1
|
Niraula S, Hauser WL, Rouse AG, Subramanian J. Repeated passive visual experience modulates spontaneous and non-familiar stimuli-evoked neural activity. Sci Rep 2023; 13:20907. [PMID: 38017135 PMCID: PMC10684504 DOI: 10.1038/s41598-023-47957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
Familiarity creates subjective memory of repeated innocuous experiences, reduces neural and behavioral responsiveness to those experiences, and enhances novelty detection. The neural correlates of the internal model of familiarity and the cellular mechanisms of enhanced novelty detection following multi-day repeated passive experience remain elusive. Using the mouse visual cortex as a model system, we test how the repeated passive experience of a 45° orientation-grating stimulus for multiple days alters spontaneous and non-familiar stimuli evoked neural activity in neurons tuned to familiar or non-familiar stimuli. We found that familiarity elicits stimulus competition such that stimulus selectivity reduces in neurons tuned to the familiar 45° stimulus; it increases in those tuned to the 90° stimulus but does not affect neurons tuned to the orthogonal 135° stimulus. Furthermore, neurons tuned to orientations 45° apart from the familiar stimulus dominate local functional connectivity. Interestingly, responsiveness to natural images, which consists of familiar and non-familiar orientations, increases subtly in neurons that exhibit stimulus competition. We also show the similarity between familiar grating stimulus-evoked and spontaneous activity increases, indicative of an internal model of altered experience.
Collapse
Affiliation(s)
- Suraj Niraula
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA
| | - William L Hauser
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA
| | - Adam G Rouse
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS, 66103, USA
| | - Jaichandar Subramanian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
2
|
Brown TC, McGee AW. Monocular deprivation during the critical period alters neuronal tuning and the composition of visual circuitry. PLoS Biol 2023; 21:e3002096. [PMID: 37083549 PMCID: PMC10155990 DOI: 10.1371/journal.pbio.3002096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 05/03/2023] [Accepted: 03/24/2023] [Indexed: 04/22/2023] Open
Abstract
Abnormal visual experience during a developmental critical period degrades cortical responsiveness. Yet how experience-dependent plasticity alters the response properties of individual neurons and composition of visual circuitry is unclear. Here, we measured with calcium imaging in alert mice how monocular deprivation (MD) during the developmental critical period affects tuning for binocularity, orientation, and spatial frequency for neurons in primary visual cortex. MD of the contralateral eye did not uniformly shift ocular dominance (OD) of neurons towards the fellow ipsilateral eye but reduced the number of monocular contralateral neurons and increased the number of monocular ipsilateral neurons. MD also impaired matching of preferred orientation for binocular neurons and reduced the percentage of neurons responsive at most spatial frequencies for the deprived contralateral eye. Tracking the tuning properties for several hundred neurons before and after MD revealed that the shift in OD is complex and dynamic, with many previously monocular neurons becoming binocular and binocular neurons becoming monocular. Binocular neurons that became monocular were more likely to lose responsiveness to the deprived contralateral eye if they were better matched for orientation prior to deprivation. In addition, the composition of visual circuitry changed as population of neurons more responsive to the deprived eye were exchanged for neurons with tuning properties more similar to the network of responsive neurons altered by MD. Thus, plasticity during the critical period adapts to recent experience by both altering the tuning of responsive neurons and recruiting neurons with matching tuning properties.
Collapse
Affiliation(s)
- Thomas C. Brown
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, Kentucky, United States of America
| | - Aaron W. McGee
- Department of Anatomical Sciences and Neurobiology, School of Medicine; University of Louisville, Louisville, Kentucky, United States of America
| |
Collapse
|
3
|
Kanamori T, Mrsic-Flogel TD. Independent response modulation of visual cortical neurons by attentional and behavioral states. Neuron 2022; 110:3907-3918.e6. [PMID: 36137550 DOI: 10.1016/j.neuron.2022.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/15/2022] [Accepted: 08/30/2022] [Indexed: 12/15/2022]
Abstract
Sensory processing is influenced by cognitive and behavioral states, but how these states interact to modulate responses of individual neurons is unknown. We trained mice in a visual discrimination task wherein they attended to different locations within a hemifield while running or sitting still, enabling us to examine how visual responses are modulated by spatial attention and running behavior. We found that spatial attention improved discrimination performance and strengthened visual responses of excitatory neurons in the primary visual cortex whose receptive fields overlapped with the attended location. Although individual neurons were modulated by both spatial attention and running, the magnitudes of these influences were not correlated. While running-dependent modulation was stable across days, attentional modulation was dynamic, influencing individual neurons to different degrees after repeated changes in attentional states. Thus, despite similar effects on neural responses, spatial attention and running act independently with different dynamics, implying separable mechanisms for their implementation.
