cancers with complete genomic loss of RB1 responded to SPA treatment, whereas loss of DREAM complex components such as RBL1/2 promoted resistance. Overexpression of MYC resulted in complete resistance to SPA and attenuated the SPA/AR-mediated repression of E2F target genes. These findings support a model of SPA-mediated growth repression that relies on the negative regulation of MYC by AR leading to repression of E2F1 signaling via the DREAM complex. The integrity of MYC signaling and DREAM complex assembly may consequently serve as determinants of SPA responses and as pathways mediating SPA resistance. SIGNIFICANCE Determining the molecular pathways by which supraphysiological androgens promote growth arrest and treatment responses in prostate cancer provides opportunities for biomarker-selected clinical trials and the development of strategies to augment responses.
Collapse
Affiliation(s)
- Michael D. Nyquist
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Ilsa M. Coleman
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jared M. Lucas
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Dapei Li
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Brian Hanratty
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Hannah Meade
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Elahe A. Mostaghel
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington
| | - Stephen R. Plymate
- Geriatric Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Michael C. Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Peter S. Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Urology, University of Washington, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
- Department of Genome Sciences, University of Washington, Seattle, Washington
- Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
29
|
Naderinezhad S, Zhang G, Wang Z, Zheng D, Hulsurkar M, Bakhoum M, Su N, Yang H, Shen T, Li W. A novel GRK3-HDAC2 regulatory pathway is a key direct link between neuroendocrine differentiation and angiogenesis in prostate cancer progression. Cancer Lett 2023; 571:216333. [PMID: 37543278 PMCID: PMC11235056 DOI: 10.1016/j.canlet.2023.216333] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
The mechanisms underlying the progression of prostate cancer (PCa) to neuroendocrine prostate cancer (NEPC), an aggressive PCa variant, are largely unclear. Two prominent NEPC phenotypes are elevated NE marker expression and heightened angiogenesis. Identifying the still elusive direct molecular links connecting angiogenesis and neuroendocrine differentiation (NED) is crucial for our understanding and targeting of NEPC. Here we found that histone deacetylase 2 (HDAC2), whose role in NEPC has not been reported, is one of the most upregulated epigenetic regulators in NEPC. HDAC2 promotes both NED and angiogenesis. G protein-coupled receptor kinase 3 (GRK3), also upregulated in NEPC, is a critical promoter for both phenotypes too. Of note, GRK3 phosphorylates HDAC2 at S394, which enhances HDAC2's epigenetic repression of potent anti-angiogenic factor Thrombospondin 1 (TSP1) and master NE-repressor RE1 Silencing Transcription Factor (REST). Intriguingly, REST suppresses angiogenesis while TSP1 suppresses NE marker expression in PCa cells, indicative of their novel functions and their synergy in cross-repressing the two phenotypes. Furthermore, the GRK3-HDAC2 pathway is activated by androgen deprivation therapy and hypoxia, both known to promote NED and angiogenesis in PCa. These results indicate that NED and angiogenesis converge on GRK3-enhanced HDAC2 suppression of REST and TSP1, which constitutes a key missing link between two prominent phenotypes of NEPC.
Collapse
Affiliation(s)
- Samira Naderinezhad
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA; University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Guoliang Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zheng Wang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dayong Zheng
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mohit Hulsurkar
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA; University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Michael Bakhoum
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ning Su
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Han Yang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tao Shen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Wenliang Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA; University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
30
|
Baird L, Cannon P, Kandel M, Nguyen TV, Nguyen A, Wong G, Murphy C, Brownfoot FC, Kadife E, Hannan NJ, Tong S, Bartho LA, Kaitu'u-Lino TJ. Paternal Expressed Gene 10 (PEG10) is decreased in early-onset preeclampsia. Reprod Biol Endocrinol 2023; 21:65. [PMID: 37464405 DOI: 10.1186/s12958-023-01116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Preeclampsia is a severe complication of pregnancy which is attributed to placental dysfunction. The retrotransposon, Paternal Expressed Gene 10 (PEG10) harbours critical placental functions pertaining to placental trophoblast cells. Limited evidence exists on whether PEG10 is involved in preeclampsia pathogenesis. This study characterised the expression and regulation of PEG10 in placentas from patients with early-onset preeclampsia compared to gestation-matched controls. METHODS PEG10 expression was measured in plasma and placentas collected from patients with early-onset preeclampsia (< 34 weeks') and gestation-matched controls using ELISA (protein) and RT-qPCR (mRNA). First-trimester human trophoblast stem cells (hTSCs) were used for in vitro studies. PEG10 expression was measured during hTSC differentiation and hTSC exposure to hypoxia (1% O2) and inflammatory cytokines (IL-6 and TNFα) using RT-qPCR. Functional studies used PEG10 siRNA to measure the effect of reduced PEG10 on canonical TGF-[Formula: see text] signalling and proliferation using luciferase and xCELLigence assays, respectively. RESULTS PEG10 mRNA expression was significantly reduced in placentas from patients with early-onset preeclampsia (< 34 weeks' gestation) relative to controls (p = 0.04, n = 78 vs n = 18 controls). PEG10 protein expression was also reduced in preeclamptic placentas (p = 0.03, n = 5 vs n = 5 controls, blinded assessment of immunohistochemical staining), but neither PEG10 mRNA nor protein could be detected in maternal circulation. PEG10 was most highly expressed in hTSCs, and its expression was reduced as hTSCs differentiated into syncytiotrophoblasts (p < 0.0001) and extravillous trophoblasts (p < 0.001). Trophoblast differentiation was not altered when hTSCs were treated with PEG10 siRNA (n = 5 vs n = 5 controls). PEG10 was significantly reduced in hTSCs exposed to hypoxia (p < 0.01). PEG10 was also reduced in hTSCs treated with the inflammatory cytokine TNF [Formula: see text] (p < 0.01), but not IL-6. PEG10 knocked down (siRNA) in hTSCs showed reduced activation of the canonical TGF-β signalling effector, the SMAD binding element (p < 0.05) relative to controls. PEG10 knockdown in hTSCs however was not associated with any significant alterations in proliferation. CONCLUSIONS Placental PEG10 is reduced in patients with early-onset preeclampsia. In vitro studies suggest that hypoxia and inflammation may contribute to PEG10 downregulation. Reduced PEG10 alters canonical TGF-[Formula: see text] signalling, and thus may be involved in trophoblast dysfunction associated with this pathway.
Collapse
Affiliation(s)
- Lydia Baird
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Ping Cannon
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Manju Kandel
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Tuong-Vi Nguyen
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Anna Nguyen
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Georgia Wong
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Cíara Murphy
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Fiona C Brownfoot
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Elif Kadife
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Natalie J Hannan
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Stephen Tong
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Lucy A Bartho
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg Victoria, 3084, Australia.
- Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia.
| |
Collapse
|
31
|
Watanabe R, Miura N, Kurata M, Kitazawa R, Kikugawa T, Saika T. Spatial Gene Expression Analysis Reveals Characteristic Gene Expression Patterns of De Novo Neuroendocrine Prostate Cancer Coexisting with Androgen Receptor Pathway Prostate Cancer. Int J Mol Sci 2023; 24:8955. [PMID: 37240308 PMCID: PMC10219300 DOI: 10.3390/ijms24108955] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Neuroendocrine prostate carcinoma (NEPC) accounts for less than 1% of prostate neoplasms and has extremely poorer prognosis than the typical androgen receptor pathway-positive adenocarcinoma of the prostate (ARPC). However, very few cases in which de novo NEPC and APRC are diagnosed simultaneously in the same tissue have been reported. We report herein a 78-year-old man of de novo metastatic NEPC coexisting with ARPC treated at Ehime University Hospital. Visium CytAssist Spatial Gene Expression analysis (10× genetics) was performed using formalin-fixed, paraffin-embedded (FFPE) samples. The neuroendocrine signatures were upregulated in NEPC sites, and androgen receptor signatures were upregulated in ARPC sites. TP53, RB1, or PTEN and upregulation of the homologous recombination repair genes at NEPC sites were not downregulated. Urothelial carcinoma markers were not elevated. Meanwhile, Rbfox3 and SFRTM2 levels were downregulated while the levels of the fibrosis markers HGF, HMOX1, ELN, and GREM1 were upregulated in the tumor microenvironment of NEPC. In conclusion, the findings of spatial gene expression analysis in a patient with coexisting ARPC and de novo NEPC are reported. The accumulation of cases and basic data will help with the development of novel treatments for NEPC and improve the prognosis of patients with castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Ryuta Watanabe
- Department of Urology, Ehime University Hospital, Ehime 791-0204, Japan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Noriyoshi Miura
- Department of Urology, Ehime University Hospital, Ehime 791-0204, Japan
| | - Mie Kurata
- Department of Analytical Pathology, Ehime University Graduate School of Medicine, Ehime 791-0295, Japan
- Division of Pathology, Proteo-Science Center, Ehime 790-0826, Japan
| | - Riko Kitazawa
- Division of Diagnostic Pathology, Ehime University Hospital, Ehime 791-0204, Japan;
| | - Tadahiko Kikugawa
- Department of Urology, Ehime University Hospital, Ehime 791-0204, Japan
| | - Takashi Saika
- Department of Urology, Ehime University Hospital, Ehime 791-0204, Japan
| |
Collapse
|
32
|
Bidkar AP, Wang S, Bobba KN, Chan E, Bidlingmaier S, Egusa EA, Peter R, Ali U, Meher N, Wadhwa A, Dhrona S, Dasari C, Beckford-Vera D, Su Y, Tang R, Zhang L, He J, Wilson DM, Aggarwal R, VanBrocklin HF, Seo Y, Chou J, Liu B, Flavell RR. Treatment of Prostate Cancer with CD46-targeted 225Ac Alpha Particle Radioimmunotherapy. Clin Cancer Res 2023; 29:1916-1928. [PMID: 36917693 PMCID: PMC10183825 DOI: 10.1158/1078-0432.ccr-22-3291] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/19/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023]
Abstract
PURPOSE Radiopharmaceutical therapy is changing the standard of care in prostate cancer and other malignancies. We previously reported high CD46 expression in prostate cancer and developed an antibody-drug conjugate and immunoPET agent based on the YS5 antibody, which targets a tumor-selective CD46 epitope. Here, we present the preparation, preclinical efficacy, and toxicity evaluation of [225Ac]DOTA-YS5, a radioimmunotherapy agent based on the YS5 antibody. EXPERIMENTAL DESIGN [225Ac]DOTA-YS5 was developed, and its therapeutic efficiency was tested on cell-derived (22Rv1, DU145), and patient-derived (LTL-545, LTL484) prostate cancer xenograft models. Biodistribution studies were carried out on 22Rv1 tumor xenograft models to confirm the targeting efficacy. Toxicity analysis of the [225Ac]DOTA-YS5 was carried out on nu/nu mice to study short-term (acute) and long-term (chronic) toxicity. RESULTS Biodistribution study shows that [225Ac]DOTA-YS5 agent delivers high levels of radiation to the tumor tissue (11.64% ± 1.37%ID/g, 28.58% ± 10.88%ID/g, 29.35% ± 7.76%ID/g, and 31.78% ± 5.89%ID/g at 24, 96, 168, and 408 hours, respectively), compared with the healthy organs. [225Ac]DOTA-YS5 suppressed tumor size and prolonged survival in cell line-derived and patient-derived xenograft models. Toxicity analysis revealed that the 0.5 μCi activity levels showed toxicity to the kidneys, likely due to redistribution of daughter isotope 213Bi. CONCLUSIONS [225Ac]DOTA-YS5 suppressed the growth of cell-derived and patient-derived xenografts, including prostate-specific membrane antigen-positive and prostate-specific membrane antigen-deficient models. Overall, this preclinical study confirms that [225Ac]DOTA-YS5 is a highly effective treatment and suggests feasibility for clinical translation of CD46-targeted radioligand therapy in prostate cancer.
