1
|
Shi Y, Zheng H, Wang T, Zhou S, Zhao S, Li M, Cao B. Targeting KRAS: from metabolic regulation to cancer treatment. Mol Cancer 2025; 24:9. [PMID: 39799325 PMCID: PMC11724471 DOI: 10.1186/s12943-024-02216-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/25/2024] [Indexed: 01/15/2025] Open
Abstract
The Kirsten rat sarcoma viral oncogene homolog (KRAS) protein plays a key pathogenic role in oncogenesis, cancer progression, and metastasis. Numerous studies have explored the role of metabolic alterations in KRAS-driven cancers, providing a scientific rationale for targeting metabolism in cancer treatment. The development of KRAS-specific inhibitors has also garnered considerable attention, partly due to the challenge of acquired treatment resistance. Here, we review the metabolic reprogramming of glucose, glutamine, and lipids regulated by oncogenic KRAS, with an emphasis on recent insights into the relationship between changes in metabolic mechanisms driven by KRAS mutant and related advances in targeted therapy. We also focus on advances in KRAS inhibitor discovery and related treatment strategies in colorectal, pancreatic, and non-small cell lung cancer, including current clinical trials. Therefore, this review provides an overview of the current understanding of metabolic mechanisms associated with KRAS mutation and related therapeutic strategies, aiming to facilitate the understanding of current challenges in KRAS-driven cancer and to support the investigation of therapeutic strategies.
Collapse
Affiliation(s)
- Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
| | - Huiling Zheng
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China
| | - Tianzhen Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction (Peking University), Peking University Third Hospital, Ministry of Education, Beijing, 100191, China
| | - Shengpu Zhou
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
| | - Shiqing Zhao
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
| | - Mo Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Key Laboratory of Assisted Reproduction (Peking University), Peking University Third Hospital, Ministry of Education, Beijing, 100191, China.
| | - Baoshan Cao
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
2
|
Fong SH, Kuenzi BM, Mattson NM, Lee J, Sanchez K, Bojorquez-Gomez A, Ford K, Munson BP, Licon K, Bergendahl S, Shen JP, Kreisberg JF, Mali P, Hager JH, White MA, Ideker T. A multilineage screen identifies actionable synthetic lethal interactions in human cancers. Nat Genet 2025; 57:154-164. [PMID: 39558023 DOI: 10.1038/s41588-024-01971-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/02/2024] [Indexed: 11/20/2024]
Abstract
Cancers are driven by alterations in diverse genes, creating dependencies that can be therapeutically targeted. However, many genetic dependencies have proven inconsistent across tumors. Here we describe SCHEMATIC, a strategy to identify a core network of highly penetrant, actionable genetic interactions. First, fundamental cellular processes are perturbed by systematic combinatorial knockouts across tumor lineages, identifying 1,805 synthetic lethal interactions (95% unreported). Interactions are then analyzed by hierarchical pooling, revealing that half segregate reliably by tissue type or biomarker status (51%) and a substantial minority are penetrant across lineages (34%). Interactions converge on 49 multigene systems, including MAPK signaling and BAF transcriptional regulatory complexes, which become essential on disruption of polymerases. Some 266 interactions translate to robust biomarkers of drug sensitivity, including frequent genetic alterations in the KDM5C/6A histone demethylases, which sensitize to inhibition of TIPARP (PARP7). SCHEMATIC offers a context-aware, data-driven approach to match genetic alterations to targeted therapies.
Collapse
Affiliation(s)
- Samson H Fong
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Brent M Kuenzi
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Nicole M Mattson
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - John Lee
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kyle Sanchez
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ana Bojorquez-Gomez
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kyle Ford
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Brenton P Munson
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Katherine Licon
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sarah Bergendahl
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - John Paul Shen
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jason F Kreisberg
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | | | - Trey Ideker
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Li Q, Geng S, Luo H, Wang W, Mo YQ, Luo Q, Wang L, Song GB, Sheng JP, Xu B. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther 2024; 9:266. [PMID: 39370455 PMCID: PMC11456611 DOI: 10.1038/s41392-024-01953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.
Collapse
Affiliation(s)
- Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shan Geng
- Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, China
| | - Ya-Qi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Guan-Bin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Jian-Peng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
4
|
Awuah WA, Ben-Jaafar A, Karkhanis S, Nkrumah-Boateng PA, Kong JSH, Mannan KM, Shet V, Imran S, Bone M, Boye ANA, Ranganathan S, Shah MH, Abdul-Rahman T, Atallah O. Cancer stem cells in meningiomas: novel insights and therapeutic implications. Clin Transl Oncol 2024:10.1007/s12094-024-03728-6. [PMID: 39316249 DOI: 10.1007/s12094-024-03728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Meningiomas (MGs), which arise from meningothelial cells of the dura mater, represent a significant proportion of primary tumours of the central nervous system (CNS). Despite advances in treatment, the management of malignant meningioma (MMG) remains challenging due to diagnostic, surgical, and resection limitations. Cancer stem cells (CSCs), a subpopulation within tumours capable of self-renewal and differentiation, are highlighted as key markers of tumour growth, metastasis, and treatment resistance. Identifying additional CSC-related markers enhances the precision of malignancy evaluations, enabling advancements in personalised medicine. The review discusses key CSC biomarkers that are associated with high levels of expression, aggressive tumour behaviour, and poor outcomes. Recent molecular research has identified CSC-related biomarkers, including Oct-4, Sox2, NANOG, and CD133, which help maintain cellular renewal, proliferation, and drug resistance in MGs. This study highlights new therapeutic strategies that could improve patient prognosis with more durable tumour regression. The use of combination therapies, such as hydroxyurea alongside diltiazem, suggests more efficient and effective MG management compared to monotherapy. Signalling pathways such as NOTCH and hedgehog also offer additional avenues for therapeutic development. CRISPR/Cas9 technology has also been employed to create meningioma models, uncovering pathways related to cell growth and proliferation. Since the efficacy of traditional therapies is limited in most cases due to resistance mechanisms in CSCs, further studies on the biology of CSCs are warranted to develop therapeutic interventions that are likely to be effective in MG. Consequently, improved diagnostic approaches may lead to personalised treatment plans tailored to the specific needs of each patient.
Collapse
Affiliation(s)
| | - Adam Ben-Jaafar
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | - Jonathan Sing Huk Kong
- School of Medicine, College of Medical & Veterinary Life Sciences, University of Glasgow, Glasgow, UK
| | - Krishitha Meenu Mannan
- School of Medicine, Queen's University Belfast, Dentistry & Biomedical Sciences, Belfast, UK
| | - Vallabh Shet
- University of Connecticut New Britain Program, New Britain, Connecticut, USA
| | - Shahzeb Imran
- School of Medicine, Queen's University Belfast, Dentistry & Biomedical Sciences, Belfast, UK
| | - Matan Bone
- Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | | | | | | | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
5
|
Mathur S, Srivastava P, Srivastava A, Rai NK, Abbas S, Kumar A, Tiwari M, Sharma LK. Regulation of metastatic potential by drug repurposing and mitochondrial targeting in colorectal cancer cells. BMC Cancer 2024; 24:323. [PMID: 38459456 PMCID: PMC10921801 DOI: 10.1186/s12885-024-12064-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Increased mitochondrial activities contributing to cancer cell proliferation, invasion, and metastasis have been reported in different cancers; however, studies on the therapeutic targeting of mitochondria in regulating cell proliferation and invasiveness are limited. Because mitochondria are believed to have evolved through bacterial invasion in mammalian cells, antibiotics could provide an alternative approach to target mitochondria, especially in cancers with increased mitochondrial activities. In this study, we investigated the therapeutic potential of bacteriostatic antibiotics in regulating the growth potential of colorectal cancer (CRC) cells, which differ in their metastatic potential and mitochondrial functions. METHODS A combination of viability, cell migration, and spheroid formation assays was used to measure the effect on metastatic potential. The effect on mitochondrial mechanisms was investigated by measuring mitochondrial DNA copy number by qPCR, biogenesis (by qPCR and immunoblotting), and functions by measuring reactive oxygen species, membrane potential, and ATP using standard methods. In addition, the effect on assembly and activities of respiratory chain (RC) complexes was determined using blue native gel electrophoresis and in-gel assays, respectively). Changes in metastatic and cell death signaling were measured by immunoblotting with specific marker proteins and compared between CRC cells. RESULTS Both tigecycline and tetracycline effectively reduced the viability, migration, and spheroid-forming capacity of highly metastatic CRC cells. This increased sensitivity was attributed to reduced mtDNA content, mitochondrial biogenesis, ATP content, membrane potential, and increased oxidative stress. Specifically, complex I assembly and activity were significantly inhibited by these antibiotics in high-metastatic cells. Significant down-regulation in the expression of mitochondrial-mediated survival pathways, such as phospho-AKT, cMYC, phospho-SRC, and phospho-FAK, and upregulation in cell death (apoptosis and autophagy) were observed, which contributed to the enhanced sensitivity of highly metastatic CRC cells toward these antibiotics. In addition, the combined treatment of the CRC chemotherapeutic agent oxaliplatin with tigecycline/tetracycline at physiological concentrations effectively sensitized these cells at early time points. CONCLUSION Altogether, our study reports that bacterial antibiotics, such as tigecycline and tetracycline, target mitochondrial functions specifically mitochondrial complex I architecture and activity and would be useful in combination with cancer chemotherapeutics for high metastatic conditions.
Collapse
Affiliation(s)
- Shashank Mathur
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Bareli Road, (U.P.), Lucknow, 226014, India
| | - Pransu Srivastava
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Bareli Road, (U.P.), Lucknow, 226014, India
| | - Anubhav Srivastava
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Bareli Road, (U.P.), Lucknow, 226014, India
| | - Neeraj Kumar Rai
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Bareli Road, (U.P.), Lucknow, 226014, India
| | - Sabiya Abbas
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Bareli Road, (U.P.), Lucknow, 226014, India
| | - Ashok Kumar
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Bareli Road, (U.P.), Lucknow, 226014, India
| | - Meenakshi Tiwari
- Department of Biochemistry, All India Institute of Medical Sciences, Patna Bihar, 801507, India
| | - Lokendra Kumar Sharma
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Rae Bareli Road, (U.P.), Lucknow, 226014, India.
| |
Collapse
|
6
|
Tepeli YI, Seale C, Gonçalves JP. ELISL: early-late integrated synthetic lethality prediction in cancer. Bioinformatics 2024; 40:btad764. [PMID: 38113447 PMCID: PMC11616771 DOI: 10.1093/bioinformatics/btad764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/06/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023] Open
Abstract
MOTIVATION Anti-cancer therapies based on synthetic lethality (SL) exploit tumour vulnerabilities for treatment with reduced side effects, by targeting a gene that is jointly essential with another whose function is lost. Computational prediction is key to expedite SL screening, yet existing methods are vulnerable to prevalent selection bias in SL data and reliant on cancer or tissue type-specific omics, which can be scarce. Notably, sequence similarity remains underexplored as a proxy for related gene function and joint essentiality. RESULTS We propose ELISL, Early-Late Integrated SL prediction with forest ensembles, using context-free protein sequence embeddings and context-specific omics from cell lines and tissue. Across eight cancer types, ELISL showed superior robustness to selection bias and recovery of known SL genes, as well as promising cross-cancer predictions. Co-occurring mutations in a BRCA gene and ELISL-predicted pairs from the HH, FGF, WNT, or NEIL gene families were associated with longer patient survival times, revealing therapeutic potential. AVAILABILITY AND IMPLEMENTATION Data: 10.6084/m9.figshare.23607558 & Code: github.com/joanagoncalveslab/ELISL.
