1
|
Wang S, Awad KS, Chen LY, Siddique MAH, Ferreyra GA, Wang CL, Joseph T, Yu ZX, Takeda K, Demirkale CY, Zhao YY, Elinoff JM, Danner RL. Endothelial PHD2 deficiency induces apoptosis resistance and inflammation via AKT activation and AIP1 loss independent of HIF2α. Am J Physiol Lung Cell Mol Physiol 2024; 327:L503-L519. [PMID: 39159362 PMCID: PMC11482463 DOI: 10.1152/ajplung.00077.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/16/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
In hypoxic and pseudohypoxic rodent models of pulmonary hypertension (PH), hypoxia-inducible factor (HIF) inhibition attenuates disease initiation. However, HIF activation alone, due to genetic alterations or use of inhibitors of prolyl hydroxylase domain (PHD) enzymes, has not been definitively shown to cause PH in humans, indicating the involvement of other mechanisms. Given the association between endothelial cell dysfunction and PH, the effects of pseudohypoxia and its underlying pathways were investigated in primary human lung endothelial cells. PHD2 silencing or inhibition, while activating HIF2α, induced apoptosis-resistance and IFN/STAT activation in endothelial cells, independent of HIF signaling. Mechanistically, PHD2 deficiency activated AKT and ERK, inhibited JNK, and reduced AIP1 (ASK1-interacting protein 1), all independent of HIF2α. Like PHD2, AIP1 silencing affected these same kinase pathways and produced a similar dysfunctional endothelial cell phenotype, which was partially reversed by AKT inhibition. Consistent with these in vitro findings, AIP1 protein levels in lung endothelial cells were decreased in Tie2-Cre/Phd2 knockout mice compared with wild-type controls. Lung vascular endothelial cells from patients with pulmonary arterial hypertension (PAH) showed IFN/STAT activation. Lung tissue from both SU5416/hypoxia PAH rats and patients with PAH all showed AKT activation and dysregulated AIP1 expression. In conclusion, PHD2 deficiency in lung vascular endothelial cells drives an apoptosis-resistant and inflammatory phenotype, mediated by AKT activation and AIP1 loss independent of HIF signaling. Targeting these pathways, including PHD2, AKT, and AIP1, holds the potential for developing new treatments for endothelial dysfunction in PH.NEW & NOTEWORTHY HIF activation alone does not conclusively lead to human PH, suggesting that HIF-independent signaling may also contribute to hypoxia-induced PH. This study demonstrated that PHD2 silencing-induced pseudohypoxia in human lung endothelial cells suppresses apoptosis and activates STAT, effects that persist despite HIF2α inhibition or knockdown and are attributed to AKT and ERK activation, JNK inhibition, and AIP1 loss. These findings align with observations in lung endothelial cells and tissues from PAH rodent models and patients.
Collapse
Affiliation(s)
- Shuibang Wang
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, United States
| | - Keytam S Awad
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, United States
| | - Li-Yuan Chen
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, United States
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Mohammad A H Siddique
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, United States
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Gabriela A Ferreyra
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, United States
| | - Caroline L Wang
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, United States
| | - Thea Joseph
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, United States
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Zu-Xi Yu
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Kazuyo Takeda
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Cumhur Y Demirkale
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, United States
| | - You-Yang Zhao
- Section for Injury Repair and Regeneration, Stanley Manne Children Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, United States
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Jason M Elinoff
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, United States
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Robert L Danner
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
2
|
Deng H, Wang Z, Zhu C, Chen Z. Prolyl hydroxylase domain enzyme PHD2 inhibits proliferation and metabolism in non-small cell lung cancer cells in HIF-dependent and HIF-independent manners. Front Oncol 2024; 14:1370393. [PMID: 39007099 PMCID: PMC11240288 DOI: 10.3389/fonc.2024.1370393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Prolyl hydroxylase domain protein 2 (PHD2) is one of the intracellular oxygen sensors that mediates proteasomal degradation of hypoxia-inducible factor (HIF)-α via hydroxylation under normoxic conditions. Because of its canonical function in the hypoxia signaling pathway, PHD2 is generally regarded as a tumor suppressor. However, the effects of PHD2 in tumorigenesis are not entirely dependent on HIF-α. Based on analysis of data from the Cancer Genome Atlas (TCGA) database, we observed that the expression of PHD2 is upregulated in non-small cell lung cancer (NSCLC), which accounts for approximately 80-85% of lung cancers. This suggests that PHD2 may play an important role in NSCLC. However, the function of PHD2 in NSCLC remains largely unknown. In this study, we established PHD2-deficient H1299 cells and PHD2-knockdown A549 cells to investigate the function of PHD2 in NSCLC and found that PHD2 suppresses cell proliferation and metabolism but induces ROS levels in human NSCLC cells. Further results indicated that the function of PHD2 in NSCLC is dependent on its enzymatic activity and partially independent of HIF. Moreover, we performed RNA-sequencing and transcriptomic analysis to explore the underlying mechanisms and identified some potential targets and pathways regulated by PHD2, apart from the canonical HIF-mediated hypoxia signaling pathway. These results provide some clues to uncover novel roles of PHD2 in lung cancer progression.
Collapse
Affiliation(s)
- Hongyan Deng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Life Science, Wuhan University, Wuhan, China
| | - Zixuan Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chunchun Zhu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhu Chen
- Department of Reproduction, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Cui Y, Sun Y, Li D, Zhang Y, Zhang Y, Cao D, Cao X. The crosstalk among the physical tumor microenvironment and the effects of glucose deprivation on tumors in the past decade. Front Cell Dev Biol 2023; 11:1275543. [PMID: 38020920 PMCID: PMC10646288 DOI: 10.3389/fcell.2023.1275543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
The occurrence and progression of tumors are inseparable from glucose metabolism. With the development of tumors, the volume increases gradually and the nutritional supply of tumors cannot be fully guaranteed. The tumor microenvironment changes and glucose deficiency becomes the common stress environment of tumors. Here, we discuss the mutual influences between glucose deprivation and other features of the tumor microenvironment, such as hypoxia, immune escape, low pH, and oxidative stress. In the face of a series of stress responses brought by glucose deficiency, different types of tumors have different coping mechanisms. We summarize the tumor studies on glucose deficiency in the last decade and review the genes and pathways that determine the fate of tumors under harsh conditions. It turns out that most of these genes help tumor cells survive in glucose-deprivation conditions. The development of related inhibitors may bring new opportunities for the treatment of tumors.
