1
|
Tsang F, Stolper R, Hanifi M, Cornell L, Francis H, Davies B, Higgs D, Kassouf M. The characteristics of CTCF binding sequences contribute to enhancer blocking activity. Nucleic Acids Res 2024; 52:10180-10193. [PMID: 39106157 PMCID: PMC11417384 DOI: 10.1093/nar/gkae666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/09/2024] Open
Abstract
While the elements encoding enhancers and promoters have been relatively well studied, the full spectrum of insulator elements which bind the CCCTC binding factor (CTCF), is relatively poorly characterized. This is partly due to the genomic context of CTCF sites greatly influencing their roles and activity. Here we have developed an experimental system to determine the ability of minimal, consistently sized, individual CTCF elements to interpose between enhancers and promoters and thereby reduce gene expression during differentiation. Importantly, each element is tested in the identical location thereby minimising the effect of genomic context. We found no correlation between the ability of CTCF elements to block enhancer-promoter activity with the degree of evolutionary conservation; their resemblance to the consensus core sequences; or the number of CTCF core motifs harboured in the element. Nevertheless, we have shown that the strongest enhancer-promoter blockers include a previously described bound element lying upstream of the CTCF core motif. In addition, we found other uncharacterised DNaseI footprints located close to the core motif that may affect function. We have developed an assay of CTCF sequences which will enable researchers to sub-classify individual CTCF elements in a uniform and unbiased way.
Collapse
Affiliation(s)
- Felice H Tsang
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Rosa J Stolper
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Muhammad Hanifi
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Lucy J Cornell
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Helena S Francis
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
| | - Douglas R Higgs
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
| | - Mira T Kassouf
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| |
Collapse
|
2
|
Lam JC, Aboreden NG, Midla SC, Wang S, Huang A, Keller CA, Giardine B, Henderson KA, Hardison RC, Zhang H, Blobel GA. YY1-controlled regulatory connectivity and transcription are influenced by the cell cycle. Nat Genet 2024; 56:1938-1952. [PMID: 39210046 DOI: 10.1038/s41588-024-01871-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
Few transcription factors have been examined for their direct roles in physically connecting enhancers and promoters. Here acute degradation of Yin Yang 1 (YY1) in erythroid cells revealed its requirement for the maintenance of numerous enhancer-promoter loops, but not compartments or domains. Despite its reported ability to interact with cohesin, the formation of YY1-dependent enhancer-promoter loops does not involve stalling of cohesin-mediated loop extrusion. Integrating mitosis-to-G1-phase dynamics, we observed partial retention of YY1 on mitotic chromatin, predominantly at gene promoters, followed by rapid rebinding during mitotic exit, coinciding with enhancer-promoter loop establishment. YY1 degradation during the mitosis-to-G1-phase interval revealed a set of enhancer-promoter loops that require YY1 for establishment during G1-phase entry but not for maintenance in interphase, suggesting that cell cycle stage influences YY1's architectural function. Thus, as revealed here for YY1, chromatin architectural functions of transcription factors can vary in their interplay with CTCF and cohesin as well as by cell cycle stage.
Collapse
Affiliation(s)
- Jessica C Lam
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas G Aboreden
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susannah C Midla
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Siqing Wang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anran Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
- Genomics Research Incubator, Pennsylvania State University, University Park, PA, USA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Kate A Henderson
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Haoyue Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Aboreden NG, Lam JC, Goel VY, Wang S, Wang X, Midla SC, Quijano A, Keller CA, Giardine BM, Hardison RC, Zhang H, Hansen AS, Blobel GA. LDB1 establishes multi-enhancer networks to regulate gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609430. [PMID: 39229045 PMCID: PMC11370584 DOI: 10.1101/2024.08.23.609430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
How specific enhancer-promoter pairing is established is still mostly unclear. Besides the CTCF/cohesin machinery, only a few nuclear factors have been studied for a direct role in physically connecting regulatory elements. Here, we show via acute degradation experiments that LDB1 directly and broadly promotes enhancer-promoter loops. Most LDB1-mediated contacts, even those spanning hundreds of kb, can form in the absence of CTCF, cohesin, or YY1 as determined via the use of multiple degron systems. Moreover, an engineered LDB1-driven chromatin loop is cohesin independent. Cohesin-driven loop extrusion does not stall at LDB1 occupied sites but may aid the formation of a subset of LDB1 anchored loops. Leveraging the dynamic reorganization of nuclear architecture during the transition from mitosis to G1-phase, we establish a relationship between LDB1-dependent interactions in the context of TAD organization and gene activation. Lastly, Tri-C and Region Capture Micro-C reveal that LDB1 organizes multi-enhancer networks to activate transcription. This establishes LDB1 as a direct driver of regulatory network inter-connectivity.
Collapse
Affiliation(s)
- Nicholas G. Aboreden
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jessica C. Lam
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Viraat Y. Goel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Siqing Wang
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiaokang Wang
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Susannah C. Midla
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alma Quijano
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cheryl A. Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Belinda M. Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Ross C. Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Haoyue Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Anders S. Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Gerd A. Blobel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
4
|
Kim J, Diaz LF, Miller MJ, Leadem B, Krivega I, Dean A. An enhancer RNA recruits KMT2A to regulate transcription of Myb. Cell Rep 2024; 43:114378. [PMID: 38889007 PMCID: PMC11369905 DOI: 10.1016/j.celrep.2024.114378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/24/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
The Myb proto-oncogene encodes the transcription factor c-MYB, which is critical for hematopoiesis. Distant enhancers of Myb form a hub of interactions with the Myb promoter. We identified a long non-coding RNA (Myrlin) originating from the -81-kb murine Myb enhancer. Myrlin and Myb are coordinately regulated during erythroid differentiation. Myrlin TSS deletion using CRISPR-Cas9 reduced Myrlin and Myb expression and LDB1 complex occupancy at the Myb enhancers, compromising enhancer contacts and reducing RNA Pol II occupancy in the locus. In contrast, CRISPRi silencing of Myrlin left LDB1 and the Myb enhancer hub unperturbed, although Myrlin and Myb expressions were downregulated, decoupling transcription and chromatin looping. Myrlin interacts with the KMT2A/MLL1 complex. Myrlin CRISPRi compromised KMT2A occupancy in the Myb locus, decreasing CDK9 and RNA Pol II binding and resulting in Pol II pausing in the Myb first exon/intron. Thus, Myrlin directly participates in activating Myb transcription by recruiting KMT2A.
Collapse
Affiliation(s)
- Juhyun Kim
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Luis F Diaz
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Oregon Health and Sciences University, Portland, OR 97239, USA
| | - Matthew J Miller
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; University of Iowa Medical School, Iowa City, IA 52242, USA
| | - Benjamin Leadem
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; GeneDx, Gaithersburg, MD 20877, USA
| | - Ivan Krivega
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Sonothera, South San Francisco, CA 94080, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Deleuze V, Soler E, Andrieu-Soler C. Protocol for efficient CRISPR-Cas9-mediated fluorescent tag knockin in hard-to-transfect erythroid cell lines. STAR Protoc 2024; 5:103016. [PMID: 38640065 PMCID: PMC11044133 DOI: 10.1016/j.xpro.2024.103016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 04/21/2024] Open
Abstract
Precise insertion of fluorescent tags by CRISPR-Cas9-mediated homologous recombination (HR) in mammalian genes is a powerful tool allowing to study gene function and protein gene products. Here, we present a protocol for efficient HR-mediated targeted insertion of fluorescent markers in the genome of hard-to-transfect erythroid cell lines MEL (mouse erythroleukemic) and MEDEP (mouse ES cell-derived erythroid progenitor line). We describe steps for plasmid construction, electroporation, amplification, and verification of genome editing. We then detail procedures for isolating positive clones and validating knockin clones. For complete details on the use and execution of this protocol, please refer to Deleuze et al.1.
Collapse
Affiliation(s)
- Virginie Deleuze
- IGMM University Montpellier, CNRS, Montpellier, France; Laboratory of Excellence GR-Ex, Université' de Paris, Paris, France
| | - Eric Soler
- IGMM University Montpellier, CNRS, Montpellier, France; Laboratory of Excellence GR-Ex, Université' de Paris, Paris, France.
| | - Charlotte Andrieu-Soler
- IGMM University Montpellier, CNRS, Montpellier, France; Laboratory of Excellence GR-Ex, Université' de Paris, Paris, France.
| |
Collapse
|
6
|
Wang C, Hu M, Yu K, Liu W, Hu A, Kuang Y, Huang L, Gajendran B, Zacksenhaus E, Xiao X, Ben-David Y. An intricate regulatory circuit between FLI1 and GATA1/GATA2/LDB1/ERG dictates erythroid vs. megakaryocytic differentiation. Mol Med Rep 2024; 29:107. [PMID: 38695236 PMCID: PMC11082641 DOI: 10.3892/mmr.2024.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/21/2024] [Indexed: 05/12/2024] Open
Abstract
During hematopoiesis, megakaryocytic erythroid progenitors (MEPs) differentiate into megakaryocytic or erythroid lineages in response to specific transcriptional factors, yet the regulatory mechanism remains to be elucidated. Using the MEP‑like cell line HEL western blotting, RT‑qPCR, lentivirus‑mediated downregulation, flow cytometry as well as chromatin immunoprecipitation (ChIp) assay demonstrated that the E26 transformation‑specific (ETS) transcription factor friend leukemia integration factor 1 (Fli‑1) inhibits erythroid differentiation. The present study using these methods showed that while FLI1‑mediated downregulation of GATA binding protein 1 (GATA1) suppresses erythropoiesis, its direct transcriptional induction of GATA2 promotes megakaryocytic differentiation. GATA1 is also involved in megakaryocytic differentiation through regulation of GATA2. By contrast to FLI1, the ETS member erythroblast transformation‑specific‑related gene (ERG) negatively controls GATA2 and its overexpression through exogenous transfection blocks megakaryocytic differentiation. In addition, FLI1 regulates expression of LIM Domain Binding 1 (LDB1) during erythroid and megakaryocytic commitment, whereas shRNA‑mediated depletion of LDB1 downregulates FLI1 and GATA2 but increases GATA1 expression. In agreement, LDB1 ablation using shRNA lentivirus expression blocks megakaryocytic differentiation and modestly suppresses erythroid maturation. These results suggested that a certain threshold level of LDB1 expression enables FLI1 to block erythroid differentiation. Overall, FLI1 controlled the commitment of MEP to either erythroid or megakaryocytic lineage through an intricate regulation of GATA1/GATA2, LDB1 and ERG, exposing multiple targets for cell fate commitment and therapeutic intervention.