Collapse
Affiliation(s)
- Yasin I Tepeli
- Pattern Recognition & Bioinformatics, Department of Intelligent
Systems, Faculty EEMCS, Delft University of Technology, Delft, The Netherlands
| | - Colm Seale
- Pattern Recognition & Bioinformatics, Department of Intelligent
Systems, Faculty EEMCS, Delft University of Technology, Delft, The Netherlands
- Holland Proton Therapy Center (HollandPTC), Delft, The Netherlands
| | - Joana P Gonçalves
- Pattern Recognition & Bioinformatics, Department of Intelligent
Systems, Faculty EEMCS, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
7
|
Roy S, Das A, Bairagi A, Das D, Jha A, Srivastava AK, Chatterjee N. Mitochondria act as a key regulatory factor in cancer progression: Current concepts on mutations, mitochondrial dynamics, and therapeutic approach. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108490. [PMID: 38460864 DOI: 10.1016/j.mrrev.2024.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
The diversified impacts of mitochondrial function vs. dysfunction have been observed in almost all disease conditions including cancers. Mitochondria play crucial roles in cellular homeostasis and integrity, however, mitochondrial dysfunctions influenced by alterations in the mtDNA can disrupt cellular balance. Many external stimuli or cellular defects that cause cellular integrity abnormalities, also impact mitochondrial functions. Imbalances in mitochondrial activity can initiate and lead to accumulations of genetic mutations and can promote the processes of tumorigenesis, progression, and survival. This comprehensive review summarizes epigenetic and genetic alterations that affect the functionality of the mitochondria, with considerations of cellular metabolism, and as influenced by ethnicity. We have also reviewed recent insights regarding mitochondrial dynamics, miRNAs, exosomes that play pivotal roles in cancer promotion, and the impact of mitochondrial dynamics on immune cell mechanisms. The review also summarizes recent therapeutic approaches targeting mitochondria in anti-cancer treatment strategies.
Collapse
Affiliation(s)
- Sraddhya Roy
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Ananya Das
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Aparajita Bairagi
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Debangshi Das
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Ashna Jha
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Amit Kumar Srivastava
- CSIR-IICB Translational Research Unit Of Excellence, CN-6, Salt Lake, Sector - V, Kolkata 700091, India
| | - Nabanita Chatterjee
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India.
| |
Collapse
|
8
|
Zhang L, He W, Fu R, Wang S, Chen Y, Xu H. Guide-specific loss of efficiency and off-target reduction with Cas9 variants. Nucleic Acids Res 2023; 51:9880-9893. [PMID: 37615574 PMCID: PMC10570041 DOI: 10.1093/nar/gkad702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
High-fidelity clustered regularly interspaced palindromic repeats (CRISPR)-associated protein 9 (Cas9) variants have been developed to reduce the off-target effects of CRISPR systems at a cost of efficiency loss. To systematically evaluate the efficiency and off-target tolerance of Cas9 variants in complex with different single guide RNAs (sgRNAs), we applied high-throughput viability screens and a synthetic paired sgRNA-target system to assess thousands of sgRNAs in combination with two high-fidelity Cas9 variants HiFi and LZ3. Comparing these variants against wild-type SpCas9, we found that ∼20% of sgRNAs are associated with a significant loss of efficiency when complexed with either HiFi or LZ3. The loss of efficiency is dependent on the sequence context in the seed region of sgRNAs, as well as at positions 15-18 in the non-seed region that interacts with the REC3 domain of Cas9, suggesting that the variant-specific mutations in the REC3 domain account for the loss of efficiency. We also observed various degrees of sequence-dependent off-target reduction when different sgRNAs are used in combination with the variants. Given these observations, we developed GuideVar, a transfer learning-based computational framework for the prediction of on-target efficiency and off-target effects with high-fidelity variants. GuideVar facilitates the prioritization of sgRNAs in the applications with HiFi and LZ3, as demonstrated by the improvement of signal-to-noise ratios in high-throughput viability screens using these high-fidelity variants.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei He
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rongjie Fu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shuyue Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Han Xu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
9
|
Behnam B, Taghizadeh-Hesary F. Mitochondrial Metabolism: A New Dimension of Personalized Oncology. Cancers (Basel) 2023; 15:4058. [PMID: 37627086 PMCID: PMC10452105 DOI: 10.3390/cancers15164058] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Energy is needed by cancer cells to stay alive and communicate with their surroundings. The primary organelles for cellular metabolism and energy synthesis are mitochondria. Researchers recently proved that cancer cells can steal immune cells' mitochondria using nanoscale tubes. This finding demonstrates the dependence of cancer cells on normal cells for their living and function. It also denotes the importance of mitochondria in cancer cells' biology. Emerging evidence has demonstrated how mitochondria are essential for cancer cells to survive in the harsh tumor microenvironments, evade the immune system, obtain more aggressive features, and resist treatments. For instance, functional mitochondria can improve cancer resistance against radiotherapy by scavenging the released reactive oxygen species. Therefore, targeting mitochondria can potentially enhance oncological outcomes, according to this notion. The tumors' responses to anticancer treatments vary, ranging from a complete response to even cancer progression during treatment. Therefore, personalized cancer treatment is of crucial importance. So far, personalized cancer treatment has been based on genomic analysis. Evidence shows that tumors with high mitochondrial content are more resistant to treatment. This paper illustrates how mitochondrial metabolism can participate in cancer resistance to chemotherapy, immunotherapy, and radiotherapy. Pretreatment evaluation of mitochondrial metabolism can provide additional information to genomic analysis and can help to improve personalized oncological treatments. This article outlines the importance of mitochondrial metabolism in cancer biology and personalized treatments.
Collapse
Affiliation(s)
- Babak Behnam
- Department of Regulatory Affairs, Amarex Clinical Research, NSF International, Germantown, MD 20874, USA
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran 1445613131, Iran
- Department of Radiation Oncology, Iran University of Medical Sciences, Tehran 1445613131, Iran
| |
Collapse
|
10
|
Awah CU, Glemaud Y, Levine F, Yang K, Ansary A, Dong F, Ash L, Zhang J, Ogunwobi OO. Destabilized 3'UTR elements therapeutically degrade ERBB2 mRNA in drug-resistant ERBB2+ cancer models. Front Genet 2023; 14:1184600. [PMID: 37359373 PMCID: PMC10287955 DOI: 10.3389/fgene.2023.1184600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Breast, lung, and colorectal cancer resistance to molecular targeted therapy is a major challenge that unfavorably impacts clinical outcomes leading to hundreds of thousands of deaths annually. In ERBB2+ cancers regardless of the tissue of origin, many ERBB2+ cancers are resistant to ERBB2-targeted therapy. We discovered that ERBB2+ cancer cells are enriched with poly U sequences on their 3'UTR which are mRNA-stabilizing sequences. We developed a novel technology, in which we engineered these ERBB2 mRNA-stabilizing sequences to unstable forms that successfully overwrote and outcompeted the endogenous ERBB2 mRNA-encoded message and degraded ERBB2 transcripts which led to the loss of the protein across multiple cancer cell types both in the wildtype and drug-resistance settings in vitro and in vivo, offering a unique safe novel modality to control ERBB2 mRNA and other pervasive oncogenic signals where current targeted therapies fail.
Collapse
Affiliation(s)
- Chidiebere U. Awah
- Department of Biological Sciences, Hunter College of The City University of New York, New York City, NY, United States
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Yana Glemaud
- Department of Biological Sciences, Hunter College of The City University of New York, New York City, NY, United States
| | - Fayola Levine
- Department of Biological Sciences, Hunter College of The City University of New York, New York City, NY, United States
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Kiseok Yang
- Department of Biological Sciences, Hunter College of The City University of New York, New York City, NY, United States
| | - Afrin Ansary
- Department of Biological Sciences, Hunter College of The City University of New York, New York City, NY, United States
| | - Fu Dong
- Department of Biological Sciences, Hunter College of The City University of New York, New York City, NY, United States
| | - Leonard Ash
- Department of Biological Sciences, Hunter College of The City University of New York, New York City, NY, United States
| | - Junfei Zhang
- Department of Pathology and Cell Biology, Department of System Biology, Columbia University Medical Center, New York, NY, United States
| | - Olorunseun O. Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York City, NY, United States
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
11
|
Meng H, Nan M, Li Y, Ding Y, Yin Y, Zhang M. Application of CRISPR-Cas9 gene editing technology in basic research, diagnosis and treatment of colon cancer. Front Endocrinol (Lausanne) 2023; 14:1148412. [PMID: 37020597 PMCID: PMC10067930 DOI: 10.3389/fendo.2023.1148412] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Colon cancer is the fourth leading cause of cancer death worldwide, and its progression is accompanied by a complex array of genetic variations. CRISPR/Cas9 can identify new drug-resistant or sensitive mutations in colon cancer, and can use gene editing technology to develop new therapeutic targets and provide personalized treatments, thereby significantly improving the treatment of colon cancer patients. CRISPR/Cas9 systems are driving advances in biotechnology. RNA-directed Cas enzymes have accelerated the pace of basic research and led to clinical breakthroughs. This article reviews the rapid development of CRISPR/Cas in colon cancer, from gene editing to transcription regulation, gene knockout, genome-wide CRISPR tools, therapeutic targets, stem cell genomics, immunotherapy, metabolism-related genes and inflammatory bowel disease. In addition, the limitations and future development of CRISPR/Cas9 in colon cancer studies are reviewed. In conclusion, this article reviews the application of CRISPR-Cas9 gene editing technology in basic research, diagnosis and treatment of colon cancer.
Collapse
Affiliation(s)
- Hui Meng
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Mingzhi Zhang, ; Hui Meng,
| | - Manman Nan
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yizhen Li
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Ding
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuhui Yin
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Mingzhi Zhang, ; Hui Meng,
| |
Collapse
|
12
|
Chellappan DK, Paudel KR, Tan NW, Cheong KS, Khoo SSQ, Seow SM, Chellian J, Candasamy M, Patel VK, Arora P, Singh PK, Singh SK, Gupta G, Oliver BG, Hansbro PM, Dua K. Targeting the mitochondria in chronic respiratory diseases. Mitochondrion 2022; 67:15-37. [PMID: 36176212 DOI: 10.1016/j.mito.2022.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/28/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022]
Abstract
Mitochondria are one of the basic essential components for eukaryotic life survival. It is also the source of respiratory ATP. Recently published studies have demonstrated that mitochondria may have more roles to play aside from energy production. There is an increasing body of evidence which suggest that mitochondrial activities involved in normal and pathological states contribute to significant impact to the lung airway morphology and epithelial function in respiratory diseases such as asthma, COPD, and lung cancer. This review summarizes the pathophysiological pathways involved in asthma, COPD, lung cancer and highlights potential treatment strategies that target the malfunctioning mitochondria in such ailments. Mitochondria are responsive to environmental stimuli such as infection, tobacco smoke, and inflammation, which are essential in the pathogenesis of respiratory diseases. They may affect mitochondrial shape, protein production and ultimately cause dysfunction. The impairment of mitochondrial function has downstream impact on the cytosolic components, calcium control, response towards oxidative stress, regulation of genes and proteins and metabolic activities. Several novel compounds and alternative medicines that target mitochondria in asthma and chronic lung diseases have been discussed here. Moreover, mitochondrial enzymes or proteins that may serve as excellent therapeutic targets in COPD are also covered. The role of mitochondria in respiratory diseases is gaining much attention and mitochondria-based treatment strategies and personalized medicine targeting the mitochondria may materialize in the near future. Nevertheless, more in-depth studies are urgently needed to validate the advantages and efficacy of drugs that affect mitochondria in pathological states.