Collapse
Affiliation(s)
- Takahiro Kanamori
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London W1T 4JG, UK.
| | - Thomas D Mrsic-Flogel
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London W1T 4JG, UK.
| |
Collapse
|
4
|
Tuning instability of non-columnar neurons in the salt-and-pepper whisker map in somatosensory cortex. Nat Commun 2022; 13:6611. [PMID: 36329010 PMCID: PMC9633707 DOI: 10.1038/s41467-022-34261-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Rodent sensory cortex contains salt-and-pepper maps of sensory features, whose structure is not fully known. Here we investigated the structure of the salt-and-pepper whisker somatotopic map among L2/3 pyramidal neurons in somatosensory cortex, in awake mice performing one-vs-all whisker discrimination. Neurons tuned for columnar (CW) and non-columnar (non-CW) whiskers were spatially intermixed, with co-tuned neurons forming local (20 µm) clusters. Whisker tuning was markedly unstable in expert mice, with 35-46% of pyramidal cells significantly shifting tuning over 5-18 days. Tuning instability was highly concentrated in non-CW tuned neurons, and thus was structured in the map. Instability of non-CW neurons was unchanged during chronic whisker paralysis and when mice discriminated individual whiskers, suggesting it is an inherent feature. Thus, L2/3 combines two distinct components: a stable columnar framework of CW-tuned cells that may promote spatial perceptual stability, plus an intermixed, non-columnar surround with highly unstable tuning.
Collapse
|
5
|
Suri H, Rothschild G. Enhanced stability of complex sound representations relative to simple sounds in the auditory cortex. eNeuro 2022; 9:ENEURO.0031-22.2022. [PMID: 35868858 PMCID: PMC9347310 DOI: 10.1523/eneuro.0031-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
Typical everyday sounds, such as those of speech or running water, are spectrotemporally complex. The ability to recognize complex sounds (CxS) and their associated meaning is presumed to rely on their stable neural representations across time. The auditory cortex is critical for processing of CxS, yet little is known of the degree of stability of auditory cortical representations of CxS across days. Previous studies have shown that the auditory cortex represents CxS identity with a substantial degree of invariance to basic sound attributes such as frequency. We therefore hypothesized that auditory cortical representations of CxS are more stable across days than those of sounds that lack spectrotemporal structure such as pure tones (PTs). To test this hypothesis, we recorded responses of identified L2/3 auditory cortical excitatory neurons to both PTs and CxS across days using two-photon calcium imaging in awake mice. Auditory cortical neurons showed significant daily changes of responses to both types of sounds, yet responses to CxS exhibited significantly lower rates of daily change than those of PTs. Furthermore, daily changes in response profiles to PTs tended to be more stimulus-specific, reflecting changes in sound selectivity, as compared to changes of CxS responses. Lastly, the enhanced stability of responses to CxS was evident across longer time intervals as well. Together, these results suggest that spectrotemporally CxS are more stably represented in the auditory cortex across time than PTs. These findings support a role of the auditory cortex in representing CxS identity across time.Significance statementThe ability to recognize everyday complex sounds such as those of speech or running water is presumed to rely on their stable neural representations. Yet, little is known of the degree of stability of single-neuron sound responses across days. As the auditory cortex is critical for complex sound perception, we hypothesized that the auditory cortical representations of complex sounds are relatively stable across days. To test this, we recorded sound responses of identified auditory cortical neurons across days in awake mice. We found that auditory cortical responses to complex sounds are significantly more stable across days as compared to those of simple pure tones. These findings support a role of the auditory cortex in representing complex sound identity across time.
