1
|
Ansari SS, Dillard ME, Zhang Y, Austria MA, Boatwright N, Shelton EL, Stewart DP, Johnson A, Wang CE, Young BM, Rankovic Z, Hansen BS, Pruett-Miller SM, Carisey AF, Schuetz JD, Robinson CG, Ogden SK. Sonic Hedgehog activates prostaglandin signaling to stabilize primary cilium length. J Cell Biol 2024; 223:e202306002. [PMID: 38856684 PMCID: PMC11166601 DOI: 10.1083/jcb.202306002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 04/03/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
Sonic Hedgehog (SHH) is a driver of embryonic patterning that, when corrupted, triggers developmental disorders and cancers. SHH effector responses are organized through primary cilia (PC) that grow and retract with the cell cycle and in response to extracellular cues. Disruption of PC homeostasis corrupts SHH regulation, placing significant pressure on the pathway to maintain ciliary fitness. Mechanisms by which ciliary robustness is ensured in SHH-stimulated cells are not yet known. Herein, we reveal a crosstalk circuit induced by SHH activation of Phospholipase A2α that drives ciliary E-type prostanoid receptor 4 (EP4) signaling to ensure PC function and stabilize ciliary length. We demonstrate that blockade of SHH-EP4 crosstalk destabilizes PC cyclic AMP (cAMP) equilibrium, slows ciliary transport, reduces ciliary length, and attenuates SHH pathway induction. Accordingly, Ep4-/- mice display shortened neuroepithelial PC and altered SHH-dependent neuronal cell fate specification. Thus, SHH initiates coordination between distinct ciliary receptors to maintain PC function and length homeostasis for robust downstream signaling.
Collapse
Affiliation(s)
- Shariq S. Ansari
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Miriam E. Dillard
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yan Zhang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mary Ashley Austria
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Rhodes College Summer Plus Program, Memphis, TN, USA
| | - Naoko Boatwright
- Department of Pediatrics, Monroe Carell Jr. Children’s Hospital at Vanderbilt and Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Elaine L. Shelton
- Department of Pediatrics, Monroe Carell Jr. Children’s Hospital at Vanderbilt and Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Daniel P. Stewart
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Amanda Johnson
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Christina E. Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Brandon M. Young
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Baranda S. Hansen
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Alexandre F. Carisey
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - John D. Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Camenzind G. Robinson
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Stacey K. Ogden
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
2
|
Vo ADP, Kim SK, Yang MY, Ondrus AE, Goddard WA. Fully activated structure of the sterol-bound Smoothened GPCR-Gi protein complex. Proc Natl Acad Sci U S A 2023; 120:e2300919120. [PMID: 38015850 PMCID: PMC10710022 DOI: 10.1073/pnas.2300919120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/22/2023] [Indexed: 11/30/2023] Open
Abstract
Smoothened (SMO) is an oncoprotein and signal transducer in the Hedgehog signaling pathway that regulates cellular differentiation and embryogenesis. As a member of the Frizzled (Class F) family of G protein-coupled receptors (GPCRs), SMO biochemically and functionally interacts with Gi family proteins. However, key molecular features of fully activated, G protein-coupled SMO remain elusive. We present the atomistic structure of activated human SMO complexed with the heterotrimeric Gi protein and two sterol ligands, equilibrated at 310 K in a full lipid bilayer at physiological salt concentration and pH. In contrast to previous experimental structures, our equilibrated SMO complex exhibits complete breaking of the pi-cation interaction between R4516.32 and W5357.55, a hallmark of Class F receptor activation. The Gi protein couples to SMO at seven strong anchor points similar to those in Class A GPCRs: intracellular loop 1, intracellular loop 2, transmembrane helix 6, and helix 8. On the path to full activation, we find that the extracellular cysteine-rich domain (CRD) undergoes a dramatic tilt, following a trajectory suggested by positions of the CRD in active and inactive experimental SMO structures. Strikingly, a sterol ligand bound to a shallow transmembrane domain (TMD) site in the initial structure migrates to a deep TMD pocket found exclusively in activator-bound SMO complexes. Thus, our results indicate that SMO interacts with Gi prior to full activation to break the molecular lock, form anchors with Gi subunits, tilt the CRD, and facilitate migration of a sterol ligand in the TMD to an activated position.
Collapse
Affiliation(s)
- Amy-Doan P. Vo
- Materials and Process Simulation Center, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Soo-Kyung Kim
- Materials and Process Simulation Center, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Moon Young Yang
- Materials and Process Simulation Center, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Alison E. Ondrus
- Department of Chemistry, University of Illinois Chicago, Chicago, IL60607
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL60607
| | - William A. Goddard
- Materials and Process Simulation Center, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
3
|
Liao H, Huang J, Liu J, Zhu H, Chen Y, Li X, Wen J, Yang Q. Sirt1 regulates microglial activation and inflammation following oxygen-glucose deprivation/reoxygenation injury by targeting the Shh/Gli-1 signaling pathway. Mol Biol Rep 2023; 50:3317-3327. [PMID: 36725745 PMCID: PMC10042964 DOI: 10.1007/s11033-022-08167-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/01/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Cerebral ischemic injury leads to over-activation of microglia, which release pro-inflammatory factors that deteriorate neurological function during the acute phase of stroke. Thus, inhibiting microglial over-activation is crucial for reducing ischemic injury. Sirtuin 1 (Sirt1) has been shown to play a critical role in stroke, neurodegenerative diseases and aging. However, the effect of Sirt1 on the regulation of microglial activation following cerebral ischemic injury, as well as the underlying mechanism, remain unknown. Therefore, the purpose of the present study is to mainly investigate the effect of Sirt1 on oxygen-glucose deprivation/reoxygenation (OGD/R)-treated N9 microglia following treatment with the Sirt1 agonists resveratrol and SRT1720 and the Sirt1 antagonist sirtinol. METHODS Cell viability, Apoptosis, activation and inflammatory responses of microglia, expressions and activity of Shh signaling pathway proteins were detected by Cell Counting Kit 8, Flow Cytometry, immunocytochemistry, ELISA, and Western blotting, respectively. RESULTS The results demonstrated that treatment with resveratrol or SRT1720 could inhibit the activation of microglia and inflammation during OGD/R. Moreover, these treatments also led to the translocation of the GLI family zinc finger-1 (Gli-1) protein from the cytoplasm to the nucleus and upregulated the expression of Sonic hedgehog (Shh), Patched homolog-1 (Ptc-1), smoothened frizzled class receptor and Gli-1. By contrast, the inhibition of Sirt1 using sirtinol had the opposite effect. CONCLUSION These findings suggested that Sirt1 may regulate microglial activation and inflammation by targeting the Shh/Gli-1 signaling pathway following OGD/R injury. Schematic representation of Sirt1 regulating the microglial activation and inflammation following oxygen-glucose deprivation/reoxygenation injury via mediation of Shh/Gli-1 signaling pathway.