Collapse
Affiliation(s)
- Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia.
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Nian Wan Tan
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Ka Seng Cheong
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Samantha Sert Qi Khoo
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Su Min Seow
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Vyoma K Patel
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Poonam Arora
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India; Department of Pharmacognosy and Phytochemistry, SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia.
| | - Kamal Dua
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
13
|
Ben-Mahmoud A, Jun KR, Gupta V, Shastri P, de la Fuente A, Park Y, Shin KC, Kim CA, da Cruz AD, Pinto IP, Minasi LB, Silva da Cruz A, Faivre L, Callier P, Racine C, Layman LC, Kong IK, Kim CH, Kim WY, Kim HG. A rigorous in silico genomic interrogation at 1p13.3 reveals 16 autosomal dominant candidate genes in syndromic neurodevelopmental disorders. Front Mol Neurosci 2022; 15:979061. [PMID: 36277487 PMCID: PMC9582330 DOI: 10.3389/fnmol.2022.979061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Genome-wide chromosomal microarray is extensively used to detect copy number variations (CNVs), which can diagnose microdeletion and microduplication syndromes. These small unbalanced chromosomal structural rearrangements ranging from 1 kb to 10 Mb comprise up to 15% of human mutations leading to monogenic or contiguous genomic disorders. Albeit rare, CNVs at 1p13.3 cause a variety of neurodevelopmental disorders (NDDs) including development delay (DD), intellectual disability (ID), autism, epilepsy, and craniofacial anomalies (CFA). Most of the 1p13.3 CNV cases reported in the pre-microarray era encompassed a large number of genes and lacked the demarcating genomic coordinates, hampering the discovery of positional candidate genes within the boundaries. In this study, we present four subjects with 1p13.3 microdeletions displaying DD, ID, autism, epilepsy, and CFA. In silico comparative genomic mapping with three previously reported subjects with CNVs and 22 unreported DECIPHER CNV cases has resulted in the identification of four different sub-genomic loci harboring five positional candidate genes for DD, ID, and CFA at 1p13.3. Most of these genes have pathogenic variants reported, and their interacting genes are involved in NDDs. RT-qPCR in various human tissues revealed a high expression pattern in the brain and fetal brain, supporting their functional roles in NDDs. Interrogation of variant databases and interacting protein partners led to the identification of another set of 11 potential candidate genes, which might have been dysregulated by the position effect of these CNVs at 1p13.3. Our studies define 1p13.3 as a genomic region harboring 16 NDD candidate genes and underscore the critical roles of small CNVs in in silico comparative genomic mapping for disease gene discovery. Our candidate genes will help accelerate the isolation of pathogenic heterozygous variants from exome/genome sequencing (ES/GS) databases.
Collapse
Affiliation(s)
- Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Kyung Ran Jun
- Department of Laboratory Medicine, Inje University Haeundae Paik Hospital, Busan, South Korea
| | - Vijay Gupta
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Pinang Shastri
- Department of Cardiovascular Medicine, Cape Fear Valley Medical Center, Fayetteville, NC, United States
| | - Alberto de la Fuente
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Kyung Chul Shin
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Chong Ae Kim
- Faculdade de Medicina, Unidade de Genética do Instituto da Criança – Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Aparecido Divino da Cruz
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Irene Plaza Pinto
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Lysa Bernardes Minasi
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Alex Silva da Cruz
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Laurence Faivre
- Inserm UMR 1231 GAD, Genetics of Developmental Disorders, Université de Bourgogne-Franche Comté, Dijon, France
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d’Enfants, Dijon, France
| | - Patrick Callier
- UMR 1231 GAD, Inserm – Université Bourgogne-Franche Comté, Dijon, France
| | - Caroline Racine
- UMR 1231 GAD, Inserm – Université Bourgogne-Franche Comté, Dijon, France
| | - Lawrence C. Layman
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, United States
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, United States
| | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, South Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, South Korea
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
- *Correspondence: Hyung-Goo Kim,
| |
Collapse
|
14
|
Imkeller K, Ambrosi G, Klemm N, Claveras Cabezudo A, Henkel L, Huber W, Boutros M. Metabolic balance in colorectal cancer is maintained by optimal Wnt signaling levels. Mol Syst Biol 2022; 18:e10874. [PMID: 35904277 PMCID: PMC9336172 DOI: 10.15252/msb.202110874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 12/24/2022] Open
Abstract
Wnt pathways are important for the modulation of tissue homeostasis, and their deregulation is linked to cancer development. Canonical Wnt signaling is hyperactivated in many human colorectal cancers due to genetic alterations of the negative Wnt regulator APC. However, the expression levels of Wnt-dependent targets vary between tumors, and the mechanisms of carcinogenesis concomitant with this Wnt signaling dosage have not been understood. In this study, we integrate whole-genome CRISPR/Cas9 screens with large-scale multi-omic data to delineate functional subtypes of cancer. We engineer APC loss-of-function mutations and thereby hyperactivate Wnt signaling in cells with low endogenous Wnt activity and find that the resulting engineered cells have an unfavorable metabolic equilibrium compared with cells which naturally acquired Wnt hyperactivation. We show that the dosage level of oncogenic Wnt hyperactivation impacts the metabolic equilibrium and the mitochondrial phenotype of a given cell type in a context-dependent manner. These findings illustrate the impact of context-dependent genetic interactions on cellular phenotypes of a central cancer driver mutation and expand our understanding of quantitative modulation of oncogenic signaling in tumorigenesis.
Collapse
Affiliation(s)
- Katharina Imkeller
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg University, Heidelberg, Germany.,European Molecular Biology Laboratory, Heidelberg, Germany
| | - Giulia Ambrosi
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg University, Heidelberg, Germany
| | - Nancy Klemm
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg University, Heidelberg, Germany.,Brandenburg University of Technology, Cottbus-Senftenberg, Germany
| | - Ainara Claveras Cabezudo
- European Molecular Biology Laboratory, Heidelberg, Germany.,Heidelberg University, Heidelberg, Germany
| | - Luisa Henkel
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg University, Heidelberg, Germany
| | - Wolfgang Huber
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg University, Heidelberg, Germany
| |
Collapse
|
15
|
Bosdriesz E, Fernandes Neto JM, Sieber A, Bernards R, Blüthgen N, Wessels LF. Identifying mutant-specific multi-drug combinations using Comparative Network Reconstruction. iScience 2022; 25:104760. [PMID: 35992065 PMCID: PMC9385552 DOI: 10.1016/j.isci.2022.104760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/30/2022] [Accepted: 07/11/2022] [Indexed: 10/28/2022] Open
|
16
|
Roman M, Hwang E, Sweet-Cordero EA. Synthetic Vulnerabilities in the KRAS Pathway. Cancers (Basel) 2022; 14:cancers14122837. [PMID: 35740503 PMCID: PMC9221492 DOI: 10.3390/cancers14122837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 02/06/2023] Open
Abstract
Mutations in Kristen Rat Sarcoma viral oncogene (KRAS) are among the most frequent gain-of-function genetic alterations in human cancer. Most KRAS-driven cancers depend on its sustained expression and signaling. Despite spectacular recent success in the development of inhibitors targeting specific KRAS alleles, the discovery and utilization of effective directed therapies for KRAS-mutant cancers remains a major unmet need. One potential approach is the identification of KRAS-specific synthetic lethal vulnerabilities. For example, while KRAS-driven oncogenesis requires the activation of a number of signaling pathways, it also triggers stress response pathways in cancer cells that could potentially be targeted for therapeutic benefit. This review will discuss how the latest advances in functional genomics and the development of more refined models have demonstrated the existence of molecular pathways that can be exploited to uncover synthetic lethal interactions with a promising future as potential clinical treatments in KRAS-mutant cancers.
Collapse
|
17
|
Moser R, Gurley KE, Nikolova O, Qin G, Joshi R, Mendez E, Shmulevich I, Ashley A, Grandori C, Kemp CJ. Synthetic lethal kinases in Ras/p53 mutant squamous cell carcinoma. Oncogene 2022; 41:3355-3369. [PMID: 35538224 DOI: 10.1038/s41388-022-02330-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/31/2022]
Abstract
The oncogene Ras and the tumor suppressor gene p53 are frequently co-mutated in human cancer and mutations in Ras and p53 can cooperate to generate a more malignant cell state. To discover novel druggable targets for cancers carrying co-mutations in Ras and p53, we performed arrayed, kinome focused siRNA and oncology drug phenotypic screening utilizing a set of syngeneic Ras mutant squamous cell carcinoma (SCC) cell lines that also carried co-mutations in selected p53 pathway genes. These cell lines were derived from SCCs from carcinogen-treated inbred mice which harbored germline deletions or mutations in Trp53, p19Arf, Atm, or Prkdc. Both siRNA and drug phenotypic screening converge to implicate the phosphoinositol kinases, receptor tyrosine kinases, MAP kinases, as well as cell cycle and DNA damage response genes as targetable dependencies in SCC. Differences in functional kinome profiles between Ras mutant cell lines reflect incomplete penetrance of Ras synthetic lethal kinases and indicate that co-mutations cause a rewiring of survival pathways in Ras mutant tumors. This study describes the functional kinomic landscape of Ras/p53 mutant chemically-induced squamous cell carcinoma in both the baseline unperturbed state and following DNA damage and nominates candidate therapeutic targets, including the Nek4 kinase, for further development.
Collapse
Affiliation(s)
- Russell Moser
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kay E Gurley
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Olga Nikolova
- Division of Oncological Sciences, Oregon Health and Science University, Portland, OR, USA
| | | | - Rashmi Joshi
- New Mexico State University, Las Cruces, NM, USA
| | | | | | | | | | - Christopher J Kemp
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
18
|
Dutchak K, Garnett S, Nicoll M, de Bruyns A, Dankort D. MOB3A Bypasses BRAF and RAS Oncogene-Induced Senescence by Engaging the Hippo Pathway. Mol Cancer Res 2022; 20:770-781. [PMID: 35046109 DOI: 10.1158/1541-7786.mcr-21-0767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 12/30/2022]
Abstract
Oncogenic activation of the RTK-RAS-RAF-MEK-ERK pathway occurs in approximately 25% of all human cancers, yet activated RAS, BRAF, or MEK expression in primary cells leads to a prolonged and predominantly irreversible cell-cycle arrest termed oncogene-induced senescence (OIS). OIS acts as an intrinsic tumor suppressor mechanism, serving as a barrier to tumor progression. Screening a library of activated kinases and kinase-regulatory proteins we identified MOB3A, a Mps-one binder coactivator (MOB) protein family member, whose constitutive expression permits proliferation and suppresses senescence in response to oncogenic RAS and BRAF signals. MOB3A is one of seven human MOB genes, which are highly conserved from yeast to human and that function to activate the Hippo pathway kinases (MST/LATS) or NDR kinases through direct association. Here we show that within the MOB family of genes MOB3A and C are unique in their ability to allow primary cell proliferation in the face of sustained oncogene signaling. Unlike the canonical MOB1A/B proteins, MOB3A inhibits Hippo/MST/LATS signaling and constitutive MOB3A membrane localization phenocopies OIS bypass seen with elevated YAP expression. Moreover, inhibition of MOB3 family member expression results in decreased proliferation and tumor growth of cancer cell lines. Together these data identify MOB3A's role in bypass of oncogene induced senescence and its role as a Hippo pathway inhibitor. IMPLICATIONS These results suggest that MOB3 targeting to re-engage the Hippo pathway, or direct targeting of YAP/TAZ, may be viable therapeutic strategies potential for RAS-pathway driven tumours.
