1
|
Li H, Seugnet L. Decoding the nexus: branched-chain amino acids and their connection with sleep, circadian rhythms, and cardiometabolic health. Neural Regen Res 2025; 20:1350-1363. [PMID: 39075896 DOI: 10.4103/nrr.nrr-d-23-02020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/12/2024] [Indexed: 07/31/2024] Open
Abstract
The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and, either directly or indirectly, overall body health, encompassing metabolic and cardiovascular well-being. Given the heightened metabolic activity of the brain, there exists a considerable demand for nutrients in comparison to other organs. Among these, the branched-chain amino acids, comprising leucine, isoleucine, and valine, display distinctive significance, from their contribution to protein structure to their involvement in overall metabolism, especially in cerebral processes. Among the first amino acids that are released into circulation post-food intake, branched-chain amino acids assume a pivotal role in the regulation of protein synthesis, modulating insulin secretion and the amino acid sensing pathway of target of rapamycin. Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors, competing for a shared transporter. Beyond their involvement in protein synthesis, these amino acids contribute to the metabolic cycles of γ-aminobutyric acid and glutamate, as well as energy metabolism. Notably, they impact GABAergic neurons and the excitation/inhibition balance. The rhythmicity of branched-chain amino acids in plasma concentrations, observed over a 24-hour cycle and conserved in rodent models, is under circadian clock control. The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood. Disturbed sleep, obesity, diabetes, and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics. The mechanisms driving these effects are currently the focal point of ongoing research efforts, since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies. In this context, the Drosophila model, though underutilized, holds promise in shedding new light on these mechanisms. Initial findings indicate its potential to introduce novel concepts, particularly in elucidating the intricate connections between the circadian clock, sleep/wake, and metabolism. Consequently, the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle. They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health, paving the way for potential therapeutic interventions.
Collapse
Affiliation(s)
- Hui Li
- Department of Neurology, Xijing Hospital, Xi'an, Shaanxi Province, China
| | - Laurent Seugnet
- Centre de Recherche en Neurosciences de Lyon, Integrated Physiology of the Brain Arousal Systems (WAKING), Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, Bron, France
| |
Collapse
|
2
|
Snieckute G, Genzor AV, Vind AC, Ryder L, Stoneley M, Chamois S, Dreos R, Nordgaard C, Sass F, Blasius M, López AR, Brynjólfsdóttir SH, Andersen KL, Willis AE, Frankel LB, Poulsen SS, Gatfield D, Gerhart-Hines Z, Clemmensen C, Bekker-Jensen S. Ribosome stalling is a signal for metabolic regulation by the ribotoxic stress response. Cell Metab 2022; 34:2036-2046.e8. [PMID: 36384144 PMCID: PMC9763090 DOI: 10.1016/j.cmet.2022.10.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/01/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022]
Abstract
Impairment of translation can lead to collisions of ribosomes, which constitute an activation platform for several ribosomal stress-surveillance pathways. Among these is the ribotoxic stress response (RSR), where ribosomal sensing by the MAP3K ZAKα leads to activation of p38 and JNK kinases. Despite these insights, the physiological ramifications of ribosomal impairment and downstream RSR signaling remain elusive. Here, we show that stalling of ribosomes is sufficient to activate ZAKα. In response to amino acid deprivation and full nutrient starvation, RSR impacts on the ensuing metabolic responses in cells, nematodes, and mice. The RSR-regulated responses in these model systems include regulation of AMPK and mTOR signaling, survival under starvation conditions, stress hormone production, and regulation of blood sugar control. In addition, ZAK-/- male mice present a lean phenotype. Our work highlights impaired ribosomes as metabolic signals and demonstrates a role for RSR signaling in metabolic regulation.
Collapse
Affiliation(s)
- Goda Snieckute
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Aitana Victoria Genzor
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Anna Constance Vind
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Laura Ryder
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mark Stoneley
- MRC Toxicology Unit, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Sébastien Chamois
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - René Dreos
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Cathrine Nordgaard
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Frederike Sass
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Melanie Blasius
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | | | | | - Kasper Langebjerg Andersen
- Biotech Research and Innovation Center, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Lisa B Frankel
- Danish Cancer Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark; Biotech Research and Innovation Center, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Steen Seier Poulsen
- Department of Biomedicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
3
|
Ngo FY, Li H, Zhang H, Lau CYG. Acute Fasting Modulates Food-Seeking Behavior and Neural Signaling in the Piriform Cortex. Nutrients 2022; 14:nu14194156. [PMID: 36235808 PMCID: PMC9572926 DOI: 10.3390/nu14194156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
It is well known that the state of hunger can modulate hormones and hypothalamic neural circuits to drive food-seeking behavior and consumption. However, the role the sensory cortex plays in regulating foraging is much less explored. Here, we investigated whether acute fasting in mice can alter an odor-guided foraging behavior and how it can alter neurons and synapses in the (olfactory) piriform cortex (PC). Acute hunger enhances the motivation of a mouse to search for food pellets and increases food intake. The foraging behavior strongly activates the PC, as revealed by c-Fos immunostaining. The activation of PC is accompanied by an increase in excitation-inhibition ratio of synaptic density. Fasting also enhances the phosphorylation of AMP kinase, a biochemical energy regulator. Taken together, our results uncover a new regulatory brain region and implicate the PC in controlling foraging behavior.