Collapse
Affiliation(s)
- Chunlin Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
- Institute of Pharmacology and Biological Activity, Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, P.R. China
| | - Maoting Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
- Institute of Pharmacology and Biological Activity, Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, P.R. China
| | - Kunlin Yu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
- Institute of Pharmacology and Biological Activity, Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, P.R. China
| | - Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
- Institute of Pharmacology and Biological Activity, Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, P.R. China
| | - Anling Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
- Institute of Pharmacology and Biological Activity, Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, P.R. China
| | - Yi Kuang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
- Institute of Pharmacology and Biological Activity, Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, P.R. China
| | - Lei Huang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
- Institute of Pharmacology and Biological Activity, Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, P.R. China
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Eldad Zacksenhaus
- Department of Medicine, University of Toronto, Toronto, Ontario M5S3H2, Canada
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G1L7, Canada
| | - Xiao Xiao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
- Institute of Pharmacology and Biological Activity, Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, P.R. China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550014, P.R. China
- Institute of Pharmacology and Biological Activity, Natural Products Research Center of Guizhou Province, Guiyang, Guizhou 550014, P.R. China
| |
Collapse
|
7
|
Liu G, Kim J, Nguyen N, Zhou L, Dean A. Long noncoding RNA GATA2AS influences human erythropoiesis by transcription factor and chromatin landscape modulation. Blood 2024; 143:2300-2313. [PMID: 38447046 PMCID: PMC11181357 DOI: 10.1182/blood.2023021287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024] Open
Abstract
ABSTRACT Long noncoding RNAs (lncRNAs) are extensively expressed in eukaryotic cells and have been revealed to be important for regulating cell differentiation. Many lncRNAs have been found to regulate erythroid differentiation in the mouse. However, given the low sequence conservation of lncRNAs between mouse and human, our understanding of lncRNAs in human erythroid differentiation remains incomplete. lncRNAs are often transcribed opposite to protein coding genes and regulate their expression. Here, we characterized a human erythrocyte-expressed lncRNA, GATA2AS, which is transcribed opposite to erythroid transcription regulator GATA2. GATA2AS is a 2080-bp long, primarily nucleus-localized noncoding RNA that is expressed in erythroid progenitor cells and decreases during differentiation. Knockout of GATA2AS in human HUDEP2 erythroid progenitor cells using CRISPR-Cas9 genome editing to remove the transcription start site accelerated erythroid differentiation and dysregulated erythroblast gene expression. We identified GATA2AS as a novel GATA2 and HBG activator. Chromatin isolation by RNA purification showed that GATA2AS binds to thousands of genomic sites and colocalizes at a subset of sites with erythroid transcription factors including LRF and KLF1. RNA pulldown and RNA immunoprecipitation confirmed interaction between GATA2AS and LRF and KLF1. Chromatin immunoprecipitation sequencing (ChIP-seq) showed that knockout of GATA2AS reduces binding of these transcription factors genome wide. Assay for transposase-accessible chromatin sequencing (ATAC-seq) and H3K27ac ChIP-seq showed that GATA2AS is essential to maintain the chromatin regulatory landscape during erythroid differentiation. Knockdown of GATA2AS in human primary CD34+ cells mimicked results in HUDEP2 cells. Overall, our results implicate human-specific lncRNA GATA2AS as a regulator of erythroid differentiation by influencing erythroid transcription factor binding and the chromatin regulatory landscape.
Collapse
Affiliation(s)
- Guoyou Liu
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Juhyun Kim
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Nicole Nguyen
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Lecong Zhou
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
8
|
Bower G, Hollingsworth EW, Jacinto S, Clock B, Cao K, Liu M, Dziulko A, Alcaina-Caro A, Xu Q, Skowronska-Krawczyk D, Lopez-Rios J, Dickel DE, Bardet AF, Pennacchio LA, Visel A, Kvon EZ. Conserved Cis-Acting Range Extender Element Mediates Extreme Long-Range Enhancer Activity in Mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.26.595809. [PMID: 38826394 PMCID: PMC11142232 DOI: 10.1101/2024.05.26.595809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
While most mammalian enhancers regulate their cognate promoters over moderate distances of tens of kilobases (kb), some enhancers act over distances in the megabase range. The sequence features enabling such extreme-distance enhancer-promoter interactions remain elusive. Here, we used in vivo enhancer replacement experiments in mice to show that short- and medium-range enhancers cannot initiate gene expression at extreme-distance range. We uncover a novel conserved cis-acting element, Range EXtender (REX), that confers extreme-distance regulatory activity and is located next to a long-range enhancer of Sall1. The REX element itself has no endogenous enhancer activity. However, addition of the REX to other short- and mid-range enhancers substantially increases their genomic interaction range. In the most extreme example observed, addition of the REX increased the range of an enhancer by an order of magnitude, from its native 71kb to 840kb. The REX element contains highly conserved [C/T]AATTA homeodomain motifs. These motifs are enriched around long-range limb enhancers genome-wide, including the ZRS, a benchmark long-range limb enhancer of Shh. Mutating the [C/T]AATTA motifs within the ZRS does not affect its limb-specific enhancer activity at short range, but selectively abolishes its long-range activity, resulting in severe limb reduction in knock-in mice. In summary, we identify a sequence signature globally associated with long-range enhancer-promoter interactions and describe a prototypical REX element that is necessary and sufficient to confer extreme-distance gene activation by remote enhancers.
Collapse
Affiliation(s)
- Grace Bower
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Ethan W. Hollingsworth
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
- Medical Scientist Training Program, University of California, Irvine, CA 92967, USA
| | - Sandra Jacinto
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Benjamin Clock
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Kaitlyn Cao
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Mandy Liu
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Adam Dziulko
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ana Alcaina-Caro
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, 41013, Spain
| | - Qianlan Xu
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, University of California, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, University of California, Irvine, CA, USA
| | - Javier Lopez-Rios
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, 41013, Spain
| | - Diane E. Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anaïs F. Bardet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U1258, 67400 Illkirch, France
| | - Len A. Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA 94720, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
- School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Evgeny Z. Kvon
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| |
Collapse
|
9
|
Xie B, Dean A. Noncoding function of super enhancer derived mRNA in modulating neighboring gene expression and TAD interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570115. [PMID: 38105946 PMCID: PMC10723268 DOI: 10.1101/2023.12.05.570115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Super enhancers are important regulators of gene expression that often overlap with protein-coding genes. However, it is unclear whether the overlapping protein-coding genes and the mRNA derived from them contribute to enhancer activity. Using an erythroid-specific super enhancer that overlaps the Cpox gene as a model, we found that Cpox mRNA has a non-coding function in regulating neighboring protein-coding genes, eRNA expression and TAD interactions. Depletion of Cpox mRNA leads to accumulation of H3K27me3 and release of p300 from the Cpox locus, activating an intra-TAD enhancer and gene expression. Additionally, we identified a head-to-tail interaction between the TAD boundary genes Cpox and Dcbld2 that is facilitated by a novel type of repressive loop anchored by p300 and PRC2/H3K27me3. Our results uncover a regulatory role for mRNA transcribed within a super enhancer context and provide insight into head-to-tail inter-gene interaction in the regulation of gene expression and oncogene activation.
Collapse
Affiliation(s)
- Bingning Xie
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
| |
Collapse
|
10
|
Chen X, Pillay S, Lohmann F, Bieker JJ. Association of DDX5/p68 protein with the upstream erythroid enhancer element (EHS1) of the gene encoding the KLF1 transcription factor. J Biol Chem 2023; 299:105489. [PMID: 38000658 PMCID: PMC10750184 DOI: 10.1016/j.jbc.2023.105489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/28/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
EKLF/KLF1 is an essential transcription factor that plays a global role in erythroid transcriptional activation. Regulation of KLF1 is of interest, as it displays a highly restricted expression pattern, limited to erythroid cells and its progenitors. Here we use biochemical affinity purification to identify the DDX5/p68 protein as an activator of KLF1 by virtue of its interaction with the erythroid-specific DNAse hypersensitive site upstream enhancer element (EHS1). We further show that this protein associates with DEK and CTCF. We postulate that the range of interactions of DDX5/p68 with these and other proteins known to interact with this element render it part of the enhanseosome complex critical for optimal expression of KLF1 and enables the formation of a proper chromatin configuration at the Klf1 locus. These individual interactions provide quantitative contributions that, in sum, establish the high-level activity of the Klf1 promoter and suggest they can be selectively manipulated for clinical benefit.
Collapse
Affiliation(s)
- Xiaoyong Chen
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Sanjana Pillay
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - Felix Lohmann
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA
| | - James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA; Black Familly Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA; Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA; Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, New York, USA.
| |
Collapse
|
11
|
Xu H, Tan S, Zhao Y, Zhang L, Cao W, Li X, Tian J, Wang X, Li X, Wang F, Cao J, Zhao T. Lin - PU.1 dim GATA-1 - defines haematopoietic stem cells with long-term multilineage reconstitution activity. Cell Prolif 2023; 56:e13490. [PMID: 37147872 PMCID: PMC10623959 DOI: 10.1111/cpr.13490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/15/2023] [Indexed: 05/07/2023] Open
Abstract
Despite extensive characterization of the state and function of haematopoietic stem cells (HSCs), the use of transcription factors to define the HSC population is still limited. We show here that the HSC population in mouse bone marrow can be defined by the distinct expression levels of Spi1 and Gata1. By using a double fluorescence knock-in mouse model, PGdKI, in which the expression levels of PU.1 and GATA-1 are indicated by the expression of GFP and mCherry, respectively, we uncover that the HSCs with lymphoid and myeloid repopulating activity are specifically enriched in a Lin- PU.1dim GATA-1- (LPG) cell subset. In vivo competitive repopulation assays demonstrate that bone marrow cells gated by LPG exhibit haematopoietic reconstitution activity which is comparable to that of classical Lin- Sca1+ c-kit+ (LSK). The integrated analysis of single-cell RNA sequence data from LPG and LSK-gated cells reveals that a transcriptional network governed by core TFs contributes to regulation of HSC multipotency. These discoveries provide new clues for HSC characterization and functional study.
Collapse
Affiliation(s)
- Haoyu Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shaojing Tan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yu Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weiyun Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xing Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jiayi Tian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaojing Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoyan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fengchao Wang
- National Institute of Biological Sciences (NIBS)BeijingChina
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
12
|
Liu Y, Wan X, Li H, Chen Y, Hu X, Chen H, Zhu D, Li C, Zhang Y. CTCF coordinates cell fate specification via orchestrating regulatory hubs with pioneer transcription factors. Cell Rep 2023; 42:113259. [PMID: 37851578 DOI: 10.1016/j.celrep.2023.113259] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 06/17/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023] Open
Abstract
CCCTC-binding factor (CTCF), a ubiquitously expressed architectural protein, has emerged as a key regulator of cell identity gene transcription. However, the precise molecular mechanism underlying specialized functions of CTCF remains elusive. Here, we investigate the mechanism through integrative analyses of primary hepatocytes, myocytes, and B cells from mouse and human. We demonstrate that CTCF cooperates with lineage-specific pioneer transcription factors (TFs), including MyoD, FOXA, and PU.1, to control cell identity at 1D and 3D levels. At the 1D level, pioneer TFs facilitate lineage-specific CTCF occupancy via opening chromatin. At the 3D level, CTCF and pioneer TFs form regulatory hubs to govern the expression of cell identity genes. This mechanism is validated using MyoD-null mice, CTCF knockout mice, and CRISPR editing during myogenic differentiation. Collectively, these findings uncover a general mechanism whereby CTCF acts as a cell identity cofactor to control cell identity genes via orchestrating regulatory hubs with pioneer TFs.