Collapse
Affiliation(s)
- Anil P. Bidkar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Sinan Wang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Kondapa Naidu Bobba
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Emily Chan
- Department of Pathology, University of California, San Francisco, California
| | - Scott Bidlingmaier
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - Emily A. Egusa
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Robin Peter
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
- Department of Nuclear Engineering, University of California, Berkeley, California
| | - Umama Ali
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Niranjan Meher
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Anju Wadhwa
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Suchi Dhrona
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Chandrashekhar Dasari
- Department of Surgery, Cardiovascular Research Institute, University of California San Francisco, San Francisco, California
| | - Denis Beckford-Vera
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Yang Su
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - Ryan Tang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Li Zhang
- Department of Medicine and the Department of Epidemiology and Biostatistics, University of California, Berkeley, California
| | - Jiang He
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia
| | - David M. Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Rahul Aggarwal
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Henry F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Jonathan Chou
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Bin Liu
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Robert R. Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California
| |
Collapse
|
33
|
Karami Fath M, Pourbagher Benam S, Kouhi Esfahani N, Shahkarami N, Shafa S, Bagheri H, Shafagh SG, Payandeh Z, Barati G. The functional role of circular RNAs in the pathogenesis of retinoblastoma: a new potential biomarker and therapeutic target? Clin Transl Oncol 2023:10.1007/s12094-023-03144-2. [PMID: 37000290 DOI: 10.1007/s12094-023-03144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/01/2023] [Indexed: 04/01/2023]
Abstract
Retinoblastoma (RB) is a common cancer in infants and children. It is a curable disease; however, a delayed diagnosis or treatment makes the treatment difficult. Genetic mutations have a central role in the pathogenesis of RB. Genetic materials such as RNAs (coding and non-coding RNAs) are also involved in the progression of the tumor. Circular RNA (circRNA) is the most recently identified RNA and is involved in regulating gene expression mainly through "microRNA sponges". The dysregulation of circRNAs has been observed in several diseases and tumors. Also, various studies have shown that circRNAs expression is changed in RB tissues. Due to their role in the pathogenesis of the disease, circRNAs might be helpful as a diagnostic or prognostic biomarker in patients with RB. In addition, circRNAs could be a suitable therapeutic target to treat RB in a targeted therapy approach.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | | | - Negar Shahkarami
- School of Allied Medical Sciences, Fasa University of Medical Sciences, Fasa, Iran
| | - Shahriyar Shafa
- School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Bagheri
- Faculty of Medicine, Islamic Azad University of Tehran Branch, Tehran, Iran
| | | | - Zahra Payandeh
- Division Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
34
|
Black HH, Hanson JL, Roberts JE, Leslie SN, Campodonico W, Ebmeier CC, Holling GA, Tay JW, Matthews AM, Ung E, Lau CI, Whiteley AM. UBQLN2 restrains the domesticated retrotransposon PEG10 to maintain neuronal health in ALS. eLife 2023; 12:e79452. [PMID: 36951542 PMCID: PMC10076021 DOI: 10.7554/elife.79452] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 03/15/2023] [Indexed: 03/24/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor neuron dysfunction and loss. A portion of ALS cases are caused by mutation of the proteasome shuttle factor Ubiquilin 2 (UBQLN2), but the molecular pathway leading from UBQLN2 dysfunction to disease remains unclear. Here, we demonstrate that UBQLN2 regulates the domesticated gag-pol retrotransposon 'paternally expressed gene 10 (PEG10)' in human cells and tissues. In cells, the PEG10 gag-pol protein cleaves itself in a mechanism reminiscent of retrotransposon self-processing to generate a liberated 'nucleocapsid' fragment, which uniquely localizes to the nucleus and changes the expression of genes involved in axon remodeling. In spinal cord tissue from ALS patients, PEG10 gag-pol is elevated compared to healthy controls. These findings implicate the retrotransposon-like activity of PEG10 as a contributing mechanism in ALS through the regulation of gene expression, and restraint of PEG10 as a primary function of UBQLN2.
Collapse
Affiliation(s)
- Holly H Black
- Department of Biochemistry, University of Colorado BoulderBoulderUnited States
| | - Jessica L Hanson
- Institute for Behavioral Genetics, University of Colorado BoulderBoulderUnited States
| | - Julia E Roberts
- Department of Biochemistry, University of Colorado BoulderBoulderUnited States
| | - Shannon N Leslie
- Department of Biochemistry, University of Colorado BoulderBoulderUnited States
| | - Will Campodonico
- Department of Biochemistry, University of Colorado BoulderBoulderUnited States
| | | | - G Aaron Holling
- Department of Biochemistry, University of Colorado BoulderBoulderUnited States
| | - Jian Wei Tay
- Biofrontiers Institute, University of Colorado BoulderBoulderUnited States
| | - Autumn M Matthews
- Department of Biochemistry, University of Colorado BoulderBoulderUnited States
| | - Elizabeth Ung
- Department of Biochemistry, University of Colorado BoulderBoulderUnited States
| | - Cristina I Lau
- Department of Biochemistry, University of Colorado BoulderBoulderUnited States
| | | |
Collapse
|
35
|
Scott E, Hodgson K, Calle B, Turner H, Cheung K, Bermudez A, Marques FJG, Pye H, Yo EC, Islam K, Oo HZ, McClurg UL, Wilson L, Thomas H, Frame FM, Orozco-Moreno M, Bastian K, Arredondo HM, Roustan C, Gray MA, Kelly L, Tolson A, Mellor E, Hysenaj G, Goode EA, Garnham R, Duxfield A, Heavey S, Stopka-Farooqui U, Haider A, Freeman A, Singh S, Johnston EW, Punwani S, Knight B, McCullagh P, McGrath J, Crundwell M, Harries L, Bogdan D, Westaby D, Fowler G, Flohr P, Yuan W, Sharp A, de Bono J, Maitland NJ, Wisnovsky S, Bertozzi CR, Heer R, Guerrero RH, Daugaard M, Leivo J, Whitaker H, Pitteri S, Wang N, Elliott DJ, Schumann B, Munkley J. Upregulation of GALNT7 in prostate cancer modifies O-glycosylation and promotes tumour growth. Oncogene 2023; 42:926-937. [PMID: 36725887 PMCID: PMC10020086 DOI: 10.1038/s41388-023-02604-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Prostate cancer is the most common cancer in men and it is estimated that over 350,000 men worldwide die of prostate cancer every year. There remains an unmet clinical need to improve how clinically significant prostate cancer is diagnosed and develop new treatments for advanced disease. Aberrant glycosylation is a hallmark of cancer implicated in tumour growth, metastasis, and immune evasion. One of the key drivers of aberrant glycosylation is the dysregulated expression of glycosylation enzymes within the cancer cell. Here, we demonstrate using multiple independent clinical cohorts that the glycosyltransferase enzyme GALNT7 is upregulated in prostate cancer tissue. We show GALNT7 can identify men with prostate cancer, using urine and blood samples, with improved diagnostic accuracy than serum PSA alone. We also show that GALNT7 levels remain high in progression to castrate-resistant disease, and using in vitro and in vivo models, reveal that GALNT7 promotes prostate tumour growth. Mechanistically, GALNT7 can modify O-glycosylation in prostate cancer cells and correlates with cell cycle and immune signalling pathways. Our study provides a new biomarker to aid the diagnosis of clinically significant disease and cements GALNT7-mediated O-glycosylation as an important driver of prostate cancer progression.
