1
|
Liu W, Wang Y, Ji T, Wang C, Shi Q, Li C, Wei JW, Gong B. High-nitrogen-induced γ-aminobutyric acid triggers host immunity and pathogen oxidative stress tolerance in tomato and Ralstonia solanacearum interaction. THE NEW PHYTOLOGIST 2024; 244:1537-1551. [PMID: 39253785 DOI: 10.1111/nph.20102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024]
Abstract
Soil nitrogen (N) significantly influences the interaction between plants and pathogens, yet its impact on host defenses and pathogen strategies via alterations in plant metabolism remains unclear. Through metabolic and genetic studies, this research demonstrates that high-N-input exacerbates tomato bacterial wilt by altering γ-aminobutyric acid (GABA) metabolism of host plants. Under high-N conditions, the nitrate sensor NIN-like protein 7 (SlNLP7) promotes the glutamate decarboxylase 2/4 (SlGAD2/4) transcription and GABA synthesis by directly binding to the promoters of SlGAD2/4. The tomato plants with enhanced GABA levels showed stronger immune responses but remained susceptible to Ralstonia solanacearum. This led to the discovery that GABA produced by the host actually heightens the pathogen's virulence. We identified the R. solanacearum LysR-type transcriptional regulator OxyR protein, which senses host-derived GABA and, upon interaction, triggers a response involving protein dimerization that enhances the pathogen's oxidative stress tolerance by activating the expression of catalase (katE/katGa). These findings reveal GABA's dual role in activating host immunity and enhancing pathogen tolerance to oxidative stress, highlighting the complex relationship between tomato plants and R. solanacearum, influenced by soil N status.
Collapse
Affiliation(s)
- Wei Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Yushu Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Tuo Ji
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Chengqiang Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Qinghua Shi
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Chuanyou Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Jin-Wei Wei
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Gong
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
2
|
Asif M, Xie X, Zhao Z. Virulence regulation in plant-pathogenic bacteria by host-secreted signals. Microbiol Res 2024; 288:127883. [PMID: 39208525 DOI: 10.1016/j.micres.2024.127883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Bacterial pathogens manipulate host signaling pathways and evade host defenses using effector molecules, coordinating their deployment to ensure successful infection. However, host-derived metabolites as signals, and their critical role in regulating bacterial virulence requires further insights. Effective regulation of virulence, which is essential for pathogenic bacteria, involves controlling factors that enable colonization, defense evasion, and tissue damage. This regulation is dynamic, influenced by environmental cues including signals from host plants like exudates. Plant exudates, comprising of diverse compounds released by roots and tissues, serve as rich chemical signals affecting the behavior and virulence of associated bacteria. Plant nutrients act as signaling molecules that are sensed through membrane-localized receptors and intracellular response mechanisms in bacteria. This review explains how different bacteria detect and answer to secreted chemical signals, regulating virulence gene expression. Our main emphasis is exploring the recognition process of host-originated signaling molecules through molecular sensors on cellular membranes and intracellular signaling pathways. This review encompasses insights into how bacterial strains individually coordinate their virulence in response to various distinct host-derived signals that can positively or negatively regulate their virulence. Furthermore, we explained the interruption of plant defense with the perception of host metabolites to dampen pathogen virulence. The intricate interplay between pathogens and plant signals, particularly in how pathogens recognize host metabolic signals to regulate virulence genes, portrays a crucial initial interaction leading to profound influences on infection outcomes. This work will greatly aid researchers in developing new strategies for preventing and treating infections.