Collapse
Affiliation(s)
- Yuting Liu
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing 100871, China
| | - Xin Wan
- State Key Laboratory of Complex Severe and Rare Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Hu Li
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| | - Yingxi Chen
- State Key Laboratory of Complex Severe and Rare Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Xiaodi Hu
- State Key Laboratory of Complex Severe and Rare Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Hebing Chen
- Institute of Health Service and Transfusion Medicine, Taiping Road 27TH, Haidian District, Beijing 100850, China
| | - Dahai Zhu
- State Key Laboratory of Complex Severe and Rare Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China.
| | - Cheng Li
- School of Life Sciences, Center for Bioinformatics, Center for Statistical Science, Peking University, Beijing 100871, China.
| | - Yong Zhang
- State Key Laboratory of Complex Severe and Rare Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China.
| |
Collapse
|
13
|
Kim J, Diaz LF, Miller MJ, Leadem B, Krivega I, Dean A. An enhancer RNA recruits MLL1 to regulate transcription of Myb. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559528. [PMID: 37808852 PMCID: PMC10557664 DOI: 10.1101/2023.09.26.559528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The Myb proto-oncogene encodes the transcription factor c-MYB, which is critical for hematopoiesis. Distant enhancers of Myb form a hub of interactions with the Myb promoter. We identified a long non-coding RNA (Myrlin) originating from the -81 kb murine Myb enhancer. Myrlin and Myb are coordinately regulated during erythroid differentiation. Myrlin TSS deletion using CRISPR/Cas9 reduced Myrlin and Myb expression and LDB1 complex occupancy at the Myb enhancers, compromising enhancer contacts and reducing RNA Pol II occupancy in the locus. In contrast, CRISPRi silencing of Myrlin left LDB1 and the Myb enhancer hub unperturbed, although Myrlin and Myb expression were downregulated, decoupling transcription and chromatin looping. Myrlin interacts with the MLL1 complex. Myrlin CRISPRi compromised MLL1 occupancy in the Myb locus, decreasing CDK9 and RNA Pol II binding and resulting in Pol II pausing in the Myb first exon/intron. Thus, Myrlin directly participates in activating Myb transcription by recruiting MLL1.
Collapse
Affiliation(s)
- Juhyun Kim
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luis F. Diaz
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Oregon Health and Sciences University, Portland, OR 97239
| | - Matthew J. Miller
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- University of Iowa Medical School, Iowa City, IA 52242
| | - Benjamin Leadem
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- GeneDx, Gaithersburg, MD 20877
| | - Ivan Krivega
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Sonothera, South San Francisco, CA 94080
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Deleuze V, Garcia L, Rouaisnel B, Salma M, Kinoo A, Andrieu-Soler C, Soler E. Efficient genome editing in erythroid cells unveils novel MYB target genes and regulatory functions. iScience 2023; 26:107641. [PMID: 37670779 PMCID: PMC10475484 DOI: 10.1016/j.isci.2023.107641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/09/2023] [Accepted: 08/11/2023] [Indexed: 09/07/2023] Open
Abstract
Targeted genome editing holds great promise in biology. However, efficient genome modification, including gene knock-in (KI), remains an unattained goal in multiple cell types and loci due to poor transfection efficiencies and low target genes expression, impeding the positive selection of recombined cells. Here, we describe a genome editing approach to achieve efficient gene targeting using hard to transfect erythroid cell lines. We demonstrate robust fluorescent protein KI efficiency in low expressed transcription factor (TF) genes (e.g., Myb or Zeb1). We further show the ability to target two independent loci in individual cells, exemplified by MYB-GFP and NuMA-Cherry double KI, allowing multicolor labeling of regulatory factors at physiological endogenous levels. Our KI tagging approach allowed us to perform genome-wide TF analysis at increased signal-to-noise ratios, and highlighted previously unidentified MYB target genes and pathways. Overall, we establish a versatile CRISPR-Cas9-based platform, offering attractive opportunities for the dissection of the erythroid differentiation process.
Collapse
Affiliation(s)
| | - Leonor Garcia
- IGMM, University Montpellier, CNRS, Montpellier, France
| | | | - Mohammad Salma
- IGMM, University Montpellier, CNRS, Montpellier, France
- Laboratory of Excellence GR-Ex, Université de Paris, Paris, France
| | - Alexia Kinoo
- IGMM, University Montpellier, CNRS, Montpellier, France
| | - Charlotte Andrieu-Soler
- IGMM, University Montpellier, CNRS, Montpellier, France
- Laboratory of Excellence GR-Ex, Université de Paris, Paris, France
| | - Eric Soler
- IGMM, University Montpellier, CNRS, Montpellier, France
- Laboratory of Excellence GR-Ex, Université de Paris, Paris, France
| |
Collapse
|
15
|
Lu L, Wang J, Fang F, Guo A, Jiang S, Tao Y, Zhang Y, Li Y, Zhang K, Zhang Z, Zhuo R, Chu X, Li X, Tian Y, Ma L, Sang X, Chen Y, Yu J, Yang Y, Cao H, Gao J, Lu J, Hu S, Pan J, He H. LMO2 promotes the development of AML through interaction with transcription co-regulator LDB1. Cell Death Dis 2023; 14:518. [PMID: 37573405 PMCID: PMC10423285 DOI: 10.1038/s41419-023-06039-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
One of the characteristics of leukemia is that it contains multiple rearrangements of signal transduction genes and overexpression of non-mutant genes, such as transcription factors. As an important regulator of hematopoietic stem cell development and erythropoiesis, LMO2 is considered an effective carcinogenic driver in T cell lines and a marker of poor prognosis in patients with AML with normal karyotype. LDB1 is a key factor in the transformation of thymocytes into T-ALL induced by LMO2, and enhances the stability of carcinogenic related proteins in leukemia. However, the function and mechanism of LMO2 and LDB1 in AML remains unclear. Herein, the LMO2 gene was knocked down to observe its effects on proliferation, survival, and colony formation of NB4, Kasumi-1 and K562 cell lines. Using mass spectrometry and IP experiments, our results showed the presence of LMO2/LDB1 protein complex in AML cell lines, which is consistent with previous studies. Furthermore, in vitro and in vivo experiments revealed that LDB1 is essential for the proliferation and survival of AML cell lines. Analysis of RNA-seq and ChIP-Seq results showed that LDB1 could regulate apoptosis-related genes, including LMO2. In LDB1-deficient AML cell lines, the overexpression of LMO2 partially compensates for the proliferation inhibition. In summary, our findings revealed that LDB1 played an important role in AML as an oncogene, and emphasize the potential importance of the LMO2/LDB1 complex in clinical treatment of patients with AML.
Collapse
Affiliation(s)
- Lihui Lu
- Children's Hospital of Soochow University, Suzhou, 215003, China
- Department of Pediatrics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Jianwei Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Ailian Guo
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Shuting Jiang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Yanfang Tao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yongping Zhang
- Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yan Li
- Children's Hospital of Soochow University, Suzhou, 215003, China
- Department of Pediatrics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Kunlong Zhang
- Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Ran Zhuo
- Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Xinran Chu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Xiaolu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yuanyuan Tian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Li Ma
- Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Xu Sang
- Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yanling Chen
- Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Juanjuan Yu
- Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Yang Yang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Haibo Cao
- Department of Pediatric Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, 225000, China
| | - Jizhao Gao
- Department of Pediatrics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Jun Lu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Shaoyan Hu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, China.
| | - Hailong He
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, 215003, China.
| |
Collapse
|
16
|
Vermunt MW, Luan J, Zhang Z, Thrasher AJ, Huang A, Saari MS, Khandros E, Beagrie RA, Zhang S, Vemulamada P, Brilleman M, Lee K, Yano JA, Giardine BM, Keller CA, Hardison RC, Blobel GA. Gene silencing dynamics are modulated by transiently active regulatory elements. Mol Cell 2023; 83:715-730.e6. [PMID: 36868189 PMCID: PMC10719944 DOI: 10.1016/j.molcel.2023.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 12/05/2022] [Accepted: 02/03/2023] [Indexed: 03/05/2023]
Abstract
Transcriptional enhancers have been extensively characterized, but cis-regulatory elements involved in acute gene repression have received less attention. Transcription factor GATA1 promotes erythroid differentiation by activating and repressing distinct gene sets. Here, we study the mechanism by which GATA1 silences the proliferative gene Kit during murine erythroid cell maturation and define stages from initial loss of activation to heterochromatinization. We find that GATA1 inactivates a potent upstream enhancer but concomitantly creates a discrete intronic regulatory region marked by H3K27ac, short noncoding RNAs, and de novo chromatin looping. This enhancer-like element forms transiently and serves to delay Kit silencing. The element is ultimately erased via the FOG1/NuRD deacetylase complex, as revealed by the study of a disease-associated GATA1 variant. Hence, regulatory sites can be self-limiting by dynamic co-factor usage. Genome-wide analyses across cell types and species uncover transiently active elements at numerous genes during repression, suggesting that modulation of silencing kinetics is widespread.
Collapse
Affiliation(s)
- Marit W Vermunt
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Jing Luan
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Pennsylvania, Philadelphia, PA 19104, USA
| | - A Josephine Thrasher
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Anran Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Megan S Saari
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eugene Khandros
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert A Beagrie
- Chromatin and Disease Group, Wellcome Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Shiping Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pranay Vemulamada
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matilda Brilleman
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kiwon Lee
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jennifer A Yano
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Belinda M Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Reed KSM, Davis ES, Bond ML, Cabrera A, Thulson E, Quiroga IY, Cassel S, Woolery KT, Hilton I, Won H, Love MI, Phanstiel DH. Temporal analysis suggests a reciprocal relationship between 3D chromatin structure and transcription. Cell Rep 2022; 41:111567. [PMID: 36323252 PMCID: PMC9707392 DOI: 10.1016/j.celrep.2022.111567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/19/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
To infer potential causal relationships between 3D chromatin structure, enhancers, and gene transcription, we mapped each feature in a genome-wide fashion across eight narrowly spaced time points of macrophage activation. Enhancers and genes connected by loops exhibit stronger correlations between histone H3K27 acetylation and expression than can be explained by genomic distance or physical proximity alone. At these looped enhancer-promoter pairs, changes in acetylation at distal enhancers precede changes in gene expression. Changes in gene expression exhibit a directional bias at differential loop anchors; gained loops are associated with increased expression of genes oriented away from the center of the loop, and lost loops are often accompanied by high levels of transcription within the loop boundaries themselves. These results are consistent with a reciprocal relationship where loops can facilitate increased transcription by connecting promoters to distal enhancers, whereas high levels of transcription can impede loop formation.