Collapse
Affiliation(s)
- Yingnan Cui
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yuanlin Sun
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Dongming Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yuzheng Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Yangyu Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Simanurak O, Pekthong D, Somran J, Wangteeraprasert A, Srikummool M, Kaewpaeng N, Parhira S, Srisawang P. Enhanced apoptosis of HCT116 colon cancer cells treated with extracts from Calotropis gigantea stem bark by starvation. Heliyon 2023; 9:e18013. [PMID: 37483695 PMCID: PMC10362240 DOI: 10.1016/j.heliyon.2023.e18013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Calotropis gigantea stem bark extract, particularly the dichloromethane fraction (CGDCM), demonstrated the most potent antiproliferative effects on hepatocellular carcinoma HepG2 and colorectal HCT116 cells. The current study focused on enhancing the effectiveness of cancer treatment with CGDCM at concentrations close to the IC50 in HCT116 cells by reducing their nutrient supply. CGDCM (2, 4, and 8 μg/mL) treatment for 24 h under glucose conditions of 4.5 g/L without fetal bovine serum (FBS) supplementation or serum starvation (G+/F-), glucose 0 g/L with 10% FBS or glucose starvation (G-/F+), and glucose 0 g/L with 0% FBS or complete starvation (G-/F-) induced a greater antiproliferative effect in HCT116 cells than therapy in complete medium with glucose 4.5 g/L and 10% FBS (G+/F+). Nonetheless, the anticancer effect of CGDCM at 4 μg/mL under (G-/F-) showed the highest activity compared to other starvation conditions. The three starvation conditions showed a significant reduction in cell viability compared to the control (G+/F+) medium group, while the inhibitory effect on cell viability did not differ significantly among the three starvation conditions. CGDCM at 4 μg/mL in (G-/F-) medium triggered apoptosis by dissipating the mitochondrial membrane potential and arresting cells in the G2/M phase. This investigation demonstrated that a decrease in intracellular ATP and fatty acid levels was associated with enhanced apoptosis by treatment with CGDCM at 4 μg/mL under (G-/F-) conditions. In addition, under (G-/F-), CGDCM at 4 μg/mL increased levels of reactive oxygen species (ROS) and was suggested to primarily trigger apoptosis in HCT116 cells. Thus, C. gigantea extracts may be useful for the future development of alternative, effective cancer treatment regimens.
Collapse
Affiliation(s)
- Orakot Simanurak
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Dumrongsak Pekthong
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Julintorn Somran
- Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok, 65000, Thailand
| | | | - Metawee Srikummool
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Naphat Kaewpaeng
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Supawadee Parhira
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Piyarat Srisawang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
5
|
The multifaceted role of EGLN family prolyl hydroxylases in cancer: going beyond HIF regulation. Oncogene 2022; 41:3665-3679. [PMID: 35705735 DOI: 10.1038/s41388-022-02378-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 12/22/2022]
Abstract
EGLN1, EGLN2 and EGLN3 are proline hydroxylase whose main function is the regulation of the HIF factors. They work as oxygen sensors and are the main responsible of HIFα subunits degradation in normoxia. Being their activity strictly oxygen-dependent, when oxygen tension lowers, their control on HIFα is released, leading to activation of systemic and cellular response to hypoxia. However, EGLN family members activity is not limited to HIF modulation, but it includes the regulation of essential mechanisms for cell survival, cell cycle metabolism, proliferation and transcription. This is due to their reported hydroxylase activity on a number of non-HIF targets and sometimes to hydroxylase-independent functions. For these reasons, EGLN enzymes appear fundamental for development and progression of different cancer types, playing either a tumor-suppressive or a tumor-promoting role, according to EGLN isoform and to tumor context. Notably, EGLN1, the most studied isoform, has been shown to have also a central role in tumor micro-environment modulation, mediating CAF activation and impairing HIF1α -related angiogenesis, thus covering an important function in cancer metastasis promotion. Considering the recent knowledge acquired on EGLNs, the possibility to target these enzymes for cancer treatment is emerging. However, due to their multifaceted and controversial roles in different cancer types, the use of EGLN inhibitors as anti-cancer drugs should be carefully evaluated in each context.
Collapse
|
6
|
Miao M, Wu M, Li Y, Zhang L, Jin Q, Fan J, Xu X, Gu R, Hao H, Zhang A, Jia Z. Clinical Potential of Hypoxia Inducible Factors Prolyl Hydroxylase Inhibitors in Treating Nonanemic Diseases. Front Pharmacol 2022; 13:837249. [PMID: 35281917 PMCID: PMC8908211 DOI: 10.3389/fphar.2022.837249] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 12/19/2022] Open
Abstract
Hypoxia inducible factors (HIFs) and their regulatory hydroxylases the prolyl hydroxylase domain enzymes (PHDs) are the key mediators of the cellular response to hypoxia. HIFs are normally hydroxylated by PHDs and degraded, while under hypoxia, PHDs are suppressed, allowing HIF-α to accumulate and transactivate multiple target genes, including erythropoiesis, and genes participate in angiogenesis, iron metabolism, glycolysis, glucose transport, cell proliferation, survival, and so on. Aiming at stimulating HIFs, a group of small molecules antagonizing HIF-PHDs have been developed. Of these HIF-PHDs inhibitors (HIF-PHIs), roxadustat (FG-4592), daprodustat (GSK-1278863), vadadustat (AKB-6548), molidustat (BAY 85-3934) and enarodustat (JTZ-951) are approved for clinical usage or have progressed into clinical trials for chronic kidney disease (CKD) anemia treatment, based on their activation effect on erythropoiesis and iron metabolism. Since HIFs are involved in many physiological and pathological conditions, efforts have been made to extend the potential usage of HIF-PHIs beyond anemia. This paper reviewed the progress of preclinical and clinical research on clinically available HIF-PHIs in pathological conditions other than CKD anemia.