Collapse
Affiliation(s)
- Hongyan Liao
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jiagui Huang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jie Liu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Huimin Zhu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yue Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xuemei Li
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jun Wen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Qin Yang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
4
|
Resveratrol Inhibits Activation of Microglia after Stroke through Triggering Translocation of Smo to Primary Cilia. J Pers Med 2023; 13:jpm13020268. [PMID: 36836502 PMCID: PMC9961736 DOI: 10.3390/jpm13020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Activated microglia act as a double-edged sword for stroke. In the acute phase of stroke, activated microglia might deteriorate neurological function. Therefore, it is of great clinical transforming potential to explore drugs or methods that can inhibit abnormal activation of microglia in the acute phase of stroke to improve neurological function after stroke. Resveratrol has a potential effect of regulating microglial activation and anti-inflammation. However, the molecular mechanism of resveratrol-inhibiting microglial activation has not been fully clarified. Smoothened (Smo) belongs to the Hedgehog (Hh) signaling pathway. Smo activation is the critical step that transmits the Hh signal across the primary cilia to the cytoplasm. Moreover, activated Smo can improve neurological function via regulating oxidative stress, inflammation, apoptosis, neurogenesis, oligodendrogenesis, axonal remodeling, and so on. More studies have indicated that resveratrol can activate Smo. However, it is currently unknown whether resveratrol inhibits microglial activation via Smo. Therefore, in this study, N9 microglia in vitro and mice in vivo were used to investigate whether resveratrol inhibited microglial activation after oxygen-glucose deprivation/reoxygenation (OGD/R) or middle cerebral artery occlusion/reperfusion (MCAO/R) injury and improved functional outcome via triggering translocation of Smo in primary cilia. We definitively found that microglia had primary cilia; resveratrol partially inhibited activation and inflammation of microglia, improved functional outcome after OGD/R and MCAO/R injury, and triggered translocation of Smo to primary cilia. On the contrary, Smo antagonist cyclopamine canceled the above effects of resveratrol. The study suggested that Smo receptor might be a therapeutic target of resveratrol for contributing to inhibit microglial activation in the acute phase of stroke.
Collapse
|
5
|
Ghuloum FI, Johnson CA, Riobo-Del Galdo NA, Amer MH. From mesenchymal niches to engineered in vitro model systems: Exploring and exploiting biomechanical regulation of vertebrate hedgehog signalling. Mater Today Bio 2022; 17:100502. [PMID: 36457847 PMCID: PMC9707069 DOI: 10.1016/j.mtbio.2022.100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Tissue patterning is the result of complex interactions between transcriptional programs and various mechanical cues that modulate cell behaviour and drive morphogenesis. Vertebrate Hedgehog signalling plays key roles in embryogenesis and adult tissue homeostasis, and is central to skeletal development and the osteogenic differentiation of mesenchymal stem cells. The expression of several components of the Hedgehog signalling pathway have been reported to be mechanically regulated in mesodermal tissue patterning and osteogenic differentiation in response to external stimulation. Since a number of bone developmental defects and skeletal diseases, such as osteoporosis, are directly linked to aberrant Hedgehog signalling, a better knowledge of the regulation of Hedgehog signalling in the mechanosensitive bone marrow-residing mesenchymal stromal cells will present novel avenues for modelling these diseases and uncover novel opportunities for extracellular matrix-targeted therapies. In this review, we present a brief overview of the key molecular players involved in Hedgehog signalling and the basic concepts of mechanobiology, with a focus on bone development and regeneration. We also highlight the correlation between the activation of the Hedgehog signalling pathway in response to mechanical cues and osteogenesis in bone marrow-derived mesenchymal stromal cells. Finally, we propose different tissue engineering strategies to apply the expanding knowledge of 3D material-cell interactions in the modulation of Hedgehog signalling in vitro for fundamental and translational research applications.
Collapse
Affiliation(s)
- Fatmah I. Ghuloum
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Colin A. Johnson
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Natalia A. Riobo-Del Galdo
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, UK
| | - Mahetab H. Amer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
6
|
Thomas DC, Moorthy JD, Prabhakar V, Ajayakumar A, Pitchumani PK. Role of primary cilia and Hedgehog signaling in craniofacial features of Ellis-van Creveld syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:36-46. [PMID: 35393766 DOI: 10.1002/ajmg.c.31969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Ellis-van Creveld syndrome (EvC) is an autosomal recessive genetic disorder involving pathogenic variants of EVC and EVC2 genes and classified as a ciliopathy. The syndrome is caused by mutations in the EVC gene on chromosome 4p16, and EVC2 gene, located close to the EVC gene, in a head-to-head configuration. Regardless of the affliction of EVC or EVC2, the clinical features of Ellis-van Creveld syndrome are similar. Both these genes are expressed in tissues such as, but not limited to, the heart, liver, skeletal muscle, and placenta, while the predominant expression in the craniofacial tissues is that of EVC2. Biallelic mutations of EVC and EVC2 affect Hedgehog signaling and thereby ciliary function, crucial factors in vertebrate development, culminating in the phenotypical features characteristic of EvC. The clinical features of Ellis-van Creveld syndrome are consistent with significant abnormalities in morphogenesis and differentiation of the affected tissues. The robust role of primary cilia in histodifferentiation and morphodifferentiation of oral, perioral, and craniofacial tissues is becoming more evident in the most recent literature. In this review, we give a summary of the mechanistic role of primary cilia in craniofacial development, taking Ellis-van Creveld syndrome as a representative example.