Collapse
Affiliation(s)
- Kathleen S M Reed
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Eric S Davis
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Marielle L Bond
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Alan Cabrera
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Eliza Thulson
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ivana Yoseli Quiroga
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Shannon Cassel
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kamisha T Woolery
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Isaac Hilton
- Department of Bioengineering, Rice University, Houston, TX 77005, USA; Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Hyejung Won
- Department of Genetics and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Douglas H Phanstiel
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
18
|
Luan J, Vermunt MW, Syrett CM, Coté A, Tome JM, Zhang H, Huang A, Luppino JM, Keller CA, Giardine BM, Zhang S, Dunagin MC, Zhang Z, Joyce EF, Lis JT, Raj A, Hardison RC, Blobel GA. CTCF blocks antisense transcription initiation at divergent promoters. Nat Struct Mol Biol 2022; 29:1136-1144. [PMID: 36369346 DOI: 10.1101/2021.10.30.465508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/29/2022] [Indexed: 05/26/2023]
Abstract
Transcription at most promoters is divergent, initiating at closely spaced oppositely oriented core promoters to produce sense transcripts along with often unstable upstream antisense transcripts (uasTrx). How antisense transcription is regulated and to what extent it is coordinated with sense transcription is not well understood. Here, by combining acute degradation of the multi-functional transcription factor CTCF and nascent transcription measurements, we find that CTCF specifically suppresses antisense but not sense transcription at hundreds of divergent promoters. Primary transcript RNA-FISH shows that CTCF lowers burst fraction but not burst intensity of uasTrx and that co-bursting of sense and antisense transcripts is disfavored. Genome editing, chromatin conformation studies and high-resolution transcript mapping revealed that precisely positioned CTCF directly suppresses the initiation of uasTrx, in a manner independent of its architectural function. In sum, CTCF shapes the transcriptional landscape in part by suppressing upstream antisense transcription.
Collapse
Affiliation(s)
- Jing Luan
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marit W Vermunt
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Camille M Syrett
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Clarion Healthcare, LLC, Boston, MA, USA
| | - Allison Coté
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob M Tome
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Shape Therapeutics Inc, Seattle, WA, USA
| | - Haoyue Zhang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Anran Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jennifer M Luppino
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Belinda M Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Shiping Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Margaret C Dunagin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric F Joyce
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Arjun Raj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Luan J, Vermunt MW, Syrett CM, Coté A, Tome JM, Zhang H, Huang A, Luppino JM, Keller CA, Giardine BM, Zhang S, Dunagin MC, Zhang Z, Joyce EF, Lis JT, Raj A, Hardison RC, Blobel GA. CTCF blocks antisense transcription initiation at divergent promoters. Nat Struct Mol Biol 2022; 29:1136-1144. [PMID: 36369346 PMCID: PMC10015438 DOI: 10.1038/s41594-022-00855-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/29/2022] [Indexed: 11/13/2022]
Abstract
Transcription at most promoters is divergent, initiating at closely spaced oppositely oriented core promoters to produce sense transcripts along with often unstable upstream antisense transcripts (uasTrx). How antisense transcription is regulated and to what extent it is coordinated with sense transcription is not well understood. Here, by combining acute degradation of the multi-functional transcription factor CTCF and nascent transcription measurements, we find that CTCF specifically suppresses antisense but not sense transcription at hundreds of divergent promoters. Primary transcript RNA-FISH shows that CTCF lowers burst fraction but not burst intensity of uasTrx and that co-bursting of sense and antisense transcripts is disfavored. Genome editing, chromatin conformation studies and high-resolution transcript mapping revealed that precisely positioned CTCF directly suppresses the initiation of uasTrx, in a manner independent of its architectural function. In sum, CTCF shapes the transcriptional landscape in part by suppressing upstream antisense transcription.
Collapse
Affiliation(s)
- Jing Luan
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marit W Vermunt
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Camille M Syrett
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Clarion Healthcare, LLC, Boston, MA, USA
| | - Allison Coté
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob M Tome
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Shape Therapeutics Inc, Seattle, WA, USA
| | - Haoyue Zhang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Anran Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jennifer M Luppino
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Belinda M Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Shiping Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Margaret C Dunagin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric F Joyce
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Arjun Raj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
20
|
LYL1 facilitates AETFC assembly and gene activation by recruiting CARM1 in t(8;21) AML. Proc Natl Acad Sci U S A 2022; 119:e2213718119. [PMID: 36215477 PMCID: PMC9586329 DOI: 10.1073/pnas.2213718119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription factors (TFs) play critical roles in hematopoiesis, and their aberrant expression can lead to various types of leukemia. The t(8;21) leukemogenic fusion protein AML1-ETO (AE) is the most common fusion protein in acute myeloid leukemia and can enhance hematopoietic stem cell renewal while blocking differentiation. A key question in understanding AE-mediated leukemia is what determines the choice of AE to activate self-renewal genes or repress differentiation genes. Toward the resolution of this problem, we earlier showed that AE resides in the stable AETFC complex and that its components colocalize on up- or down-regulated target genes and are essential for leukemogenesis. In the current study, using biochemical and genomic approaches, we show that AE-containing complexes are heterogeneous, and that assembly of the larger AETFC (containing AE, CBFβ, HEB, E2A, LYL1, LMO2, and LDB1) requires LYL1. Furthermore, we provide strong evidence that the LYL1-containing AETFC preferentially binds to active enhancers and promotes AE-dependent gene activation. Moreover, we show that coactivator CARM1 interacts with AETFC and facilitates gene activation by AETFC. Collectively, this study describes a role of oncoprotein LYL1 in AETFC assembly and gene activation by recruiting CARM1 to chromatin for AML cell survival.
Collapse
|
21
|
Liu G, Wang L, Wess J, Dean A. Enhancer looping protein LDB1 regulates hepatocyte gene expression by cooperating with liver transcription factors. Nucleic Acids Res 2022; 50:9195-9211. [PMID: 36018801 PMCID: PMC9458430 DOI: 10.1093/nar/gkac707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/22/2022] [Indexed: 12/24/2022] Open
Abstract
Enhancers establish proximity with distant target genes to regulate temporospatial gene expression and specify cell identity. Lim domain binding protein 1 (LDB1) is a conserved and widely expressed protein that functions as an enhancer looping factor. Previous studies in erythroid cells and neuronal cells showed that LDB1 forms protein complexes with different transcription factors to regulate cell-specific gene expression. Here, we show that LDB1 regulates expression of liver genes by occupying enhancer elements and cooperating with hepatic transcription factors HNF4A, FOXA1, TCF7 and GATA4. Using the glucose transporter SLC2A2 gene, encoding GLUT2, as an example, we find that LDB1 regulates gene expression by mediating enhancer-promoter interactions. In vivo, we find that LDB1 deficiency in primary mouse hepatocytes dysregulates metabolic gene expression and changes the enhancer landscape. Conditional deletion of LDB1 in adult mouse liver induces glucose intolerance. However, Ldb1 knockout hepatocytes show improved liver pathology under high-fat diet conditions associated with increased expression of genes related to liver fatty acid metabolic processes. Thus, LDB1 is linked to liver metabolic functions under normal and obesogenic conditions.
Collapse
Affiliation(s)
- Guoyou Liu
- Correspondence may also be addressed to Guoyou Liu. Tel: +1 301 435 9396;
| | - Lei Wang
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jürgen Wess
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ann Dean
- To whom correspondence should be addressed. Tel: +1 301 496 6068;
| |
Collapse
|
22
|
Sun X, Zhang J, Cao C. CTCF and Its Partners: Shaper of 3D Genome during Development. Genes (Basel) 2022; 13:genes13081383. [PMID: 36011294 PMCID: PMC9407368 DOI: 10.3390/genes13081383] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 02/06/2023] Open
Abstract
The 3D genome organization and its dynamic modulate genome function, playing a pivotal role in cell differentiation and development. CTCF and cohesin, acting as the core architectural components involved in chromatin looping and genome folding, can also recruit other protein or RNA partners to fine-tune genome structure during development. Moreover, systematic screening for partners of CTCF has been performed through high-throughput approaches. In particular, several novel protein and RNA partners, such as BHLHE40, WIZ, MAZ, Aire, MyoD, YY1, ZNF143, and Jpx, have been identified, and these partners are mostly implicated in transcriptional regulation and chromatin remodeling, offering a unique opportunity for dissecting their roles in higher-order chromatin organization by collaborating with CTCF and cohesin. Here, we review the latest advancements with an emphasis on features of CTCF partners and also discuss the specific functions of CTCF-associated complexes in chromatin structure modulation, which may extend our understanding of the functions of higher-order chromatin architecture in developmental processes.
Collapse
Affiliation(s)
- Xiaoyue Sun
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China; (X.S.); (J.Z.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
- Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Jing Zhang
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China; (X.S.); (J.Z.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
- Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Chunwei Cao
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China; (X.S.); (J.Z.)
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
- Center for Reproductive Genetics and Reproductive Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
- Guangzhou Laboratory, Guangzhou 510320, China
- Correspondence:
| |
Collapse
|
23
|
Andrieu-Soler C, Soler E. Erythroid Cell Research: 3D Chromatin, Transcription Factors and Beyond. Int J Mol Sci 2022; 23:6149. [PMID: 35682828 PMCID: PMC9181152 DOI: 10.3390/ijms23116149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Studies of the regulatory networks and signals controlling erythropoiesis have brought important insights in several research fields of biology and have been a rich source of discoveries with far-reaching implications beyond erythroid cells biology. The aim of this review is to highlight key recent discoveries and show how studies of erythroid cells bring forward novel concepts and refine current models related to genome and 3D chromatin organization, signaling and disease, with broad interest in life sciences.
Collapse
Affiliation(s)
| | - Eric Soler
- IGMM, Université Montpellier, CNRS, 34093 Montpellier, France;
- Laboratory of Excellence GR-Ex, Université de Paris, 75015 Paris, France
| |
Collapse
|
24
|
Owens DDG, Anselmi G, Oudelaar AM, Downes DJ, Cavallo A, Harman JR, Schwessinger R, Bucakci A, Greder L, de Ornellas S, Jeziorska D, Telenius J, Hughes JR, de Bruijn MFTR. Dynamic Runx1 chromatin boundaries affect gene expression in hematopoietic development. Nat Commun 2022; 13:773. [PMID: 35140205 PMCID: PMC8828719 DOI: 10.1038/s41467-022-28376-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/12/2022] [Indexed: 01/22/2023] Open
Abstract
The transcription factor RUNX1 is a critical regulator of developmental hematopoiesis and is frequently disrupted in leukemia. Runx1 is a large, complex gene that is expressed from two alternative promoters under the spatiotemporal control of multiple hematopoietic enhancers. To dissect the dynamic regulation of Runx1 in hematopoietic development, we analyzed its three-dimensional chromatin conformation in mouse embryonic stem cell (ESC) differentiation cultures. Runx1 resides in a 1.1 Mb topologically associating domain (TAD) demarcated by convergent CTCF motifs. As ESCs differentiate to mesoderm, chromatin accessibility, Runx1 enhancer-promoter (E-P) interactions, and CTCF-CTCF interactions increase in the TAD, along with initiation of Runx1 expression from the P2 promoter. Differentiation to hematopoietic progenitor cells is associated with the formation of tissue-specific sub-TADs over Runx1, a shift in E-P interactions, P1 promoter demethylation, and robust expression from both Runx1 promoters. Deletion of promoter-proximal CTCF sites at the sub-TAD boundaries has no obvious effects on E-P interactions but leads to partial loss of domain structure, mildly affects gene expression, and delays hematopoietic development. Together, our analysis of gene regulation at a large multi-promoter developmental gene reveals that dynamic sub-TAD chromatin boundaries play a role in establishing TAD structure and coordinated gene expression.