Collapse
Affiliation(s)
- Emma Scott
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Kirsty Hodgson
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Beatriz Calle
- The Chemical Glycobiology Laboratory, The Francis Crick Institute, NW1 1AT, London, UK
- Department of Chemistry, Imperial College London, W12 0BZ, London, UK
| | - Helen Turner
- Cellular Pathology, The Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK
| | - Kathleen Cheung
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Abel Bermudez
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University, Palo Alto, CA, 94304, USA
| | - Fernando Jose Garcia Marques
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University, Palo Alto, CA, 94304, USA
| | - Hayley Pye
- Molecular Diagnostics and Therapeutics Group, Charles Bell House, Division of Surgery and Interventional Science, University College London, London, UK
| | - Edward Christopher Yo
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Khirul Islam
- Department of Life Technologies, Division of Biotechnology, University of Turku, Turku, Finland
| | - Htoo Zarni Oo
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
| | - Urszula L McClurg
- Institute for Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Laura Wilson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Huw Thomas
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Fiona M Frame
- Cancer Research Unit, Department of Biology, University of York, Heslington, North Yorkshire, YO10 5DD, UK
| | - Margarita Orozco-Moreno
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Kayla Bastian
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Hector M Arredondo
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Chloe Roustan
- Structural Biology Science Technology Platform, The Francis Crick Institute, NW1 1AT, London, UK
| | - Melissa Anne Gray
- Sarafan Chem-H and Departemnt of Chemistry, Stanford University, 424 Santa Teresa St, Stanford, CA, 94305, USA
| | - Lois Kelly
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Aaron Tolson
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Ellie Mellor
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Gerald Hysenaj
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Emily Archer Goode
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Rebecca Garnham
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Adam Duxfield
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Susan Heavey
- Molecular Diagnostics and Therapeutics Group, Charles Bell House, Division of Surgery and Interventional Science, University College London, London, UK
| | - Urszula Stopka-Farooqui
- Molecular Diagnostics and Therapeutics Group, Charles Bell House, Division of Surgery and Interventional Science, University College London, London, UK
| | - Aiman Haider
- Department of Pathology, UCLH NHS Foundation Trust, London, UK
| | - Alex Freeman
- Department of Pathology, UCLH NHS Foundation Trust, London, UK
| | - Saurabh Singh
- UCL Centre for Medical Imaging, Charles Bell House, University College London, London, UK
| | - Edward W Johnston
- UCL Centre for Medical Imaging, Charles Bell House, University College London, London, UK
| | - Shonit Punwani
- UCL Centre for Medical Imaging, Charles Bell House, University College London, London, UK
| | - Bridget Knight
- NIHR Exeter Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Paul McCullagh
- Department of Pathology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - John McGrath
- Exeter Surgical Health Services Research Unit, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Malcolm Crundwell
- Exeter Surgical Health Services Research Unit, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Lorna Harries
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Denisa Bogdan
- Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Daniel Westaby
- Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, UK
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London, SM2 5PT, UK
| | - Gemma Fowler
- Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Penny Flohr
- Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Wei Yuan
- Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Adam Sharp
- Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, UK
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London, SM2 5PT, UK
| | - Johann de Bono
- Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, UK
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London, SM2 5PT, UK
| | - Norman J Maitland
- Cancer Research Unit, Department of Biology, University of York, Heslington, North Yorkshire, YO10 5DD, UK
| | - Simon Wisnovsky
- University of British Columbia, Faculty of Pharmaceutical Sciences, Vancouver, BC, V6T 1Z3, Canada
| | - Carolyn R Bertozzi
- Howard Hughes Medical Institute, 424 Santa Teresa St, Stanford, CA, 94305, USA
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Department of Urology, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| | - Ramon Hurtado Guerrero
- University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain; Fundación ARAID, 50018, Zaragoza, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mads Daugaard
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
| | - Janne Leivo
- Department of Life Technologies, Division of Biotechnology, University of Turku, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Hayley Whitaker
- Molecular Diagnostics and Therapeutics Group, Charles Bell House, Division of Surgery and Interventional Science, University College London, London, UK
| | - Sharon Pitteri
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University, Palo Alto, CA, 94304, USA
| | - Ning Wang
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - David J Elliott
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Benjamin Schumann
- The Chemical Glycobiology Laboratory, The Francis Crick Institute, NW1 1AT, London, UK
- Department of Chemistry, Imperial College London, W12 0BZ, London, UK
| | - Jennifer Munkley
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK.
| |
Collapse
|
36
|
Abdulfatah E, Fine SW, Lotan TL, Mehra R. Reprint of: de novo neuroendocrine features in prostate cancer. Hum Pathol 2023; 133:115-125. [PMID: 36894369 DOI: 10.1016/j.humpath.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 03/09/2023]
Abstract
Neuroendocrine tumors of the prostate are rare and encompass a group of entities that are classified based on a combination of morphological and immunohistochemical features. Despite the 2016 World Health Organization classification of prostatic neuroendocrine tumors, variants have been reported that do not fit well in the categorization scheme. While the majority of these tumors arise in the setting of castration-resistant prostate cancer (postandrogen deprivation therapy), de novo cases may occur. In this review, we highlight the most significant pathological and immunohistochemical features, emerging biomarkers, and molecular features of such tumors.
Collapse
Affiliation(s)
- Eman Abdulfatah
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Samson W Fine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21211, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA; Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI, 48109, USA; Michigan Center for Translational Pathology, Ann Arbor, MI, 48104, USA.
| |
Collapse
|
37
|
Yin C, Wang M, Wang Y, Lin Q, Lin K, Du H, Lang C, Dai Y, Peng X. BHLHE22 drives the immunosuppressive bone tumor microenvironment and associated bone metastasis in prostate cancer. J Immunother Cancer 2023; 11:jitc-2022-005532. [PMID: 36941015 PMCID: PMC10030795 DOI: 10.1136/jitc-2022-005532] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND The molecular characteristics of prostate cancer (PCa) cells and the immunosuppressive bone tumor microenvironment (TME) contribute to the limitations of immune checkpoint therapy (ICT). Identifying subgroups of patients with PCa for ICT remains a challenge. Herein, we report that basic helix-loop-helix family member e22 (BHLHE22) is upregulated in bone metastatic PCa and drives an immunosuppressive bone TME. METHODS In this study, the function of BHLHE22 in PCa bone metastases was clarified. We performed immunohistochemical (IHC) staining of primary and bone metastatic PCa samples, and assessed the ability to promote bone metastasis in vivo and in vitro. Then, the role of BHLHE22 in bone TME was determined by immunofluorescence (IF), flow cytometry, and bioinformatic analyses. RNA sequencing, cytokine array, western blotting, IF, IHC, and flow cytometry were used to identify the key mediators. Subsequently, the role of BHLHE22 in gene regulation was confirmed using luciferase reporter, chromatin immunoprecipitation assay, DNA pulldown, co-immunoprecipitation, and animal experiments. Xenograft bone metastasis mouse models were used to assess whether the strategy of immunosuppressive neutrophils and monocytes neutralization by targeting protein arginine methyltransferase 5 (PRMT5)/colony stimulating factor 2 (CSF2) could improve the efficacy of ICT. Animals were randomly assigned to treatment or control groups. Moreover, we performed IHC and correlation analyses to identify whether BHLHE22 could act as a potential biomarker for ICT combination therapies in bone metastatic PCa. RESULTS Tumorous BHLHE22 mediates the high expression of CSF2, resulting in the infiltration of immunosuppressive neutrophils and monocytes and a prolonged immunocompromised T-cell status. Mechanistically, BHLHE22 binds to the CSF2 promoter and recruits PRMT5, forming a transcriptional complex. PRMT5 epigenetically activates CSF2 expression. In a tumor-bearing mouse model, ICT resistance of Bhlhe22+ tumors could be overcome by inhibition of Csf2 and Prmt5. CONCLUSIONS These results reveal the immunosuppressive mechanism of tumorous BHLHE22 and provide a potential ICT combination therapy for patients with BHLHE22+ PCa.