Collapse
Affiliation(s)
- Fung-Yin Ngo
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Huanhuan Li
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Huiqi Zhang
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Chun-Yue Geoffrey Lau
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
- Correspondence: ; Tel.: +852-3442-4345
| |
Collapse
|
4
|
Zhang B, Feng J. Mouse embryonic stem cells require multiple amino acids. Exp Biol Med (Maywood) 2022; 247:1379-1387. [PMID: 35611795 PMCID: PMC9442457 DOI: 10.1177/15353702221096059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/05/2022] [Indexed: 02/03/2023] Open
Abstract
Previous studies suggest that mouse embryonic stem cells (mESCs) have a unique requirement for threonine when cultured in serum and leukemia inhibitory factor (LIF). Here, we replicated the experiments and found that the growth of mESCs (E14 and AB2.2) in serum/LIF was significantly attenuated by the individual absence of multiple amino acids. When mESCs were maintained in naïve pluripotency by the MEK inhibitor, GSK3 inhibitor (2i), and LIF, their growth was significantly affected by the lack of any one of the nine essential amino acids or some non-essential amino acids. There was no unique requirement for threonine in both culture conditions. This study shows that, like many other cells, mESCs do not have any special requirements for amino acids.
Collapse
Affiliation(s)
- Boyang Zhang
- Department of Physiology and Biophysics, The State
University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Jian Feng
- Department of Physiology and Biophysics, The State
University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
5
|
Gu X, Jouandin P, Lalgudi PV, Binari R, Valenstein ML, Reid MA, Allen AE, Kamitaki N, Locasale JW, Perrimon N, Sabatini DM. Sestrin mediates detection of and adaptation to low-leucine diets in Drosophila. Nature 2022; 608:209-216. [PMID: 35859173 PMCID: PMC10112710 DOI: 10.1038/s41586-022-04960-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/09/2022] [Indexed: 12/28/2022]
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) regulates cell growth and metabolism in response to multiple nutrients, including the essential amino acid leucine1. Recent work in cultured mammalian cells established the Sestrins as leucine-binding proteins that inhibit mTORC1 signalling during leucine deprivation2,3, but their role in the organismal response to dietary leucine remains elusive. Here we find that Sestrin-null flies (Sesn-/-) fail to inhibit mTORC1 or activate autophagy after acute leucine starvation and have impaired development and a shortened lifespan on a low-leucine diet. Knock-in flies expressing a leucine-binding-deficient Sestrin mutant (SesnL431E) have reduced, leucine-insensitive mTORC1 activity. Notably, we find that flies can discriminate between food with or without leucine, and preferentially feed and lay progeny on leucine-containing food. This preference depends on Sestrin and its capacity to bind leucine. Leucine regulates mTORC1 activity in glial cells, and knockdown of Sesn in these cells reduces the ability of flies to detect leucine-free food. Thus, nutrient sensing by mTORC1 is necessary for flies not only to adapt to, but also to detect, a diet deficient in an essential nutrient.
Collapse
Affiliation(s)
- Xin Gu
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Patrick Jouandin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| | - Pranav V Lalgudi
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rich Binari
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Max L Valenstein
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael A Reid
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Annamarie E Allen
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Nolan Kamitaki
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
6
|
Srivastava A, Lu J, Gadalla DS, Hendrich O, Grönke S, Partridge L. The Role of GCN2 Kinase in Mediating the Effects of Amino Acids on Longevity and Feeding Behaviour in Drosophila. FRONTIERS IN AGING 2022; 3:944466. [PMID: 35821827 PMCID: PMC9261369 DOI: 10.3389/fragi.2022.944466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 05/30/2022] [Indexed: 02/03/2023]
Abstract
Restriction of amino acids in the diet can extend lifespan in diverse species ranging from flies to mammals. However, the role of individual amino acids and the underlying molecular mechanisms are only partially understood. The evolutionarily conserved serine/threonine kinase General Control Nonderepressible 2 (GCN2) is a key sensor of amino acid deficiency and has been implicated in the response of lifespan to dietary restriction (DR). Here, we generated a novel Drosophila GCN2 null mutant and analyzed its response to individual amino acid deficiency. We show that GCN2 function is essential for fly development, longevity and feeding behaviour under long-term, but not short-term, deprivation of all individual essential amino acids (EAAs) except for methionine. GCN2 mutants were longer-lived than control flies and showed normal feeding behaviour under methionine restriction. Thus, in flies at least two systems regulate these responses to amino acid deprivation. Methionine deprivation acts via a GCN2-independent mechanism, while all other EAA are sensed by GCN2. Combined deficiency of methionine and a second EAA blocked the response of GCN2 mutants to methionine, suggesting that these two pathways are interconnected. Wild type flies showed a short-term rejection of food lacking individual EAA, followed by a long-term compensatory increase in food uptake. GCN2 mutants also showed a short-term rejection of food deprived of individual EAA, but were unable to mount the compensatory long-term increase in food uptake. Over-expression of the downstream transcription factor ATF4 partially rescued the response of feeding behaviour in GCN2 mutants to amino acid deficiency. Phenotypes of GCN2 mutants induced by leucine and tryptophan, but not isoleucine, deficiency were partially rescued by ATF4 over-expression. The exact function of GCN2 as an amino acid sensor in vivo and the downstream action of its transcription factor effector ATF4 are thus context-specific with respect to the EAA involved.
Collapse
Affiliation(s)
| | - Jiongming Lu
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Oliver Hendrich
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| |
Collapse
|
7
|
Viskaitis P, Arnold M, Garau C, Jensen LT, Fugger L, Peleg-Raibstein D, Burdakov D. Ingested non-essential amino acids recruit brain orexin cells to suppress eating in mice. Curr Biol 2022; 32:1812-1821.e4. [PMID: 35316652 DOI: 10.1016/j.cub.2022.02.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/10/2022] [Accepted: 02/23/2022] [Indexed: 12/22/2022]
Abstract
Ingested nutrients are proposed to control mammalian behavior by modulating the activity of hypothalamic orexin/hypocretin neurons (HONs). Previous in vitro studies showed that nutrients ubiquitous in mammalian diets, such as non-essential amino acids (AAs) and glucose, modulate HONs in distinct ways. Glucose inhibits HONs, whereas non-essential (but not essential) AAs activate HONs. The latter effect is of particular interest because its purpose is unknown. Here, we show that ingestion of a dietary-relevant mix of non-essential AAs activates HONs and shifts behavior from eating to exploration. These effects persisted despite ablation of a key neural gut → brain communication pathway, the cholecystokinin-sensitive vagal afferents. The behavioral shift induced by the ingested non-essential AAs was recapitulated by targeted HON optostimulation and abolished in mice lacking HONs. Furthermore, lick microstructure analysis indicated that intragastric non-essential AAs and HON optostimulation each reduce the size, but not the frequency, of consumption bouts, thus implicating food palatability modulation as a mechanism for the eating suppression. Collectively, these results suggest that a key purpose of HON activation by ingested, non-essential AAs is to suppress eating and re-initiate food seeking. We propose and discuss possible evolutionary advantages of this, such as optimizing the limited stomach capacity for ingestion of essential nutrients.