Collapse
Affiliation(s)
- Muhammad Asif
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xin Xie
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Zhibo Zhao
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
3
|
Koh CMM, Hwang SS, Lau BT, Palombo EA, Ginjom IRH, Ha CHX, Rahman T, Chee Wezen X. Virtual Screening Uncovers DspS Activators That Disperse Pseudomonas aeruginosa Biofilms. ACS Infect Dis 2024. [PMID: 39423324 DOI: 10.1021/acsinfecdis.4c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Pseudomonas aeruginosa is the predominant bacterium found in many chronic biofilm infections. Over the past few decades, biofilm-related infections have posed a significant challenge to medical practice due to the increasing emergence of multidrug resistance. Cis-2-decenoic acid (CDA), a small molecule found in P. aeruginosa, has been shown to disperse biofilms formed by various bacteria and to work in synergy with common antibiotics. Despite that, the binding mechanism between CDA and the predicted cyclases/histidine kinases associated sensory extracellular (CHASE) domain of sensor protein DspS remains unknown in the absence of a crystallized protein structure. Moreover, the therapeutic potential of CDA is limited by its susceptibility to oxidative degradation and isomerization. In this work, we propose a structural model for the DspS CHASE domain. The resulting model displays an overall topology reminiscent of the sensor protein PcrK in Xanthomonas campestris. Through molecular dynamics simulations, a stable potential binding site for CDA was further identified. Virtual screening against the predicted site of DspS CHASE using our developed pipeline discovered two promising compounds, compounds 2 and 9, capable of dislodging 7-day P. aeruginosa biofilms at 50 μM without affecting bacterial growth. These compounds also enhanced the effects of ciprofloxacin against P. aeruginosa, reduced the survival of dispersed cells, and increased the expression of matrix-degrading enzyme genes pelA, pslG, and eddA. This study provides insights into CDA recognition by DspS and represents the first large-scale effort to uncover first-in-class DspS activators. At the same time, this work also underscores the effectiveness of a computational-aided drug discovery process in finding new activators, even without a known protein structure.
Collapse
Affiliation(s)
- Christabel Ming Ming Koh
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology Sarawak, Kuching, Sarawak 93350, Malaysia
| | - Siaw San Hwang
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology Sarawak, Kuching, Sarawak 93350, Malaysia
| | - Bee Theng Lau
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology Sarawak, Kuching, Sarawak 93350, Malaysia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Irine Runnie Henry Ginjom
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology Sarawak, Kuching, Sarawak 93350, Malaysia
| | - Christopher Heng Xuan Ha
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology Sarawak, Kuching, Sarawak 93350, Malaysia
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Xavier Chee Wezen
- Faculty of Engineering, Computing, and Science, Swinburne University of Technology Sarawak, Kuching, Sarawak 93350, Malaysia
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
4
|
Nakagami S, Wang Z, Han X, Tsuda K. Regulation of Bacterial Growth and Behavior by Host Plant. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:69-96. [PMID: 38857544 DOI: 10.1146/annurev-phyto-010824-023359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Plants are associated with diverse bacteria in nature. Some bacteria are pathogens that decrease plant fitness, and others are beneficial bacteria that promote plant growth and stress resistance. Emerging evidence also suggests that plant-associated commensal bacteria collectively contribute to plant health and are essential for plant survival in nature. Bacteria with different characteristics simultaneously colonize plant tissues. Thus, plants need to accommodate bacteria that provide service to the host plants, but they need to defend against pathogens at the same time. How do plants achieve this? In this review, we summarize how plants use physical barriers, control common goods such as water and nutrients, and produce antibacterial molecules to regulate bacterial growth and behavior. Furthermore, we highlight that plants use specialized metabolites that support or inhibit specific bacteria, thereby selectively recruiting plant-associated bacterial communities and regulating their function. We also raise important questions that need to be addressed to improve our understanding of plant-bacteria interactions.