Collapse
Affiliation(s)
- Davis C Thomas
- Center for TMD and Orofacial Pain, Rutgers School of Dental Medicine, Newark, New Jersey, USA
| | | | | | | | | |
Collapse
|
7
|
Akhshi T, Shannon R, Trimble WS. The complex web of canonical and non-canonical Hedgehog signaling. Bioessays 2022; 44:e2100183. [PMID: 35001404 DOI: 10.1002/bies.202100183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022]
Abstract
Hedgehog (Hh) signaling is a widely studied signaling pathway because of its critical roles during development and in cell homeostasis. Vertebrate canonical and non-canonical Hh signaling are typically assumed to be distinct and occur in different cellular compartments. While research has primarily focused on the canonical form of Hh signaling and its dependency on primary cilia - microtubule-based signaling hubs - an extensive list of crucial functions mediated by non-canonical Hh signaling has emerged. Moreover, amounting evidence indicates that canonical and non-canonical modes of Hh signaling are interlinked, and that they can overlap spatially, and in many cases interact functionally. Here, we discuss some of the many cellular effects of non-canonical signaling and discuss new evidence indicating inter-relationships with canonical signaling. We discuss how Smoothened (Smo), a key component of the Hh pathway, might coordinate such diverse downstream effects. Collectively, pursuit of questions such as those proposed here will aid in elucidating the full extent of Smo function in development and advance its use as a target for cancer therapeutics.
Collapse
Affiliation(s)
- Tara Akhshi
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Shannon
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - William S Trimble
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Malave L, Zuelke DR, Uribe-Cano S, Starikov L, Rebholz H, Friedman E, Qin C, Li Q, Bezard E, Kottmann AH. Dopaminergic co-transmission with sonic hedgehog inhibits abnormal involuntary movements in models of Parkinson's disease and L-Dopa induced dyskinesia. Commun Biol 2021; 4:1071. [PMID: 34552196 PMCID: PMC8458306 DOI: 10.1038/s42003-021-02567-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 08/17/2021] [Indexed: 01/06/2023] Open
Abstract
L-Dopa induced dyskinesia (LID) is a debilitating side effect of dopamine replacement therapy for Parkinson’s Disease. The mechanistic underpinnings of LID remain obscure. Here we report that diminished sonic hedgehog (Shh) signaling in the basal ganglia caused by the degeneration of midbrain dopamine neurons facilitates the formation and expression of LID. We find that the pharmacological activation of Smoothened, a downstream effector of Shh, attenuates LID in the neurotoxic 6-OHDA- and genetic aphakia mouse models of Parkinson’s Disease. Employing conditional genetic loss-of-function approaches, we show that reducing Shh secretion from dopamine neurons or Smoothened activity in cholinergic interneurons promotes LID. Conversely, the selective expression of constitutively active Smoothened in cholinergic interneurons is sufficient to render the sensitized aphakia model of Parkinson’s Disease resistant to LID. Furthermore, acute depletion of Shh from dopamine neurons through prolonged optogenetic stimulation in otherwise intact mice and in the absence of L-Dopa produces LID-like involuntary movements. These findings indicate that augmenting Shh signaling in the L-Dopa treated brain may be a promising therapeutic approach for mitigating the dyskinetic side effects of long-term treatment with L-Dopa. Lauren Malave et al. examine the impact of sonic hedgehog signaling in the dorsal striatum in L-Dopa induced dyskinesia (LID) animal models. Their results suggest that increasing sonic hedgehog signaling can reduce the severity of LID and abnormal involuntary movements, suggesting future therapeutic approaches to mitigate dyskinetic comorbidities of long-term treatment with L-Dopa.
Collapse
Affiliation(s)
- Lauren Malave
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,City University of New York Graduate Center, Neuroscience Collaborative, New York, NY, USA.,Department of Psychiatry, Columbia University, New York, NY, USA
| | - Dustin R Zuelke
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,City University of New York Graduate Center, Molecular, Cellular and Developmental Subprogram, New York, NY, USA
| | - Santiago Uribe-Cano
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,City University of New York Graduate Center, Neuroscience Collaborative, New York, NY, USA
| | - Lev Starikov
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,City University of New York Graduate Center, Molecular, Cellular and Developmental Subprogram, New York, NY, USA.,Blue Rock Therapeutics, Inc, New York, NY, USA
| | - Heike Rebholz
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,GHU Psychiatrie et Neurosciences, Paris, France.,Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR S1266, INSERM, Universite de Paris, Paris, France.,Center of Neurodegeneration, Danube Private University, Krems, Austria
| | - Eitan Friedman
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA.,City University of New York Graduate Center, Neuroscience Collaborative, New York, NY, USA.,City University of New York Graduate Center, Molecular, Cellular and Developmental Subprogram, New York, NY, USA
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, People's Republic of China
| | - Qin Li
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, People's Republic of China.,Motac Neuroscience, Manchester, UK
| | - Erwan Bezard
- Institute of Laboratory Animal Sciences, China Academy of Medical Sciences, Beijing, People's Republic of China.,Motac Neuroscience, Manchester, UK.,Universite de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Andreas H Kottmann
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, City University of New York, New York, NY, USA. .,City University of New York Graduate Center, Neuroscience Collaborative, New York, NY, USA. .,City University of New York Graduate Center, Molecular, Cellular and Developmental Subprogram, New York, NY, USA.
| |
Collapse
|
9
|
Nolasco-Rosales GA, Martínez-Magaña JJ, Juárez-Rojop IE, González-Castro TB, Tovilla-Zarate CA, García AR, Sarmiento E, Ruiz-Ramos D, Genis-Mendoza AD, Nicolini H. Association Study among Comethylation Modules, Genetic Polymorphisms and Clinical Features in Mexican Teenagers with Eating Disorders: Preliminary Results. Nutrients 2021; 13:nu13093210. [PMID: 34579086 PMCID: PMC8470254 DOI: 10.3390/nu13093210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/28/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
Eating disorders are psychiatric disorders characterized by disturbed eating behaviors. They have a complex etiology in which genetic and environmental factors interact. Analyzing gene-environment interactions could help us to identify the mechanisms involved in the etiology of such conditions. For example, comethylation module analysis could detect the small effects of epigenetic interactions, reflecting the influence of environmental factors. We used MethylationEPIC and Psycharray microarrays to determine DNA methylation levels and genotype from 63 teenagers with eating disorders. We identified 11 comethylation modules in WGCNA (Weighted Gene Correlation Network Analysis) and correlated them with single nucleotide polymorphisms (SNP) and clinical features in our subjects. Two comethylation modules correlated with clinical features (BMI and height) in our sample and with SNPs associated with these phenotypes. One of these comethylation modules (yellow) correlated with BMI and rs10494217 polymorphism (associated with waist-hip ratio). Another module (black) was correlated with height, rs9349206, rs11761528, and rs17726787 SNPs; these polymorphisms were associated with height in previous GWAS. Our data suggest that genetic variations could alter epigenetics, and that these perturbations could be reflected as variations in clinical features.