Collapse
Affiliation(s)
- Paulius Viskaitis
- ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse, Schwerzenbach 8603, Switzerland
| | - Myrtha Arnold
- ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse, Schwerzenbach 8603, Switzerland
| | - Celia Garau
- University of Leicester, Department of Neuroscience, Psychology & Behaviour, University Road, Leicester LE1 9HN, UK
| | - Lise T Jensen
- Aarhus University, Department of Clinical Medicine - Department of Clinical Immunology, Palle Juul-Jensens Boulevard, Aarhus 8200, Denmark
| | - Lars Fugger
- Aarhus University, Department of Clinical Medicine - Department of Clinical Immunology, Palle Juul-Jensens Boulevard, Aarhus 8200, Denmark; University of Oxford, Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Daria Peleg-Raibstein
- ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse, Schwerzenbach 8603, Switzerland
| | - Denis Burdakov
- ETH Zürich, Department of Health Sciences and Technology, Schorenstrasse, Schwerzenbach 8603, Switzerland.
| |
Collapse
|
8
|
Kim M, Tomek P. Tryptophan: A Rheostat of Cancer Immune Escape Mediated by Immunosuppressive Enzymes IDO1 and TDO. Front Immunol 2021; 12:636081. [PMID: 33708223 PMCID: PMC7940516 DOI: 10.3389/fimmu.2021.636081] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Blockade of the immunosuppressive tryptophan catabolism mediated by indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) holds enormous promise for sensitising cancer patients to immune checkpoint blockade. Yet, only IDO1 inhibitors had entered clinical trials so far, and those agents have generated disappointing clinical results. Improved understanding of molecular mechanisms involved in the immune-regulatory function of the tryptophan catabolism is likely to optimise therapeutic strategies to block this pathway. The immunosuppressive role of tryptophan metabolite kynurenine is becoming increasingly clear, but it remains a mystery if tryptophan exerts functions beyond serving as a precursor for kynurenine. Here we hypothesise that tryptophan acts as a rheostat of kynurenine-mediated immunosuppression by competing with kynurenine for entry into immune T-cells through the amino acid transporter called System L. This hypothesis stems from the observations that elevated tryptophan levels in TDO-knockout mice relieve immunosuppression instigated by IDO1, and that the vacancy of System L transporter modulates kynurenine entry into CD4+ T-cells. This hypothesis has two potential therapeutic implications. Firstly, potent TDO inhibitors are expected to indirectly inhibit IDO1 hence development of TDO-selective inhibitors appears advantageous compared to IDO1-selective and dual IDO1/TDO inhibitors. Secondly, oral supplementation with System L substrates such as leucine represents a novel potential therapeutic modality to restrain the immunosuppressive kynurenine and restore anti-tumour immunity.
Collapse
Affiliation(s)
- Minah Kim
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Petr Tomek
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Olson B, Marks DL, Grossberg AJ. Diverging metabolic programmes and behaviours during states of starvation, protein malnutrition, and cachexia. J Cachexia Sarcopenia Muscle 2020; 11:1429-1446. [PMID: 32985801 PMCID: PMC7749623 DOI: 10.1002/jcsm.12630] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Our evolutionary history is defined, in part, by our ability to survive times of nutrient scarcity. The outcomes of the metabolic and behavioural adaptations during starvation are highly efficient macronutrient allocation, minimization of energy expenditure, and maximized odds of finding food. However, in different contexts, caloric deprivation is met with vastly different physiologic and behavioural responses, which challenge the primacy of energy homeostasis. METHODS We conducted a literature review of scientific studies in humans, laboratory animals, and non-laboratory animals that evaluated the physiologic, metabolic, and behavioural responses to fasting, starvation, protein-deficient or essential amino acid-deficient diets, and cachexia. Studies that investigated the changes in ingestive behaviour, locomotor activity, resting metabolic rate, and tissue catabolism were selected as the focus of discussion. RESULTS Whereas starvation responses prioritize energy balance, both protein malnutrition and cachexia present existential threats that induce unique adaptive programmes, which can exacerbate the caloric insufficiency of undernutrition. We compare and contrast the behavioural and metabolic responses and elucidate the mechanistic pathways that drive state-dependent alterations in energy seeking and partitioning. CONCLUSIONS The evolution of energetically inefficient metabolic and behavioural responses to protein malnutrition and cachexia reveal a hierarchy of metabolic priorities governed by discrete regulatory networks.