Collapse
Affiliation(s)
- Chi Yin
- Department of Orthopaedic Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Orthopaedic Research Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Min Wang
- Department of Orthopaedic Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Orthopaedic Research Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Yingzhao Wang
- Department of Gastrointestinal Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Qijun Lin
- Department of Orthopaedic Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Orthopaedic Research Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Kaiyuan Lin
- Department of Orthopaedic Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Orthopaedic Research Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Hong Du
- Department of Pathology, the First People's Hospital of Guangzhou City, Guangzhou, Guangdong, China
| | - Chuandong Lang
- Department of Orthopaedic Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Orthopaedic Research Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Yuhu Dai
- Department of Orthopaedic Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Orthopaedic Research Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| | - Xinsheng Peng
- Department of Orthopaedic Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Orthopaedic Research Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong, China
| |
Collapse
|
38
|
Chen J, Shi M, Chuen Choi SY, Wang Y, Lin D, Zeng H, Wang Y. Genomic alterations in neuroendocrine prostate cancer: A systematic review and meta‐analysis. BJUI COMPASS 2023; 4:256-265. [PMID: 37025467 PMCID: PMC10071089 DOI: 10.1002/bco2.212] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Background Neuroendocrine prostate cancer (NEPC) is a lethal subtype of prostate cancer. We performed a systematic review and meta-analysis to evaluate the prevalence of genomic alterations in NEPC and better understand its molecular features to potentially inform precision medicine. Methods EMBASE, PubMed, and Cochrane Central Register of Controlled Trials databases were searched for eligible studies until March 2022. Study qualities were assessed using the Q-genie tool. The prevalence of gene mutations and copy number alterations (CNAs) were extracted, and meta-analysis was performed using R Studio with meta package. Results A total of 14 studies with 449 NEPC patients were included in this meta-analysis. The most frequently mutated gene in NEPC was TP53 (49.8%), and the prevalence of deleterious mutations in ATM/BRCA was 16.8%. Common CNAs in NEPC included RB1 loss (58.3%), TP53 loss (42.8%), PTEN loss (37.0%), AURKA amplification (28.2%), and MYCN amplification (22.9%). RB1/TP53 alterations and concurrent RB1 and TP53 alterations were remarkably common in NEPC, with a prevalence of 83.8% and 43.9%, respectively. Comparative analyses indicated that the prevalence of (concurrent) RB1/TP53 alterations was significantly higher in de novo NEPC than in treatment-emergent NEPC (t-NEPC). Conclusions This study presents the comprehensive prevalence of common genomic alterations and potentially actionable targets in NEPC and reveals the genomic differences between de novo NEPC and t-NEPC. Our findings highlight the importance of genomic testing in patients for precision medicine and provide insights into future studies exploring different NEPC subtypes.
Collapse
Affiliation(s)
- Junru Chen
- Department of Urology, Institute of Urology, West China Hospital Sichuan University Chengdu Sichuan China
- Vancouver Prostate Centre Vancouver BC Canada
- Department of Urologic Sciences, Faculty of Medicine University of British Columbia Vancouver BC Canada
- Department of Experimental Therapeutics BC Cancer Agency Vancouver BC Canada
| | - Mingchen Shi
- Vancouver Prostate Centre Vancouver BC Canada
- Department of Urologic Sciences, Faculty of Medicine University of British Columbia Vancouver BC Canada
- Department of Experimental Therapeutics BC Cancer Agency Vancouver BC Canada
| | - Stephen Yiu Chuen Choi
- Vancouver Prostate Centre Vancouver BC Canada
- Department of Urologic Sciences, Faculty of Medicine University of British Columbia Vancouver BC Canada
- Department of Experimental Therapeutics BC Cancer Agency Vancouver BC Canada
| | - Yu Wang
- Vancouver Prostate Centre Vancouver BC Canada
- Department of Urologic Sciences, Faculty of Medicine University of British Columbia Vancouver BC Canada
- Department of Experimental Therapeutics BC Cancer Agency Vancouver BC Canada
| | - Dong Lin
- Vancouver Prostate Centre Vancouver BC Canada
- Department of Urologic Sciences, Faculty of Medicine University of British Columbia Vancouver BC Canada
- Department of Experimental Therapeutics BC Cancer Agency Vancouver BC Canada
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China Hospital Sichuan University Chengdu Sichuan China
| | - Yuzhuo Wang
- Vancouver Prostate Centre Vancouver BC Canada
- Department of Urologic Sciences, Faculty of Medicine University of British Columbia Vancouver BC Canada
- Department of Experimental Therapeutics BC Cancer Agency Vancouver BC Canada
| |
Collapse
|
39
|
Urabe F, Yamamoto Y, Kimura T. miRNAs in prostate cancer: Intercellular and extracellular communications. Int J Urol 2022; 29:1429-1438. [PMID: 36122303 DOI: 10.1111/iju.15043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/25/2022] [Indexed: 12/23/2022]
Abstract
Prostate cancer is the most prevalent male cancer in Western Europe and North America. Although new drugs were recently approved, clinical challenges such as accurately predicting and screening drug-resistant prostate cancer remain. microRNAs are short noncoding RNA molecules that participate in gene regulation at the post-transcriptional level by targeting messenger RNAs. There is accumulating evidence that intracellular microRNAs play important roles as promoters or inhibitors of prostate cancer progression. Additionally, recent studies showed that microRNAs are encapsulated in extracellular vesicles and shuttled into the extracellular space. Transfer of extracellular microRNAs contributes to intercellular communication between prostate cancer cells and components of the tumor microenvironment, which can promote prostate cancer progression. Furthermore, due to their encapsulation in extracellular vesicles, extracellular microRNAs can be stably present in body fluids which contain high levels of RNase. Thus, circulating microRNAs have great potential as noninvasive diagnostic and prognostic biomarkers for prostate cancer. Here, we summarize the roles of intracellular and extracellular microRNAs in prostate cancer progression and discuss the potential of microRNA-based therapeutics as a novel treatment strategy for prostate cancer.
Collapse
Affiliation(s)
- Fumihiko Urabe
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Takahiro Kimura
- Department of Urology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
40
|
DiNatale A, Worrede A, Iqbal W, Marchioli M, Toth A, Sjöström M, Zhu X, Corey E, Feng FY, Zhou W, Fatatis A. IL-1β expression driven by androgen receptor absence or inactivation promotes prostate cancer bone metastasis. CANCER RESEARCH COMMUNICATIONS 2022; 2:1545-1557. [PMID: 36561929 PMCID: PMC9770512 DOI: 10.1158/2767-9764.crc-22-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/12/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
We report the inverse association between the expression of androgen receptor (AR) and interleukin-1beta (IL-1β) in a cohort of patients with metastatic castration resistant prostate cancer (mCRPC). We also discovered that AR represses the IL-1β gene by binding an androgen response element (ARE) half-site located within the promoter, which explains the IL-1β expression in AR-negative (ARNEG) cancer cells. Consistently, androgen-depletion or AR-pathway inhibitors (ARIs) de-repressed IL-1β in ARPOS cancer cells, both in vitro and in vivo. The AR transcriptional repression is sustained by histone de-acetylation at the H3K27 mark in the IL-1β promoter. Notably, patients' data suggest that DNA methylation prevents IL-1β expression, even if the AR-signaling axis is inactive. Our previous studies show that secreted IL-1β supports metastatic progression in mice by altering the transcriptome of tumor-associated bone stroma. Thus, in prostate cancer patients harboring ARNEG tumor cells or treated with ADT/ARIs, and with the IL-1β gene unmethylated, IL-1β could condition the metastatic microenvironment to sustain disease progression.