Collapse
Affiliation(s)
- Mengqiu Miao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Mengqiu Wu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yuting Li
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Lingge Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Qianqian Jin
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Jiaojiao Fan
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Xinyue Xu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Ran Gu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Chen Q, Shi F, Yang C, Mao G, Zhou C, Liu L, Yang X, Song Y. Lentivirus-shRNA mediated prolyl hydroxylase 2 knockdown increases HIF-1α and inhibits nucleus pulposus cells degeneration. Cells Tissues Organs 2021; 212:185-193. [PMID: 34781297 DOI: 10.1159/000520795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/07/2021] [Indexed: 11/19/2022] Open
Abstract
Hypoxia-inducible factor (HIF) plays a crucial role in regulating the hypoxia-inducible state of nucleus pulposus cells in the intervertebral disc. In addition, the oxygen-dependent conversion of HIF-1α in nucleus pulposus cells is controlled by the protein Proline 4-hydroxylase domain (PHD) family. To explore whether HIF-1α can be regulated by modulating PHD homologs to inhibit nucleus pulposus degeneration, PHD2-shRNAs were designed and PHD2 interference vector was constructed. The expression of HIF-1α and PHD2 genes in the nucleus pulposus cells in the experimental group was detected by RT-PCR, and the expression of HIF-1α, MMP-2, Aggrecan and Col II proteins in the P0-P3 cells in the experimental group and the control group was detected by Western blotting. The apoptosis of P0-P3 nucleus pulposus cells was detected by flow cytometry. After lentivirus infection, the interference efficiency of the PHD2 gene decreased with cell passage. The apoptosis of P1-P3 cells in the experimental group was significantly lower than that in the control group or degeneration group. Compared to the control group, the expression of HIF-1α, Aggrecan and Col II proteins increased significantly, and the expression of MMP-2 protein decreased significantly. In conclusion, interference with PHD2 can upregulate the expression of HIF-1α, accelerate anabolism, reduce catabolism, inhibit apoptosis of nucleus pulposus cells, and then these can inhibit degeneration of nucleus pulposus cells. Our results can provide an effective therapeutic target in intervertebral discs during intervertebral disc degeneration and this may have important clinical significance.
Collapse
Affiliation(s)
- Qi Chen
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fangfang Shi
- Department of Hematology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Chen Yang
- Department of Orthopedic Surgery, No. 1 People's Hospital of AkeSu, AkeSu, China
| | - Guangfeng Mao
- Department of Orthopedic Surgery, The Third People Hospital of Zhuji, Shaoxing, China
| | - Chunguang Zhou
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Limin Liu
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Yang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yueming Song
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Bhattacharya S, Shrimali NM, Mohammad G, Koul PA, Prchal JT, Guchhait P. Gain-of-function Tibetan PHD2 D4E;C127S variant suppresses monocyte function: A lesson in inflammatory response to inspired hypoxia. EBioMedicine 2021; 68:103418. [PMID: 34102396 PMCID: PMC8190441 DOI: 10.1016/j.ebiom.2021.103418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/01/2021] [Accepted: 05/14/2021] [Indexed: 12/30/2022] Open
Abstract
Background We have previously described an evolutionarily selected Tibetan prolyl hydroxylase-2 (PHD2D4E;C127S) variant that degrades the hypoxia-inducible factor (HIFα) more efficiently and protects these highlanders from hypoxia-triggered elevation in haemoglobin concentration. High altitude is known to cause acute mountain sickness (AMS) and high-altitude pulmonary edema (HAPE) in a section of rapidly ascending non-acclimatised lowlanders. These morbidities are often accompanied by inflammatory response and exposure to hypobaric hypoxia is presumed to be the principal causative agent. We have investigated whether PHD2D4E;C127S variant is associated with prevention of hypoxia-mediated inflammatory milieu in Tibetan highlanders and therefore identify a potential target to regulate inflammation. Methods We genotyped the Tibetans using DNA isolated from whole blood. Thereafter immunophenotying was performed on PBMCs from homozygous PHD2D4E;C127S and PHD2WT individuals using flow cytometry. RNA isolated from these individuals was used to evaluate the peripheral level of important transcripts associated with immune as well as hypoxia response employing the nCounter technology. The ex-vivo findings were validated by generating monocytic cell lines (U937 cell line) expressing PHD2D4E;C127S and PHD2WT variants post depletion of endogenous PHD2. We had also collected whole blood samples from healthy travellers and travellers afflicted with AMS and HAPE to evaluate the significance of our ex-vivo and in vitro findings. Hereafter, we also attempted to resolve hypoxia-triggered inflammation in vitro as well as in vivo by augmenting the function of PHD2 using alpha-ketoglutarate (αKG), a co-factor of PHD2. Findings We report that homozygous PHD2D4E;C127S highlanders harbour less inflammatory and patrolling monocytes in circulation as compared to Tibetan PHD2WT highlanders. In response to in vitro hypoxia, secretion of IL6 and IL1β from PHD2D4E;C127S monocytes, and their chemotactic response compared to the PHD2WT are compromised, corresponding to the down-modulated expression of related signalling molecules RELA, JUN, STAT1, ATF2 and CXCR4. We verified these functional outcomes in monocytic U937 cell line engineered to express PHD2D4E;C127S and confirmed the down-modulation of the signalling molecules at protein level under hypoxia. In contrast, non-Tibetan sojourners with AMS and HAPE at high altitude (3,600 m above sea level) displayed significant increase in these inflammatory parameters. Our data henceforth underline the role of gain-of-function of PHD2 as the rate limiting factor to harness hyper-activation of monocytes in hypoxic environment. Therefore upon pre-treatment with αKG, we observed diminished inflammatory response of monocytes in vitro and reduction in leukocyte infiltration to the lungs in mice exposed to normobaric hypoxia. Interpretation Our report suggests that gain-of-function PHD2 D4E;C127S variant can therefore protect against inflammation elicited by hypobaric hypoxia. Augmentation of PHD2 activity therefore may be an important method to alleviate inflammatory response to inspired hypoxia. Funding This study is supported by the Department of Biotechnology, Government of India.