Collapse
Affiliation(s)
- Brennan Olson
- Medical Scientist Training ProgramOregon Health & Science UniversityPortlandORUSA
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
| | - Daniel L. Marks
- Papé Family Pediatric Research InstituteOregon Health & Science UniversityPortlandORUSA
- Brenden‐Colson Center for Pancreatic CareOregon Health & Science UniversityPortlandORUSA
| | - Aaron J. Grossberg
- Brenden‐Colson Center for Pancreatic CareOregon Health & Science UniversityPortlandORUSA
- Department of Radiation MedicineOregon Health & Science UniversityPortlandORUSA
- Cancer Early Detection Advanced Research CenterOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
10
|
Lercher A, Popa AM, Viczenczova C, Kosack L, Klavins K, Agerer B, Opitz CA, Lanz TV, Platten M, Bergthaler A. Hepatocyte-intrinsic type I interferon signaling reprograms metabolism and reveals a novel compensatory mechanism of the tryptophan-kynurenine pathway in viral hepatitis. PLoS Pathog 2020; 16:e1008973. [PMID: 33045014 PMCID: PMC7580883 DOI: 10.1371/journal.ppat.1008973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/22/2020] [Accepted: 09/10/2020] [Indexed: 12/27/2022] Open
Abstract
The liver is a central regulator of metabolic homeostasis and serum metabolite levels. Hepatocytes are the functional units of the liver parenchyma and not only responsible for turnover of biomolecules but also act as central immune signaling platforms. Hepatotropic viruses infect liver tissue, resulting in inflammatory responses, tissue damage and hepatitis. Combining well-established in vitro and in vivo model systems with transcriptomic analyses, we show that type I interferon signaling initiates a robust antiviral immune response in hepatocytes. Strikingly, we also identify IFN-I as both, sufficient and necessary, to induce wide-spread metabolic reprogramming in hepatocytes. IFN-I specifically rewired tryptophan metabolism and induced hepatic tryptophan oxidation to kynurenine via Tdo2, correlating with altered concentrations of serum metabolites upon viral infection. Infected Tdo2-deficient animals displayed elevated serum levels of tryptophan and, unexpectedly, also vast increases in the downstream immune-suppressive metabolite kynurenine. Thus, Tdo2-deficiency did not result in altered serum homeostasis of the tryptophan to kynurenine ratio during infection, which seemed to be independent of hepatocyte-intrinsic compensation via the IDO-axis. These data highlight that inflammation-induced reprogramming of systemic tryptophan metabolism is tightly regulated in viral hepatitis. Viral hepatitis is responsible for more than one million annual deaths worldwide and may progress to liver cirrhosis and hepatocellular carcinoma. The main metabolic cell type of the liver is the hepatocyte. In viral hepatitis, type I interferon (IFN-I) signaling rewires hepatocyte metabolism and serum metabolites to shape disease pathophysiology – an immune-regulatory circuit that might be therapeutically exploited. Here, we show that hepatocyte-intrinsic antiviral IFN-I signaling is both necessary and sufficient to induce wide-spread metabolic changes in hepatocytes. We identify a IFN-I-mediated induction of the hepatic kynurenine pathway via the rate-limiting and liver-specific enzyme TDO2, which controls serum homeostasis of tryptophan by converting it into kynurenine. Loss of TDO2 triggers a so far unknown compensatory mechanism, resulting in a vast increase of circulating kynurenine independent of hepatocyte intrinsic activity of the related IDO-enzymes. This study provides new insights into how inflammation reprograms metabolism of the liver and the kynurenine pathway during viral hepatitis.
Collapse
MESH Headings
- Animals
- Antiviral Agents/metabolism
- Female
- Hepatitis Viruses/isolation & purification
- Hepatitis, Viral, Animal/immunology
- Hepatitis, Viral, Animal/metabolism
- Hepatitis, Viral, Animal/virology
- Hepatocytes/immunology
- Hepatocytes/metabolism
- Hepatocytes/virology
- Humans
- Immunity, Innate/immunology
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation/virology
- Interferon Regulatory Factor-7/physiology
- Kynurenine/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptor, Interferon alpha-beta/physiology
- STAT1 Transcription Factor/physiology
- Tryptophan/metabolism
- Tryptophan Oxygenase/physiology
Collapse
Affiliation(s)
- Alexander Lercher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
- * E-mail: (AL); (AB)
| | - Alexandra M. Popa
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Csilla Viczenczova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Lindsay Kosack
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Kristaps Klavins
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Benedikt Agerer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
| | - Christiane A. Opitz
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, University Hospital of Heidelberg, Heidelberg, Germany
| | - Tobias V. Lanz
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
- Department of Neurology, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Michael Platten
- Department of Neurology, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse, Vienna, Austria
- * E-mail: (AL); (AB)
| |
Collapse
|
11
|
Abstract
The emergence of genome-wide analyses to interrogate cellular DNA, RNA, and protein content has revolutionized the study of control networks that mediate cellular homeostasis. mRNA translation represents the last step of genetic flow and primarily defines the proteome. Translational regulation is thus critical for gene expression, in particular under nutrient excess or deficiency. Until recently, it was unclear how the global effects of translational control are orchestrated by nutrient signaling pathways. An emerging concept of translational reprogramming addresses how to maintain the expression of specific proteins during nutrient stress by translation of selective mRNAs. In this review, we describe recent advances in our understanding of translational control principles; nutrient-sensing mechanisms; and their dysregulation in human diseases such as diabetes, cancer, and aging. The mechanistic understanding of translational regulation in response to different nutrient conditions may help identify potential dietary and therapeutic targets to improve human health.
Collapse
Affiliation(s)
- Xin Erica Shu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Robert V. Swanda
- Graduate Field of Biomedical and Biological Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
- Graduate Field of Biomedical and Biological Sciences, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
12
|
Minokoshi Y, Nakajima KI, Okamoto S. Homeostatic versus hedonic control of carbohydrate selection. J Physiol 2020; 598:3831-3844. [PMID: 32643799 DOI: 10.1113/jp280066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/06/2020] [Indexed: 11/08/2022] Open
Abstract
Macronutrient intake is associated with cardiometabolic health, ageing and longevity, but the mechanisms underlying its regulation have remained unclear. Most rodents increase carbohydrate selection under certain physiological and pathological conditions such as fasting. When presented with a choice between a basally preferable high-fat diet (HFD) and a high-carbohydrate diet (HCD) such as a high-sucrose diet, fasted mice first eat the HFD and then switch to the HCD during the first few hours of refeeding and continue to eat the HCD up to 24 h in the two-diet choice approach. Such consumption of an HCD after fasting reverses the fasting-induced increase in the plasma concentration of ketone bodies more rapidly than does refeeding with an HFD alone. 5'-AMP-activated protein kinase (AMPK)-regulated neurons in the paraventricular nucleus of the hypothalamus (PVH) that express corticotropin-releasing hormone (CRH) are necessary and sufficient for the fasting-induced selection of carbohydrate over an HFD in mice. These neurons appear to contribute to a fasting-induced increase in the positive valence of carbohydrate without affecting the preference for more palatable and energy-dense diets such as an HFD. Identification of the neural circuits in which AMPK-regulated CRH neurons in the PVH of mice are embedded should shed new light on the physiological and molecular mechanisms responsible for macronutrient selection.