Collapse
Affiliation(s)
- Dominic D G Owens
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Giorgio Anselmi
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - A Marieke Oudelaar
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Damien J Downes
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Alessandro Cavallo
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Joe R Harman
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ron Schwessinger
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Akin Bucakci
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Lucas Greder
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sara de Ornellas
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Physical and Theoretical Chemistry Building, Department of Chemistry, University of Oxford, Oxford, UK
| | - Danuta Jeziorska
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jelena Telenius
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jim R Hughes
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Marella F T R de Bruijn
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
25
|
Vu H, Ernst J. Universal annotation of the human genome through integration of over a thousand epigenomic datasets. Genome Biol 2022; 23:9. [PMID: 34991667 PMCID: PMC8734071 DOI: 10.1186/s13059-021-02572-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/08/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Genome-wide maps of chromatin marks such as histone modifications and open chromatin sites provide valuable information for annotating the non-coding genome, including identifying regulatory elements. Computational approaches such as ChromHMM have been applied to discover and annotate chromatin states defined by combinatorial and spatial patterns of chromatin marks within the same cell type. An alternative "stacked modeling" approach was previously suggested, where chromatin states are defined jointly from datasets of multiple cell types to produce a single universal genome annotation based on all datasets. Despite its potential benefits for applications that are not specific to one cell type, such an approach was previously applied only for small-scale specialized purposes. Large-scale applications of stacked modeling have previously posed scalability challenges. RESULTS Using a version of ChromHMM enhanced for large-scale applications, we apply the stacked modeling approach to produce a universal chromatin state annotation of the human genome using over 1000 datasets from more than 100 cell types, with the learned model denoted as the full-stack model. The full-stack model states show distinct enrichments for external genomic annotations, which we use in characterizing each state. Compared to per-cell-type annotations, the full-stack annotations directly differentiate constitutive from cell type-specific activity and is more predictive of locations of external genomic annotations. CONCLUSIONS The full-stack ChromHMM model provides a universal chromatin state annotation of the genome and a unified global view of over 1000 datasets. We expect this to be a useful resource that complements existing per-cell-type annotations for studying the non-coding human genome.
Collapse
Affiliation(s)
- Ha Vu
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, 90095, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, 90095, USA
| | - Jason Ernst
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, 90095, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at University of California, Los Angeles, CA, 90095, USA
- Computer Science Department, University of California, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Computational Medicine, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
26
|
Georgolopoulos G, Psatha N, Iwata M, Nishida A, Som T, Yiangou M, Stamatoyannopoulos JA, Vierstra J. Discrete regulatory modules instruct hematopoietic lineage commitment and differentiation. Nat Commun 2021; 12:6790. [PMID: 34815405 PMCID: PMC8611072 DOI: 10.1038/s41467-021-27159-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/20/2021] [Indexed: 11/08/2022] Open
Abstract
Lineage commitment and differentiation is driven by the concerted action of master transcriptional regulators at their target chromatin sites. Multiple efforts have characterized the key transcription factors (TFs) that determine the various hematopoietic lineages. However, the temporal interactions between individual TFs and their chromatin targets during differentiation and how these interactions dictate lineage commitment remains poorly understood. Here we perform dense, daily, temporal profiling of chromatin accessibility (DNase I-seq) and gene expression changes (total RNA-seq) along ex vivo human erythropoiesis to comprehensively define developmentally regulated DNase I hypersensitive sites (DHSs) and transcripts. We link both distal DHSs to their target gene promoters and individual TFs to their target DHSs, revealing that the regulatory landscape is organized in distinct sequential regulatory modules that regulate lineage restriction and maturation. Finally, direct comparison of transcriptional dynamics (bulk and single-cell) and lineage potential between erythropoiesis and megakaryopoiesis uncovers differential fate commitment dynamics between the two lineages as they exit the stem and progenitor stage. Collectively, these data provide insights into the temporally regulated synergy of the cis- and the trans-regulatory components underlying hematopoietic lineage commitment and differentiation.
Collapse
Affiliation(s)
- Grigorios Georgolopoulos
- Altius Institute for Biomedical Sciences, Seattle, WA, USA.
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | - Mineo Iwata
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - Andrew Nishida
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - Tannishtha Som
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - Minas Yiangou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - John A Stamatoyannopoulos
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Division of Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jeff Vierstra
- Altius Institute for Biomedical Sciences, Seattle, WA, USA.
| |
Collapse
|
27
|
CTCF and transcription influence chromatin structure re-configuration after mitosis. Nat Commun 2021; 12:5157. [PMID: 34453048 PMCID: PMC8397779 DOI: 10.1038/s41467-021-25418-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/06/2021] [Indexed: 02/02/2023] Open
Abstract
During mitosis, transcription is globally attenuated and chromatin architecture is dramatically reconfigured. We exploited the M- to G1-phase progression to interrogate the contributions of the architectural factor CTCF and the process of transcription to genome re-sculpting in newborn nuclei. Depletion of CTCF during the M- to G1-phase transition alters short-range compartmentalization after mitosis. Chromatin domain boundary re-formation is impaired upon CTCF loss, but a subset of boundaries, characterized by transitions in chromatin states, is established normally. Without CTCF, structural loops fail to form, leading to illegitimate contacts between cis-regulatory elements (CREs). Transient CRE contacts that are normally resolved after telophase persist deeply into G1-phase in CTCF-depleted cells. CTCF loss-associated gains in transcription are often linked to increased, normally illegitimate enhancer-promoter contacts. In contrast, at genes whose expression declines upon CTCF loss, CTCF seems to function as a conventional transcription activator, independent of its architectural role. CTCF-anchored structural loops facilitate formation of CRE loops nested within them, especially those involving weak CREs. Transcription inhibition does not significantly affect global architecture or transcription start site-associated boundaries. However, ongoing transcription contributes considerably to the formation of gene domains, regions of enriched contacts along gene bodies. Notably, gene domains emerge in ana/telophase prior to completion of the first round of transcription, suggesting that epigenetic features in gene bodies contribute to genome reconfiguration prior to transcription. The focus on the de novo formation of nuclear architecture during G1 entry yields insights into the contributions of CTCF and transcription to chromatin architecture dynamics during the mitosis to G1-phase progression.
Collapse
|
28
|
Kang J, Kim YW, Park S, Kang Y, Kim A. Multiple CTCF sites cooperate with each other to maintain a TAD for enhancer-promoter interaction in the β-globin locus. FASEB J 2021; 35:e21768. [PMID: 34245617 DOI: 10.1096/fj.202100105rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 01/01/2023]
Abstract
Insulators are cis-regulatory elements that block enhancer activity and prevent heterochromatin spreading. The binding of CCCTC-binding factor (CTCF) protein is essential for insulators to play the roles in a chromatin context. The β-globin locus, consisting of multiple genes and enhancers, is flanked by two insulators 3'HS1 and HS5. However, it has been reported that the absence of these insulators did not affect the β-globin transcription. To explain the unexpected finding, we have deleted a CTCF motif at 3'HS1 or HS5 in the human β-globin locus and analyzed chromatin interactions around the locus. It was found that a topologically associating domain (TAD) containing the β-globin locus is maintained by neighboring CTCF sites in the CTCF motif-deleted loci. The additional deletions of neighboring CTCF motifs disrupted the β-globin TAD, resulting in decrease of the β-globin transcription. Chromatin interactions of the β-globin enhancers with gene promoter were weakened in the multiple CTCF motifs-deleted loci, even though the enhancers have still active chromatin features such as histone H3K27ac and histone H3 depletion. Genome-wide analysis using public CTCF ChIA-PET and ChIP-seq data showed that chromatin domains possessing multiple CTCF binding sites tend to contain super-enhancers like the β-globin enhancers. Taken together, our results show that multiple CTCF sites surrounding the β-globin locus cooperate with each other to maintain a TAD. The β-globin TAD appears to provide a compact spatial environment that enables enhancers to interact with promoter.
Collapse
Affiliation(s)
- Jin Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Korea
| | - Yea Woon Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Korea
| | - Seongwon Park
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Korea
| | - Yujin Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Korea
| | - AeRi Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Korea
| |
Collapse
|
29
|
Dynamic CTCF binding directly mediates interactions among cis-regulatory elements essential for hematopoiesis. Blood 2021; 137:1327-1339. [PMID: 33512425 DOI: 10.1182/blood.2020005780] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/05/2020] [Indexed: 11/20/2022] Open
Abstract
While constitutive CCCTC-binding factor (CTCF)-binding sites are needed to maintain relatively invariant chromatin structures, such as topologically associating domains, the precise roles of CTCF to control cell-type-specific transcriptional regulation remain poorly explored. We examined CTCF occupancy in different types of primary blood cells derived from the same donor to elucidate a new role for CTCF in gene regulation during blood cell development. We identified dynamic, cell-type-specific binding sites for CTCF that colocalize with lineage-specific transcription factors. These dynamic sites are enriched for single-nucleotide polymorphisms that are associated with blood cell traits in different linages, and they coincide with the key regulatory elements governing hematopoiesis. CRISPR-Cas9-based perturbation experiments demonstrated that these dynamic CTCF-binding sites play a critical role in red blood cell development. Furthermore, precise deletion of CTCF-binding motifs in dynamic sites abolished interactions of erythroid genes, such as RBM38, with their associated enhancers and led to abnormal erythropoiesis. These results suggest a novel, cell-type-specific function for CTCF in which it may serve to facilitate interaction of distal regulatory emblements with target promoters. Our study of the dynamic, cell-type-specific binding and function of CTCF provides new insights into transcriptional regulation during hematopoiesis.
Collapse
|
30
|
Enhancers navigate the three-dimensional genome to direct cell fate decisions. Curr Opin Struct Biol 2021; 71:101-109. [PMID: 34280668 DOI: 10.1016/j.sbi.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 01/05/2023]
Abstract
The activity and selectivity of transcriptional enhancers determine gene expression patterns that enable a zygote to become a complex organism. How enhancers convey regulatory information is a central conundrum in biology. Here, we discuss recent progress provided by rapidly evolving technologies in understanding enhancer-promoter interactions in the context of overall nuclear genome organization.
Collapse
|
31
|
Abstract
The field of molecular embryology started around 1990 by identifying new genes and analyzing their functions in early vertebrate embryogenesis. Those genes encode transcription factors, signaling molecules, their regulators, etc. Most of those genes are relatively highly expressed in specific regions or exhibit dramatic phenotypes when ectopically expressed or mutated. This review focuses on one of those genes, Lim1/Lhx1, which encodes a transcription factor. Lim1/Lhx1 is a member of the LIM homeodomain (LIM-HD) protein family, and its intimate partner, Ldb1/NLI, binds to two tandem LIM domains of LIM-HDs. The most ancient LIM-HD protein and its partnership with Ldb1 were innovated in the metazoan ancestor by gene fusion combining LIM domains and a homeodomain and by creating the LIM domain-interacting domain (LID) in ancestral Ldb, respectively. The LIM domain has multiple interacting interphases, and Ldb1 has a dimerization domain (DD), the LID, and other interacting domains that bind to Ssbp2/3/4 and the boundary factor, CTCF. By means of these domains, LIM-HD-Ldb1 functions as a hub protein complex, enabling more intricate and elaborate gene regulation. The common, ancestral role of LIM-HD proteins is neuron cell-type specification. Additionally, Lim1/Lhx1 serves crucial roles in the gastrula organizer and in kidney development. Recent studies using Xenopus embryos have revealed Lim1/Lhx1 functions and regulatory mechanisms during development and regeneration, providing insight into evolutionary developmental biology, functional genomics, gene regulatory networks, and regenerative medicine. In this review, we also discuss recent progress at unraveling participation of Ldb1, Ssbp, and CTCF in enhanceosomes, long-distance enhancer-promoter interactions, and trans-interactions between chromosomes.