Collapse
Affiliation(s)
- Sulagna Bhattacharya
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India; School of Biotechnology, Kalinga Institute of Industrial Technology, Orissa, India
| | - Nishith M Shrimali
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | | | - Parvaiz A Koul
- Department of Internal and Pulmonary Medicine, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Josef T Prchal
- Department of Medicine, University of Utah School of Medicine & Huntsman Cancer Center and George E. Wahlin Veteran's Administration Medical Center, Salt Lake City, UT, USA
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
9
|
Yu M, Lun J, Zhang H, Zhu L, Zhang G, Fang J. The non-canonical functions of HIF prolyl hydroxylases and their dual roles in cancer. Int J Biochem Cell Biol 2021; 135:105982. [PMID: 33894356 DOI: 10.1016/j.biocel.2021.105982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
The hypoxia-inducible factor (HIF) prolyl hydroxylases (PHDs) are dioxygenases using oxygen and 2-oxoglutarate as co-substrates. Under normoxia, PHDs hydroxylate the conserved prolyl residues of HIFα, leading to HIFα degradation. In hypoxia PHDs are inactivated, which results in HIFα accumulation. The accumulated HIFα enters nucleus and initiates gene transcription. Many studies have shown that PHDs have substrates other than HIFα, implying that they have HIF-independent non-canonical functions. Besides modulating protein stability, the PHDs-mediated prolyl hydroxylation affects protein-protein interaction and protein activity for alternative substrates. Increasing evidence indicates that PHDs also have hydroxylase-independent functions. They influence protein stability, enzyme activity, and protein-protein interaction in a hydroxylase-independent manner. These findings highlight the functional diversity and complexity of PHDs. Due to having inhibitory activity on HIFα, PHDs are proposed to act as tumor suppressors. However, research shows that PHDs exert either tumor-promoting or tumor-suppressing features. Here, we try to summarize the current understanding of PHDs hydroxylase-dependent and -independent functions and their roles in cancer.
Collapse
Affiliation(s)
- Mengchao Yu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China
| | - Jie Lun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care Hospital, Jinan, 250014, China
| | - Lei Zhu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China
| | - Gang Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China.
| | - Jing Fang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao, 266061, China.
| |
Collapse
|
10
|
Gaete D, Rodriguez D, Watts D, Sormendi S, Chavakis T, Wielockx B. HIF-Prolyl Hydroxylase Domain Proteins (PHDs) in Cancer-Potential Targets for Anti-Tumor Therapy? Cancers (Basel) 2021; 13:988. [PMID: 33673417 PMCID: PMC7956578 DOI: 10.3390/cancers13050988] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Solid tumors are typically associated with unbridled proliferation of malignant cells, accompanied by an immature and dysfunctional tumor-associated vascular network. Consequent impairment in transport of nutrients and oxygen eventually leads to a hypoxic environment wherein cells must adapt to survive and overcome these stresses. Hypoxia inducible factors (HIFs) are central transcription factors in the hypoxia response and drive the expression of a vast number of survival genes in cancer cells and in cells in the tumor microenvironment. HIFs are tightly controlled by a class of oxygen sensors, the HIF-prolyl hydroxylase domain proteins (PHDs), which hydroxylate HIFs, thereby marking them for proteasomal degradation. Remarkable and intense research during the past decade has revealed that, contrary to expectations, PHDs are often overexpressed in many tumor types, and that inhibition of PHDs can lead to decreased tumor growth, impaired metastasis, and diminished tumor-associated immune-tolerance. Therefore, PHDs represent an attractive therapeutic target in cancer research. Multiple PHD inhibitors have been developed that were either recently accepted in China as erythropoiesis stimulating agents (ESA) or are currently in phase III trials. We review here the function of HIFs and PHDs in cancer and related therapeutic opportunities.
Collapse
Affiliation(s)
| | | | | | | | | | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (D.G.); (D.R.); (D.W.); (S.S.); (T.C.)
| |
Collapse
|
11
|
Ehling M, Celus W, Martín-Pérez R, Alba-Rovira R, Willox S, Ponti D, Cid MC, Jones EAV, Di Conza G, Mazzone M. B55α/PP2A Limits Endothelial Cell Apoptosis During Vascular Remodeling: A Complementary Approach To Disrupt Pathological Vessels? Circ Res 2020; 127:707-723. [PMID: 32527198 PMCID: PMC7616433 DOI: 10.1161/circresaha.119.316071] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
RATIONALE How endothelial cells (ECs) migrate and form an immature vascular plexus has been extensively studied. Yet, mechanisms underlying vascular remodeling remain poorly established. A better understanding of these processes may lead to the design of novel therapeutic strategies complementary to current angiogenesis inhibitors. OBJECTIVE Starting from our previous observations that PP2A (protein phosphatase 2) regulates the HIF (hypoxia-inducible factor)/PHD-2 (prolyl hydroxylase 2)-constituted oxygen machinery, we hypothesized that this axis could play an important role during blood vessel formation, tissue perfusion, and oxygen restoration. METHODS AND RESULTS We show that the PP2A regulatory subunit B55α is at the crossroad between vessel pruning and vessel maturation. Blood vessels with high B55α counter cell stress conditions and thrive for stabilization and maturation. When B55α is inhibited, ECs cannot cope with cell stress and undergo apoptosis, leading to massive pruning of nascent blood vessels. Mechanistically, we found that the B55α/PP2A complex restrains PHD-2 activity, promoting EC survival in a HIF-dependent manner, and furthermore dephosphorylates p38, altogether protecting ECs against cell stress occurring, for example, during the onset of blood flow. In tumors, EC-specific B55α deficiency induces pruning of immature-like tumor blood vessels resulting in delayed tumor growth and metastasis, without affecting nonpathological vessels. Consistently, systemic administration of a pan-PP2A inhibitor disrupts vascular network formation and tumor progression in vivo without additional effects on B55α-deficient vessels. CONCLUSIONS Our data underline a unique role of the B55α/PP2A phosphatase complex in vessel remodeling and suggest the use of PP2A-inhibitors as potent antiangiogenic drugs targeting specifically nascent blood vessels with a mode-of-action complementary to VEGF-R (vascular endothelial growth factor receptor)-targeted therapies. Graphical Abstract: A graphical abstract is available for this article.
Collapse
Affiliation(s)
- Manuel Ehling
- From the Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.)
- Laboratory of Tumor Inflammation and Angiogenesis, and Department of Oncology (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.), KU Leuven, Belgium
| | - Ward Celus
- From the Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.)
- Laboratory of Tumor Inflammation and Angiogenesis, and Department of Oncology (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.), KU Leuven, Belgium
| | - Rosa Martín-Pérez
- From the Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.)
- Laboratory of Tumor Inflammation and Angiogenesis, and Department of Oncology (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.), KU Leuven, Belgium
| | - Roser Alba-Rovira
- From the Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.)
- Laboratory of Tumor Inflammation and Angiogenesis, and Department of Oncology (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.), KU Leuven, Belgium
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona (R.A.-R., M.C.C.)
| | - Sander Willox
- From the Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.)
- Laboratory of Tumor Inflammation and Angiogenesis, and Department of Oncology (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.), KU Leuven, Belgium
| | - Donatella Ponti
- From the Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.)