Collapse
Affiliation(s)
- Yasuhiko Minokoshi
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institute of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.,School of Life Science, The Graduate University for Advanced Studies SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Ken-Ichiro Nakajima
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institute of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.,School of Life Science, The Graduate University for Advanced Studies SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Shiki Okamoto
- Second Department of Internal Medicine (Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology), Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami-gun, Okinawa, 903-0215, Japan
| |
Collapse
|
13
|
Münch D, Ezra-Nevo G, Francisco AP, Tastekin I, Ribeiro C. Nutrient homeostasis - translating internal states to behavior. Curr Opin Neurobiol 2019; 60:67-75. [PMID: 31816522 DOI: 10.1016/j.conb.2019.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/21/2022]
Abstract
Behavioral neuroscience aims to describe a causal relationship between neuronal processes and behavior. Animals' ever-changing physiological needs alter their internal states. Internal states then alter neuronal processes to adapt the behavior of the animal enabling it to meet its needs. Here, we describe nutrient-specific appetites as an attractive framework to study how internal states shape complex neuronal processes and resulting behavioral outcomes. Understanding how neurons detect nutrient states and how these are integrated at the level of neuronal circuits will provide a multilevel description of the mechanisms underlying complex feeding and foraging decisions.
Collapse
Affiliation(s)
- Daniel Münch
- Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | | | | | | |
Collapse
|
14
|
Jonsson WO, Margolies NS, Anthony TG. Dietary Sulfur Amino Acid Restriction and the Integrated Stress Response: Mechanistic Insights. Nutrients 2019; 11:nu11061349. [PMID: 31208042 PMCID: PMC6627990 DOI: 10.3390/nu11061349] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
Dietary sulfur amino acid restriction, also referred to as methionine restriction, increases food intake and energy expenditure and alters body composition in rodents, resulting in improved metabolic health and a longer lifespan. Among the known nutrient-responsive signaling pathways, the evolutionary conserved integrated stress response (ISR) is a lesser-understood candidate in mediating the hormetic effects of dietary sulfur amino acid restriction (SAAR). A key feature of the ISR is the concept that a family of protein kinases phosphorylates eukaryotic initiation factor 2 (eIF2), dampening general protein synthesis to conserve cellular resources. This slowed translation simultaneously allows for preferential translation of genes with special sequence features in the 5' leader. Among this class of mRNAs is activating transcription factor 4 (ATF4), an orchestrator of transcriptional control during nutrient stress. Several ATF4 gene targets help execute key processes affected by SAAR such as lipid metabolism, the transsulfuration pathway, and antioxidant defenses. Exploration of the canonical ISR demonstrates that eIF2 phosphorylation is not necessary for ATF4-driven changes in the transcriptome during SAAR. Additional research is needed to clarify the regulation of ATF4 and its gene targets during SAAR.
Collapse
Affiliation(s)
- William O Jonsson
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Nicholas S Margolies
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
15
|
Jayakumar S, Richhariya S, Deb BK, Hasan G. A Multicomponent Neuronal Response Encodes the Larval Decision to Pupariate upon Amino Acid Starvation. J Neurosci 2018; 38:10202-10219. [PMID: 30301757 PMCID: PMC6246885 DOI: 10.1523/jneurosci.1163-18.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
Organisms need to coordinate growth with development, particularly in the context of nutrient availability. Thus, multiple ways have evolved to survive extrinsic nutrient deprivation during development. In Drosophila, growth occurs during larval development. Larvae are thus critically dependent on nutritional inputs; but after critical weight, they pupariate even when starved. How nutrient availability is coupled to the internal metabolic state for the decision to pupariate needs better understanding. We had earlier identified glutamatergic interneurons in the ventral ganglion that regulate pupariation on a protein-deficient diet. Here we report that Drosophila third instar larvae (either sex) sense arginine to evaluate their nutrient environment using an amino acid transporter Slimfast. The glutamatergic interneurons integrate external protein availability with internal metabolic state through neuropeptide signals. IP3-mediated calcium release and store-operated calcium entry are essential in these glutamatergic neurons for such integration and alter neuronal function by reducing the expression of multiple ion channels.SIGNIFICANCE STATEMENT Coordinating growth with development, in the context of nutrient availability is a challenge for all organisms in nature. After attainment of "critical weight," insect larvae can pupariate, even in the absence of nutrition. Mechanism(s) that stimulate appropriate cellular responses and allow normal development on a nutritionally deficient diet remain to be understood. Here, we demonstrate that nutritional deprivation, in postcritical weight larvae, is sensed by special sensory neurons through an amino acid transporter that detects loss of environmental arginine. This information is integrated by glutamatergic interneurons with the internal metabolic state through neuropeptide signals. These glutamatergic interneurons require calcium-signaling-regulated expression of a host of neuronal channels to generate complex calcium signals essential for pupariation on a protein-deficient diet.