Collapse
Affiliation(s)
- Yuuri Yasuoka
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| | - Masanori Taira
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
32
|
Comprehensive proteomic analysis of murine terminal erythroid differentiation. Blood Adv 2021; 4:1464-1477. [PMID: 32282884 DOI: 10.1182/bloodadvances.2020001652] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
Murine-based cellular models have provided and continue to provide many useful insights into the fundamental mechanisms of erythropoiesis, as well as insights into the pathophysiology of inherited and acquired red cell disorders. Although detailed information on many aspects of these cell models is available, comprehensive proteomic data are lacking. This is a critical knowledge gap, as proteins are effectors of most biologic processes. To address this critical unmet need, proteomes of the murine cell lines Friend erythroleukemia (MEL), GATA1 erythroid (G1ER), and embryonic stem cell-derived erythroid progenitor (MEDEP) and proteomes of cultured murine marrow-derived erythroblasts at different stages of terminal erythroid differentiation were analyzed. The proteomes of MEDEP cells and primary murine erythroid cells were most similar, whereas those of MEL and G1ER cells were more distantly related. We demonstrated that the overall cellular content of histones does not decrease during terminal differentiation, despite strong chromatin condensation. Comparison of murine and human proteomes throughout terminal erythroid differentiation revealed that many noted transcriptomic changes were significantly dampened at the proteome level, especially at the end of the terminal differentiation process. Analysis of the early events associated with induction of terminal differentiation in MEDEP cells revealed divergent alterations in associated transcriptomes and proteomes. These proteomic data are powerful and valuable tools for the study of fundamental mechanisms of normal and disordered erythropoiesis and will be of broad interest to a wide range of investigators for making the appropriate choice of various cell lines to study inherited and acquired diseases of the erythrocyte.
Collapse
|
33
|
Giraud G, Kolovos P, Boltsis I, van Staalduinen J, Guyot B, Weiss-Gayet M, IJcken WV, Morlé F, Grosveld F. Interplay between FLI-1 and the LDB1 complex in murine erythroleukemia cells and during megakaryopoiesis. iScience 2021; 24:102210. [PMID: 33733070 PMCID: PMC7940982 DOI: 10.1016/j.isci.2021.102210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/22/2020] [Accepted: 02/17/2021] [Indexed: 11/29/2022] Open
Abstract
Transcription factors are key players in a broad range of cellular processes such as cell-fate decision. Understanding how they act to control these processes is of critical importance for therapy purposes. FLI-1 controls several hematopoietic lineage differentiation including megakaryopoiesis and erythropoiesis. Its aberrant expression is often observed in cancer and is associated with poor prognosis. We showed that FLI-1 interacts with the LDB1 complex, which also plays critical roles in erythropoiesis and megakaryopoiesis. In this study, we aimed to unravel how FLI-1 and the LDB1 complex act together in murine erythroleukemia cells and in megakaryocyte. Combining omics techniques, we show that FLI-1 enables the recruitment of the LDB1 complex to regulatory sequences of megakaryocytic genes and to enhancers. We show as well for the first time that FLI-1 is able to modulate the 3D chromatin organization by promoting chromatin looping between enhancers and promoters most likely through the LDB1 complex. FLI-1 is important for the recruitment of the LDB1 complex FLI-1 is important for chromatin looping FLI-1 and the LDB1 complex co-regulate megakaryopoiesis
Collapse
Affiliation(s)
- Guillaume Giraud
- Department of Cell Biology, Erasmus Medical Centre, 3015CN Rotterdam, the Netherlands
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - Ilias Boltsis
- Department of Cell Biology, Erasmus Medical Centre, 3015CN Rotterdam, the Netherlands
| | - Jente van Staalduinen
- Department of Cell Biology, Erasmus Medical Centre, 3015CN Rotterdam, the Netherlands
| | - Boris Guyot
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Department of Immunity, Virus and Microenvironment, Lyon, France
| | - Michele Weiss-Gayet
- Institut NeuroMyoGène, CNRS UMR 5310 - INSERM U1217 - Université de Lyon - Université Claude Bernard Lyon 1, Lyon, France
| | - Wilfred van IJcken
- Biomics Center, Erasmus University Medical Center, 3015CN Rotterdam, the Netherlands
| | - François Morlé
- Institut NeuroMyoGène, CNRS UMR 5310 - INSERM U1217 - Université de Lyon - Université Claude Bernard Lyon 1, Lyon, France
| | - Frank Grosveld
- Department of Cell Biology, Erasmus Medical Centre, 3015CN Rotterdam, the Netherlands
| |
Collapse
|
34
|
Kubo N, Ishii H, Xiong X, Bianco S, Meitinger F, Hu R, Hocker JD, Conte M, Gorkin D, Yu M, Li B, Dixon JR, Hu M, Nicodemi M, Zhao H, Ren B. Promoter-proximal CTCF binding promotes distal enhancer-dependent gene activation. Nat Struct Mol Biol 2021; 28:152-161. [PMID: 33398174 PMCID: PMC7913465 DOI: 10.1038/s41594-020-00539-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/06/2020] [Indexed: 01/28/2023]
Abstract
The CCCTC-binding factor (CTCF) works together with the cohesin complex to drive the formation of chromatin loops and topologically associating domains, but its role in gene regulation has not been fully defined. Here, we investigated the effects of acute CTCF loss on chromatin architecture and transcriptional programs in mouse embryonic stem cells undergoing differentiation to neural precursor cells. We identified CTCF-dependent enhancer-promoter contacts genome-wide and found that they disproportionately affect genes that are bound by CTCF at the promoter and are dependent on long-distance enhancers. Disruption of promoter-proximal CTCF binding reduced both long-range enhancer-promoter contacts and transcription, which were restored by artificial tethering of CTCF to the promoter. Promoter-proximal CTCF binding is correlated with the transcription of over 2,000 genes across a diverse set of adult tissues. Taken together, the results of our study show that CTCF binding to promoters may promote long-distance enhancer-dependent transcription at specific genes in diverse cell types.
Collapse
Affiliation(s)
- Naoki Kubo
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Haruhiko Ishii
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Xiong Xiong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Simona Bianco
- Department of Physics, University of Naples Federico II, and INFN Complesso di Monte Sant’Angelo, Naples, Italy
| | - Franz Meitinger
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Rong Hu
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - James D. Hocker
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Mattia Conte
- Department of Physics, University of Naples Federico II, and INFN Complesso di Monte Sant’Angelo, Naples, Italy
| | - David Gorkin
- Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Miao Yu
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Bin Li
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Jesse R. Dixon
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Mario Nicodemi
- Department of Physics, University of Naples Federico II, and INFN Complesso di Monte Sant’Angelo, Naples, Italy
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Departments of Chemistry, Biochemistry, and Bioengineering, and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA,Department of Cellular and Molecular Medicine, Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA,Department of Cellular and Molecular Medicine, Moores Cancer Center and Institute of Genome Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA,Correspondence to:
| |
Collapse
|
35
|
Kyrchanova O, Georgiev P. Mechanisms of Enhancer-Promoter Interactions in Higher Eukaryotes. Int J Mol Sci 2021; 22:ijms22020671. [PMID: 33445415 PMCID: PMC7828040 DOI: 10.3390/ijms22020671] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/28/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
In higher eukaryotes, enhancers determine the activation of developmental gene transcription in specific cell types and stages of embryogenesis. Enhancers transform the signals produced by various transcription factors within a given cell, activating the transcription of the targeted genes. Often, developmental genes can be associated with dozens of enhancers, some of which are located at large distances from the promoters that they regulate. Currently, the mechanisms underlying specific distance interactions between enhancers and promoters remain poorly understood. This review briefly describes the properties of enhancers and discusses the mechanisms of distance interactions and potential proteins involved in this process.
Collapse
|
36
|
Xiao J, Jin X, Zhang C, Zou H, Chang Z, Han N, Li X, Zhang Y, Li Y. Systematic analysis of enhancer regulatory circuit perturbation driven by copy number variations in malignant glioma. Am J Cancer Res 2021; 11:3060-3073. [PMID: 33537074 PMCID: PMC7847679 DOI: 10.7150/thno.54150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Enhancers are emerging regulatory regions controlling gene expression in diverse cancer types. However, the functions of enhancer regulatory circuit perturbations driven by copy number variations (CNVs) in malignant glioma are unclear. Therefore, we aimed to investigate the comprehensive enhancer regulatory perturbation and identify potential biomarkers in glioma. Results: We performed a meta-analysis of the enhancer centered regulatory circuit perturbations in 683 gliomas by integrating CNVs, gene expression, and transcription factors (TFs) binding. We found widespread CNVs of enhancers during glioma progression, and CNVs were associated with the perturbations of enhancer activities. In particular, the degree of perturbations for amplified enhancers was much greater accompanied by the glioma malignant progression. In addition, CNVs and enhancers cooperatively regulated the expressions of cancer-related genes. Genome-wide TF binding profiles revealed that enhancers were pervasively regulated by TFs. A network-based analysis of TF-enhancer-gene regulatory circuits revealed a core TF-gene module (58 interactions including seven genes and 14 TFs) that was associated survival of patients with glioma (p < 0.001). Finally, we validated this prognosis-associated TF-gene regulatory module in an independent cohort. In summary, our analyses provided new molecular insights for enhancer-centered transcriptional perturbation in glioma therapy. Conclusion: Integrative analysis revealed enhancer regulatory perturbations in glioma and also identified a network module that was associated with patient survival, thereby providing novel insights into enhancer-centered cancer therapy.