- Laboratory of Tumor Inflammation and Angiogenesis, and Department of Oncology (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.), KU Leuven, Belgium
- Medical-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina (D.P.)
| | - Maria C Cid
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona (R.A.-R., M.C.C.)
| | | | - Giusy Di Conza
- From the Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.)
- Laboratory of Tumor Inflammation and Angiogenesis, and Department of Oncology (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.), KU Leuven, Belgium
| | - Massimiliano Mazzone
- From the Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.)
- Laboratory of Tumor Inflammation and Angiogenesis, and Department of Oncology (M.E., W.C., R.M.-P., R.A.-R., S.W., D.P., G.D.C., M.M.), KU Leuven, Belgium
| |
Collapse
|
12
|
Piovesan D, Hatos A, Minervini G, Quaglia F, Monzon AM, Tosatto SCE. Assessing predictors for new post translational modification sites: A case study on hydroxylation. PLoS Comput Biol 2020; 16:e1007967. [PMID: 32569263 PMCID: PMC7332089 DOI: 10.1371/journal.pcbi.1007967] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 07/02/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022] Open
Abstract
Post-translational modification (PTM) sites have become popular for predictor development. However, with the exception of phosphorylation and a handful of other examples, PTMs suffer from a limited number of available training examples and sparsity in protein sequences. Here, proline hydroxylation is taken as an example to compare different methods and evaluate their performance on new experimentally determined sites. As a guide for effective experimental design, predictors require both high specificity and sensitivity. However, the self-reported performance may often not be indicative of prediction quality and detection of new sites is not guaranteed. We have benchmarked seven published hydroxylation site predictors on two newly constructed independent datasets. The self-reported performance is found to widely overestimate the real accuracy measured on independent datasets. No predictor performs better than random on new examples, indicating the refined models do not sufficiently generalize to detect new sites. The number of false positives is high and precision low, in particular for non-collagen proteins whose motifs are not conserved. As hydroxylation site predictors do not generalize for new data, caution is advised when using PTM predictors in the absence of independent evaluations, in particular for highly specific sites involved in signalling. Machine learning methods are extensively used by biologists to design and interpret experiments. Predictors which take the only sequence as input are of particular interest due to the large amount of available sequence data and high self-reported performance. In this work, we evaluated post-translational modification (PTM) predictors for hydroxylation sites and found that they perform no better than random, in strong contrast to performances reported in their original publications. PTMs are chemical amino acid alterations providing the cell with conditional mechanisms to fine tune protein function, regulating complex biological processes such as signalling and cell cycle. Hydroxylation sites are a good PTM test case due to the availability of a range of predictors and an abundance of newly experimentally detected modification sites. Poor performances in our results highlight the overlooked problem of predicting PTMs when best practices are not followed and training data are likely incomplete. Experimentalists should be careful when using PTM predictors blindly and more independent assessments are needed to establish their usefulness in practice.
Collapse
Affiliation(s)
- Damiano Piovesan
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- * E-mail:
| | - Andras Hatos
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Federica Quaglia
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | | |
Collapse
|
13
|
Guo J, Lan Z. PHD2 acts as an oncogene through activation of Ras/Raf/MEK/ERK and JAK1/STAT3 pathways in human hepatocellular carcinoma cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:37-45. [PMID: 31852247 DOI: 10.1080/21691401.2019.1699806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background: Prolyl hydroxylase domain proteins (PHD2) is an oxygen sensor that is able to induce hypoxia-inducible factor-α (HIF-α) degradation under normoxic condition. The present paper designed to reveal the function of PHD2 in hepatocellular carcinoma (HCC) cells proliferation, migration and invasion.Methods: qRT-PCR and Western blot were carried out to see the expression of PHD2 in HCC tissues and cell lines. PHD2 expression in Huh7 and HepG3B cells was overexpressed or suppressed by transfection and then the changes of cell proliferation, migration and invasion were detected by CCK-8 assay, transwell assay and Western blot.Results: PHD2 was highly expressed in HCC tissues and cell lines (Huh7, Hep3B, SK-HEP-1, HCCLM3 and MHCC97) as relative to para-cancerous non-tumour tissues and a normal hepatocyte line MIHA. PHD2 overexpression promoted Huh7 and Hep3B cells viability, migration and invasion. Meanwhile, CyclinD1, c-Myc, MMP-2, MMP-9 and Vimentin were up-regulated, while p53 was down-regulated by PHD2 overexpression. PHD2 silence led to a contrary impact. Further, PHD2 overexpression up-regulated Ras and Raf expression and induced phosphorylation of MEK, ERK, JAK1 and STAT3.Conclusion: PHD2 exhibited pro-tumour functions in HCC cells. PHD2 promoted HCC possibly through Ras/Raf/MEK/ERK and JAK1/STAT3 pathways.HighlightsPHD2 is highly expressed in HCC tissue and cell lines;PHD2 promotes the proliferation of Huh7 and HepG3B cells;PHD2 enhances Huh7 and HepG3B cells migration and invasion;PHD2 activates Ras/Raf/MEK/ERK and JAK1/STAT3 signalling.
Collapse
Affiliation(s)
- Junqiang Guo
- Department of Trauma Emergency, Huaihe Hospital, Henan University, Kaifeng, China
| | - Zhi Lan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Laitakari A, Huttunen R, Kuvaja P, Hannuksela P, Szabo Z, Heikkilä M, Kerkelä R, Myllyharju J, Dimova EY, Serpi R, Koivunen P. Systemic long-term inactivation of hypoxia-inducible factor prolyl 4-hydroxylase 2 ameliorates aging-induced changes in mice without affecting their life span. FASEB J 2020; 34:5590-5609. [PMID: 32100354 DOI: 10.1096/fj.201902331r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 12/27/2022]
Abstract
Hypoxia inactivates hypoxia-inducible factor (HIF) prolyl 4-hydroxylases (HIF-P4Hs), which stabilize HIF and upregulate genes to restore tissue oxygenation. HIF-P4Hs can also be inhibited by small molecules studied in clinical trials for renal anemia. Knowledge of systemic long-term inactivation of HIF-P4Hs is limited but crucial, since HIF overexpression is associated with cancers. We aimed to determine the effects of systemic genetic inhibition of the most abundant isoenzyme HIF prolyl 4-hydroxylase-2 (HIF-P4H-2)/PHD2/EglN1 on life span and tissue homeostasis in aged mice. Our data showed no difference between wild-type and HIF-P4H-2-deficient mice in the average age reached. There were several differences, however, in the primary causes of death and comorbidities, the HIF-P4H-2-deficient mice having less inflammation, liver diseases, including cancer, and myocardial infarctions, and not developing anemia. No increased cancer incidence was observed due to HIF-P4H-2-deficiency. These data suggest that chronic inactivation of HIF-P4H-2 is not harmful but rather improves the quality of life in senescence.