Collapse
Affiliation(s)
| | | | - Bipan Kumar Deb
- National Centre for Biological Sciences, TIFR, Bangalore 560065
| | - Gaiti Hasan
- National Centre for Biological Sciences, TIFR, Bangalore 560065
| |
Collapse
|
16
|
Kurpad AV. 90th Anniversary Commentary: Amino Acid Imbalances: Still in the Balance. J Nutr 2018; 148:1647-1649. [PMID: 30281120 PMCID: PMC7100003 DOI: 10.1093/jn/nxy195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/24/2018] [Indexed: 01/20/2023] Open
Affiliation(s)
- Anura V Kurpad
- Department of Physiology, St. John's Medical College, Bangalore, India
| |
Collapse
|
17
|
Yang Z, Huang R, Fu X, Wang G, Qi W, Mao D, Shi Z, Shen WL, Wang L. A post-ingestive amino acid sensor promotes food consumption in Drosophila. Cell Res 2018; 28:1013-1025. [PMID: 30209352 PMCID: PMC6170445 DOI: 10.1038/s41422-018-0084-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/19/2018] [Accepted: 08/13/2018] [Indexed: 11/29/2022] Open
Abstract
Adequate protein intake is crucial for the survival and well-being of animals. How animals assess prospective protein sources and ensure dietary amino acid intake plays a critical role in protein homeostasis. By using a quantitative feeding assay, we show that three amino acids, L-glutamate (L-Glu), L-alanine (L-Ala) and L-aspartate (L-Asp), but not their D-enantiomers or the other 17 natural L-amino acids combined, rapidly promote food consumption in the fruit fly Drosophila melanogaster. This feeding-promoting effect of dietary amino acids is independent of mating experience and internal nutritional status. In vivo and ex vivo calcium imagings show that six brain neurons expressing diuretic hormone 44 (DH44) can be rapidly and directly activated by these amino acids, suggesting that these neurons are an amino acid sensor. Genetic inactivation of DH44+ neurons abolishes the increase in food consumption induced by dietary amino acids, whereas genetic activation of these neurons is sufficient to promote feeding, suggesting that DH44+ neurons mediate the effect of dietary amino acids to promote food consumption. Single-cell transcriptome analysis and immunostaining reveal that a putative amino acid transporter, CG13248, is enriched in DH44+ neurons. Knocking down CG13248 expression in DH44+ neurons blocks the increase in food consumption and eliminates calcium responses induced by dietary amino acids. Therefore, these data identify DH44+ neuron as a key sensor to detect amino acids and to enhance food intake via a putative transporter CG13248. These results shed critical light on the regulation of protein homeostasis at organismal levels by the nervous system.
Collapse
Affiliation(s)
- Zhe Yang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Rui Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University, Chongqing, 400030, China.,Medical School, Chongqing University, 400030, China
| | - Xin Fu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gaohang Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Wei Qi
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Decai Mao
- Gene Regulatory Laboratory, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Zhaomei Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Wei L Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Liming Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, Zhejiang, China. .,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
18
|
Yu D, Yang SE, Miller BR, Wisinski JA, Sherman DS, Brinkman JA, Tomasiewicz JL, Cummings NE, Kimple ME, Cryns VL, Lamming DW. Short-term methionine deprivation improves metabolic health via sexually dimorphic, mTORC1-independent mechanisms. FASEB J 2018; 32:3471-3482. [PMID: 29401631 PMCID: PMC5956241 DOI: 10.1096/fj.201701211r] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/22/2018] [Indexed: 12/28/2022]
Abstract
Obesity and diabetes are major challenges to global health, and there is an urgent need for interventions that promote weight loss. Dietary restriction of methionine promotes leanness and improves metabolic health in mice and humans. However, poor long-term adherence to this diet limits its translational potential. In this study, we develop a short-term methionine deprivation (MD) regimen that preferentially reduces fat mass, restoring normal body weight and glycemic control to diet-induced obese mice of both sexes. The benefits of MD do not accrue from calorie restriction, but instead result from increased energy expenditure. MD promotes increased energy expenditure in a sex-specific manner, inducing the fibroblast growth factor (Fgf)-21-uncoupling protein (Ucp)-1 axis only in males. Methionine is an agonist of the protein kinase mechanistic target of rapamycin complex (mTORC)-1, which has been proposed to play a key role in the metabolic response to amino acid-restricted diets. In our study, we used a mouse model of constitutive hepatic mTORC1 activity and demonstrate that suppression of hepatic mTORC1 signaling is not required for the metabolic effects of MD. Our study sheds new light on the mechanisms by which dietary methionine regulates metabolic health and demonstrates the translational potential of MD for the treatment of obesity and type 2 diabetes.-Yu, D., Yang, S. E., Miller, B. R., Wisinski, J. A., Sherman, D. S., Brinkman, J. A., Tomasiewicz, J. L., Cummings, N. E., Kimple, M. E., Cryns, V. L., Lamming, D. W. Short-term methionine deprivation improves metabolic health via sexually dimorphic, mTORC1-independent mechanisms.