Collapse
Affiliation(s)
- Anthony DiNatale
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Janssen Oncology, Spring House, Pennsylvania
| | - Asurayya Worrede
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- AstraZeneca, Baltimore, Maryland
| | - Waleed Iqbal
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael Marchioli
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Allison Toth
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Martin Sjöström
- Department of Radiation Oncology, UCSF, San Francisco, California
| | - Xiaolin Zhu
- Department of Radiation Oncology, UCSF, San Francisco, California
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Felix Y. Feng
- Department of Radiation Oncology, UCSF, San Francisco, California
| | - Wanding Zhou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alessandro Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Program in Translational and Cellular Oncology, Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
41
|
Chen J, Guo B, Liu X, Zhang J, Zhang J, Fang Y, Zhu S, Wei B, Cao Y, Zhan L. Roles of N6-methyladenosine (m6A) modifications in gynecologic cancers: mechanisms and therapeutic targeting. Exp Hematol Oncol 2022; 11:98. [DOI: 10.1186/s40164-022-00357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/01/2022] [Indexed: 11/14/2022] Open
Abstract
AbstractUterine and ovarian cancers are the most common gynecologic cancers. N6−methyladenosine (m6A), an important internal RNA modification in higher eukaryotes, has recently become a hot topic in epigenetic studies. Numerous studies have revealed that the m6A-related regulatory factors regulate the occurrence and metastasis of tumors and drug resistance through various mechanisms. The m6A-related regulatory factors can also be used as therapeutic targets and biomarkers for the early diagnosis of cancers, including gynecologic cancers. This review discusses the role of m6A in gynecologic cancers and summarizes the recent advancements in m6A modification in gynecologic cancers to improve the understanding of the occurrence, diagnosis, treatment, and prognosis of gynecologic cancers.
Collapse
|
42
|
Liu S, Alabi BR, Yin Q, Stoyanova T. Molecular mechanisms underlying the development of neuroendocrine prostate cancer. Semin Cancer Biol 2022; 86:57-68. [PMID: 35597438 DOI: 10.1016/j.semcancer.2022.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/19/2022] [Accepted: 05/14/2022] [Indexed: 01/27/2023]
Abstract
Prostate cancer is the most common non-cutaneous cancer and the second leading cause of cancer-associated deaths among men in the United States. Androgen deprivation therapy (ADT) is the standard of care for advanced prostate cancer. While patients with advanced prostate cancer initially respond to ADT, the disease frequently progresses to a lethal metastatic form, defined as castration-resistant prostate cancer (CRPC). After multiple rounds of anti-androgen therapies, 20-25% of metastatic CRPCs develop a neuroendocrine (NE) phenotype. These tumors are classified as neuroendocrine prostate cancer (NEPC). De novo NEPC is rare and accounts for less than 2% of all prostate cancers at diagnosis. NEPC is commonly characterized by the expression of NE markers and the absence of androgen receptor (AR) expression. NEPC is usually associated with tumor aggressiveness, hormone therapy resistance, and poor clinical outcome. Here, we review the molecular mechanisms underlying the emergence of NEPC and provide insights into the future perspectives on potential therapeutic strategies for NEPC.
Collapse
Affiliation(s)
- Shiqin Liu
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Busola Ruth Alabi
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Qingqing Yin
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA
| | - Tanya Stoyanova
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
43
|
Sato Y, Saito G, Fujimoto D. Histologic transformation in lung cancer: when one door shuts, another opens. Ther Adv Med Oncol 2022; 14:17588359221130503. [PMID: 36268218 PMCID: PMC9577078 DOI: 10.1177/17588359221130503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022] Open
Abstract
Histologic transformation (HT) is a major cause of drug resistance to therapy in
patients with lung cancer. HTs to small-cell lung cancer (SCLC) have been
reported frequently in patients with epidermal growth factor receptor
(EGFR)-mutated lung cancer. Although HTs have an impact on
the clinical outcomes in patients owing to a high refractoriness to treatments,
there is limited data on the prevalence, causes, mechanisms, treatment efficacy,
and future treatment strategies. In this review, we assess the literature
regarding HTs comprehensively, including those describing EGFR-tyrosine kinase
inhibitors, other molecular targeted drugs, and immune checkpoint inhibitors.
Furthermore, we discuss the mechanisms of HTs and the lineage plasticity to SCLC
and squamous cell carcinoma in lung cancer. In addition, we summarize the
treatment efficacy and future perspectives of HTs in patients with lung cancer,
and propose better management strategies for this group of patients.
Collapse
|
44
|
Ning S, Zhao J, Lombard AP, D’Abronzo LS, Leslie AR, Sharifi M, Lou W, Liu C, Yang JC, Evans CP, Corey E, Chen HW, Yu A, Ghosh PM, Gao AC. Activation of neural lineage networks and ARHGEF2 in enzalutamide-resistant and neuroendocrine prostate cancer and association with patient outcomes. COMMUNICATIONS MEDICINE 2022; 2:118. [PMID: 36159187 PMCID: PMC9492734 DOI: 10.1038/s43856-022-00182-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/05/2022] [Indexed: 01/26/2023] Open
Abstract
Background Treatment-emergent neuroendocrine prostate cancer (NEPC) after androgen receptor (AR) targeted therapies is an aggressive variant of prostate cancer with an unfavorable prognosis. The underlying mechanisms for early neuroendocrine differentiation are poorly defined and diagnostic and prognostic biomarkers are needed. Methods We performed transcriptomic analysis on the enzalutamide-resistant prostate cancer cell line C4-2B MDVR and NEPC patient databases to identify neural lineage signature (NLS) genes. Correlation of NLS genes with clinicopathologic features was determined. Cell viability was determined in C4-2B MDVR and H660 cells after knocking down ARHGEF2 using siRNA. Organoid viability of patient-derived xenografts was measured after knocking down ARHGEF2. Results We identify a 95-gene NLS representing the molecular landscape of neural precursor cell proliferation, embryonic stem cell pluripotency, and neural stem cell differentiation, which may indicate an early or intermediate stage of neuroendocrine differentiation. These NLS genes positively correlate with conventional neuroendocrine markers such as chromogranin and synaptophysin, and negatively correlate with AR and AR target genes in advanced prostate cancer. Differentially expressed NLS genes stratify small-cell NEPC from prostate adenocarcinoma, which are closely associated with clinicopathologic features such as Gleason Score and metastasis status. Higher ARGHEF2, LHX2, and EPHB2 levels among the 95 NLS genes correlate with a shortened survival time in NEPC patients. Furthermore, downregulation of ARHGEF2 gene expression suppresses cell viability and markers of neuroendocrine differentiation in enzalutamide-resistant and neuroendocrine cells. Conclusions The 95 neural lineage gene signatures capture an early molecular shift toward neuroendocrine differentiation, which could stratify advanced prostate cancer patients to optimize clinical treatment and serve as a source of potential therapeutic targets in advanced prostate cancer.