Collapse
Affiliation(s)
- Anna Laitakari
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Riikka Huttunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Paula Kuvaja
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland.,Department of Pathology, Oulu University Hospital, Oulu, Finland
| | - Pauliina Hannuksela
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Zoltan Szabo
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Minna Heikkilä
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Risto Kerkelä
- Research Unit of Biomedicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Johanna Myllyharju
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Elitsa Y Dimova
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Raisa Serpi
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| |
Collapse
|
15
|
Wang L, Niu Z, Wang X, Li Z, Liu Y, Luo F, Yan X. PHD2 exerts anti-cancer and anti-inflammatory effects in colon cancer xenografts mice via attenuating NF-κB activity. Life Sci 2019; 242:117167. [PMID: 31838134 DOI: 10.1016/j.lfs.2019.117167] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 02/05/2023]
Abstract
Recent studies suggested that prolyl hydroxylase 2 (PHD2) functions as an important regulator in vascular inflammation and Streptococcus pneumonia infection. However, whether PHD2 contributed to tumor progression prompted by intratumoral inflammation remains elusive. In this study, the effects of PHD2 in colon cancer were evaluated, and the underlying molecular mechanisms were investigated. The results showed that overexpressing PHD2 exerted proliferative and migratory inhibition in colon cancer cells. The expression of cell cycle and epithelial-mesenchymal transition (EMT)-associated proteins were changed: CyclinD1, CDK4, N-cadherin, and Vimentin were down-regulated, while E-cadherin was up-regulated in PHD2-overexpressing colon cancer cells. Moreover, in colon cancer xenograft mice, PHD2 overexpression suppressed tumor growth accompanied by decreased Ki67 expression. Importantly, we further demonstrated that overexpressing PHD2 attenuated inflammation in colon cancer xenograft mice through weakening accumulation of myeloid-derived suppressor cells (MDSCs) and M2-like tumor-associated macrophages (TAMs), as well as secretions of pro-inflammatory cytokines including G-CSF, TNF-α, IL-6, IL-8, IL-1β, and IL-4. Mechanistically, PHD2 overexpression obviously suppressed NF-κB activity through decreasing phosphorylated IκB-α while increasing cytoplasmic NF-κB p65 levels in colon cancer. Our findings support the anti-cancer and anti-inflammatory roles of PHD2 and offer a preclinical proof of tumor progression regulated by cancer cells and inflammation.
Collapse
Affiliation(s)
- Li Wang
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zhendong Niu
- Department of Emergency Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xia Wang
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Medical Oncology, Ganzhou City People's Hospital, Ganzhou, Jiangxi, China
| | - Zhixi Li
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yanyang Liu
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Feng Luo
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Xi Yan
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Zurlo G, Liu X, Takada M, Fan C, Simon JM, Ptacek TS, Rodriguez J, von Kriegsheim A, Liu J, Locasale JW, Robinson A, Zhang J, Holler JM, Kim B, Zikánová M, Bierau J, Xie L, Chen X, Li M, Perou CM, Zhang Q. Prolyl hydroxylase substrate adenylosuccinate lyase is an oncogenic driver in triple negative breast cancer. Nat Commun 2019; 10:5177. [PMID: 31729379 PMCID: PMC6858455 DOI: 10.1038/s41467-019-13168-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
Protein hydroxylation affects protein stability, activity, and interactome, therefore contributing to various diseases including cancers. However, the transiency of the hydroxylation reaction hinders the identification of hydroxylase substrates. By developing an enzyme-substrate trapping strategy coupled with TAP-TAG or orthogonal GST- purification followed by mass spectrometry, we identify adenylosuccinate lyase (ADSL) as an EglN2 hydroxylase substrate in triple negative breast cancer (TNBC). ADSL expression is higher in TNBC than other breast cancer subtypes or normal breast tissues. ADSL knockout impairs TNBC cell proliferation and invasiveness in vitro and in vivo. An integrated transcriptomics and metabolomics analysis reveals that ADSL activates the oncogenic cMYC pathway by regulating cMYC protein level via a mechanism requiring ADSL proline 24 hydroxylation. Hydroxylation-proficient ADSL, by affecting adenosine levels, represses the expression of the long non-coding RNA MIR22HG, thus upregulating cMYC protein level. Our findings highlight the role of ADSL hydroxylation in controlling cMYC and TNBC tumorigenesis.
Collapse
Affiliation(s)
- Giada Zurlo
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Xijuan Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Mamoru Takada
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Cheng Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Jeremy M Simon
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA.,Department of Genetics, Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA.,UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Travis S Ptacek
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA.,UNC Neuroscience Center, Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Javier Rodriguez
- Cancer Research UK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Alex von Kriegsheim
- Cancer Research UK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Adam Robinson
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Jing Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jessica M Holler
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Marie Zikánová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Jörgen Bierau
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Mingjie Li
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Qing Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA. .,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA. .,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA. .,Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
17
|
Cockman ME, Lippl K, Tian YM, Pegg HB, Figg WD, Abboud MI, Heilig R, Fischer R, Myllyharju J, Schofield CJ, Ratcliffe PJ. Lack of activity of recombinant HIF prolyl hydroxylases (PHDs) on reported non-HIF substrates. eLife 2019; 8:e46490. [PMID: 31500697 PMCID: PMC6739866 DOI: 10.7554/elife.46490] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Human and other animal cells deploy three closely related dioxygenases (PHD 1, 2 and 3) to signal oxygen levels by catalysing oxygen regulated prolyl hydroxylation of the transcription factor HIF. The discovery of the HIF prolyl-hydroxylase (PHD) enzymes as oxygen sensors raises a key question as to the existence and nature of non-HIF substrates, potentially transducing other biological responses to hypoxia. Over 20 such substrates are reported. We therefore sought to characterise their reactivity with recombinant PHD enzymes. Unexpectedly, we did not detect prolyl-hydroxylase activity on any reported non-HIF protein or peptide, using conditions supporting robust HIF-α hydroxylation. We cannot exclude PHD-catalysed prolyl hydroxylation occurring under conditions other than those we have examined. However, our findings using recombinant enzymes provide no support for the wide range of non-HIF PHD substrates that have been reported.