Collapse
Affiliation(s)
- Harini Suri
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gideon Rothschild
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Recruitment of frontal sensory circuits during visual discrimination. Cell Rep 2022; 39:110932. [PMID: 35675774 PMCID: PMC9247711 DOI: 10.1016/j.celrep.2022.110932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/28/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
A long-range circuit linking the medial frontal cortex to the primary visual cortex (V1) has been proposed to mediate visual selective attention in mice during visually guided behavior. Here, we use in vivo two-photon functional imaging to measure the endogenous activity of axons of A24b/M2 neurons from this region projecting to layer 1 of V1 (A24b/M2-V1axons) in mice either passively viewing stimuli or performing a go/no-go visually guided task. We observe that while A24b/M2-V1axons are recruited under these conditions, this is not linked to enhancement of neural or behavioral measures of sensory coding. Instead, A24b/M2-V1axon activity is associated with licking behavior, modulated by reward, and biased toward the sensory cortical hemisphere representing the stimulus currently being discriminated. Endogenous A24b/M2-V1 axon activity elevation does not enhance sensory processing A24b/M2-V1 axon activity is correlated with licking A24b/M2-V1 axon lick-correlated activity is modulated by reward
Collapse
|
7
|
Deitch D, Rubin A, Ziv Y. Representational drift in the mouse visual cortex. Curr Biol 2021; 31:4327-4339.e6. [PMID: 34433077 DOI: 10.1016/j.cub.2021.07.062] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 07/02/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Recent studies have shown that neuronal representations gradually change over time despite no changes in the stimulus, environment, or behavior. However, such representational drift has been assumed to be a property of high-level brain structures, whereas earlier circuits, such as sensory cortices, have been assumed to stably encode information over time. Here, we analyzed large-scale optical and electrophysiological recordings from six visual cortical areas in behaving mice that were repeatedly presented with the same natural movies. Contrary to the prevailing notion, we found representational drift over timescales spanning minutes to days across multiple visual areas, cortical layers, and cell types. Notably, neural-code stability did not reflect the hierarchy of information flow across areas. Although individual neurons showed time-dependent changes in their coding properties, the structure of the relationships between population activity patterns remained stable and stereotypic. Such population-level organization may underlie stable visual perception despite continuous changes in neuronal responses.
Collapse
Affiliation(s)
- Daniel Deitch
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alon Rubin
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yaniv Ziv
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
8
|
Marks TD, Goard MJ. Stimulus-dependent representational drift in primary visual cortex. Nat Commun 2021; 12:5169. [PMID: 34453051 PMCID: PMC8397766 DOI: 10.1038/s41467-021-25436-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
To produce consistent sensory perception, neurons must maintain stable representations of sensory input. However, neurons in many regions exhibit progressive drift across days. Longitudinal studies have found stable responses to artificial stimuli across sessions in visual areas, but it is unclear whether this stability extends to naturalistic stimuli. We performed chronic 2-photon imaging of mouse V1 populations to directly compare the representational stability of artificial versus naturalistic visual stimuli over weeks. Responses to gratings were highly stable across sessions. However, neural responses to naturalistic movies exhibited progressive representational drift across sessions. Differential drift was present across cortical layers, in inhibitory interneurons, and could not be explained by differential response strength or higher order stimulus statistics. However, representational drift was accompanied by similar differential changes in local population correlation structure. These results suggest representational stability in V1 is stimulus-dependent and may relate to differences in preexisting circuit architecture of co-tuned neurons.
Collapse
Affiliation(s)
- Tyler D Marks
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Michael J Goard
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA.
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA.
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
9
|
Pérez-Ortega J, Alejandre-García T, Yuste R. Long-term stability of cortical ensembles. eLife 2021; 10:e64449. [PMID: 34328414 PMCID: PMC8376248 DOI: 10.7554/elife.64449] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 07/29/2021] [Indexed: 12/25/2022] Open
Abstract
Neuronal ensembles, coactive groups of neurons found in spontaneous and evoked cortical activity, are causally related to memories and perception, but it is still unknown how stable or flexible they are over time. We used two-photon multiplane calcium imaging to track over weeks the activity of the same pyramidal neurons in layer 2/3 of the visual cortex from awake mice and recorded their spontaneous and visually evoked responses. Less than half of the neurons remained active across any two imaging sessions. These stable neurons formed ensembles that lasted weeks, but some ensembles were also transient and appeared only in one single session. Stable ensembles preserved most of their neurons for up to 46 days, our longest imaged period, and these 'core' cells had stronger functional connectivity. Our results demonstrate that neuronal ensembles can last for weeks and could, in principle, serve as a substrate for long-lasting representation of perceptual states or memories.