Collapse
Affiliation(s)
- Shu Ning
- grid.27860.3b0000 0004 1936 9684Department of Urologic Surgery, University of California Davis, Sacramento, CA USA
| | - Jinge Zhao
- grid.27860.3b0000 0004 1936 9684Department of Urologic Surgery, University of California Davis, Sacramento, CA USA ,grid.13291.380000 0001 0807 1581Present Address: Department of Urology, West China Hospital, Sichuan University, Sichuan, China
| | - Alan P. Lombard
- grid.27860.3b0000 0004 1936 9684Department of Urologic Surgery, University of California Davis, Sacramento, CA USA
| | - Leandro S. D’Abronzo
- grid.27860.3b0000 0004 1936 9684Department of Urologic Surgery, University of California Davis, Sacramento, CA USA
| | - Amy R. Leslie
- grid.27860.3b0000 0004 1936 9684Department of Urologic Surgery, University of California Davis, Sacramento, CA USA
| | - Masuda Sharifi
- grid.27860.3b0000 0004 1936 9684Department of Urologic Surgery, University of California Davis, Sacramento, CA USA
| | - Wei Lou
- grid.27860.3b0000 0004 1936 9684Department of Urologic Surgery, University of California Davis, Sacramento, CA USA
| | - Chengfei Liu
- grid.27860.3b0000 0004 1936 9684Department of Urologic Surgery, University of California Davis, Sacramento, CA USA ,grid.27860.3b0000 0004 1936 9684UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA USA
| | - Joy C. Yang
- grid.27860.3b0000 0004 1936 9684Department of Urologic Surgery, University of California Davis, Sacramento, CA USA
| | - Christopher P. Evans
- grid.27860.3b0000 0004 1936 9684Department of Urologic Surgery, University of California Davis, Sacramento, CA USA ,grid.27860.3b0000 0004 1936 9684UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA USA
| | - Eva Corey
- grid.34477.330000000122986657Department of Urology, University of Washington, Seattle, WA USA
| | - Hong-Wu Chen
- grid.27860.3b0000 0004 1936 9684UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA USA ,grid.27860.3b0000 0004 1936 9684Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA USA
| | - Aiming Yu
- grid.27860.3b0000 0004 1936 9684UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA USA ,grid.27860.3b0000 0004 1936 9684Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA USA
| | - Paramita M. Ghosh
- grid.27860.3b0000 0004 1936 9684Department of Urologic Surgery, University of California Davis, Sacramento, CA USA ,grid.27860.3b0000 0004 1936 9684UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA USA ,grid.27860.3b0000 0004 1936 9684Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA USA ,grid.413933.f0000 0004 0419 2847VA Northern California Health Care System, Sacramento, CA USA
| | - Allen C. Gao
- grid.27860.3b0000 0004 1936 9684Department of Urologic Surgery, University of California Davis, Sacramento, CA USA ,grid.27860.3b0000 0004 1936 9684UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA USA ,grid.413933.f0000 0004 0419 2847VA Northern California Health Care System, Sacramento, CA USA
| |
Collapse
|
45
|
Reformation of the chondroitin sulfate glycocalyx enables progression of AR-independent prostate cancer. Nat Commun 2022; 13:4760. [PMID: 35963852 PMCID: PMC9376089 DOI: 10.1038/s41467-022-32530-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/03/2022] [Indexed: 11/09/2022] Open
Abstract
Lineage plasticity of prostate cancer is associated with resistance to androgen receptor (AR) pathway inhibition (ARPI) and supported by a reactive tumor microenvironment. Here we show that changes in chondroitin sulfate (CS), a major glycosaminoglycan component of the tumor cell glycocalyx and extracellular matrix, is AR-regulated and promotes the adaptive progression of castration-resistant prostate cancer (CRPC) after ARPI. AR directly represses transcription of the 4-O-sulfotransferase gene CHST11 under basal androgen conditions, maintaining steady-state CS in prostate adenocarcinomas. When AR signaling is inhibited by ARPI or lost during progression to non-AR-driven CRPC as a consequence of lineage plasticity, CHST11 expression is unleashed, leading to elevated 4-O-sulfated chondroitin levels. Inhibition of the tumor cell CS glycocalyx delays CRPC progression, and impairs growth and motility of prostate cancer after ARPI. Thus, a reactive CS glycocalyx supports adaptive survival and treatment resistance after ARPI, representing a therapeutic opportunity in patients with advanced prostate cancer. Chondroitin sulfate (CS) is one of the most abundant glycosaminoglycans in prostate cancers. Here the authors show that inhibition of the androgen receptor pathway leads to the upregulation of CS, which promotes prostate cancer growth and metastasis.
Collapse
|
46
|
Regan JL, Schumacher D, Staudte S, Steffen A, Lesche R, Toedling J, Jourdan T, Haybaeck J, Golob-Schwarzl N, Mumberg D, Henderson D, Győrffy B, Regenbrecht CR, Keilholz U, Schäfer R, Lange M. Identification of a neural development gene expression signature in colon cancer stem cells reveals a role for EGR2 in tumorigenesis. iScience 2022; 25:104498. [PMID: 35720265 PMCID: PMC9204726 DOI: 10.1016/j.isci.2022.104498] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/28/2022] [Accepted: 05/26/2022] [Indexed: 11/12/2022] Open
Abstract
Recent evidence demonstrates that colon cancer stem cells (CSCs) can generate neurons that synapse with tumor innervating fibers required for tumorigenesis and disease progression. Greater understanding of the mechanisms that regulate CSC driven tumor neurogenesis may therefore lead to more effective treatments. RNA-sequencing analyses of ALDHPositive CSCs from colon cancer patient-derived organoids (PDOs) and xenografts (PDXs) showed CSCs to be enriched for neural development genes. Functional analyses of genes differentially expressed in CSCs from PDO and PDX models demonstrated the neural crest stem cell (NCSC) regulator EGR2 to be required for tumor growth and to control expression of homebox superfamily embryonic master transcriptional regulator HOX genes and the neural stem cell and master cell fate regulator SOX2. These data support CSCs as the source of tumor neurogenesis and suggest that targeting EGR2 may provide a therapeutic differentiation strategy to eliminate CSCs and block nervous system driven disease progression.