Collapse
Affiliation(s)
- Germán Alberto Nolasco-Rosales
- Biomedical Postgraduate Program, Academic Division of Health Sciences, Juárez Autonomous University of Tabasco, Villahermosa 86000, Mexico; (G.A.N.-R.); (I.E.J.-R.); (D.R.-R.)
| | - José Jaime Martínez-Magaña
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 01090, Mexico;
| | - Isela Esther Juárez-Rojop
- Biomedical Postgraduate Program, Academic Division of Health Sciences, Juárez Autonomous University of Tabasco, Villahermosa 86000, Mexico; (G.A.N.-R.); (I.E.J.-R.); (D.R.-R.)
| | - Thelma Beatriz González-Castro
- Genomics Laboratory, Academic Division Jalpa de Mendez, Juárez Autonomous University of Tabasco, Jalpa de Mendez 86200, Mexico;
| | - Carlos Alfonso Tovilla-Zarate
- Genomics Laboratory, Comalcalco Multidisciplinary Academic Division, Juárez Autonomous University of Tabasco, Villahermosa 86000, Mexico;
| | - Ana Rosa García
- Children’s Psychiatric Hospital “Dr. Juan N. Navarro”, Mexico City 01090, Mexico; (A.R.G.); (E.S.)
| | - Emmanuel Sarmiento
- Children’s Psychiatric Hospital “Dr. Juan N. Navarro”, Mexico City 01090, Mexico; (A.R.G.); (E.S.)
| | - David Ruiz-Ramos
- Biomedical Postgraduate Program, Academic Division of Health Sciences, Juárez Autonomous University of Tabasco, Villahermosa 86000, Mexico; (G.A.N.-R.); (I.E.J.-R.); (D.R.-R.)
| | - Alma Delia Genis-Mendoza
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 01090, Mexico;
- Correspondence: (A.D.G.-M.); (H.N.); Tel.: +52-(53)-501900 (ext. 1196/1197) (A.D.G.-M. & H.N.)
| | - Humberto Nicolini
- Genomics of Psychiatric and Neurodegenerative Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 01090, Mexico;
- Correspondence: (A.D.G.-M.); (H.N.); Tel.: +52-(53)-501900 (ext. 1196/1197) (A.D.G.-M. & H.N.)
| |
Collapse
|
10
|
Mechanisms of Smoothened Regulation in Hedgehog Signaling. Cells 2021; 10:cells10082138. [PMID: 34440907 PMCID: PMC8391454 DOI: 10.3390/cells10082138] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 12/21/2022] Open
Abstract
The seven-transmembrane protein, Smoothened (SMO), has shown to be critical for the hedgehog (HH) signal transduction on the cell membrane (and the cilium in vertebrates). SMO is subjected to multiple types of post-translational regulations, including phosphorylation, ubiquitination, and sumoylation, which alter SMO intracellular trafficking and cell surface accumulation. Recently, SMO is also shown to be regulated by small molecules, such as oxysterol, cholesterol, and phospholipid. The activity of SMO must be very well balanced by these different mechanisms in vivo because the malfunction of SMO will not only cause developmental defects in early stages, but also induce cancers in late stages. Here, we discuss the activation and inactivation of SMO by different mechanisms to better understand how SMO is regulated by the graded HH signaling activity that eventually governs distinct development outcomes.
Collapse
|
11
|
Hall ET, Dillard ME, Stewart DP, Zhang Y, Wagner B, Levine RM, Pruett-Miller SM, Sykes A, Temirov J, Cheney RE, Mori M, Robinson CG, Ogden SK. Cytoneme delivery of Sonic Hedgehog from ligand-producing cells requires Myosin 10 and a Dispatched-BOC/CDON co-receptor complex. eLife 2021; 10:61432. [PMID: 33570491 PMCID: PMC7968926 DOI: 10.7554/elife.61432] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Morphogens function in concentration-dependent manners to instruct cell fate during tissue patterning. The cytoneme morphogen transport model posits that specialized filopodia extend between morphogen-sending and responding cells to ensure that appropriate signaling thresholds are achieved. How morphogens are transported along and deployed from cytonemes, how quickly a cytoneme-delivered, receptor-dependent signal is initiated, and whether these processes are conserved across phyla are not known. Herein, we reveal that the actin motor Myosin 10 promotes vesicular transport of Sonic Hedgehog (SHH) morphogen in mouse cell cytonemes, and that SHH morphogen gradient organization is altered in neural tubes of Myo10-/- mice. We demonstrate that cytoneme-mediated deposition of SHH onto receiving cells induces a rapid, receptor-dependent signal response that occurs within seconds of ligand delivery. This activity is dependent upon a novel Dispatched (DISP)-BOC/CDON co-receptor complex that functions in ligand-producing cells to promote cytoneme occurrence and facilitate ligand delivery for signal activation.