Collapse
|
37
|
Guo X, Plank-Bazinet J, Krivega I, Dale RK, Dean A. Embryonic erythropoiesis and hemoglobin switching require transcriptional repressor ETO2 to modulate chromatin organization. Nucleic Acids Res 2020; 48:10226-10240. [PMID: 32960220 DOI: 10.1093/nar/gkaa736] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/19/2020] [Accepted: 09/18/2020] [Indexed: 11/14/2022] Open
Abstract
The underlying mechanism of transcriptional co-repressor ETO2 during early erythropoiesis and hemoglobin switching is unclear. We find that absence of ETO2 in mice interferes with down-regulation of PU.1 and GATA2 in the fetal liver, impeding a key step required for commitment to erythroid maturation. In human β-globin transgenic Eto2 null mice and in human CD34+ erythroid progenitor cells with reduced ETO2, loss of ETO2 results in ineffective silencing of embryonic/fetal globin gene expression, impeding hemoglobin switching during erythroid differentiation. ETO2 occupancy genome-wide occurs virtually exclusively at LDB1-complex binding sites in enhancers and ETO2 loss leads to increased enhancer activity and expression of target genes. ETO2 recruits the NuRD nucleosome remodeling and deacetylation complex to regulate histone acetylation and nucleosome occupancy in the β-globin locus control region and γ-globin gene. Loss of ETO2 elevates LDB1, MED1 and Pol II in the locus and facilitates fetal γ-globin/LCR looping and γ-globin transcription. Absence of the ETO2 hydrophobic heptad repeat region impairs ETO2-NuRD interaction and function in antagonizing γ-globin/LCR looping. Our results reveal a pivotal role for ETO2 in erythropoiesis and globin gene switching through its repressive role in the LDB1 complex, affecting the transcription factor and epigenetic environment and ultimately restructuring chromatin organization.
Collapse
Affiliation(s)
- Xiang Guo
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Jennifer Plank-Bazinet
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Ivan Krivega
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Ryan K Dale
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50, Room 3154, Bethesda, MD 20892, USA
| |
Collapse
|
38
|
Martin-Trujillo A, Patel N, Richter F, Jadhav B, Garg P, Morton SU, McKean DM, DePalma SR, Goldmuntz E, Gruber D, Kim R, Newburger JW, Porter GA, Giardini A, Bernstein D, Tristani-Firouzi M, Seidman JG, Seidman CE, Chung WK, Gelb BD, Sharp AJ. Rare genetic variation at transcription factor binding sites modulates local DNA methylation profiles. PLoS Genet 2020; 16:e1009189. [PMID: 33216750 PMCID: PMC7679001 DOI: 10.1371/journal.pgen.1009189] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/11/2020] [Indexed: 12/20/2022] Open
Abstract
Although DNA methylation is the best characterized epigenetic mark, the mechanism by which it is targeted to specific regions in the genome remains unclear. Recent studies have revealed that local DNA methylation profiles might be dictated by cis-regulatory DNA sequences that mainly operate via DNA-binding factors. Consistent with this finding, we have recently shown that disruption of CTCF-binding sites by rare single nucleotide variants (SNVs) can underlie cis-linked DNA methylation changes in patients with congenital anomalies. These data raise the hypothesis that rare genetic variation at transcription factor binding sites (TFBSs) might contribute to local DNA methylation patterning. In this work, by combining blood genome-wide DNA methylation profiles, whole genome sequencing-derived SNVs from 247 unrelated individuals along with 133 predicted TFBS motifs derived from ENCODE ChIP-Seq data, we observed an association between the disruption of binding sites for multiple TFs by rare SNVs and extreme DNA methylation values at both local and, to a lesser extent, distant CpGs. While the majority of these changes affected only single CpGs, 24% were associated with multiple outlier CpGs within ±1kb of the disrupted TFBS. Interestingly, disruption of functionally constrained sites within TF motifs lead to larger DNA methylation changes at nearby CpG sites. Altogether, these findings suggest that rare SNVs at TFBS negatively influence TF-DNA binding, which can lead to an altered local DNA methylation profile. Furthermore, subsequent integration of DNA methylation and RNA-Seq profiles from cardiac tissues enabled us to observe an association between rare SNV-directed DNA methylation and outlier expression of nearby genes. In conclusion, our findings not only provide insights into the effect of rare genetic variation at TFBS on shaping local DNA methylation and its consequences on genome regulation, but also provide a rationale to incorporate DNA methylation data to interpret the functional role of rare variants.
Collapse
Affiliation(s)
- Alejandro Martin-Trujillo
- The Mindich Child Health and Development Institute and Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Nihir Patel
- The Mindich Child Health and Development Institute and Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Felix Richter
- The Mindich Child Health and Development Institute and Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Bharati Jadhav
- The Mindich Child Health and Development Institute and Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Paras Garg
- The Mindich Child Health and Development Institute and Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Sarah U. Morton
- Department of Newborn Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - David M. McKean
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Steven R. DePalma
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard University, Boston, Massachusetts, United States of America
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- Department of Pediatrics, University of Pennsylvania Perlman School of Medicine, Philadelphia, PA, United States of America
| | - Dorota Gruber
- Department of Pediatrics, Cohen Children’s Medical Center, Northwell Health, New Hyde Park, NY, Unites States of America
| | - Richard Kim
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jane W. Newburger
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - George A. Porter
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States of America
| | | | - Daniel Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Martin Tristani-Firouzi
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Jonathan G. Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christine E. Seidman
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard University, Boston, Massachusetts, United States of America
| | - Wendy K. Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, United States of America
| | - Bruce D. Gelb
- The Mindich Child Health and Development Institute and Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Andrew J. Sharp
- The Mindich Child Health and Development Institute and Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
39
|
Singbrant S, Mattebo A, Sigvardsson M, Strid T, Flygare J. Prospective isolation of radiation induced erythroid stress progenitors reveals unique transcriptomic and epigenetic signatures enabling increased erythroid output. Haematologica 2020; 105:2561-2571. [PMID: 33131245 PMCID: PMC7604643 DOI: 10.3324/haematol.2019.234542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/02/2020] [Indexed: 11/09/2022] Open
Abstract
Massive expansion of erythroid progenitor cells is essential for surviving anemic stress. Research towards understanding this critical process, referred to as stress-erythropoiesis, has been hampered due to lack of specific marker-combinations enabling analysis of the distinct stress-progenitor cells capable of providing radioprotection and enhanced red blood cell production. Here we present a method for precise identification and in vivo validation of progenitor cells contributing to both steady-state and stress-erythropoiesis, enabling for the first time in-depth molecular characterization of these cells. Differential expression of surface markers CD150, CD9 and Sca1 defines a hierarchy of splenic stress-progenitors during irradiation-induced stress recovery in mice, and provides high-purity isolation of the functional stress-BFU-Es with a 100-fold improved enrichment compared to state-of-the-art. By transplanting purified stress-progenitors expressing the fluorescent protein Kusabira Orange, we determined their kinetics in vivo and demonstrated that CD150+CD9+Sca1- stress-BFU-Es provide a massive but transient radioprotective erythroid wave, followed by multi-lineage reconstitution from CD150+CD9+Sca1+ multi-potent stem/progenitor cells. Whole genome transcriptional analysis revealed that stress-BFU-Es express gene signatures more associated with erythropoiesis and proliferation compared to steady-state BFU-Es, and are BMP-responsive. Evaluation of chromatin accessibility through ATAC sequencing reveals enhanced and differential accessibility to binding sites of the chromatin-looping transcription factor CTCF in stress-BFU-Es compared to steady-state BFU-Es. Our findings offer molecular insight to the unique capacity of stress-BFU-Es to rapidly form erythroid cells in response to anemia and constitute an important step towards identifying novel erythropoiesis stimulating agents.
Collapse
Affiliation(s)
- Sofie Singbrant
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University
| | - Alexander Mattebo
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University
| | - Mikael Sigvardsson
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Tobias Strid
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Johan Flygare
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University
| |
Collapse
|
40
|
Perreault AA, Brown JD, Venters BJ. Erythropoietin Regulates Transcription and YY1 Dynamics in a Pre-established Chromatin Architecture. iScience 2020; 23:101583. [PMID: 33089097 PMCID: PMC7559257 DOI: 10.1016/j.isci.2020.101583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/07/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
The three-dimensional architecture of the genome plays an essential role in establishing and maintaining cell identity. However, the magnitude and temporal kinetics of changes in chromatin structure that arise during cell differentiation remain poorly understood. Here, we leverage a murine model of erythropoiesis to study the relationship between chromatin conformation, the epigenome, and transcription in erythroid cells. We discover that acute transcriptional responses induced by erythropoietin (EPO), the hormone necessary for erythroid differentiation, occur within an invariant chromatin topology. Within this pre-established landscape, Yin Yang 1 (YY1) occupancy dynamically redistributes to sites in proximity of EPO-regulated genes. Using HiChIP, we identify chromatin contacts mediated by H3K27ac and YY1 that are enriched for enhancer-promoter interactions of EPO-responsive genes. Taken together, these data are consistent with an emerging model that rapid, signal-dependent transcription occurs in the context of a pre-established chromatin architecture. EPO induces rapid RNA Pol II response at a key subset of genes YY1 is redistributed in the genome following 1 h EPO stimulation CTCF and YY1 bind different locations pre and post 1 h EPO stimulation E-P loops mediated by H3K27ac are largely invariant in response to EPO
Collapse
Affiliation(s)
- Andrea A Perreault
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN 37232, USA.,Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Jonathan D Brown
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Bryan J Venters
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
41
|
Kim YW, Kang Y, Kang J, Kim A. GATA-1-dependent histone H3K27 acetylation mediates erythroid cell-specific chromatin interaction between CTCF sites. FASEB J 2020; 34:14736-14749. [PMID: 32924169 DOI: 10.1096/fj.202001526r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/31/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
CCCTC-binding factor (CTCF) sites interact with each other in the chromatin environment, establishing chromatin domains. Our previous study showed that interaction between CTCF sites is cell type-specific around the β-globin locus and is dependent on erythroid-specific activator GATA-1. To find out molecular mechanisms of the cell type-specific interaction, we directly inhibited GATA-1 binding to the β-globin enhancers by deleting its binding motifs and found that histone H3K27 acetylation (H3K27ac) was decreased at CTCF sites surrounding the β-globin locus, even though CTCF binding itself was maintained at the sites. Forced H3K27ac by Trichostatin A treatment or CBP/p300 KD affected the interactions between CTCF sites around the β-globin locus without changes in CTCF binding. Analysis of public ChIA-PET data revealed that H3K27ac is higher at CTCF sites forming short interactions than long interactions. GATA-1 was identified as a representative transcription factor that relates with genes present inside the short interactions in erythroid K562 cells. Depletion of GATA-1-reduced H3K27ac at CTCF sites near erythroid-specific enhancers. These results indicate that H3K27ac at CTCF sites is required for cell type-specific chromatin interactions between them. Tissue-specific activator GATA-1 appears to play a role in H3K27ac at CTCF sites in erythroid cells.
Collapse
Affiliation(s)
- Yea Woon Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Korea
| | - Yujin Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Korea
| | - Jin Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Korea
| | - AeRi Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Korea
| |
Collapse
|
42
|
N-terminal domain of the architectural protein CTCF has similar structural organization and ability to self-association in bilaterian organisms. Sci Rep 2020; 10:2677. [PMID: 32060375 PMCID: PMC7021899 DOI: 10.1038/s41598-020-59459-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
CTCF is the main architectural protein found in most of the examined bilaterian organisms. The cluster of the C2H2 zinc-finger domains involved in recognition of long DNA-binding motif is only part of the protein that is evolutionarily conserved, while the N-terminal domain (NTD) has different sequences. Here, we performed biophysical characterization of CTCF NTDs from various species representing all major phylogenetic clades of higher metazoans. With the exception of Drosophilides, the N-terminal domains of CTCFs show an unstructured organization and absence of folded regions in vitro. In contrast, NTDs of Drosophila melanogaster and virilis CTCFs contain unstructured folded regions that form tetramers and dimers correspondingly in vitro. Unexpectedly, most NTDs are able to self-associate in the yeast two-hybrid and co-immunoprecipitation assays. These results suggest that NTDs of CTCFs might contribute to the organization of CTCF-mediated long-distance interactions and chromosomal architecture.