Collapse
Affiliation(s)
- Kendall Dutchak
- Department of Biology, McGill University, Stewart Biology, Montréal QC, Canada
| | - Sam Garnett
- Department of Biology, McGill University, Stewart Biology, Montréal QC, Canada
| | - Mary Nicoll
- Department of Biology, McGill University, Stewart Biology, Montréal QC, Canada
| | - Angeline de Bruyns
- Department of Biology, McGill University, Stewart Biology, Montréal QC, Canada
| | - David Dankort
- Department of Biology, McGill University, Stewart Biology, Montréal QC, Canada.,Goodman Cancer Research Centre, Montréal QC, Canada
| |
Collapse
|
19
|
Hou J, He Z, Liu T, Chen D, Wang B, Wen Q, Zheng X. Evolution of Molecular Targeted Cancer Therapy: Mechanisms of Drug Resistance and Novel Opportunities Identified by CRISPR-Cas9 Screening. Front Oncol 2022; 12:755053. [PMID: 35372044 PMCID: PMC8970599 DOI: 10.3389/fonc.2022.755053] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
Molecular targeted therapy has revolutionized the landscape of cancer treatment due to better therapeutic responses and less systemic toxicity. However, therapeutic resistance is a major challenge in clinical settings that hinders continuous clinical benefits for cancer patients. In this regard, unraveling the mechanisms of drug resistance may identify new druggable genetic alterations for molecularly targeted therapies, thus contributing to improved therapeutic efficacies. The recent rapid development of novel methodologies including CRISPR-Cas9 screening technology and patient-derived models provides powerful tools to dissect the underlying mechanisms of resistance to targeted cancer therapies. In this review, we updated therapeutic targets undergoing preclinical and clinical evaluation for various cancer types. More importantly, we provided comprehensive elaboration of high throughput CRISPR-Cas9 screening in deciphering potential mechanisms of unresponsiveness to molecularly targeted therapies, which will shed light on the discovery of novel opportunities for designing next-generation anti-cancer drugs.
Collapse
Affiliation(s)
- Jue Hou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zongsheng He
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tian Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Dongfeng Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bin Wang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xi Zheng
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
20
|
Genome-wide CRISPR/Cas9 screening identifies determinant of panobinostat sensitivity in acute lymphoblastic leukemia. Blood Adv 2022; 6:2496-2509. [PMID: 35192680 PMCID: PMC9043932 DOI: 10.1182/bloodadvances.2021006152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/08/2022] [Indexed: 11/29/2022] Open
Abstract
Genome-wide CRISPR/Cas9 screening in the ALL cell line identified mitochondrial activity as the driver of panobinostat resistance. SIRT1 expression sensitized ALL to panobinostat through activating mitochondrial activity and the mitochondria-related apoptosis pathway.
Epigenetic alterations, including histone acetylation, contribute to the malignant transformation of hematopoietic cells and disease progression, as well as the emergence of chemotherapy resistance. Targeting histone acetylation provides new strategies for the treatment of cancers. As a pan-histone deacetylase inhibitor, panobinostat has been approved by the US Food and Drug Administration for the treatment of multiple myeloma and has shown promising antileukemia effects in acute lymphoblastic leukemia (ALL). However, the underlying drug resistance mechanism in ALL remains largely unknown. Using genome-wide Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas)9 (CRISPR/Cas9) screening, we identified mitochondrial activity as the driver of panobinostat resistance in ALL. Mechanistically, ectopic SIRT1 expression activated mitochondrial activity and sensitized ALL to panobinostat through activating mitochondria-related apoptosis pathway. Meanwhile, the transcription level of SIRT1 was significantly associated with panobinostat sensitivity across diverse tumor types and thus could be a potential biomarker of panobinostat response in cancers. Our data suggest that patients with higher SIRT1 expression in cancer cells might benefit from panobinostat treatment, supporting the implementation of combinatorial therapy with SIRT1 or mitochondrial activators to overcome panobinostat resistance.
Collapse
|
21
|
Metabolic synthetic lethality by targeting NOP56 and mTOR in KRAS-mutant lung cancer. J Exp Clin Cancer Res 2022; 41:25. [PMID: 35039048 PMCID: PMC8762933 DOI: 10.1186/s13046-022-02240-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 01/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background Oncogenic KRAS mutations are prevalent in human cancers, but effective treatment of KRAS-mutant malignancies remains a major challenge in the clinic. Increasing evidence suggests that aberrant metabolism plays a central role in KRAS-driven oncogenic transformation. The aim of this study is to identify selective metabolic dependency induced by mutant KRAS and to exploit it for the treatment of the disease. Method We performed an integrated analysis of RNAi- and CRISPR-based functional genomic datasets (n = 5) to identify novel genes selectively required for KRAS-mutant cancer. We further screened a customized library of chemical inhibitors for candidates that are synthetic lethal with NOP56 depletion. Functional studies were carried out by genetic knockdown using siRNAs and shRNAs, knockout using CRISPR/Cas9, and/or pharmacological inhibition, followed by cell viability and apoptotic assays. Protein expression was determined by Western blot. Metabolic ROS was measured by flow cytometry-based quantification. Results We demonstrated that nucleolar protein 5A (NOP56), a core component of small nucleolar ribonucleoprotein complexes (snoRNPs) with an essential role in ribosome biogenesis, confers a metabolic dependency by regulating ROS homeostasis in KRAS-mutant lung cancer cells and that NOP56 depletion causes synthetic lethal susceptibility to inhibition of mTOR. Mechanistically, cancer cells with reduced NOP56 are subjected to higher levels of ROS and rely on mTOR signaling to balance oxidative stress and survive. We also discovered that IRE1α-mediated unfolded protein response (UPR) regulates this process by activating mTOR through p38 MAPK. Consequently, co-targeting of NOP56 and mTOR profoundly enhances KRAS-mutant tumor cell death in vitro and in vivo. Conclusions Our findings reveal a previously unrecognized mechanism in which NOP56 and mTOR cooperate to play a homeostatic role in the response to oxidative stress and suggest a new rationale for the treatment of KRAS-mutant cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02240-5.
Collapse
|
22
|
Sun F, Lu X, Chen G, Zhang X, Jiang K, Li J. A Novel Synthetic Lethality Prediction Method Based on Bidirectional Attention Learning. LECTURE NOTES IN COMPUTER SCIENCE 2022:356-363. [DOI: 10.1007/978-3-031-13829-4_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Criscuolo D, Avolio R, Matassa DS, Esposito F. Targeting Mitochondrial Protein Expression as a Future Approach for Cancer Therapy. Front Oncol 2021; 11:797265. [PMID: 34888254 PMCID: PMC8650000 DOI: 10.3389/fonc.2021.797265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022] Open
Abstract
Extensive metabolic remodeling is a fundamental feature of cancer cells. Although early reports attributed such remodeling to a loss of mitochondrial functions, it is now clear that mitochondria play central roles in cancer development and progression, from energy production to synthesis of macromolecules, from redox modulation to regulation of cell death. Biosynthetic pathways are also heavily affected by the metabolic rewiring, with protein synthesis dysregulation at the hearth of cellular transformation. Accumulating evidence in multiple organisms shows that the metabolic functions of mitochondria are tightly connected to protein synthesis, being assembly and activity of respiratory complexes highly dependent on de novo synthesis of their components. In turn, protein synthesis within the organelle is tightly connected with the cytosolic process. This implies an entire network of interactions and fine-tuned regulations that build up a completely under-estimated level of complexity. We are now only preliminarily beginning to reconstitute such regulatory level in human cells, and to perceive its role in diseases. Indeed, disruption or alterations of these connections trigger conditions of proteotoxic and energetic stress that could be potentially exploited for therapeutic purposes. In this review, we summarize the available literature on the coordinated regulation of mitochondrial and cytosolic mRNA translation, and their effects on the integrity of the mitochondrial proteome and functions. Finally, we highlight the potential held by this topic for future research directions and for the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Daniela Criscuolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Rosario Avolio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
24
|
Karim L, Kosmider B, Bahmed K. Mitochondrial ribosomal stress in lung diseases. Am J Physiol Lung Cell Mol Physiol 2021; 322:L507-L517. [PMID: 34873929 DOI: 10.1152/ajplung.00078.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are involved in a variety of critical cellular functions, and their impairment drives cell injury. The mitochondrial ribosome (mitoribosome) is responsible for the protein synthesis of mitochondrial DNA encoded genes. These proteins are involved in oxidative phosphorylation, respiration, and ATP production required in the cell. Mitoribosome components originate from both mitochondrial and nuclear genomes. Their dysfunction can be caused by impaired mitochondrial protein synthesis or mitoribosome misassembly, leading to a decline in mitochondrial translation. This decrease can trigger mitochondrial ribosomal stress and contribute to pulmonary cell injury, death, and diseases. This review focuses on the contribution of the impaired mitoribosome structural components and function to respiratory disease pathophysiology. We present recent findings in the fields of lung cancer, chronic obstructive pulmonary disease, interstitial lung disease, and asthma. We also include reports on the mitoribosome dysfunction in pulmonary hypertension, high altitude pulmonary edema, bacterial and viral infections. Studies of the mitoribosome alterations in respiratory diseases can lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Loukmane Karim
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA, United States.,Center for Inflammation and Lung Research, Temple University, Philadelphia, PA, United States
| | - Beata Kosmider
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA, United States.,Center for Inflammation and Lung Research, Temple University, Philadelphia, PA, United States.,Department of Biomedical Education and Data Science, Temple University, Philadelphia, PA, United States
| | - Karim Bahmed
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA, United States.,Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, United States
| |
Collapse
|
25
|
Mitochondrial Plasticity Promotes Resistance to Sorafenib and Vulnerability to STAT3 Inhibition in Human Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13236029. [PMID: 34885140 PMCID: PMC8657239 DOI: 10.3390/cancers13236029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Enhanced expression of mitochondrial ribosomal proteins and marked reprogramming of the mitochondrial network are associated with sorafenib resistance in human cell lines and hepatocarcinoma patients, providing novel actionable targets for increasing therapeutic efficacy. Abstract The multi-kinase inhibitor sorafenib is a primary treatment modality for advanced-stage hepatocellular carcinoma (HCC). However, the therapeutic benefits are short-lived due to innate and acquired resistance. Here, we examined how HCC cells respond to sorafenib and adapt to continuous and prolonged exposure to the drug. Sorafenib-adapted HCC cells show a profound reprogramming of mitochondria function and marked activation of genes required for mitochondrial protein translation and biogenesis. Mitochondrial ribosomal proteins and components of translation and import machinery are increased in sorafenib-resistant cells and sorafenib-refractory HCC patients show similar alterations. Sorafenib-adapted cells also exhibited increased serine 727 phosphorylated (pSer727) STAT3, the prevalent form in mitochondria, suggesting that STAT3 might be an actionable target to counteract resistance. Consistently, a small-molecule STAT3 inhibitor reduces pSer727, reverts mitochondrial alterations, and enhances the response to sorafenib in resistant cells. These results sustain the importance of mitochondria plasticity in response to sorafenib and identify a clinically actionable strategy for improving the treatment efficacy in HCC patients.