Collapse
Affiliation(s)
- Jesús Pérez-Ortega
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
| | | | - Rafael Yuste
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
| |
Collapse
|
10
|
Sweeney Y, Clopath C. Population coupling predicts the plasticity of stimulus responses in cortical circuits. eLife 2020; 9:e56053. [PMID: 32314959 PMCID: PMC7224697 DOI: 10.7554/elife.56053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022] Open
Abstract
Some neurons have stimulus responses that are stable over days, whereas other neurons have highly plastic stimulus responses. Using a recurrent network model, we explore whether this could be due to an underlying diversity in their synaptic plasticity. We find that, in a network with diverse learning rates, neurons with fast rates are more coupled to population activity than neurons with slow rates. This plasticity-coupling link predicts that neurons with high population coupling exhibit more long-term stimulus response variability than neurons with low population coupling. We substantiate this prediction using recordings from the Allen Brain Observatory, finding that a neuron's population coupling is correlated with the plasticity of its orientation preference. Simulations of a simple perceptual learning task suggest a particular functional architecture: a stable 'backbone' of stimulus representation formed by neurons with low population coupling, on top of which lies a flexible substrate of neurons with high population coupling.
Collapse
Affiliation(s)
- Yann Sweeney
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| | - Claudia Clopath
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
11
|
Powell A, Connelly WM, Vasalauskaite A, Nelson AJD, Vann SD, Aggleton JP, Sengpiel F, Ranson A. Stable Encoding of Visual Cues in the Mouse Retrosplenial Cortex. Cereb Cortex 2020; 30:4424-4437. [PMID: 32147692 PMCID: PMC7438634 DOI: 10.1093/cercor/bhaa030] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The rodent retrosplenial cortex (RSC) functions as an integrative hub for sensory and motor signals, serving roles in both navigation and memory. While RSC is reciprocally connected with the sensory cortex, the form in which sensory information is represented in the RSC and how it interacts with motor feedback is unclear and likely to be critical to computations involved in navigation such as path integration. Here, we used 2-photon cellular imaging of neural activity of putative excitatory (CaMKII expressing) and inhibitory (parvalbumin expressing) neurons to measure visual and locomotion evoked activity in RSC and compare it to primary visual cortex (V1). We observed stimulus position and orientation tuning, and a retinotopic organization. Locomotion modulation of activity of single neurons, both in darkness and light, was more pronounced in RSC than V1, and while locomotion modulation was strongest in RSC parvalbumin-positive neurons, visual-locomotion integration was found to be more supralinear in CaMKII neurons. Longitudinal measurements showed that response properties were stably maintained over many weeks. These data provide evidence for stable representations of visual cues in RSC that are spatially selective. These may provide sensory data to contribute to the formation of memories of spatial information.
Collapse
Affiliation(s)
- Anna Powell
- School of Psychology, Cardiff University, CF10 3AS Cardiff, UK
| | | | | | | | | | - John P Aggleton
- School of Psychology, Cardiff University, CF10 3AS Cardiff, UK
| | - Frank Sengpiel
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Adam Ranson
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK.,Faculty of Medicine and Health Sciences, Department of Basic Sciences, Universitat Internacional de Catalunya, Barcelona, 08195, Spain.,Institut de Neurociènces, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| |
Collapse
|
12
|
Ranson A, Broom E, Powell A, Chen F, Major G, Hall J. Top-Down Suppression of Sensory Cortex in an NMDAR Hypofunction Model of Psychosis. Schizophr Bull 2019; 45:1349-1357. [PMID: 30945745 PMCID: PMC6811829 DOI: 10.1093/schbul/sby190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Conceptual and computational models have been advanced that propose that perceptual disturbances in psychosis, such as hallucinations, may arise due to a disruption in the balance between bottom-up (ie sensory) and top-down (ie from higher brain areas) information streams in sensory cortex. However, the neural activity underlying this hypothesized alteration remains largely unexplored. Pharmacological N-methyl-d-aspartate receptor (NMDAR) antagonism presents an attractive model to examine potential changes as it acutely recapitulates many of the symptoms of schizophrenia including hallucinations, and NMDAR hypofunction is strongly implicated in the pathogenesis of schizophrenia as evidenced by large-scale genetic studies. Here we use in vivo 2-photon imaging to measure frontal top-down signals from the anterior cingulate cortex (ACC) and their influence on activity of the primary visual cortex (V1) in mice during pharmacologically induced NMDAR hypofunction. We find that global NMDAR hypofunction causes a significant increase in activation of top-down ACC axons, and that surprisingly this is associated with an ACC-dependent net suppression of spontaneous activity in V1 as well as a reduction in V1 sensory-evoked activity. These findings are consistent with a model in which perceptual disturbances in psychosis are caused in part by aberrant top-down frontal cortex activity that suppresses the transmission of sensory signals through early sensory areas.