Collapse
Affiliation(s)
- Eric T Hall
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Miriam E Dillard
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Daniel P Stewart
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Yan Zhang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Ben Wagner
- Cell and Tissue Imaging Center, St. Jude Children's Research Hospital, Memphis, United States
| | - Rachel M Levine
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States.,Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, United States
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States.,Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, United States
| | - April Sykes
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, United States
| | - Jamshid Temirov
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Richard E Cheney
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, United States
| | - Motomi Mori
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, United States
| | - Camenzind G Robinson
- Cell and Tissue Imaging Center, St. Jude Children's Research Hospital, Memphis, United States
| | - Stacey K Ogden
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, United States
| |
Collapse
|
12
|
Sun C, Zhang D, Luan T, Wang Y, Zhang W, Lin L, Jiang M, Hao Z, Wang Y. Synthesis of 2-methoxybenzamide derivatives and evaluation of their hedgehog signaling pathway inhibition. RSC Adv 2021; 11:22820-22825. [PMID: 35480433 PMCID: PMC9034380 DOI: 10.1039/d1ra00732g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/22/2021] [Indexed: 11/21/2022] Open
Abstract
Aberrant hedgehog (Hh) signaling is implicated in the development of a variety of cancers. Smoothened (Smo) protein is a bottleneck in the Hh signal transduction. The regulation of the Hh signaling pathway to target the Smo receptor is a practical approach for development of anticancer agents. We report herein the design and synthesis of a series of 2-methoxybenzamide derivatives as Hh signaling pathway inhibitors. The pharmacological data demonstrated that compound 21 possessed potent Hh pathway inhibition with a nanomolar IC50 value, and it prevented Shh-induced Smo from entering the primary cilium. Furthermore, mutant Smo was effectively suppressed via compound 21. The in vitro antiproliferative activity of compound 21 against a drug-resistant cell line gave encouraging results. Benzamide analog (21) was identified as a potent hedgehog signaling pathway inhibitor that targeted the Smo receptor and blocked Daoy cell proliferation.![]()
Collapse
Affiliation(s)
- Chiyu Sun
- School of Pharmacy
- Shenyang Medical College
- Shenyang 110034
- China
| | - Dajun Zhang
- School of Pharmacy
- Shenyang Medical College
- Shenyang 110034
- China
| | - Tian Luan
- School of Pharmacy
- Shenyang Medical College
- Shenyang 110034
- China
| | - Youbing Wang
- School of Pharmacy
- Shenyang Medical College
- Shenyang 110034
- China
| | - Wenhu Zhang
- School of Pharmacy
- Shenyang Medical College
- Shenyang 110034
- China
| | - Lin Lin
- School of Pharmacy
- Shenyang Medical College
- Shenyang 110034
- China
| | - Meihua Jiang
- School of Pharmacy
- Shenyang Medical College
- Shenyang 110034
- China
| | - Ziqian Hao
- School of Pharmacy
- Shenyang Medical College
- Shenyang 110034
- China
| | - Ying Wang
- School of Pharmacy
- Shenyang Medical College
- Shenyang 110034
- China
| |
Collapse
|
13
|
Franchi F, Peterson KM, Quandt K, Domnick D, Kline TL, Olthoff M, Parvizi M, Tolosa EJ, Torres VE, Harris PC, Fernandez-Zapico ME, Rodriguez-Porcel MG. Impaired Hedgehog-Gli1 Pathway Activity Underlies the Vascular Phenotype of Polycystic Kidney Disease. Hypertension 2020; 76:1889-1897. [PMID: 33012205 DOI: 10.1161/hypertensionaha.120.15483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Polycystic kidney disease (PKD) has been linked to abnormal structure/function of ciliary proteins, leading to renal dysfunction. Recently, attention has been focused in the significant vascular abnormalities associated with PKD, but the mechanisms underlying this phenomenon remain elusive. Here, we seek to define the molecular events regulating the angiogenic imbalance observed in PKD. Using micro computed tomography (n=7) and protein expression analysis (n=5), we assessed the vascular density and the angiogenic profile of noncystic organs in a well-established PKD rat model (Polycystic Kidney-PCK rat). Heart and lungs of PCK rats have reduced vascular density and decreased expression of angiogenic factors compared with wild type. Similarly, PCK-vascular smooth muscle cells (VSMCs; n=4) exhibited lower levels of vascular markers. Then, using small interfering RNA (n=4), we determined the role of the ciliary protein fibrocystin in wild type-VSMCs, a critical component/regulator of vascular structure and function. Reduction of fibrocystin in wild type-VSMCs (n=4) led to an abnormal angiogenic potential similar to that observed in PCK-VSMCs. Furthermore, we investigated the involvement of the hedgehog signaling, a pathway closely linked to the primary cilium and associated with vascular development, in PKD. Mechanistically, we demonstrated that impairment of the hedgehog signaling mediates, in part, this abnormal angiogenic phenotype. Lastly, overexpression of Gli1 in PCK-VSMCs (n=4) restored the expression levels of proangiogenic molecules. Our data support a critical role of fibrocystin in the abnormal vascular phenotype of PKD and indicate that a dysregulation of hedgehog may be responsible, at least in part, for these vascular deficiencies.
Collapse
Affiliation(s)
- Federico Franchi
- From the Department of Cardiovascular Medicine (F.F., K.M.P., K.Q., D.D., M.O., M.P., M.G.R.-P.), Mayo Clinic, Rochester, MN
| | - Karen M Peterson
- From the Department of Cardiovascular Medicine (F.F., K.M.P., K.Q., D.D., M.O., M.P., M.G.R.-P.), Mayo Clinic, Rochester, MN
| | - Katherine Quandt
- From the Department of Cardiovascular Medicine (F.F., K.M.P., K.Q., D.D., M.O., M.P., M.G.R.-P.), Mayo Clinic, Rochester, MN
| | - David Domnick
- From the Department of Cardiovascular Medicine (F.F., K.M.P., K.Q., D.D., M.O., M.P., M.G.R.-P.), Mayo Clinic, Rochester, MN
| | - Timothy L Kline
- Department of Radiology (T.L.K.), Mayo Clinic, Rochester, MN
| | - Michaela Olthoff
- From the Department of Cardiovascular Medicine (F.F., K.M.P., K.Q., D.D., M.O., M.P., M.G.R.-P.), Mayo Clinic, Rochester, MN
| | - Mojtaba Parvizi
- From the Department of Cardiovascular Medicine (F.F., K.M.P., K.Q., D.D., M.O., M.P., M.G.R.-P.), Mayo Clinic, Rochester, MN
| | - Ezequiel J Tolosa
- Schulze Center for Novel Therapeutic, Division of Oncology Research (E.J.T., M.E.F.-Z.), Mayo Clinic, Rochester, MN
| | - Vicente E Torres
- Division of Nephrology and Hypertension (V.E.T., P.C.H.), Mayo Clinic, Rochester, MN
| | - Peter C Harris
- Division of Nephrology and Hypertension (V.E.T., P.C.H.), Mayo Clinic, Rochester, MN
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutic, Division of Oncology Research (E.J.T., M.E.F.-Z.), Mayo Clinic, Rochester, MN
| | - Martin G Rodriguez-Porcel
- From the Department of Cardiovascular Medicine (F.F., K.M.P., K.Q., D.D., M.O., M.P., M.G.R.-P.), Mayo Clinic, Rochester, MN
| |
Collapse
|
14
|
Zatoński T, Pazdro-Zastawny K, Morawska-Kochman M, Biela M, Kołtowska A, Rydzanicz M, Rozensztrauch A, Kosińska J, Dorobisz K, Płoski R, Śmigiel R. Single median maxillary central incisor syndrome and variant in SMO gene associated with SHH pathway. Int J Pediatr Otorhinolaryngol 2020; 134:110038. [PMID: 32335464 DOI: 10.1016/j.ijporl.2020.110038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 01/08/2023]
Abstract
Solitary median maxillary central incisor syndrome (SMMCI) is a rare congenital oronasal-dental midline anomaly. The aim of this paper is a presentation of a patient with SMMCI without other visible dentofacial anomalies, with a potentially new molecular etiology consisting of a gene-gene reaction and conservative therapeutic approach to nasal obstruction. Potentially pathogenic variants in the SMO gene (p.Gly422Glu) and in P2RY13 gene (p.Trp205*) inherited from the probant's father, and in the PLD2 gene (p.Gln319fs), inherited from the mother were found. A multidisciplinary approach is necessary for the management of patients with SMMCI, including a genetic consultation with genetic tests.