Collapse
|
26
|
Bender G, Fahrioglu Yamaci R, Taneri B. CRISPR and KRAS: a match yet to be made. J Biomed Sci 2021; 28:77. [PMID: 34781949 PMCID: PMC8591907 DOI: 10.1186/s12929-021-00772-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/01/2021] [Indexed: 11/14/2022] Open
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats) systems are one of the most fascinating tools of the current era in molecular biotechnology. With the ease that they provide in genome editing, CRISPR systems generate broad opportunities for targeting mutations. Specifically in recent years, disease-causing mutations targeted by the CRISPR systems have been of main research interest; particularly for those diseases where there is no current cure, including cancer. KRAS mutations remain untargetable in cancer. Mutations in this oncogene are main drivers in common cancers, including lung, colorectal and pancreatic cancers, which are severe causes of public health burden and mortality worldwide, with no cure at hand. CRISPR systems provide an opportunity for targeting cancer causing mutations. In this review, we highlight the work published on CRISPR applications targeting KRAS mutations directly, as well as CRISPR applications targeting mutations in KRAS-related molecules. In specific, we focus on lung, colorectal and pancreatic cancers. To date, the limited literature on CRISPR applications targeting KRAS, reflect promising results. Namely, direct targeting of mutant KRAS variants using various CRISPR systems resulted in significant decrease in cell viability and proliferation in vitro, as well as tumor growth inhibition in vivo. In addition, the effect of mutant KRAS knockdown, via CRISPR, has been observed to exert regulatory effects on the downstream molecules including PI3K, ERK, Akt, Stat3, and c-myc. Molecules in the KRAS pathway have been subjected to CRISPR applications more often than KRAS itself. The aim of using CRISPR systems in these studies was mainly to analyze the therapeutic potential of possible downstream and upstream effectors of KRAS, as well as to discover further potential molecules. Although there have been molecules identified to have such potential in treatment of KRAS-driven cancers, a substantial amount of effort is still needed to establish treatment strategies based on these discoveries. We conclude that, at this point in time, despite being such a powerful directed genome editing tool, CRISPR remains to be underutilized for targeting KRAS mutations in cancer. Efforts channelled in this direction, might pave the way in solving the long-standing challenge of targeting the KRAS mutations in cancers.
Collapse
Affiliation(s)
- Guzide Bender
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Rezan Fahrioglu Yamaci
- Faculty of Applied Natural Sciences and Cultural Studies, Ostbayerische Technische Hochschule, Regensburg, Germany
| | - Bahar Taneri
- Department of Biological Sciences, Faculty of Arts and Sciences, Eastern Mediterranean University, via Mersin-10, Famagusta, 99628, North Cyprus, Turkey.
- Department of Genetics and Cell Biology, Faculty of Health, Medicine and Life Sciences, Institute for Public Health Genomics, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
27
|
A systematic genome-wide mapping of oncogenic mutation selection during CRISPR-Cas9 genome editing. Nat Commun 2021; 12:6512. [PMID: 34764240 PMCID: PMC8586238 DOI: 10.1038/s41467-021-26788-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022] Open
Abstract
Recent studies have reported that genome editing by CRISPR–Cas9 induces a DNA damage response mediated by p53 in primary cells hampering their growth. This could lead to a selection of cells with pre-existing p53 mutations. In this study, employing an integrated computational and experimental framework, we systematically investigated the possibility of selection of additional cancer driver mutations during CRISPR-Cas9 gene editing. We first confirm the previous findings of the selection for pre-existing p53 mutations by CRISPR-Cas9. We next demonstrate that similar to p53, wildtype KRAS may also hamper the growth of Cas9-edited cells, potentially conferring a selective advantage to pre-existing KRAS-mutant cells. These selective effects are widespread, extending across cell-types and methods of CRISPR-Cas9 delivery and the strength of selection depends on the sgRNA sequence and the gene being edited. The selection for pre-existing p53 or KRAS mutations may confound CRISPR-Cas9 screens in cancer cells and more importantly, calls for monitoring patients undergoing CRISPR-Cas9-based editing for clinical therapeutics for pre-existing p53 and KRAS mutations. CRISPR-Cas9 gene editing can induce a p53 mediated damage response. Here the authors investigate the possibility of selection of pre-existing cancer driver mutations during CRISPR-Cas9 knockout based gene editing and identify KRAS mutants that may confer a selected advantage to edited cells.
Collapse
|
28
|
Adeyemi RO, Willis NA, Elia AEH, Clairmont C, Li S, Wu X, D'Andrea AD, Scully R, Elledge SJ. The Protexin complex counters resection on stalled forks to promote homologous recombination and crosslink repair. Mol Cell 2021; 81:4440-4456.e7. [PMID: 34597596 PMCID: PMC8588999 DOI: 10.1016/j.molcel.2021.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/11/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023]
Abstract
Protection of stalled replication forks is critical to genomic stability. Using genetic and proteomic analyses, we discovered the Protexin complex containing the ssDNA binding protein SCAI and the DNA polymerase REV3. Protexin is required specifically for protecting forks stalled by nucleotide depletion, fork barriers, fragile sites, and DNA inter-strand crosslinks (ICLs), where it promotes homologous recombination and repair. Protexin loss leads to ssDNA accumulation and profound genomic instability in response to ICLs. Protexin interacts with RNA POL2, and both oppose EXO1's resection of DNA on forks remodeled by the FANCM translocase activity. This pathway acts independently of BRCA/RAD51-mediated fork stabilization, and cells with BRCA2 mutations were dependent on SCAI for survival. These data suggest that Protexin and its associated factors establish a new fork protection pathway that counteracts fork resection in part through a REV3 polymerase-dependent resynthesis mechanism of excised DNA, particularly at ICL stalled forks.
Collapse
Affiliation(s)
- Richard O Adeyemi
- Department of Genetics, Harvard Medical School, and Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Nicholas A Willis
- Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Andrew E H Elia
- Department of Genetics, Harvard Medical School, and Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Connor Clairmont
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Shibo Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xiaohua Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Ralph Scully
- Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School, and Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Naxerova K, Di Stefano B, Makofske JL, Watson EV, de Kort MA, Martin TD, Dezfulian M, Ricken D, Wooten EC, Kuroda MI, Hochedlinger K, Elledge SJ. Integrated loss- and gain-of-function screens define a core network governing human embryonic stem cell behavior. Genes Dev 2021; 35:1527-1547. [PMID: 34711655 PMCID: PMC8559676 DOI: 10.1101/gad.349048.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022]
Abstract
In this Resource/Methodology, Naxerova et al. describe an integrated genome-scale loss- and gain-of-function screening approach to identify genetic networks governing embryonic stem cell proliferation and differentiation into the three germ layers. They identify a deep link between pluripotency maintenance and survival by showing that genetic alterations that cause pluripotency dissolution simultaneously increase apoptosis resistance, and their results show the power of integrated multilayer genetic screening for the robust mapping of complex genetic networks. Understanding the genetic control of human embryonic stem cell function is foundational for developmental biology and regenerative medicine. Here we describe an integrated genome-scale loss- and gain-of-function screening approach to identify genetic networks governing embryonic stem cell proliferation and differentiation into the three germ layers. We identified a deep link between pluripotency maintenance and survival by showing that genetic alterations that cause pluripotency dissolution simultaneously increase apoptosis resistance. We discovered that the chromatin-modifying complex SAGA and in particular its subunit TADA2B are central regulators of pluripotency, survival, growth, and lineage specification. Joint analysis of all screens revealed that genetic alterations that broadly inhibit differentiation across multiple germ layers drive proliferation and survival under pluripotency-maintaining conditions and coincide with known cancer drivers. Our results show the power of integrated multilayer genetic screening for the robust mapping of complex genetic networks.
Collapse
Affiliation(s)
- Kamila Naxerova
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Center for Systems Biology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Bruno Di Stefano
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Jessica L Makofske
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Emma V Watson
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Marit A de Kort
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Timothy D Martin
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mohammed Dezfulian
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dominik Ricken
- Center for Systems Biology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Eric C Wooten
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mitzi I Kuroda
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Stephen J Elledge
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
30
|
ACE: a probabilistic model for characterizing gene-level essentiality in CRISPR screens. Genome Biol 2021; 22:278. [PMID: 34556174 PMCID: PMC8459512 DOI: 10.1186/s13059-021-02491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/08/2021] [Indexed: 11/10/2022] Open
Abstract
High-throughput CRISPR-Cas9 knockout screens are widely used to evaluate gene essentiality in cancer research. Here we introduce a probabilistic modeling framework, Analysis of CRISPR-based Essentiality (ACE), that accounts for multiple sources of variation in CRISPR-Cas9 screens and enables new statistical tests for essentiality. We show using simulations that ACE is effective at predicting both absolute and differential essentiality. When applied to publicly available data, ACE identifies known and novel candidates for genotype-specific essentiality, including RNA m6-A methyltransferases that exhibit enhanced essentiality in the presence of inactivating TP53 mutations. ACE provides a robust framework for identifying genes responsive to subtype-specific therapeutic targeting.
Collapse
|
31
|
Doubleday PF, Fornelli L, Ntai I, Kelleher NL. Oncogenic KRAS creates an aspartate metabolism signature in colorectal cancer cells. FEBS J 2021; 288:6683-6699. [PMID: 34227245 DOI: 10.1111/febs.16111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 12/27/2022]
Abstract
Oncogenic mutations in the KRAS gene are found in 30-50% of colorectal cancers (CRC), and recent findings have demonstrated independent and nonredundant roles for wild-type and mutant KRAS alleles in governing signaling and metabolism. Here, we quantify proteomic changes manifested by KRAS mutation and KRAS allele loss in isogenic cell lines. We show that the expression of KRASG13D upregulates aspartate metabolizing proteins including PCK1, PCK2, ASNS, and ASS1. Furthermore, differential expression analyses of transcript-level data from CRC tumors identified the upregulation of urea cycle enzymes in CRC. We find that expression of ASS1 supports colorectal cancer cell proliferation and promotes tumor formation in vitro. We show that loss of ASS1 can be rescued with high levels of several metabolites.
Collapse
Affiliation(s)
- Peter F Doubleday
- Department of Molecular Biosciences and Chemistry, Northwestern University, Evanston, IL, USA
| | - Luca Fornelli
- Department of Biology, Department of Biology, University of Oklahoma, Norman, OK, USA
| | | | - Neil L Kelleher
- Department of Molecular Biosciences and Chemistry, Northwestern University, Evanston, IL, USA
| |
Collapse
|
32
|
Lai LP, Brel V, Sharma K, Frappier J, Le-Henanf N, Vivet B, Muzet N, Schell E, Morales R, Rooney E, Basse N, Yi M, Lacroix F, Holderfield M, Englaro W, Marcireau C, Debussche L, Nissley DV, McCormick F. Sensitivity of Oncogenic KRAS-Expressing Cells to CDK9 Inhibition. SLAS DISCOVERY 2021; 26:922-932. [PMID: 33896272 DOI: 10.1177/24725552211008853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oncogenic forms of KRAS proteins are known to be drivers of pancreatic, colorectal, and lung cancers. The goal of this study is to identify chemical leads that inhibit oncogenic KRAS signaling. We first developed an isogenic panel of mouse embryonic fibroblast (MEF) cell lines that carry wild-type RAS, oncogenic KRAS, and oncogenic BRAF. We validated these cell lines by screening against a tool compound library of 1402 annotated inhibitors in an adenosine triphosphate (ATP)-based cell viability assay. Subsequently, this MEF panel was used to conduct a high-throughput phenotypic screen in a cell viability assay with a proprietary compound library. All 126 compounds that exhibited a selective activity against mutant KRAS were selected and prioritized based on their activities in secondary assays. Finally, five chemical clusters were chosen. They had specific activity against SW620 and LS513 over Colo320 colorectal cancer cell lines. In addition, they had no effects on BRAFV600E, MEK1, extracellular signal-regulated kinase 2 (ERK2), phosphoinositide 3-kinase alpha (PI3Kα), AKT1, or mammalian target of rapamycin (mTOR) as tested in in vitro enzymatic activity assays. Biophysical assays demonstrated that these compounds did not bind directly to KRAS. We further identified the mechanism of action and showed that three of them have CDK9 inhibitory activity. In conclusion, we have developed and validated an isogenic MEF panel that was used successfully to identify RAS oncogenic or wild-type allele-specific vulnerabilities. Furthermore, we identified sensitivity of oncogenic KRAS-expressing cells to CDK9 inhibitors, which warrants future studies of treating KRAS-driven cancers with CDK9 inhibitors.