Collapse
Affiliation(s)
- Adam Ranson
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- School of Medicine, Cardiff University, Cardiff, UK
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Eluned Broom
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Anna Powell
- School of Psychology, Cardiff University, Cardiff, UK
| | - Fangli Chen
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Guy Major
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
- School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
13
|
Vasalauskaite A, Morgan JE, Sengpiel F. Plasticity in Adult Mouse Visual Cortex Following Optic Nerve Injury. Cereb Cortex 2019; 29:1767-1777. [PMID: 30668659 PMCID: PMC6418869 DOI: 10.1093/cercor/bhy347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/10/2018] [Accepted: 12/23/2018] [Indexed: 12/25/2022] Open
Abstract
Optic nerve (ON) injury is an established model of axonal injury which results in retrograde degeneration and death of retinal ganglion cells as well anterograde loss of transmission and Wallerian degeneration of the injured axons. While the local impact of ON crush has been extensively documented we know comparatively little about the functional changes that occur in higher visual structures such as primary visual cortex (V1). We explored the extent of adult cortical plasticity using ON crush in aged mice. V1 function of the contralateral hemisphere was assessed longitudinally by intrinsic signal imaging and 2-photon calcium imaging before and after ON crush. Functional imaging demonstrated an immediate shift in V1 ocular dominance towards the ipsilateral, intact eye, due to the expected almost complete loss of responses to contralateral eye stimulation. Surprisingly, within 2 weeks we observed a delayed increase in ipsilateral eye responses. Additionally, spontaneous activity in V1 was reduced, similar to the lesion projection zone after retinal lesions. The observed changes in V1 activity indicate that severe ON injury in adulthood evokes cortical plasticity not only cross-modally but also within the visual cortex; this plasticity may be best compared with that seen after retinal lesions.
Collapse
Affiliation(s)
| | - James E Morgan
- School of Optometry & Vision Sciences, Cardiff University, Maindy Road, Cardiff, UK
| | - Frank Sengpiel
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, UK
- Neuroscience & Mental Health Research Institute, Cardiff University, Maindy Road, Cardiff, UK
| |
Collapse
|
14
|
Baruchin LJ, Ranson A, Good M, Crunelli V. Absence of Neuronal Response Modulation with Familiarity in Perirhinal Cortex. Neuroscience 2018; 394:23-29. [PMID: 30342199 PMCID: PMC6280024 DOI: 10.1016/j.neuroscience.2018.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/11/2018] [Accepted: 10/10/2018] [Indexed: 11/28/2022]
Abstract
LFP responses to images could be observed in the mouse PRH – which can be used to translate to human studies. Under passive head-restrained viewing condition no familiarity response modulation could be observed in the PRH. When many novel complex images are presented familiarity modulation could be observed as upstream as V1.
The perirhinal cortex (PRH) is considered a crucial cortical area for familiarity memory and electrophysiological studies have reported the presence of visual familiarity encoding neurons in PRH. However, recent evidence has questioned the existence of these neurons. Here, we used a visual task in which head-restrained mice were passively exposed to oriented gratings or natural images. Evoked potentials and single-unit recordings showed evoked responses to novelty in V1 under some conditions. However, the PRH showed no response modulation with respect to familiarity under a variety of different conditions or retention delays. These results indicate that the PRH does not contribute to familiarity/novelty encoding using passively exposed visual stimuli.