Collapse
Affiliation(s)
- Tomasz Zatoński
- Department and Clinic of Otolaryngology, Head and Neck Surgery, Medical University Hospital Wroclaw, Borowska 213, 50-556, Wroclaw, Poland
| | - Katarzyna Pazdro-Zastawny
- Department and Clinic of Otolaryngology, Head and Neck Surgery, Medical University Hospital Wroclaw, Borowska 213, 50-556, Wroclaw, Poland.
| | - Monika Morawska-Kochman
- Department and Clinic of Otolaryngology, Head and Neck Surgery, Medical University Hospital Wroclaw, Borowska 213, 50-556, Wroclaw, Poland
| | - Mateusz Biela
- Department of Pediatrics, Division Propaedeutic of Pediatrics and Rare Disorders, Medical University, Wroclaw, Poland
| | - Anna Kołtowska
- Department of Radiology, Medical University Hospital Wroclaw, Borowska 213, 50-556, Wroclaw, Poland
| | | | - Anna Rozensztrauch
- Department of Pediatrics, Division Propaedeutic of Pediatrics and Rare Disorders, Medical University, Wroclaw, Poland
| | - Joanna Kosińska
- Department of Genetics, Warsaw Medical University, Warsaw, Poland
| | - Karolina Dorobisz
- Department and Clinic of Otolaryngology, Head and Neck Surgery, Medical University Hospital Wroclaw, Borowska 213, 50-556, Wroclaw, Poland
| | - Rafał Płoski
- Department of Genetics, Warsaw Medical University, Warsaw, Poland
| | - Robert Śmigiel
- Department of Pediatrics, Division Propaedeutic of Pediatrics and Rare Disorders, Medical University, Wroclaw, Poland
| |
Collapse
|
15
|
Harayama T, Shimizu T. Roles of polyunsaturated fatty acids, from mediators to membranes. J Lipid Res 2020; 61:1150-1160. [PMID: 32487545 PMCID: PMC7397749 DOI: 10.1194/jlr.r120000800] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
PUFAs, such as AA and DHA, are recognized as important biomolecules, but understanding their precise roles and modes of action remains challenging. PUFAs are precursors for a plethora of signaling lipids, for which knowledge about synthetic pathways and receptors has accumulated. However, due to their extreme diversity and the ambiguity concerning the identity of their cognate receptors, the roles of PUFA-derived signaling lipids require more investigation. In addition, PUFA functions cannot be explained just as lipid mediator precursors because they are also critical for the regulation of membrane biophysical properties. The presence of PUFAs in membrane lipids also affects the functions of transmembrane proteins and peripheral membrane proteins. Although the roles of PUFAs as membrane lipid building blocks were difficult to analyze, the discovery of lysophospholipid acyltransferases (LPLATs), which are critical for their incorporation, advanced our understanding. Recent studies unveiled how LPLATs affect PUFA levels in membrane lipids, and their genetic manipulation became an excellent strategy to study the roles of PUFA-containing lipids. In this review, we will provide an overview of metabolic pathways regulating PUFAs as lipid mediator precursors and membrane components and update recent progress about their functions. Some issues to be solved for future research will also be discussed.
Collapse
Affiliation(s)
- Takeshi Harayama
- Department of Biochemistry and National Centre of Competence in Research in Chemical Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan and Department of Lipidomics, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
16
|
Gigante ED, Caspary T. Signaling in the primary cilium through the lens of the Hedgehog pathway. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e377. [PMID: 32084300 DOI: 10.1002/wdev.377] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/14/2022]
Abstract
Cilia are microtubule-based, cell-surface projections whose machinery is evolutionarily conserved. In vertebrates, cilia are observed on almost every cell type and are either motile or immotile. Immotile sensory, or primary cilia, are responsive to extracellular ligands and signals. Cilia can be thought of as compartments, functionally distinct from the cell that provides an environment for signaling cascades. Hedgehog is a critical developmental signaling pathway which is functionally linked to primary cilia in vertebrates. The major components of the vertebrate Hedgehog signaling pathway dynamically localize to the ciliary compartment and ciliary membrane. Critically, G-protein coupled receptor (GPCR) Smoothened, the obligate transducer of the pathway, is enriched and activated in the cilium. While Smoothened is the most intensely studied ciliary receptor, many GPCRs localize within cilia. Understanding the link between Smoothened and cilia defines common features, and distinctions, of GPCR signaling within the primary cilium. This article is categorized under: Signaling Pathways > Global Signaling Mechanisms Signaling Pathways > Cell Fate Signaling.
Collapse
Affiliation(s)
- Eduardo D Gigante
- Graduate Program in Neuroscience, Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Sasai N, Toriyama M, Kondo T. Hedgehog Signal and Genetic Disorders. Front Genet 2019; 10:1103. [PMID: 31781166 PMCID: PMC6856222 DOI: 10.3389/fgene.2019.01103] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
The hedgehog (Hh) family comprises sonic hedgehog (Shh), Indian hedgehog (Ihh), and desert hedgehog (Dhh), which are versatile signaling molecules involved in a wide spectrum of biological events including cell differentiation, proliferation, and survival; establishment of the vertebrate body plan; and aging. These molecules play critical roles from embryogenesis to adult stages; therefore, alterations such as abnormal expression or mutations of the genes involved and their downstream factors cause a variety of genetic disorders at different stages. The Hh family involves many signaling mediators and functions through complex mechanisms, and achieving a comprehensive understanding of the entire signaling system is challenging. This review discusses the signaling mediators of the Hh pathway and their functions at the cellular and organismal levels. We first focus on the roles of Hh signaling mediators in signal transduction at the cellular level and the networks formed by these factors. Then, we analyze the spatiotemporal pattern of expression of Hh pathway molecules in tissues and organs, and describe the phenotypes of mutant mice. Finally, we discuss the genetic disorders caused by malfunction of Hh signaling-related molecules in humans.