Collapse
Affiliation(s)
- Joseph L. Regan
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Dirk Schumacher
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Stephanie Staudte
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Andreas Steffen
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - Ralf Lesche
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| | - Joern Toedling
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| | - Thibaud Jourdan
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Nicole Golob-Schwarzl
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Dermatology and Venereology, Medical University of Graz, 8036 Graz, Austria
| | - Dominik Mumberg
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - David Henderson
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Bayer AG, Business Development and Licensing and Open Innovation, Pharmaceuticals, 13342 Berlin, Germany
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, 1094 Budapest, Hungary
- TTK Cancer Biomarker Research Group, Institute of Enzymology, 1117 Budapest, Hungary
| | - Christian R.A. Regenbrecht
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- CELLphenomics GmbH, 13125 Berlin, Germany
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Ulrich Keilholz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Reinhold Schäfer
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Martin Lange
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| |
Collapse
|
47
|
Abdulfatah E, Fine SW, Lotan T, Mehra R. De Novo Neuroendocrine Features in Prostate Cancer. Hum Pathol 2022; 127:112-122. [PMID: 35810832 DOI: 10.1016/j.humpath.2022.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 12/22/2022]
Abstract
Neuroendocrine tumors of the prostate are rare and encompass a group of entities that are classified based on a combination of morphological and immunohistochemical features. Despite the 2016 World Health Organization classification of prostatic neuroendocrine tumors, variants have been reported that do not fit well in the categorization scheme. While the majority of these tumors arise in the setting of castration-resistant prostate cancer (postandrogen deprivation therapy), de novo cases may occur. In this review, we highlight the most significant pathological and immunohistochemical features, emerging biomarkers, and molecular features of such tumors.
Collapse
Affiliation(s)
- Eman Abdulfatah
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Samson W Fine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tamara Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI, USA; Michigan Center for Translational Pathology, Ann Arbor, MI, USA.
| |
Collapse
|
48
|
Asadi MR, Moslehian MS, Sabaie H, Sharifi-Bonab M, Hakimi P, Hussen BM, Taheri M, Rakhshan A, Rezazadeh M. CircRNA-Associated CeRNAs Regulatory Axes in Retinoblastoma: A Systematic Scoping Review. Front Oncol 2022; 12:910470. [PMID: 35865469 PMCID: PMC9294360 DOI: 10.3389/fonc.2022.910470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
Retinoblastoma (RB) is one of the most common childhood cancers caused by RB gene mutations (tumor suppressor gene in various patients). A better understanding of molecular pathways and the development of new diagnostic approaches may lead to better treatment for RB patients. The number of studies on ceRNA axes is increasing, emphasizing the significance of these axes in RB. Circular RNAs (circRNAs) play a vital role in competing endogenous RNA (ceRNA) regulatory axes by sponging microRNAs and regulating gene expression. Because of the broadness of ceRNA interaction networks, they may assist in investigating treatment targets in RB. This study conducted a systematic scoping review to evaluate verified loops of ceRNA in RB, focusing on the ceRNA axis and its relationship to circRNAs. This scoping review was carried out using a six-step strategy and the Prisma guideline, and it involved systematically searching the publications of seven databases. Out of 363 records, sixteen articles were entirely consistent with the defined inclusion criteria and were summarized in the relevant table. The majority of the studies focused on the circRNAs circ_0000527, circ_0000034, and circTET1, with approximately two-fifths of the studies focusing on a single circRNA. Understanding the many features of this regulatory structure may help elucidate RB’s unknown causative factors and provide novel molecular potential therapeutic targets and medical fields.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Sadat Moslehian
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hani Sabaie
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mirmohsen Sharifi-Bonab
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Hakimi
- Woman’s Reproductive Health Research Center, Tabriz University of medical sciences, Tabriz, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- *Correspondence: Mohammad Taheri, ; Azadeh Rakhshan, ; Maryam Rezazadeh,
| | - Azadeh Rakhshan
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Azadeh Rakhshan, ; Maryam Rezazadeh,
| | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Woman’s Reproductive Health Research Center, Tabriz University of medical sciences, Tabriz, Iran
- *Correspondence: Mohammad Taheri, ; Azadeh Rakhshan, ; Maryam Rezazadeh,
| |
Collapse
|
49
|
Wang Z, Wang T, Hong D, Dong B, Wang Y, Huang H, Zhang W, Lian B, Ji B, Shi H, Qu M, Gao X, Li D, Collins C, Wei G, Xu C, Lee HJ, Huang J, Li J. Single-cell transcriptional regulation and genetic evolution of neuroendocrine prostate cancer. iScience 2022; 25:104576. [PMID: 35789834 PMCID: PMC9250006 DOI: 10.1016/j.isci.2022.104576] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/24/2022] [Accepted: 06/07/2022] [Indexed: 12/30/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is a lethal subtype of prostate cancer, with a 10% five-year survival rate. However, little is known about its origin and the mechanisms governing its emergence. Our study characterized ADPC and NEPC in prostate tumors from 7 patients using scRNA-seq. First, we identified two NEPC gene expression signatures representing different phases of trans-differentiation. New marker genes we identified may be used for clinical diagnosis. Second, integrative analyses combining expression and subclonal architecture revealed different paths by which NEPC diverges from the original ADPC, either directly from treatment-naïve tumor cells or from specific intermediate states of treatment-resistance. Third, we inferred a hierarchical transcription factor (TF) network underlying the progression, which involves constitutive regulation by ASCL1, FOXA2, and selective regulation by NKX2-2, POU3F2, and SOX2. Together, these results defined the complex expression profiles and advanced our understanding of the genetic and transcriptomic mechanisms leading to NEPC differentiation. Single-cell RNA sequencing revealed two distinct transcriptional programs of NEPC Cell-level clonal evolution analysis extended the divergent model of ADPC to NEPC Screening of NEPC-specific transcription factors through network-based approaches
Collapse
|
50
|
He Y, Xu W, Xiao YT, Huang H, Gu D, Ren S. Targeting signaling pathways in prostate cancer: mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7:198. [PMID: 35750683 PMCID: PMC9232569 DOI: 10.1038/s41392-022-01042-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) affects millions of men globally. Due to advances in understanding genomic landscapes and biological functions, the treatment of PCa continues to improve. Recently, various new classes of agents, which include next-generation androgen receptor (AR) signaling inhibitors (abiraterone, enzalutamide, apalutamide, and darolutamide), bone-targeting agents (radium-223 chloride, zoledronic acid), and poly(ADP-ribose) polymerase (PARP) inhibitors (olaparib, rucaparib, and talazoparib) have been developed to treat PCa. Agents targeting other signaling pathways, including cyclin-dependent kinase (CDK)4/6, Ak strain transforming (AKT), wingless-type protein (WNT), and epigenetic marks, have successively entered clinical trials. Furthermore, prostate-specific membrane antigen (PSMA) targeting agents such as 177Lu-PSMA-617 are promising theranostics that could improve both diagnostic accuracy and therapeutic efficacy. Advanced clinical studies with immune checkpoint inhibitors (ICIs) have shown limited benefits in PCa, whereas subgroups of PCa with mismatch repair (MMR) or CDK12 inactivation may benefit from ICIs treatment. In this review, we summarized the targeted agents of PCa in clinical trials and their underlying mechanisms, and further discussed their limitations and future directions.
Collapse
Affiliation(s)
- Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Weidong Xu
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China
| | - Yu-Tian Xiao
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.,Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Haojie Huang
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Di Gu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Shancheng Ren
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.
| |
Collapse
|