Collapse
Affiliation(s)
- Lick Pui Lai
- National Cancer Institute (NCI) RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, USA
| | - Viviane Brel
- Sanofi, Open Innovation Access Platform, Strasbourg, France
| | - Kanika Sharma
- National Cancer Institute (NCI) RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, USA
| | - Julia Frappier
- Sanofi, Open Innovation Access Platform, Strasbourg, France
| | | | - Bertrand Vivet
- Sanofi, Open Innovation Access Platform, Strasbourg, France
| | - Nicolas Muzet
- Sanofi, Open Innovation Access Platform, Strasbourg, France
| | - Emilie Schell
- Sanofi, Open Innovation Access Platform, Strasbourg, France
| | - Renaud Morales
- Sanofi, Open Innovation Access Platform, Strasbourg, France
| | - Eamonn Rooney
- Sanofi, Open Innovation Access Platform, Strasbourg, France
| | - Nicolas Basse
- Sanofi, Open Innovation Access Platform, Strasbourg, France
| | - Ming Yi
- National Cancer Institute (NCI) RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, USA
| | | | - Matthew Holderfield
- National Cancer Institute (NCI) RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, USA
| | - Walter Englaro
- Sanofi, Open Innovation Access Platform, Strasbourg, France
| | | | | | - Dwight V Nissley
- National Cancer Institute (NCI) RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, USA
| | - Frank McCormick
- National Cancer Institute (NCI) RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, USA.,UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
33
|
Long Y, Wu M, Liu Y, Zheng J, Kwoh CK, Luo J, Li X. Graph contextualized attention network for predicting synthetic lethality in human cancers. Bioinformatics 2021; 37:2432-2440. [PMID: 33609108 DOI: 10.1093/bioinformatics/btab110] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Synthetic Lethality (SL) plays an increasingly critical role in the targeted anticancer therapeutics. In addition, identifying SL interactions can create opportunities to selectively kill cancer cells without harming normal cells. Given the high cost of wet-lab experiments, in silico prediction of SL interactions as an alternative can be a rapid and cost-effective way to guide the experimental screening of candidate SL pairs. Several matrix factorization-based methods have recently been proposed for human SL prediction. However, they are limited in capturing the dependencies of neighbors. In addition, it is also highly challenging to make accurate predictions for new genes without any known SL partners. RESULTS In this work, we propose a novel graph contextualized attention network named GCATSL to learn gene representations for SL prediction. First, we leverage different data sources to construct multiple feature graphs for genes, which serve as the feature inputs for our GCATSL method. Second, for each feature graph, we design node-level attention mechanism to effectively capture the importance of local and global neighbors and learn local and global representations for the nodes, respectively. We further exploit multi-layer perceptron (MLP) to aggregate the original features with the local and global representations and then derive the feature-specific representations. Third, to derive the final representations, we design feature-level attention to integrate feature-specific representations by taking the importance of different feature graphs into account. Extensive experimental results on three datasets under different settings demonstrated that our GCATSL model outperforms 14 state-of-the-art methods consistently. In addition, case studies further validated the effectiveness of our proposed model in identifying novel SL pairs. AVAILABILITY Python codes and dataset are freely available on GitHub (https://github.com/longyahui/GCATSL) and Zenodo (https://zenodo.org/record/4522679) under the MIT license.
Collapse
Affiliation(s)
- Yahui Long
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410000, China.,School of Computer Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Min Wu
- Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), 138632, Singapore
| | - Yong Liu
- Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly, Nanyang Technological University, 639798, Singapore
| | - Jie Zheng
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410000, China
| | - Xiaoli Li
- Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), 138632, Singapore
| |
Collapse
|
34
|
Wong KKL, Liao JZ, Shih CRY, Harden N, Verheyen EM. Hyperpolarized mitochondria accumulate in Drosophila Hipk-overexpressing cells to drive tumor-like growth. J Cell Sci 2020; 133:jcs250944. [PMID: 33199523 PMCID: PMC7746665 DOI: 10.1242/jcs.250944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022] Open
Abstract
Both functional and dysfunctional mitochondria are known to underlie tumor progression. Here, we establish use of the proto-oncogene Drosophila Homeodomain-interacting protein kinase (Hipk) as a new tool to address this paradox. We find that, in Hipk-overexpressing tumor-like cells, mitochondria accumulate and switch from fragmented to highly fused interconnected morphologies. Moreover, elevated Hipk promotes mitochondrial membrane hyperpolarization. These mitochondrial changes are at least in part driven by the upregulation of Myc. Furthermore, we show that the altered mitochondrial energetics, but not morphology, is required for Hipk-induced tumor-like growth, because knockdown of pdsw (also known as nd-pdsw; NDUFB10 in mammals; a Complex I subunit) abrogates the growth. Knockdown of ATPsynβ (a Complex V subunit), which produces higher levels of reactive oxygen species (ROS) than pdsw knockdown, instead synergizes with Hipk to potentiate JNK activation and the downstream induction of matrix metalloproteinases. Accordingly, ATPsynβ knockdown suppresses Hipk-induced tumor-like growth only when ROS scavengers are co-expressed. Together, our work presents an in vivo tumor model featuring the accumulation of hyperfused and hyperpolarized mitochondria, and reveals respiratory complex subunit-dependent opposing effects on tumorigenic outcomes.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Kenneth Kin Lam Wong
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Jenny Zhe Liao
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Claire R Y Shih
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
35
|
Sundara Rajan S, Ludwig KR, Hall KL, Jones TL, Caplen NJ. Cancer biology functional genomics: From small RNAs to big dreams. Mol Carcinog 2020; 59:1343-1361. [PMID: 33043516 PMCID: PMC7702050 DOI: 10.1002/mc.23260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022]
Abstract
The year 2021 marks the 20th anniversary of the first publications reporting the discovery of the gene silencing mechanism, RNA interference (RNAi) in mammalian cells. Along with the many studies that delineated the proteins and substrates that form the RNAi pathway, this finding changed our understanding of the posttranscriptional regulation of mammalian gene expression. Furthermore, the development of methods that exploited the RNAi pathway began the technological revolution that eventually enabled the interrogation of mammalian gene function-from a single gene to the whole genome-in only a few days. The needs of the cancer research community have driven much of this progress. In this perspective, we highlight milestones in the development and application of RNAi-based methods to study carcinogenesis. We discuss how RNAi-based functional genetic analysis of exemplar tumor suppressors and oncogenes furthered our understanding of cancer initiation and progression and explore how such studies formed the basis of genome-wide scale efforts to identify cancer or cancer-type specific vulnerabilities, including studies conducted in vivo. Furthermore, we examine how RNAi technologies have revealed new cancer-relevant molecular targets and the implications for cancer of the first RNAi-based drugs. Finally, we discuss the future of functional genetic analysis, highlighting the increasing availability of complementary approaches to analyze cancer gene function.
Collapse
Affiliation(s)
- Soumya Sundara Rajan
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| | - Katelyn R. Ludwig
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| | - Katherine L. Hall
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| | - Tamara L. Jones
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| | - Natasha J. Caplen
- Functional Genetics Section, Genetics BranchCenter for Cancer Research, National Cancer Institute, NIHBethesdaMarylandUSA
| |
Collapse
|
36
|
Abstract
![]()
The biological responses to dienone compounds with a 1,5-diaryl-3-oxo-1,4-pentadienyl
pharmacophore have been studied extensively. Despite their expected
general thiol reactivity, these compounds display considerable degrees
of tumor cell selectivity. Here we review in vitro and preclinical studies of dienone compounds including b-AP15, VLX1570,
RA-9, RA-190, EF24, HO-3867, and MCB-613. A common property of these
compounds is their targeting of the ubiquitin–proteasome system
(UPS), known to be essential for the viability of tumor cells. Gene
expression profiling experiments have shown induction of responses
characteristic of UPS inhibition, and experiments using cellular reporter
proteins have shown that proteasome inhibition is associated with
cell death. Other mechanisms of action such as reactivation of mutant
p53, stimulation of steroid receptor coactivators, and induction of
protein cross-linking have also been described. Although unsuitable
as biological probes due to widespread reactivity, dienone compounds
are cytotoxic to apoptosis-resistant tumor cells and show activity
in animal tumor models.
Collapse
Affiliation(s)
- Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stig Linder
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, SE-58183 Linköping, Sweden.,Department of Oncology and Pathology, Karolinska Institute, SE-17176 Stockholm, Sweden
| |
Collapse
|
37
|
Frattaruolo L, Brindisi M, Curcio R, Marra F, Dolce V, Cappello AR. Targeting the Mitochondrial Metabolic Network: A Promising Strategy in Cancer Treatment. Int J Mol Sci 2020; 21:ijms21176014. [PMID: 32825551 PMCID: PMC7503725 DOI: 10.3390/ijms21176014] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic reprogramming is a hallmark of cancer, which implements a profound metabolic rewiring in order to support a high proliferation rate and to ensure cell survival in its complex microenvironment. Although initial studies considered glycolysis as a crucial metabolic pathway in tumor metabolism reprogramming (i.e., the Warburg effect), recently, the critical role of mitochondria in oncogenesis, tumor progression, and neoplastic dissemination has emerged. In this report, we examined the main mitochondrial metabolic pathways that are altered in cancer, which play key roles in the different stages of tumor progression. Furthermore, we reviewed the function of important molecules inhibiting the main mitochondrial metabolic processes, which have been proven to be promising anticancer candidates in recent years. In particular, inhibitors of oxidative phosphorylation (OXPHOS), heme flux, the tricarboxylic acid cycle (TCA), glutaminolysis, mitochondrial dynamics, and biogenesis are discussed. The examined mitochondrial metabolic network inhibitors have produced interesting results in both preclinical and clinical studies, advancing cancer research and emphasizing that mitochondrial targeting may represent an effective anticancer strategy.
Collapse
|
38
|
Yuan J, Dong X, Yap J, Hu J. The MAPK and AMPK signalings: interplay and implication in targeted cancer therapy. J Hematol Oncol 2020; 13:113. [PMID: 32807225 PMCID: PMC7433213 DOI: 10.1186/s13045-020-00949-4] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is characterized as a complex disease caused by coordinated alterations of multiple signaling pathways. The Ras/RAF/MEK/ERK (MAPK) signaling is one of the best-defined pathways in cancer biology, and its hyperactivation is responsible for over 40% human cancer cases. To drive carcinogenesis, this signaling promotes cellular overgrowth by turning on proliferative genes, and simultaneously enables cells to overcome metabolic stress by inhibiting AMPK signaling, a key singular node of cellular metabolism. Recent studies have shown that AMPK signaling can also reversibly regulate hyperactive MAPK signaling in cancer cells by phosphorylating its key components, RAF/KSR family kinases, which affects not only carcinogenesis but also the outcomes of targeted cancer therapies against the MAPK signaling. In this review, we will summarize the current proceedings of how MAPK-AMPK signalings interplay with each other in cancer biology, as well as its implications in clinic cancer treatment with MAPK inhibition and AMPK modulators, and discuss the exploitation of combinatory therapies targeting both MAPK and AMPK as a novel therapeutic intervention.