Collapse
Affiliation(s)
- Noriaki Sasai
- Developmental Biomedical Science, Division of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Michinori Toriyama
- Systems Neurobiology and Medicine, Division of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
18
|
Kinnebrew M, Iverson EJ, Patel BB, Pusapati GV, Kong JH, Johnson KA, Luchetti G, Eckert KM, McDonald JG, Covey DF, Siebold C, Radhakrishnan A, Rohatgi R. Cholesterol accessibility at the ciliary membrane controls hedgehog signaling. eLife 2019; 8:e50051. [PMID: 31657721 PMCID: PMC6850779 DOI: 10.7554/elife.50051] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022] Open
Abstract
Previously we proposed that transmission of the hedgehog signal across the plasma membrane by Smoothened is triggered by its interaction with cholesterol (Luchetti et al., 2016). But how is cholesterol, an abundant lipid, regulated tightly enough to control a signaling system that can cause birth defects and cancer? Using toxin-based sensors that distinguish between distinct pools of cholesterol, we find that Smoothened activation and Hedgehog signaling are driven by a biochemically-defined, small fraction of membrane cholesterol, termed accessible cholesterol. Increasing cholesterol accessibility by depletion of sphingomyelin, which sequesters cholesterol in complexes, amplifies Hedgehog signaling. Hedgehog ligands increase cholesterol accessibility in the membrane of the primary cilium by inactivating the transporter-like protein Patched 1. Trapping this accessible cholesterol blocks Hedgehog signal transmission across the membrane. Our work shows that the organization of cholesterol in the ciliary membrane can be modified by extracellular ligands to control the activity of cilia-localized signaling proteins.
Collapse
Affiliation(s)
- Maia Kinnebrew
- Department of BiochemistryStanford University School of MedicineStanfordUnited States
| | - Ellen J Iverson
- Department of BiochemistryStanford University School of MedicineStanfordUnited States
| | - Bhaven B Patel
- Department of BiochemistryStanford University School of MedicineStanfordUnited States
| | - Ganesh V Pusapati
- Department of BiochemistryStanford University School of MedicineStanfordUnited States
| | - Jennifer H Kong
- Department of BiochemistryStanford University School of MedicineStanfordUnited States
| | - Kristen A Johnson
- Department of Molecular GeneticsUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Giovanni Luchetti
- Department of BiochemistryStanford University School of MedicineStanfordUnited States
| | - Kaitlyn M Eckert
- Center for Human NutritionUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Jeffrey G McDonald
- Department of Molecular GeneticsUniversity of Texas Southwestern Medical CenterDallasUnited States
- Center for Human NutritionUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Douglas F Covey
- Taylor Family Institute for Innovative Psychiatric ResearchWashington University School of MedicineSt. LouisUnited States
- Department of Developmental BiologyWashington University School of MedicineSt. LouisUnited States
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUnited Kingdom
| | - Arun Radhakrishnan
- Department of Molecular GeneticsUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Rajat Rohatgi
- Department of BiochemistryStanford University School of MedicineStanfordUnited States
- Department of MedicineStanford University School of MedicineStanfordUnited States
| |
Collapse
|
19
|
Feng J, Wang C, Liu T, Li J, Wu L, Yu Q, Li S, Zhou Y, Zhang J, Chen J, Ji J, Chen K, Mao Y, Wang F, Dai W, Fan X, Wu J, Guo C. Procyanidin B2 inhibits the activation of hepatic stellate cells and angiogenesis via the Hedgehog pathway during liver fibrosis. J Cell Mol Med 2019; 23:6479-6493. [PMID: 31328391 PMCID: PMC6714206 DOI: 10.1111/jcmm.14543] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/08/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Background Liver fibrosis is a wound‐healing process of liver featured by the over‐deposition of extracellular matrix (ECM) and angiogenesis. However, the effective treatment is lacking. Procyanidin B2 (PB2) is a flavonoid extract abundant in grape seeds with anti‐oxidant, anti‐inflammatory and anti‐cancer properties. The present study aimed to determine effects of PB2 on liver fibrosis. Method The CCl4‐induced mouse liver fibrosis model and a human hepatic stellate cell (HSC) line (LX2 cells) were used to study the activation, ECM production and angiogenesis of HSCs through Western blotting analysis, immunohistochemistry, immunofluorescence staining, flow cytometry and tubulogenesis assay. A Hedgehog (Hh) pathway inhibitor (cyclopamine) and Smoothened agonist (SAG) were used to investigate the role of PB2 on Hh pathway. Results The results showed that PB2 could inhibit the proliferation and induce apoptosis of HSCs. PB2 could also down‐regulate the expressions of VEGF‐A, HIF‐1α, α‐SMA, Col‐1 and TGF‐β1 of HSCs in vivo and in vitro. The application of SAG and cyclopamine proved that PB2 targets on Hh pathway. Conclusions PB2 inhibited the Hh pathway to suppress the activation, ECM production and angiogenesis of HSCs, therefore reverses the progression of liver fibrosis in vivo and in vitro.
Collapse
Affiliation(s)
- Jiao Feng
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chengfen Wang
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingjing Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuting Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, China
| | - Jie Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, China
| | - Jiaojiao Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Tenth Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, China
| | - Jie Ji
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuqing Mao
- Department of Gerontology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fan Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weiqi Dai
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Xiaoming Fan
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Du F, Yuelling L, Lee EH, Wang Y, Liao S, Cheng Y, Zhang L, Zheng C, Peri S, Cai KQ, Ng JMY, Curran T, Li P, Yang ZJ. Leukotriene Synthesis Is Critical for Medulloblastoma Progression. Clin Cancer Res 2019; 25:6475-6486. [PMID: 31300449 DOI: 10.1158/1078-0432.ccr-18-3549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/18/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Here, we examined the role of leukotrienes, well-known inflammatory mediators, in the tumorigenesis of hedgehog pathway-associated medulloblastoma, and tested the efficacies of antagonists of leukotriene biosynthesis in medulloblastoma treatment.Experimental Design: We examined the leukotriene levels in medulloblastoma cells by ELISA. We next tested whether leukotriene synthesis in medulloblastoma cells relied on activation of hedgehog pathway, or the presence of hedgehog ligand secreted by astrocytes. We then investigated whether leukotriene mediated hedgehog-induced Nestin expression in tumor cells. The functions of leukotriene in tumor cell proliferation and tumor growth in medulloblastoma were determined through knocking down 5-lipoxygenase (a critical enzyme for leukotriene synthesis) by shRNAs, or using 5-lipoxygenase-deficient mice. Finally, the efficacies of antagonists of leukotriene synthesis in medulloblastoma treatment were tested in vivo and in vitro. RESULTS Leukotriene was significantly upregulated in medulloblastoma cells. Increased leukotriene synthesis relied on hedgehog ligand secreted by astrocytes, a major component of medulloblastoma microenvironment. Leukotriene stimulated tumor cells to express Nestin, a cytoskeletal protein essential for medulloblastoma growth. Genetic blockage of leukotriene synthesis dramatically suppressed medulloblastoma cell proliferation and tumor growth in vivo. Pharmaceutical inhibition of leukotriene synthesis markedly repressed medulloblastoma cell proliferation, but had no effect on proliferation of normal neuronal progenitors. Moreover, antagonists of leukotriene synthesis exhibited promising tumor inhibitory efficacies on drug-resistant medulloblastoma. CONCLUSIONS Our findings reveal a novel signaling pathway that is critical for medulloblastoma cell proliferation and tumor progression, and that leukotriene biosynthesis represents a promising therapeutic target for medulloblastoma treatment.