Collapse
Affiliation(s)
- Deyang Yu
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shany E. Yang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Blake R. Miller
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Jaclyn A. Wisinski
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
- Department of Biology, University of Wisconsin-La Crosse, La Crosse, Wisconsin, USA
| | - Dawn S. Sherman
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Jacqueline A. Brinkman
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Jay L. Tomasiewicz
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Nicole E. Cummings
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
- Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA; and
| | - Michelle E. Kimple
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
- Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA; and
| | - Vincent L. Cryns
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Dudley W. Lamming
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA; and
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| |
Collapse
|
19
|
Corsetti G, Pasini E, Romano C, Calvani R, Picca A, Marzetti E, Flati V, Dioguardi FS. Body Weight Loss and Tissue Wasting in Late Middle-Aged Mice on Slightly Imbalanced Essential/Non-essential Amino Acids Diet. Front Med (Lausanne) 2018; 5:136. [PMID: 29868589 PMCID: PMC5966530 DOI: 10.3389/fmed.2018.00136] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/23/2018] [Indexed: 12/27/2022] Open
Abstract
Objective: Inadequate protein intake can impair protein balance thus leading to skeletal muscle atrophy, impaired body growth, and functional decline. Foods provide both non-essential (NEAAs) and essential amino acids (EAAs) that may convey different metabolic stimuli to specific organs and tissues. In this study, we sought to evaluate the impact of six diets, with various EAA/NEAA blends, on body composition and the risk of developing tissue wasting in late middle-aged male mice. Methods: Six groups of late middle-aged male mice were fed for 35 days with iso-nutrients, iso-caloric, and iso-nitrogenous special diets containing different EAA/NEAA ratios ranging from 100/0% to 0/100%. One group fed with standard laboratory rodent diet (StD) served as control. Preliminarily, we verified the palatability of the diets by recording the mice preference, and by making accessible all diets simultaneously, in comparison to StD. Body weight, food and water consumption were measured every 3 days. Blood and urine samples, as well as heart, kidneys, liver, spleen, triceps surae, retroperitoneal WAT, and BAT were harvested and weighed. Results: Mice consuming NEAA-based diets, although showing increased food and calorie intake, suffered the most severe weight loss. Interestingly, the diet containing a EAA/NEAA-imbalance, with moderate NEAAs prevalence, was able to induce catabolic stimuli, generalized body wasting, and systemic metabolic alterations comparable to those observed with diet containing NEAA alone. In addition, complete depletion of retroperitoneal white adipose tissue and a severe loss (>75%) of brown adipose tissue were observed together with muscle wasting. Conversely, EAA-containing diets induced significant decreases in body weight by reducing primarily fat reserves, but at the same time they improved the clinical parameters. On these basis we can deduce that tissue wasting was caused by altered AA quality, independent of reduced nitrogen or caloric intake. Conclusion: Our results indicate that diets containing an optimized balance of AA composition is necessary for preserving overall body energy status. These findings are particularly relevant in the context of aging and may be exploited for contrasting its negative correlates, including body wasting.
Collapse
Affiliation(s)
- Giovanni Corsetti
- Division of Human Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Evasio Pasini
- Cardiac Rehabilitation Division, IRCCS Istituti Clinici Scientifici Maugeri (ICS Maugeri), Lumezzane, Italy
| | - Claudia Romano
- Division of Human Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Riccardo Calvani
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, Rome, Italy
| | - Anna Picca
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, Rome, Italy
| | - Emanuele Marzetti
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart, Rome, Italy
| | - Vincenzo Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco S Dioguardi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
20
|
Measuring the Ability of Mice to Sense Dietary Essential Amino Acid Deficiency: The Importance of Amino Acid Status and Timing. Cell Rep 2018; 16:2049-2050. [PMID: 27558824 DOI: 10.1016/j.celrep.2016.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
21
|
|
22
|
Van de Velde LA, Guo XZJ, Barbaric L, Smith AM, Oguin TH, Thomas PG, Murray PJ. Stress Kinase GCN2 Controls the Proliferative Fitness and Trafficking of Cytotoxic T Cells Independent of Environmental Amino Acid Sensing. Cell Rep 2017; 17:2247-2258. [PMID: 27880901 DOI: 10.1016/j.celrep.2016.10.079] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 10/06/2016] [Accepted: 10/21/2016] [Indexed: 12/11/2022] Open
Abstract
GCN2 is one of four "stress kinases" that block translation by phosphorylating eIF2α. GCN2 is thought to bind uncharged tRNAs to "sense" amino acid availability. In mammals, myeloid cells expressing indoleamine dioxygenases locally deplete tryptophan, which is detected by GCN2 in T cells to cause proliferative arrest. GCN2-deficient T cells were reported to ectopically enter the cell cycle when tryptophan was limiting. Using GCN2-deficient strains crossed to T cell receptor (TCR) transgenic backgrounds, we found GCN2 is essential for induction of stress target genes such as CHOP. However, GCN2-deficient CD8+ T cells fail to proliferate in limiting tryptophan, arginine, leucine, lysine, or asparagine, the opposite of what previous studies concluded. In vitro and in vivo proliferation experiments show that GCN2-deficient CD8+ T cells have T cell-intrinsic proliferative and trafficking defects not observed in CD4+ T cells. Thus, GCN2 is required for normal cytotoxic T cell function.
Collapse
Affiliation(s)
- Lee-Ann Van de Velde
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Xi-Zhi J Guo
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Lidija Barbaric
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Amber M Smith
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Thomas H Oguin
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Peter J Murray
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
23
|
Brown-Borg HM, Buffenstein R. Cutting back on the essentials: Can manipulating intake of specific amino acids modulate health and lifespan? Ageing Res Rev 2017; 39:87-95. [PMID: 27570078 DOI: 10.1016/j.arr.2016.08.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 12/26/2022]
Abstract
With few exceptions, nutritional and dietary interventions generally impact upon both old-age quality of life and longevity. The life prolonging effects, commonly observed with dietary restriction reportedly are linked to alterations in protein intake and specifically limiting the dietary intake of certain essential amino acids. There is however a paucity of data methodically evaluating the various essential amino acids on health- and lifespan and the mechanisms involved. Rodent diets containing either lower methionine content, or tryptophan, than that found in commercially available chow, appear to elicit beneficial effects. It is unclear whether all of these favorable effects associated with restricted intake of methionine and tryptophan are due to their specific unique properties or if restriction of other essential amino acids, or proteins in general, may produce similar results. Considerably more work remains to be done to elucidate the mechanisms by which limiting these vital molecules may delay the onset of age-associated diseases and improve quality of life at older ages.
Collapse
|
24
|
Piper MDW, Partridge L. Drosophila as a model for ageing. Biochim Biophys Acta Mol Basis Dis 2017; 1864:2707-2717. [PMID: 28964875 DOI: 10.1016/j.bbadis.2017.09.016] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 12/12/2022]
Abstract
Drosophila melanogaster has been a key model in developing our current understanding of the molecular mechanisms of ageing. Of particular note is its role in establishing the evolutionary conservation of reduced insulin and IGF-1-like signaling in promoting healthy ageing. Capitalizing on its many advantages for experimentation, more recent work has revealed how precise nutritional and genetic interventions can improve fly lifespan without obvious detrimental side effects. We give a brief summary of these recent findings as well as examples of how they may modify ageing via actions in the gut and muscle. These discoveries highlight how expanding our understanding of metabolic and signaling interconnections will provide even greater insight into how these benefits may be harnessed for anti-ageing interventions.