Collapse
Affiliation(s)
- Jimin Yuan
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Geriatric Department, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Xiaoduo Dong
- Shenzhen People's Hospital, 1017 Dongmen North Road, Shenzhen, 518020, China
| | - Jiajun Yap
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Jiancheng Hu
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore.
| |
Collapse
|
39
|
Chakraborti S, Bheemireddy S, Srinivasan N. Repurposing drugs against the main protease of SARS-CoV-2: mechanism-based insights supported by available laboratory and clinical data. Mol Omics 2020; 16:474-491. [PMID: 32696772 DOI: 10.1039/d0mo00057d] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ongoing global pandemic of COVID-19 has brought life to almost a standstill with the implementation of lockdowns and social distancing as some of the preventive measures in the absence of any approved specific therapeutic interventions. To combat this crisis, research communities worldwide are falling back on the existing repertoire of approved/investigational drugs to probe into their anti-coronavirus properties. In this report, we describe our unique efforts in identifying potential drugs that could be repurposed against the main protease of SARS-CoV-2 (SARS-CoV-2 Mpro). To achieve this goal, we have primarily exploited the principles of 'neighbourhood behaviour' in the protein 3D (workflow-I) and chemical 2D structural space (workflow-II) coupled with docking simulations and insights into the possible modes of action of the selected candidates from the available literature. This integrative approach culminated in prioritizing 29 potential repurpose-able agents (20 approved drugs and 9 investigational molecules) against SARS-CoV-2 Mpro. Apart from the approved/investigational anti-viral drugs, other notable hits include anti-bacterial, anti-inflammatory, anti-cancer and anti-coagulant drugs. Our analysis suggests that some of these drugs have the potential to simultaneously modulate the functions of viral proteins and the host response system. Interestingly, many of these identified candidates (12 molecules from workflow-I and several molecules, belonging to the chemical classes of alkaloids, tetracyclines, peptidomimetics, from workflow-II) are suggested to possess anti-viral properties, which is supported by laboratory and clinical data. Furthermore, this work opens a new avenue of research to probe into the molecular mechanism of action of many drugs, which are known to demonstrate anti-viral activity but are so far not known to target viral proteases.
Collapse
Affiliation(s)
- Sohini Chakraborti
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India.
| | | | | |
Collapse
|
40
|
Liu Y, Shi Y. Mitochondria as a target in cancer treatment. MedComm (Beijing) 2020; 1:129-139. [PMID: 34766113 PMCID: PMC8491233 DOI: 10.1002/mco2.16] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yu'e Liu
- Tongji University Cancer Center Shanghai Tenth People's Hospital of Tongji University School of Medicine Tongji University Shanghai China
| | - Yufeng Shi
- Tongji University Cancer Center Shanghai Tenth People's Hospital of Tongji University School of Medicine Tongji University Shanghai China
- Center for Brain and Spinal Cord Research School of Medicine Tongji University Shanghai China
| |
Collapse
|
41
|
Michlits G, Jude J, Hinterndorfer M, de Almeida M, Vainorius G, Hubmann M, Neumann T, Schleiffer A, Burkard TR, Fellner M, Gijsbertsen M, Traunbauer A, Zuber J, Elling U. Multilayered VBC score predicts sgRNAs that efficiently generate loss-of-function alleles. Nat Methods 2020; 17:708-716. [PMID: 32514112 DOI: 10.1038/s41592-020-0850-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
Abstract
CRISPR-Cas9 screens have emerged as a transformative approach to systematically probe gene functions. The quality and success of these screens depends on the frequencies of loss-of-function alleles, particularly in negative-selection screens widely applied for probing essential genes. Using optimized screening workflows, we performed essentialome screens in cancer cell lines and embryonic stem cells and achieved dropout efficiencies that could not be explained by common frameshift frequencies. We find that these superior effect sizes are mainly determined by the impact of in-frame mutations on protein function, which can be predicted based on amino acid composition and conservation. We integrate protein features into a 'Bioscore' and fuse it with improved predictors of single-guide RNA activity and indel formation to establish a score that captures all relevant processes in CRISPR-Cas9 mutagenesis. This Vienna Bioactivity CRISPR score (www.vbc-score.org) outperforms previous prediction tools and enables the selection of sgRNAs that effectively produce loss-of-function alleles.
Collapse
Affiliation(s)
- Georg Michlits
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Julian Jude
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Matthias Hinterndorfer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Melanie de Almeida
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Gintautas Vainorius
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Maria Hubmann
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Tobias Neumann
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Alexander Schleiffer
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Thomas Rainer Burkard
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Michaela Fellner
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Max Gijsbertsen
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Anna Traunbauer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
- Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria.
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
42
|
Lord CJ, Quinn N, Ryan CJ. Integrative analysis of large-scale loss-of-function screens identifies robust cancer-associated genetic interactions. eLife 2020; 9:e58925. [PMID: 32463358 PMCID: PMC7289598 DOI: 10.7554/elife.58925] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Genetic interactions, including synthetic lethal effects, can now be systematically identified in cancer cell lines using high-throughput genetic perturbation screens. Despite this advance, few genetic interactions have been reproduced across multiple studies and many appear highly context-specific. Here, by developing a new computational approach, we identified 220 robust driver-gene associated genetic interactions that can be reproduced across independent experiments and across non-overlapping cell line panels. Analysis of these interactions demonstrated that: (i) oncogene addiction effects are more robust than oncogene-related synthetic lethal effects; and (ii) robust genetic interactions are enriched among gene pairs whose protein products physically interact. Exploiting the latter observation, we used a protein-protein interaction network to identify robust synthetic lethal effects associated with passenger gene alterations and validated two new synthetic lethal effects. Our results suggest that protein-protein interaction networks can be used to prioritise therapeutic targets that will be more robust to tumour heterogeneity.
Collapse
Affiliation(s)
- Christopher J Lord
- Breast Cancer Now Toby Robins Research Centre and Cancer Research UK Gene Function Laboratory, Institute of Cancer ResearchLondonUnited Kingdom
| | - Niall Quinn
- School of Computer Science and Systems Biology Ireland, University College DublinDublinIreland
| | - Colm J Ryan
- School of Computer Science and Systems Biology Ireland, University College DublinDublinIreland
| |
Collapse
|
43
|
Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, O'Meara MJ, Guo JZ, Swaney DL, Tummino TA, Huettenhain R, Kaake RM, Richards AL, Tutuncuoglu B, Foussard H, Batra J, Haas K, Modak M, Kim M, Haas P, Polacco BJ, Braberg H, Fabius JM, Eckhardt M, Soucheray M, Bennett MJ, Cakir M, McGregor MJ, Li Q, Naing ZZC, Zhou Y, Peng S, Kirby IT, Melnyk JE, Chorba JS, Lou K, Dai SA, Shen W, Shi Y, Zhang Z, Barrio-Hernandez I, Memon D, Hernandez-Armenta C, Mathy CJP, Perica T, Pilla KB, Ganesan SJ, Saltzberg DJ, Ramachandran R, Liu X, Rosenthal SB, Calviello L, Venkataramanan S, Liboy-Lugo J, Lin Y, Wankowicz SA, Bohn M, Sharp PP, Trenker R, Young JM, Cavero DA, Hiatt J, Roth TL, Rathore U, Subramanian A, Noack J, Hubert M, Roesch F, Vallet T, Meyer B, White KM, Miorin L, Rosenberg OS, Verba KA, Agard D, Ott M, Emerman M, Ruggero D, García-Sastre A, Jura N, von Zastrow M, Taunton J, Ashworth A, Schwartz O, Vignuzzi M, d'Enfert C, Mukherjee S, Jacobson M, Malik HS, Fujimori DG, Ideker T, Craik CS, Floor S, Fraser JS, Gross J, Sali A, Kortemme T, Beltrao P, Shokat K, Shoichet BK, Krogan NJ. A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.03.22.002386. [PMID: 32511329 PMCID: PMC7239059 DOI: 10.1101/2020.03.22.002386] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An outbreak of the novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 290,000 people since the end of 2019, killed over 12,000, and caused worldwide social and economic disruption1,2. There are currently no antiviral drugs with proven efficacy nor are there vaccines for its prevention. Unfortunately, the scientific community has little knowledge of the molecular details of SARS-CoV-2 infection. To illuminate this, we cloned, tagged and expressed 26 of the 29 viral proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), which identified 332 high confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 67 druggable human proteins or host factors targeted by 69 existing FDA-approved drugs, drugs in clinical trials and/or preclinical compounds, that we are currently evaluating for efficacy in live SARS-CoV-2 infection assays. The identification of host dependency factors mediating virus infection may provide key insights into effective molecular targets for developing broadly acting antiviral therapeutics against SARS-CoV-2 and other deadly coronavirus strains.
Collapse
Affiliation(s)
- David E Gordon
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Gwendolyn M Jang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Mehdi Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Jiewei Xu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Kirsten Obernier
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Matthew J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffrey Z Guo
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Danielle L Swaney
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Tia A Tummino
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | - Ruth Huettenhain
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Robyn M Kaake
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Alicia L Richards
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Beril Tutuncuoglu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Helene Foussard
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Jyoti Batra
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Kelsey Haas
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Maya Modak
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Minkyu Kim
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Paige Haas
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Benjamin J Polacco
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Hannes Braberg
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Jacqueline M Fabius
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Manon Eckhardt
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Margaret Soucheray
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Melanie J Bennett
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Merve Cakir
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Michael J McGregor
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Qiongyu Li
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Zun Zar Chi Naing
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Yuan Zhou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Shiming Peng
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | - Ilsa T Kirby
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute
| | - James E Melnyk
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute
| | - John S Chorba
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute
| | - Kevin Lou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute
| | - Shizhong A Dai
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute
| | - Wenqi Shen
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute
| | - Ying Shi
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute
| | - Ziyang Zhang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute
| | - Inigo Barrio-Hernandez
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Danish Memon
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Claudia Hernandez-Armenta
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Christopher J P Mathy
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
- The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
| | - Tina Perica
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
| | - Kala B Pilla
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
| | - Sai J Ganesan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
| | - Daniel J Saltzberg
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
| | - Rakesh Ramachandran
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
| | - Xi Liu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | - Sara B Rosenthal
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California San Diego
| | - Lorenzo Calviello
- Department of Cell and Tissue Biology, University of California, San Francisco
| | | | - Jose Liboy-Lugo
- Department of Cell and Tissue Biology, University of California, San Francisco
| | - Yizhu Lin
- Department of Cell and Tissue Biology, University of California, San Francisco
| | - Stephanie A Wankowicz
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- Biophysics Graduate Program, University of California, San Francisco
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
| | - Markus Bohn
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | - Phillip P Sharp
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Raphael Trenker
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center
| | - Devin A Cavero
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Joseph Hiatt
- Medical Scientist Training Program, University of California, San Francisco, CA 94143, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Theodore L Roth
- Medical Scientist Training Program, University of California, San Francisco, CA 94143, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ujjwal Rathore
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Advait Subramanian
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- George William Hooper Foundation, Department of Microbiology and Immunology, UC San Francisco
| | - Julia Noack
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- George William Hooper Foundation, Department of Microbiology and Immunology, UC San Francisco
| | - Mathieu Hubert
- Virus and Immunity Unit, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Ferdinand Roesch
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Thomas Vallet
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Björn Meyer
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Kris M White
- Department for Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Lisa Miorin
- Department for Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Oren S Rosenberg
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
- Chan-Zuckerberg Biohub
| | - Kliment A Verba
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | - David Agard
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- Biochemistry & Biophysics and Quantitative Biosciences Institute UCSF 600 16th St San Francisco, CA 94143
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Michael Emerman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98103
| | - Davide Ruggero
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Adolfo García-Sastre
- Department for Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Natalia Jura
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Mark von Zastrow
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Psychiatry, San Francisco, CA, 94158, USA
| | - Jack Taunton
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| | - Alan Ashworth
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94158, USA
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Christophe d'Enfert
- Direction Scientifique, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris cedex 15, France
| | - Shaeri Mukherjee
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- George William Hooper Foundation, Department of Microbiology and Immunology, UC San Francisco
| | - Matt Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center
| | - Danica G Fujimori
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | - Trey Ideker
- Division of Genetics, Department of Medicine, University of California San Diego
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94158, USA
| | - Stephen Floor
- Department of Cell and Tissue Biology, University of California, San Francisco
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94158, USA
| | - James S Fraser
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
| | - John Gross
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | - Andrej Sali
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
| | - Tanja Kortemme
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
- The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
| | - Pedro Beltrao
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Kevan Shokat
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute
| | - Brian K Shoichet
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | - Nevan J Krogan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, 94158, USA
- University of California San Francisco, Quantitative Biosciences Institute (QBI), San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- University of California San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA, 94158, USA
| |
Collapse
|
44
|
Aminzadeh-Gohari S, Weber DD, Vidali S, Catalano L, Kofler B, Feichtinger RG. From old to new - Repurposing drugs to target mitochondrial energy metabolism in cancer. Semin Cell Dev Biol 2020; 98:211-223. [PMID: 31145995 PMCID: PMC7613924 DOI: 10.1016/j.semcdb.2019.05.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022]
Abstract
Although we have entered the era of personalized medicine and tailored therapies, drugs that target a large variety of cancers regardless of individual patient differences would be a major advance nonetheless. This review article summarizes current concepts and therapeutic opportunities in the area of targeting aerobic mitochondrial energy metabolism in cancer. Old drugs previously used for diseases other than cancer, such as antibiotics and antidiabetics, have the potential to inhibit the growth of various tumor entities. Many drugs are reported to influence mitochondrial metabolism. However, here we consider only those drugs which predominantly inhibit oxidative phosphorylation.