Collapse
Affiliation(s)
| | - Kerstin Lippl
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | - Ya-Min Tian
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| | | | - William D Figg
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | - Martine I Abboud
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | - Raphael Heilig
- Target Discovery Institute, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUnited Kingdom
| | - Peter J Ratcliffe
- The Francis Crick InstituteLondonUnited Kingdom
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
18
|
Riera-Domingo C, Audigé A, Granja S, Cheng WC, Ho PC, Baltazar F, Stockmann C, Mazzone M. Immunity, Hypoxia, and Metabolism-the Ménage à Trois of Cancer: Implications for Immunotherapy. Physiol Rev 2019; 100:1-102. [PMID: 31414610 DOI: 10.1152/physrev.00018.2019] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is generally accepted that metabolism is able to shape the immune response. Only recently we are gaining awareness that the metabolic crosstalk between different tumor compartments strongly contributes to the harsh tumor microenvironment (TME) and ultimately impairs immune cell fitness and effector functions. The major aims of this review are to provide an overview on the immune system in cancer; to position oxygen shortage and metabolic competition as the ground of a restrictive TME and as important players in the anti-tumor immune response; to define how immunotherapies affect hypoxia/oxygen delivery and the metabolic landscape of the tumor; and vice versa, how oxygen and metabolites within the TME impinge on the success of immunotherapies. By analyzing preclinical and clinical endeavors, we will discuss how a metabolic characterization of the TME can identify novel targets and signatures that could be exploited in combination with standard immunotherapies and can help to predict the benefit of new and traditional immunotherapeutic drugs.
Collapse
Affiliation(s)
- Carla Riera-Domingo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Annette Audigé
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Sara Granja
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Wan-Chen Cheng
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Ping-Chih Ho
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Fátima Baltazar
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Christian Stockmann
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| |
Collapse
|
19
|
Elgenaidi IS, Spiers JP. Hypoxia modulates protein phosphatase 2A through HIF-1α dependent and independent mechanisms in human aortic smooth muscle cells and ventricular cardiomyocytes. Br J Pharmacol 2019; 176:1745-1763. [PMID: 30825189 DOI: 10.1111/bph.14648] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Although protein phosphatases regulate multiple cellular functions, their modulation under hypoxia remains unclear. We investigated expression of the protein phosphatase system under normoxic/hypoxic conditions and the mechanism by which hypoxia alters protein phosphatase 2A (PP2A) activity. EXPERIMENTAL APPROACH Human cardiovascular cells were cultured in cell type specific media under normoxic or hypoxic conditions (1% O2 ). Effects on mRNA expression, phosphatase activity, post-translational modification, and involvement of hypoxia inducible factor 1α (HIF-1α) were assessed using RT-PCR, immunoblotting, an activity assay, and siRNA silencing. KEY RESULTS All components of the protein phosphatase system studied were expressed in each cell line. Hypoxia attenuated mRNA expression of the transcripts in a cell line- and time-dependent manner. In human aortic smooth muscle cells (HASMC) and AC16 cells, hypoxia decreased PP2Ac activity and mRNA expression without altering PP2Ac abundance. Hypoxia increased demethylated PP2Ac (DPP2Ac) and phosphatase methylesterase 1 (PME-1) abundance but decreased leucine carboxyl methyltransferase 1 (LCMT-1) abundance. HIF-1α siRNA prevented the hypoxia-mediated decrease in phosphatase activity and expression of the catalytic subunit of protein phosphatase 2A (PPP2CA), independently of altering pPP2Ac, DPP2Ac, LCMT-1, or PME-1 abundance. CONCLUSION AND IMPLICATIONS Cardiovascular cells express multiple components of the PP2A system. In HASMC and AC16 cells, hypoxia inhibits PP2A activity through HIF-1α-dependent and -independent mechanisms, with the latter being consistent with altered PP2A holoenzyme assembly. This indicates a complex inhibitory effect of hypoxia on the PP2A system, and highlights PP2A as a therapeutic target for diseases associated with dysregulated protein phosphorylation.
Collapse
Affiliation(s)
| | - James Paul Spiers
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Li A, Zhang Y, Wang Z, Dong H, Fu N, Han X. The roles and signaling pathways of prolyl-4-hydroxylase 2 in the tumor microenvironment. Chem Biol Interact 2019; 303:40-49. [PMID: 30817904 DOI: 10.1016/j.cbi.2019.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023]
Abstract
Tumor hypoxia is a well-known microenvironmental factor that causes cancer progression and resistance to cancer treatment. Proline hydroxylases (PHDs), a small protein family, belong to an evolutionarily conserved superfamily of dioxygenases, considered the central regulator of the molecular hypoxia response. Prolyl-4-hydroxylase 2 (PHD2), one member of PHDs family, regulates the stability of the hypoxia-inducible factor-1 alpha (HIF-1α) in response to oxygen availability. During hypoxia, the inhibition of PHD2 permits the accumulation of HIF-1α, allowing the cellular adaptation to oxygen limitation, causing activation of numerous genes, which enhances the angiogenesis, metastasis and invasiveness. Accurate regulation of oxygen homeostasis is essential, and which implies PHD2 may have a regulatory role in the pathogenesis of cancer. Although ample evidence exists for a positive correlation between HIFs and tumor formation, metastasis and poor prognosis, the function of the PHD2 in carcinogenesis is less well understood. Despite their original role as the oxygen sensors of the cell and many of the its functions are clearly conveyed through the HIF system, PHD2 is currently known to display HIF-independent and hydroxylase-independent functions in cancer cells and stroma in the control of different cellular pathways. In this review, we summarize the recent advances in the structure, regulation and functions of PHD2 in cancer microenvironment.