Collapse
Affiliation(s)
- Matthew D W Piper
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Köln 50931, Germany; Institute of Healthy Ageing, Department GEE, UCL, Darwin Building, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
25
|
Leitão-Gonçalves R, Carvalho-Santos Z, Francisco AP, Fioreze GT, Anjos M, Baltazar C, Elias AP, Itskov PM, Piper MDW, Ribeiro C. Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biol 2017; 15:e2000862. [PMID: 28441450 PMCID: PMC5404834 DOI: 10.1371/journal.pbio.2000862] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/15/2017] [Indexed: 12/14/2022] Open
Abstract
Choosing the right nutrients to consume is essential to health and wellbeing across species. However, the factors that influence these decisions are poorly understood. This is particularly true for dietary proteins, which are important determinants of lifespan and reproduction. We show that in Drosophila melanogaster, essential amino acids (eAAs) and the concerted action of the commensal bacteria Acetobacter pomorum and Lactobacilli are critical modulators of food choice. Using a chemically defined diet, we show that the absence of any single eAA from the diet is sufficient to elicit specific appetites for amino acid (AA)-rich food. Furthermore, commensal bacteria buffer the animal from the lack of dietary eAAs: both increased yeast appetite and decreased reproduction induced by eAA deprivation are rescued by the presence of commensals. Surprisingly, these effects do not seem to be due to changes in AA titers, suggesting that gut bacteria act through a different mechanism to change behavior and reproduction. Thus, eAAs and commensal bacteria are potent modulators of feeding decisions and reproductive output. This demonstrates how the interaction of specific nutrients with the microbiome can shape behavioral decisions and life history traits.
Collapse
Affiliation(s)
- Ricardo Leitão-Gonçalves
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Zita Carvalho-Santos
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Ana Patrícia Francisco
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Gabriela Tondolo Fioreze
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Margarida Anjos
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Célia Baltazar
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Ana Paula Elias
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pavel M. Itskov
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Matthew D. W. Piper
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Carlos Ribeiro
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
26
|
Bellato HM, Hajj GNM. Translational control by eIF2α in neurons: Beyond the stress response. Cytoskeleton (Hoboken) 2016; 73:551-565. [PMID: 26994324 DOI: 10.1002/cm.21294] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/14/2016] [Accepted: 03/14/2016] [Indexed: 12/21/2022]
Abstract
The translation of mRNAs is a tightly controlled process that responds to multiple signaling pathways. In neurons, this control is also exerted locally due to the differential necessity of proteins in axons and dendrites. The phosphorylation of the alpha subunit of the translation initiation factor 2 (eIF2α) is one of the mechanisms of translational control. The phosphorylation of eIF2α has classically been viewed as a stress response, halting translation initiation. However, in the nervous system this type of regulation has been related to other mechanisms besides stress response, such as behavior, memory consolidation and nervous system development. Additionally, neurodegenerative diseases have a major stress component, thus eIF2α phosphorylation plays a preeminent role and its modulation is currently viewed as a new opportunity for therapeutic interventions. This review consolidates current information regarding eIF2α phosphorylation in neurons and its impact in neurodegenerative diseases. © 2016 Wiley Periodicals, Inc.
Collapse
|
27
|
Abstract
Dietary restriction (DR), a moderate reduction in food intake, improves health during aging and extends life span across multiple species. Specific nutrients, rather than overall calories, mediate the effects of DR, with protein and specific amino acids (AAs) playing a key role. Modulations of single dietary AAs affect traits including growth, reproduction, physiology, health, and longevity in animals. Epidemiological data in humans also link the quality and quantity of dietary proteins to long-term health. Intricate nutrient-sensing pathways fine tune the metabolic responses to dietary AAs in a highly conserved manner. In turn, these metabolic responses can affect the onset of insulin resistance, obesity, neurodegenerative disease, and other age-related diseases. In this review we discuss how AA requirements are shaped and how ingested AAs regulate a spectrum of homeostatic processes. Finally, we highlight the resulting opportunity to develop nutritional strategies to improve human health during aging.
Collapse
Affiliation(s)
- George A Soultoukis
- Max Planck Institute for Biology of Ageing, Department of Biological Mechanisms of Ageing, Cologne 50931, Germany; ,
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Department of Biological Mechanisms of Ageing, Cologne 50931, Germany; , .,Institute of Healthy Ageing and Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
28
|
Heeley N, Blouet C. Central Amino Acid Sensing in the Control of Feeding Behavior. Front Endocrinol (Lausanne) 2016; 7:148. [PMID: 27933033 PMCID: PMC5120084 DOI: 10.3389/fendo.2016.00148] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/03/2016] [Indexed: 11/13/2022] Open
Abstract
Dietary protein quantity and quality greatly impact metabolic health via evolutionary-conserved mechanisms that ensure avoidance of amino acid imbalanced food sources, promote hyperphagia when dietary protein density is low, and conversely produce satiety when dietary protein density is high. Growing evidence supports the emerging concept of protein homeostasis in mammals, where protein intake is maintained within a tight range independently of energy intake to reach a target protein intake. The behavioral and neuroendocrine mechanisms underlying these adaptations are unclear. While peripheral factors are able to signal amino acid deficiency and abundance to the brain, the brain itself is exposed to and can detect changes in amino acid concentrations, and subsequently engages acute and chronic responses modulating feeding behavior and food preferences. In this review, we will examine the literature describing the mechanisms by which the brain senses changes in amino acids concentrations, and how these changes modulate feeding behavior.
Collapse
Affiliation(s)
- Nicholas Heeley
- Medical Research Council Metabolic Disease Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Clemence Blouet
- Medical Research Council Metabolic Disease Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- *Correspondence: Clemence Blouet,
| |
Collapse
|