Collapse
Affiliation(s)
- Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Daniela D. Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Silvia Vidali
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria,Institute of Human Genetics, Helmholtz Zentrum München, Technical University of Munich, Munich, Germany
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria,Corresponding author at: Research Program for Receptor Biochemistry and Tumor Metabolism, University Hospital Salzburg, Paracelsus Medical University, Muellner-Hauptstrasse 48, 5020 Salzburg, Austria. (B. Kofler)
| | - René G. Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
45
|
Kennedy SA, Jarboui MA, Srihari S, Raso C, Bryan K, Dernayka L, Charitou T, Bernal-Llinares M, Herrera-Montavez C, Krstic A, Matallanas D, Kotlyar M, Jurisica I, Curak J, Wong V, Stagljar I, LeBihan T, Imrie L, Pillai P, Lynn MA, Fasterius E, Al-Khalili Szigyarto C, Breen J, Kiel C, Serrano L, Rauch N, Rukhlenko O, Kholodenko BN, Iglesias-Martinez LF, Ryan CJ, Pilkington R, Cammareri P, Sansom O, Shave S, Auer M, Horn N, Klose F, Ueffing M, Boldt K, Lynn DJ, Kolch W. Extensive rewiring of the EGFR network in colorectal cancer cells expressing transforming levels of KRAS G13D. Nat Commun 2020; 11:499. [PMID: 31980649 PMCID: PMC6981206 DOI: 10.1038/s41467-019-14224-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
Protein-protein-interaction networks (PPINs) organize fundamental biological processes, but how oncogenic mutations impact these interactions and their functions at a network-level scale is poorly understood. Here, we analyze how a common oncogenic KRAS mutation (KRASG13D) affects PPIN structure and function of the Epidermal Growth Factor Receptor (EGFR) network in colorectal cancer (CRC) cells. Mapping >6000 PPIs shows that this network is extensively rewired in cells expressing transforming levels of KRASG13D (mtKRAS). The factors driving PPIN rewiring are multifactorial including changes in protein expression and phosphorylation. Mathematical modelling also suggests that the binding dynamics of low and high affinity KRAS interactors contribute to rewiring. PPIN rewiring substantially alters the composition of protein complexes, signal flow, transcriptional regulation, and cellular phenotype. These changes are validated by targeted and global experimental analysis. Importantly, genetic alterations in the most extensively rewired PPIN nodes occur frequently in CRC and are prognostic of poor patient outcomes.
Collapse
Affiliation(s)
- Susan A Kennedy
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Mohamed-Ali Jarboui
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Siemens Imaging Center, University of Tübingen, Tübingen, Germany
| | - Sriganesh Srihari
- EMBL Australia Group, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
- QIMR-Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Cinzia Raso
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Kenneth Bryan
- EMBL Australia Group, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Layal Dernayka
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Theodosia Charitou
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- EMBL Australia Group, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Manuel Bernal-Llinares
- EMBL Australia Group, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | | | | | - David Matallanas
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Max Kotlyar
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Igor Jurisica
- Krembil Research Institute, University Health Network, Toronto, Canada
- Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jasna Curak
- Donnelly Centre, University of Toronto, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Victoria Wong
- Donnelly Centre, University of Toronto, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Mediterranean Institute for Life Sciences, Split, Croatia
| | - Thierry LeBihan
- Synthetic and Systems Biology, University of Edinburgh, Edinburgh, UK
| | - Lisa Imrie
- Synthetic and Systems Biology, University of Edinburgh, Edinburgh, UK
| | - Priyanka Pillai
- EMBL Australia Group, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Miriam A Lynn
- EMBL Australia Group, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
| | - Erik Fasterius
- School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Cristina Al-Khalili Szigyarto
- School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - James Breen
- School of Biological Sciences, University of Adelaide Bioinformatics Hub, Adelaide, SA, Australia
- Computational & Systems Biology Program, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Christina Kiel
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Conway Institute, University College Dublin, Dublin, Ireland
| | - Luis Serrano
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nora Rauch
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | - Boris N Kholodenko
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Colm J Ryan
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- School of Computer Science, University College Dublin, Dublin, Ireland
| | - Ruth Pilkington
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | - Owen Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Studies, Glasgow University, Glasgow, UK
| | - Steven Shave
- School of Biological Sciences and School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Manfred Auer
- School of Biological Sciences and School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Nicola Horn
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Franziska Klose
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Karsten Boldt
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| | - David J Lynn
- EMBL Australia Group, South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia.
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia.
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Dublin, Ireland.
- Conway Institute, University College Dublin, Dublin, Ireland.
- School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
46
|
Wu HZ, Xiao JQ, Xiao SS, Cheng Y. KRAS: A Promising Therapeutic Target for Cancer Treatment. Curr Top Med Chem 2019; 19:2081-2097. [PMID: 31486755 DOI: 10.2174/1568026619666190905164144] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Abstract
Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) is the most commonly mutated oncogene in human cancer. The developments of many cancers depend on sustained expression and signaling of KRAS, which makes KRAS a high-priority therapeutic target. Scientists have not successfully developed drugs that target KRAS, although efforts have been made last three decades. In this review, we highlight the emerging experimental strategies of impairing KRAS membrane localization and the direct targeting of KRAS. We also conclude the combinatorial therapies and RNA interference technology for the treatment of KRAS mutant cancers. Moreover, the virtual screening approach to discover novel KRAS inhibitors and synthetic lethality interactors of KRAS are discussed in detail.
Collapse
Affiliation(s)
- Hai-Zhou Wu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Jia-Qi Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Song-Shu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| |
Collapse
|
47
|
Kobliakov VA. The Mechanisms of Regulation of Aerobic Glycolysis (Warburg Effect) by Oncoproteins in Carcinogenesis. BIOCHEMISTRY (MOSCOW) 2019; 84:1117-1128. [DOI: 10.1134/s0006297919100018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Application of CRISPR-Cas9 Screening Technologies to Study Mitochondrial Biology in Healthy and Disease States. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1158:269-277. [DOI: 10.1007/978-981-13-8367-0_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Baechler SA, Dalla Rosa I, Spinazzola A, Pommier Y. Beyond the unwinding: role of TOP1MT in mitochondrial translation. Cell Cycle 2019; 18:2377-2384. [PMID: 31345095 DOI: 10.1080/15384101.2019.1646563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mitochondria contain their own genome (mtDNA), encoding 13 proteins of the enzyme complexes of the oxidative phosphorylation. Synthesis of these 13 mitochondrial proteins requires a specific translation machinery, the mitoribosomes whose RNA components are encoded by the mtDNA, whereas more than 80 proteins are encoded by nuclear genes. It has been well established that mitochondrial topoisomerase I (TOP1MT) is important for mtDNA integrity and mitochondrial transcription as it prevents excessive mtDNA negative supercoiling and releases topological stress during mtDNA replication and transcription. We recently showed that TOP1MT also supports mitochondrial protein synthesis, and thus is critical for promoting tumor growth. Impaired mitochondrial protein synthesis leads to activation of the mitonuclear stress response through the transcription factor ATF4, and induces cytoprotective genes in order to prevent mitochondrial and cellular dysfunction. In this perspective, we highlight the novel role of TOP1MT in mitochondrial protein synthesis and as potential target for chemotherapy.
Collapse
Affiliation(s)
- Simone A Baechler
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| | - Ilaria Dalla Rosa
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology , London , UK
| | - Antonella Spinazzola
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology , London , UK
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| |
Collapse
|
50
|
Dong Z, Abbas MN, Kausar S, Yang J, Li L, Tan L, Cui H. Biological Functions and Molecular Mechanisms of Antibiotic Tigecycline in the Treatment of Cancers. Int J Mol Sci 2019; 20:ijms20143577. [PMID: 31336613 PMCID: PMC6678986 DOI: 10.3390/ijms20143577] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022] Open
Abstract
As an FDA-approved drug, glycylcycline tigecycline has been used to treat complicated microbial infections. However, recent studies in multiple hematologic and malignant solid tumors reveal that tigecycline treatment induces cell cycle arrest, apoptosis, autophagy and oxidative stress. In addition, tigecycline also inhibits mitochondrial oxidative phosphorylation, cell proliferation, migration, invasion and angiogenesis. Importantly, combinations of tigecycline with chemotherapeutic or targeted drugs such as venetoclax, doxorubicin, vincristine, paclitaxel, cisplatin, and imatinib, have shown to be promising strategies for cancer treatment. Mechanism of action studies reveal that tigecycline leads to the inhibition of mitochondrial translation possibly through interacting with mitochondrial ribosome. Meanwhile, this drug also interferes with several other cell pathways/targets including MYC, HIFs, PI3K/AKT or AMPK-mediated mTOR, cytoplasmic p21 CIP1/Waf1, and Wnt/β-catenin signaling. These evidences indicate that antibiotic tigecycline is a promising drug for cancer treatment alone or in combination with other anticancer drugs. This review summarizes the biological function of tigecycline in the treatment of tumors and comprehensively discusses its mode of action.
Collapse
Affiliation(s)
- Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China
| | - Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China
| | - Jie Yang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China
| | - Lin Li
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China
| | - Li Tan
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing 400716, China
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Beibei, Chongqing 400716, China.
- Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing 400716, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing 400716, China.
| |
Collapse
|