Collapse
Affiliation(s)
- Anqi Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Yu Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Zuojun Wang
- Department of Pharmacy, Linqu Country People's Hospital, 438 Shanwang Road, Linqu, 262600, China
| | - Hailing Dong
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Nange Fu
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Xiuzhen Han
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China.
| |
Collapse
|
21
|
Elgenaidi IS, Spiers JP. Regulation of the phosphoprotein phosphatase 2A system and its modulation during oxidative stress: A potential therapeutic target? Pharmacol Ther 2019; 198:68-89. [PMID: 30797822 DOI: 10.1016/j.pharmthera.2019.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/15/2019] [Indexed: 02/06/2023]
Abstract
Phosphoprotein phosphatases are of growing interest in the pathophysiology of many diseases and are often the neglected partner of protein kinases. One family member, PP2A, accounts for dephosphorylation of ~55-70% of all serine/threonine phosphosites. Interestingly, dysregulation of kinase signalling is a hallmark of many diseases in which an increase in oxidative stress is also noted. With this in mind, we assess the evidence to support oxidative stress-mediated regulation of the PP2A system In this article, we first present an overview of the PP2A system before providing an analysis of the regulation of PP2A by endogenous inhibitors, post translational modification, and miRNA. Next, a detailed critique of data implicating reactive oxygen species, ischaemia, ischaemia-reperfusion, and hypoxia in regulating the PP2A holoenzyme and associated regulators is presented. Finally, the pharmacological targeting of PP2A, its endogenous inhibitors, and enzymes responsible for its post-translational modification are covered. There is extensive evidence that oxidative stress modulates multiple components of the PP2A system, however, most of the data pertains to the catalytic subunit of PP2A. Irrespective of the underlying aetiology, free radical-mediated attenuation of PP2A activity is an emerging theme. However, in many instances, a dichotomy exists, which requires clarification and mechanistic insight. Nevertheless, this raises the possibility that pharmacological activation of PP2A, either through small molecule activators of PP2A or CIP2A/SET antagonists may be beneficial in modulating the cellular response to oxidative stress. A better understanding of which, will have wide ranging implications for cancer, heart disease and inflammatory conditions.
Collapse
Affiliation(s)
- I S Elgenaidi
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Ireland
| | - J P Spiers
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Ireland.
| |
Collapse
|
22
|
Fan Q, Mao H, Xie L, Pi X. Prolyl Hydroxylase Domain-2 Protein Regulates Lipopolysaccharide-Induced Vascular Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:200-213. [PMID: 30339838 DOI: 10.1016/j.ajpath.2018.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/25/2022]
Abstract
Acute lung injury and its more severe form, acute respiratory distress syndrome, are life-threatening respiratory disorders. Overwhelming pulmonary inflammation and endothelium disruption are commonly observed. Endothelial cells (ECs) are well recognized as key regulators in leukocyte adhesion and migration in response to bacterial infection. Prolyl hydroxylase domain (PHD)-2 protein, a major PHD in ECs, plays a critical role in intracellular oxygen homeostasis, angiogenesis, and pulmonary hypertension. However, its role in endothelial inflammatory response is unclear. We investigated the role of PHD2 in ECs during endotoxin-induced lung inflammatory responses with EC-specific PHD2 inducible knockout mice. On lipopolysaccharide challenge, PHD2 depletion in ECs attenuates lipopolysaccharide-induced increases of lung vascular permeability, edema, and inflammatory cell infiltration. Moreover, EC-specific PHD2 inducible knockout mice exhibit improved adherens junction integrity and endothelial barrier function. Mechanistically, PHD2 knockdown induces vascular endothelial cadherin in mouse lung microvascular primary endothelial cells. Moreover, PHD2 knockdown can increase hypoxia-inducible factor/vascular endothelial protein tyrosine phosphatase signaling and reactive oxygen species-dependent p38 activation, leading to the induction of vascular endothelial cadherin. Data indicate that PHD2 depletion prevents the formation of leaky vessels and edema by regulating endothelial barrier function. It provides direct in vivo evidence to suggest that PHD2 plays a pivotal role in vascular inflammation. The inhibition of endothelial PHD2 activity may be a new therapeutic strategy for acute inflammatory diseases.
Collapse
Affiliation(s)
- Qiying Fan
- Cardiovascular Research Institute, Section of Athero and Lipo, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Hua Mao
- Cardiovascular Research Institute, Section of Athero and Lipo, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Liang Xie
- Cardiovascular Research Institute, Section of Athero and Lipo, Department of Medicine, Baylor College of Medicine, Houston, Texas.
| | - Xinchun Pi
- Cardiovascular Research Institute, Section of Athero and Lipo, Department of Medicine, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
23
|
Comprehensive Analysis of Cancer-Proteogenome to Identify Biomarkers for the Early Diagnosis and Prognosis of Cancer. Proteomes 2017; 5:proteomes5040028. [PMID: 29068423 PMCID: PMC5748563 DOI: 10.3390/proteomes5040028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023] Open
Abstract
During the past century, our understanding of cancer diagnosis and treatment has been based on a monogenic approach, and as a consequence our knowledge of the clinical genetic underpinnings of cancer is incomplete. Since the completion of the human genome in 2003, it has steered us into therapeutic target discovery, enabling us to mine the genome using cutting edge proteogenomics tools. A number of novel and promising cancer targets have emerged from the genome project for diagnostics, therapeutics, and prognostic markers, which are being used to monitor response to cancer treatment. The heterogeneous nature of cancer has hindered progress in understanding the underlying mechanisms that lead to abnormal cellular growth. Since, the start of The Cancer Genome Atlas (TCGA), and the International Genome consortium projects, there has been tremendous progress in genome sequencing and immense numbers of cancer genomes have been completed, and this approach has transformed our understanding of the diagnosis and treatment of different types of cancers. By employing Genomics and proteomics technologies, an immense amount of genomic data is being generated on clinical tumors, which has transformed the cancer landscape and has the potential to transform cancer diagnosis and prognosis. A complete molecular view of the cancer landscape is necessary for understanding the underlying mechanisms of cancer initiation to improve diagnosis and prognosis, which ultimately will lead to personalized treatment. Interestingly, cancer proteome analysis has also allowed us to identify biomarkers to monitor drug and radiation resistance in patients undergoing cancer treatment. Further, TCGA-funded studies have allowed for the genomic and transcriptomic characterization of targeted cancers, this analysis aiding the development of targeted therapies for highly lethal malignancy. High-throughput technologies, such as complete proteome, epigenome, protein-protein interaction, and pharmacogenomics data, are indispensable to glean into the cancer genome and proteome and these approaches have generated multidimensional universal studies of genes and proteins (OMICS) data which has the potential to facilitate precision medicine. However, due to slow progress in computational technologies, the translation of big omics data into their clinical aspects have been slow. In this review, attempts have been made to describe the role of high-throughput genomic and proteomic technologies in identifying a panel of biomarkers which could be used for the early diagnosis and prognosis of cancer.
Collapse
|
24
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|