Collapse
Affiliation(s)
- Fang Du
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Larra Yuelling
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Eric H Lee
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Yuan Wang
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Shengyou Liao
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yan Cheng
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Li Zhang
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chaonan Zheng
- Laboratory of Molecular Neuropathology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Suraj Peri
- Biostatistics and Bioinformatics Research Facility, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Kathy Q Cai
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania
| | - Jessica M Y Ng
- Children's Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Tom Curran
- Children's Research Institute, Children's Mercy Kansas City, Kansas City, Missouri
| | - Peng Li
- Department of Pharmacognosy and Traditional Chinese Pharmacology, College of Pharmacy, Army Medical University, Chongqing, China
| | - Zeng-Jie Yang
- Cancer Biology Program, Fox Chase Cancer Center, Temple University Health System, Philadelphia, Pennsylvania.
| |
Collapse
|
21
|
Fan NW, Ho TC, Wu CW, Tsao YP. Pigment epithelium-derived factor peptide promotes limbal stem cell proliferation through hedgehog pathway. J Cell Mol Med 2019; 23:4759-4769. [PMID: 31066230 PMCID: PMC6584522 DOI: 10.1111/jcmm.14364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/27/2019] [Accepted: 04/11/2019] [Indexed: 01/09/2023] Open
Abstract
Expansion of limbal epithelial stem cells (LSCs) is crucial for the success of limbal transplantation. Previous studies showed that pigment epithelium‐derived peptide (PEDF) short peptide 44‐mer could effectively expand LSCs and maintain them in a stem‐cell state, but the mechanism remained unclear. In the current study, we found that pharmacological inhibition of Sonic Hedgehog (SHh) activity reduced the LSC holoclone number and suppressed LSC proliferation in response to 44‐mer. In mice subjected to focal limbal injury, 44‐mer facilitated the restoration of the LSC population in damaged limbus, and such effect was impeded by the SHh or ATGL (a PEDF receptor) inhibitor. Furthermore, we showed that 44‐mer increased nuclear translocation of Gli1 and Gli3 in LSCs. Knockdown of Gli1 or Gli3 suppressed the ability of 44‐mer to induce cyclin D1 expression and LSC proliferation. In addition, ATGL inhibitor suppressed the 44‐mer‐induced phosphorylation of STAT3 at Tyr705 in LSC. Both inhibitors for ATGL and STAT3 attenuated 44‐mer‐induced SHh activation and LSC proliferation. In conclusion, our data demonstrate that SHh‐Gli pathway driven by ATGL/STAT3 signalling accounts for the 44‐mer‐mediated LSC proliferation.
Collapse
Affiliation(s)
- Nai-Wen Fan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tsung-Chuan Ho
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Cheng-Wen Wu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang Ming University, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, Taiwan
| | - Yeou-Ping Tsao
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Ophthalmology, Mackay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
22
|
Abstract
G protein-coupled receptors (GPCRs) are the largest class of drug targets, largely owing to their druggability, diversity and physiological efficacy. Many drugs selectively target specific subtypes of GPCRs, but high specificity for individual GPCRs may not be desirable in complex multifactorial disease states in which multiple receptors may be involved. One approach is to target G protein subunits rather than the GPCRs directly. This approach has the potential to achieve broad efficacy by blocking pathways shared by multiple GPCRs. Additionally, because many GPCRs couple to multiple G protein signalling pathways, blocking specific G protein subunits can 'bias' GPCR signals by inhibiting only a subset of these signals. Molecules that target G protein α or βγ-subunits have been developed and show strong efficacy in multiple preclinical disease models and biased inhibition of G protein signalling. In this Review, we discuss the development and characterization of G protein α and βγ-subunit ligands and the preclinical evidence that this exciting new approach has potential for therapeutic efficacy in a number of indications, such as pain, thrombosis, asthma and heart failure.
Collapse
|
23
|
Byrne EF, Luchetti G, Rohatgi R, Siebold C. Multiple ligand binding sites regulate the Hedgehog signal transducer Smoothened in vertebrates. Curr Opin Cell Biol 2018; 51:81-88. [PMID: 29268141 PMCID: PMC5949240 DOI: 10.1016/j.ceb.2017.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/16/2017] [Indexed: 12/31/2022]
Abstract
The Hedgehog (Hh) pathway plays a central role in the development of multicellular organisms, guiding cell differentiation, proliferation and survival. While many components of the vertebrate pathway were discovered two decades ago, the mechanism by which the Hh signal is transmitted across the plasma membrane remains mysterious. This fundamental task in signalling is carried out by Smoothened (SMO), a human oncoprotein and validated cancer drug target that is a member of the G-protein coupled receptor protein family. Recent structural and functional studies have advanced our mechanistic understanding of SMO activation, revealing its unique regulation by two separable but allosterically-linked ligand-binding sites. Unexpectedly, these studies have nominated cellular cholesterol as having an instructive role in SMO signalling.
Collapse
Affiliation(s)
- Eamon Fx Byrne
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Giovanni Luchetti
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA, United States.
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
24
|
Abstract
The Sonic Hedgehog (Shh) signaling pathway is active during embryonic development in metazoans, and provides instructional cues necessary for proper tissue patterning. The pathway signal transducing component, Smoothened (Smo), is a G protein-coupled receptor (GPCR) that has been demonstrated to signal through at least two effector routes. The first is a G protein–independent canonical route that signals to Gli transcriptional effectors to establish transcriptional programs specifying cell fate during early embryonic development. The second, commonly referred to as the noncanonical Smo signal, induces rapid, transcription-independent responses that are essential for establishing and maintaining distinct cell behaviors during development. Herein, we discuss contributions of this noncanonical route during embryonic development. We also highlight important open questions regarding noncanonical Smo signal route selection during development, and consider implications of noncanonical signal corruption in disease.
Collapse
|