Collapse
Affiliation(s)
- Liad J Baruchin
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, UK.
| | - Adam Ranson
- Neurosciences & Mental Health Research Institute, Cardiff University, Cardiff CF24 4HQ, UK
| | - Mark Good
- Department of Psychology, Cardiff University, Cardiff, UK
| | - Vincenzo Crunelli
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, UK; Department of Physiology and Biochemistry, Malta University, Msida, Malta.
| |
Collapse
|
15
|
Jeon BB, Swain AD, Good JT, Chase SM, Kuhlman SJ. Feature selectivity is stable in primary visual cortex across a range of spatial frequencies. Sci Rep 2018; 8:15288. [PMID: 30327571 PMCID: PMC6191427 DOI: 10.1038/s41598-018-33633-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/28/2018] [Indexed: 01/31/2023] Open
Abstract
Reliable perception of environmental signals is a critical first step to generating appropriate responses and actions in awake behaving animals. The extent to which stimulus features are stably represented at the level of individual neurons is not well understood. To address this issue, we investigated the persistence of stimulus response tuning over the course of 1–2 weeks in the primary visual cortex of awake, adult mice. Using 2-photon calcium imaging, we directly compared tuning stability to two stimulus features (orientation and spatial frequency) within the same neurons, specifically in layer 2/3 excitatory neurons. The majority of neurons that were tracked and tuned on consecutive imaging sessions maintained stable orientation and spatial frequency preferences (83% and 76% of the population, respectively) over a 2-week period. Selectivity, measured as orientation and spatial frequency bandwidth, was also stable. Taking into account all 4 parameters, we found that the proportion of stable neurons was less than two thirds (57%). Thus, a substantial fraction of neurons (43%) were unstable in at least one parameter. Furthermore, we found that instability of orientation preference was not predictive of instability of spatial frequency preference within the same neurons. Population analysis revealed that noise correlation values were stable well beyond the estimated decline in monosynaptic connectivity (~250–300 microns). Our results demonstrate that orientation preference is stable across a range of spatial frequencies and that the tuning of distinct stimulus features can be independently maintained within a single neuron.
Collapse
Affiliation(s)
- Brian B Jeon
- Center for Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, USA.,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA
| | - Alex D Swain
- University of Pittsburgh Integrative Systems Biology Program, Pittsburgh, USA
| | - Jeffrey T Good
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, USA
| | - Steven M Chase
- Center for Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, USA.,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA
| | - Sandra J Kuhlman
- Center for Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, USA. .,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA. .,University of Pittsburgh Integrative Systems Biology Program, Pittsburgh, USA. .,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, USA.
| |
Collapse
|
16
|
Pakan JM, Francioni V, Rochefort NL. Action and learning shape the activity of neuronal circuits in the visual cortex. Curr Opin Neurobiol 2018; 52:88-97. [PMID: 29727859 PMCID: PMC6562203 DOI: 10.1016/j.conb.2018.04.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/13/2018] [Indexed: 11/25/2022]
Abstract
Arousal and locomotion modulate neuronal activity in primary visual cortex. Neurons in primary visual cortex respond to visuomotor mismatch. Experience shapes neuronal responses to familiar stimuli, reward and object location. Neuronal representations of visual stimuli are modulated according to the behavioural relevance of the stimuli. Neuromodulatory, top-down and thalamocortical inputs convey arousal-related and motor-related signals to primary visual cortex.
Nonsensory variables strongly influence neuronal activity in the adult mouse primary visual cortex. Neuronal responses to visual stimuli are modulated by behavioural state, such as arousal and motor activity, and are shaped by experience. This dynamic process leads to neural representations in the visual cortex that reflect stimulus familiarity, expectations of reward and object location, and mismatch between self-motion and visual-flow. The recent development of genetic tools and recording techniques in awake behaving mice has enabled the investigation of the circuit mechanisms underlying state-dependent and experience-dependent neuronal representations in primary visual cortex. These neuronal circuits involve neuromodulatory, top-down cortico-cortical and thalamocortical pathways. The functions of nonsensory signals at this early stage of visual information processing are now beginning to be unravelled.
Collapse
Affiliation(s)
- Janelle Mp Pakan
- Center for Behavioral Brain Sciences, Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - Valerio Francioni
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, Edinburgh, United Kingdom
| | - Nathalie L Rochefort
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, Edinburgh, United Kingdom; Simons Initiative for the Developing Brain, Edinburgh, United Kingdom.
| |
Collapse
|