Collapse
|
43
|
Abstract
The Lim domain binding proteins (LDB1 and LDB2 in human and Chip in Drosophila) play critical roles in cell fate decisions through partnership with multiple Lim-homeobox and Lim-only proteins in diverse developmental systems including cardiogenesis, neurogenesis, and hematopoiesis. In mammalian erythroid cells, LDB1 dimerization supports long-range connections between enhancers and genes involved in erythropoiesis, including the β-globin genes. Single-stranded DNA binding proteins (SSBPs) interact specifically with the LDB/Chip conserved domain (LCCD) of LDB proteins and stabilize LDBs by preventing their proteasomal degradation, thus promoting their functions in gene regulation. The structural basis for LDB1 self-interaction and interface with SSBPs is unclear. Here we report a crystal structure of the human LDB1/SSBP2 complex at 2.8-Å resolution. The LDB1 dimerization domain (DD) contains an N-terminal nuclear transport factor 2 (NTF2)-like subdomain and a small helix 4-helix 5 subdomain, which together form the LDB1 dimerization interface. The 2 LCCDs in the symmetric LDB1 dimer flank the core DDs, with each LCCD forming extensive interactions with an SSBP2 dimer. The conserved linker between LDB1 DD and LCCD covers a potential ligand-binding pocket of the LDB1 NTF2-like subdomain and may serve as a regulatory site for LDB1 structure and function. Our structural and biochemical data provide a much-anticipated structural basis for understanding how LDB1 and the LDB1/SSBP interactions form the structural core of diverse complexes mediating cell choice decisions and long-range enhancer-promoter interactions.
Collapse
|
44
|
Small Drosophila zinc finger C2H2 protein with an N-terminal zinc finger-associated domain demonstrates the architecture functions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194446. [PMID: 31706027 DOI: 10.1016/j.bbagrm.2019.194446] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 02/08/2023]
Abstract
Recently, the concept has arisen that a special class of architectural proteins exists, which are responsible not only for global chromosome architecture but also for the local regulation of enhancer-promoter interactions. Here, we describe a new architectural protein, with a total size of only 375 aa, which contains an N-terminal zinc finger-associated domain (ZAD) and a cluster of five zinc finger C2H2 domains at the C-terminus. This new protein, named ZAD and Architectural Function 1 protein (ZAF1 protein), is weakly and ubiquitously expressed, with the highest expression levels observed in oocytes and embryos. The cluster of C2H2 domains recognizes a specific 15-bp consensus site, located predominantly in promoters, near transcription start sites. The expression of ZAF1 by a tissue-specific promoter led to the complete blocking of the eye enhancer when clusters of ZAF1 binding sites flanked the eye enhancer in transgenic lines, suggesting that the loop formed by the ZAF1 protein leads to insulation. The ZAF1 protein also supported long-range interactions between the yeast GAL4 activator and the white promoter in transgenic Drosophila lines. A mutant protein lacking the ZAD failed to block the eye enhancer or to support distance interactions in transgenic lines. Taken together, these results suggest that ZAF1 is a minimal architectural protein that can be used to create a convenient model for studying the mechanisms of distance interactions.
Collapse
|
45
|
Ohneda K, Ohmori S, Yamamoto M. Mouse Tryptase Gene Expression is Coordinately Regulated by GATA1 and GATA2 in Bone Marrow-Derived Mast Cells. Int J Mol Sci 2019; 20:ijms20184603. [PMID: 31533351 PMCID: PMC6770354 DOI: 10.3390/ijms20184603] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022] Open
Abstract
Mast cell tryptases have crucial roles in allergic and inflammatory diseases. The mouse tryptase genes represent a cluster of loci on chromosome 16p3.3. While their functional studies have been extensively performed, transcriptional regulation of tryptase genes is poorly understood. In this study, we examined the molecular basis of the tryptase gene expression in bone marrow-derived mast cells (BMMCs) of C57BL/6 mice and in MEDMC-BRC6 mast cells. The expression of the Tpsb2 and Tpsg1 genes, which reside at the 3′-end of the tryptase locus, is significantly decreased by the reduction of the GATA transcription factors GATA1 or GATA2. Chromatin immunoprecipitation assays have shown that the GATA factors bind at multiple regions within the locus, including 1.0 and 72.8 kb upstream of the Tpsb2 gene, and that GATA1 and GATA2 facilitate each other’s DNA binding activity to these regions. Deletion of the −72.8 kb region by genome editing significantly reduced the Tpsb2 and Tpsg1 mRNA levels in MEDMC-BRC6 cells. Furthermore, binding of CTCF and the cohesin subunit Rad21 was found upstream of the −72.8 kb region and was significantly reduced in the absence of GATA1. These results suggest that mouse tryptase gene expression is coordinately regulated by GATA1 and GATA2 in BMMCs.
Collapse
Affiliation(s)
- Kinuko Ohneda
- Department of Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki 370-0033, Japan;
- Correspondence: ; Tel.: +81-22-274-5990
| | - Shin’ya Ohmori
- Department of Pharmacy, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki 370-0033, Japan;
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8573, Japan;
| |
Collapse
|
46
|
Enhancer long-range contacts: The multi-adaptor protein LDB1 is the tie that binds. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:625-633. [DOI: 10.1016/j.bbagrm.2019.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 11/20/2022]
|
47
|
Magli A, Baik J, Pota P, Cordero CO, Kwak IY, Garry DJ, Love PE, Dynlacht BD, Perlingeiro RCR. Pax3 cooperates with Ldb1 to direct local chromosome architecture during myogenic lineage specification. Nat Commun 2019; 10:2316. [PMID: 31127120 PMCID: PMC6534668 DOI: 10.1038/s41467-019-10318-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
Chromatin looping allows enhancer-bound regulatory factors to influence transcription. Large domains, referred to as topologically associated domains, participate in genome organization. However, the mechanisms underlining interactions within these domains, which control gene expression, are not fully understood. Here we report that activation of embryonic myogenesis is associated with establishment of long-range chromatin interactions centered on Pax3-bound loci. Using mass spectrometry and genomic studies, we identify the ubiquitously expressed LIM-domain binding protein 1 (Ldb1) as the mediator of looping interactions at a subset of Pax3 binding sites. Ldb1 is recruited to Pax3-bound elements independently of CTCF-Cohesin, and is necessary for efficient deposition of H3K4me1 at these sites and chromatin looping. When Ldb1 is deleted in Pax3-expressing cells in vivo, specification of migratory myogenic progenitors is severely impaired. These results highlight Ldb1 requirement for Pax3 myogenic activity and demonstrate how transcription factors can promote formation of sub-topologically associated domain interactions involved in lineage specification.
Collapse
Affiliation(s)
- Alessandro Magli
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - June Baik
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Pruthvi Pota
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Carolina Ortiz Cordero
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Il-Youp Kwak
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Daniel J Garry
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Paul E Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Rita C R Perlingeiro
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
48
|
LHX2- and LDB1-mediated trans interactions regulate olfactory receptor choice. Nature 2019; 565:448-453. [PMID: 30626972 PMCID: PMC6436840 DOI: 10.1038/s41586-018-0845-0] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 12/06/2018] [Indexed: 01/28/2023]
Abstract
The genome is partitioned into topologically associated domains (TADs) and genomic compartments of shared chromatin valance. This architecture is constrained by the DNA polymer, which precludes genic interactions between chromosomes. Here, we report a dramatic divergence from this pattern of nuclear organization that occurs in mouse olfactory sensory neurons (OSNs). In situ HiC on FAC-sorted OSNs and their progenitors shows that olfactory receptor (OR) gene clusters from 18 chromosomes make specific and robust interchromosomal contacts that increase with differentiation. These contacts are orchestrated by intergenic OR enhancers, the Greek Islands, which first contribute to the formation of OR compartments and then form a multi-chromosomal super-enhancer that associates with the single active OR. Greek Island-bound transcription factor Lhx2 and adaptor protein Ldb1 regulate the assembly and maintenance of OR compartments, Greek Island hubs, and OR transcription, providing mechanistic insight and functional support for the role of trans interactions in gene expression.
Collapse
|
49
|
Temporal autoregulation during human PU.1 locus SubTAD formation. Blood 2018; 132:2643-2655. [PMID: 30315124 DOI: 10.1182/blood-2018-02-834721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 10/06/2018] [Indexed: 12/20/2022] Open
Abstract
Epigenetic control of gene expression occurs within discrete spatial chromosomal units called topologically associating domains (TADs), but the exact spatial requirements of most genes are unknown; this is of particular interest for genes involved in cancer. We therefore applied high-resolution chromosomal conformation capture sequencing to map the three-dimensional (3D) organization of the human locus encoding the key myeloid transcription factor PU.1 in healthy monocytes and acute myeloid leukemia (AML) cells. We identified a dynamic ∼75-kb unit (SubTAD) as the genomic region in which spatial interactions between PU.1 gene regulatory elements occur during myeloid differentiation and are interrupted in AML. Within this SubTAD, proper initiation of the spatial chromosomal interactions requires PU.1 autoregulation and recruitment of the chromatin-adaptor protein LDB1 (LIM domain-binding protein 1). However, once these spatial interactions have occurred, LDB1 stabilizes them independently of PU.1 autoregulation. Thus, our data support that PU.1 autoregulates its expression in a "hit-and-run" manner by initiating stable chromosomal loops that result in a transcriptionally active chromatin architecture.
Collapse
|
50
|
Fetal γ-globin genes are regulated by the BGLT3 long noncoding RNA locus. Blood 2018; 132:1963-1973. [PMID: 30150205 DOI: 10.1182/blood-2018-07-862003] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are increasingly being appreciated as participants in regulation of important cellular processes, including transcription. Because lncRNAs are highly cell type specific, they have the potential to contribute to the unique transcriptional repertoire of diverse cells, but underlying mechanisms are unclear. We studied BGLT3, an erythroid lncRNA encoded downstream of Aγ-globin (HBG1). BGLT3 and γ-globin genes are dynamically cotranscribed in erythroid cells in vivo. Deletion of BGLT3 using CRISPR/Cas9 editing shows that it specifically contributes to regulation of γ-globin genes. We used reduction or overexpression of the RNA and inhibition of transcription through the locus by CRISPRi to distinguish functions of the transcript vs the underlying sequence. Transcription of the BGLT3 locus is critical for looping between the γ-globin genes and BGLT3 sequences. In contrast, the BGLT3 transcript is dispensable for γ-globin/BGLT3 looping but interacts with the mediator complex on chromatin. Manipulation of the BGLT3 locus does not compromise γ-globin gene long-range looping interactions with the β-globin locus control region (LCR). These data reveal that BGLT3 regulates γ-globin transcription in a developmental stage-specific fashion together with the LCR by serving as a separate means to increase RNA Pol II density at the γ-globin promoters.
Collapse
|