Collapse
Affiliation(s)
- Satoru Nakagami
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| | - Zhe Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| | - Xiaowei Han
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| | - Kenichi Tsuda
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| |
Collapse
|
5
|
Wang Y, Wang KM, Zhang X, Wang W, Qian W, Wang FF. Stenotrophomonas maltophilia uses a c-di-GMP module to sense the mammalian body temperature during infection. PLoS Pathog 2024; 20:e1012533. [PMID: 39231185 PMCID: PMC11404848 DOI: 10.1371/journal.ppat.1012533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/16/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
The body temperature of Warm-blooded hosts impedes and informs responses of bacteria accustomed to cooler environments. The second messenger c-di-GMP modulates bacterial behavior in response to diverse, yet largely undiscovered, stimuli. A long-standing debate persists regarding whether a local or a global c-di-GMP pool plays a critical role. Our research on a Stenotrophomonas maltophilia strain thriving at around 28°C, showcases BtsD as a thermosensor, diguanylate cyclase, and effector. It detects 37°C and diminishes c-di-GMP synthesis, resulting in a responsive sequence: the periplasmic c-di-GMP level is decreased, the N-terminal region of BtsD disengages from c-di-GMP, activates the two-component signal transduction system BtsKR, and amplifies sod1-3 transcription, thereby strengthening the bacterium's pathogenicity and adaptation during infections in 37°C warm Galleria mellonella larvae. This revelation of a single-protein c-di-GMP module introduces unrecognized dimensions to the functional and structural paradigms of c-di-GMP modules and reshapes our understanding of bacterial adaptation and pathogenicity in hosts with a body temperature around 37°C. Furthermore, the discovery of a periplasmic c-di-GMP pool governing BtsD-BtsK interactions supports the critical role of a local c-di-GMP pool.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Science, Yunnan University, Kunming, Yunnan, China
| | - Kai-Ming Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xin Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenzhao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Fang-Fang Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Liang Y, Wang J, Wang Z, Hu D, Jiang Y, Han Y, Wang Y. Fulvic acid alleviates the stress of low nitrogen on maize by promoting root development and nitrogen metabolism. PHYSIOLOGIA PLANTARUM 2024; 176:e14249. [PMID: 38472657 DOI: 10.1111/ppl.14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
The potential of fulvic acid (FA) to improve plant growth has been acknowledged, but its effect on plant growth and nutrient uptake under nutrient stress remains unclear. This study investigated the effects of different FA application rates on maize growth and nitrogen utilization under low nitrogen stress. The results showed that under low nitrogen stress, FA significantly stimulated maize growth, particularly root development, biomass, and nitrogen content. The enhanced activity levels of key enzymes in nitrogen metabolism were observed, along with differential gene expression in maize, which enriched nitrogen metabolism, amino acid metabolism and plant hormone metabolism. The application of FA regulated the hormones' level, reduced abscisic acid content in leaves and Me-JA content in roots, and increased auxin and zeatin ribose content in leaves. This study concludes that, by promoting root development, nitrogen metabolism, and hormone metabolism, an appropriate concentration of FA can enhance plant tolerance to low nitrogen conditions and improve nitrogen use efficiency.
Collapse
Affiliation(s)
- Yuanyuan Liang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
| | - Junbo Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
| | - Zeping Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
| | - Desheng Hu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
| | - Ying Jiang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
| | - Yanlai Han
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Yi Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
7
|
Aoki MM, Kisiala AB, Mathavarajah S, Schincaglia A, Treverton J, Habib E, Dellaire G, Emery RJN, Brunetti CR, Huber RJ. From biosynthesis and beyond-Loss or overexpression of the cytokinin synthesis gene, iptA, alters cytokinesis and mitochondrial and amino acid metabolism in Dictyostelium discoideum. FASEB J 2024; 38:e23366. [PMID: 38102957 DOI: 10.1096/fj.202301936rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Cytokinins (CKs) are a class of growth-promoting signaling molecules that affect multiple cellular and developmental processes. These phytohormones are well studied in plants, but their presence continues to be uncovered in organisms spanning all kingdoms, which poses new questions about their roles and functions outside of plant systems. Cytokinin production can be initiated by one of two different biosynthetic enzymes, adenylate isopentenyltransfases (IPTs) or tRNA isopentenyltransferases (tRNA-IPTs). In this study, the social amoeba, Dictyostelium discoideum, was used to study the role of CKs by generating deletion and overexpression strains of its single adenylate-IPT gene, iptA. The life cycle of D. discoideum is unique and possesses both single- and multicellular stages. Vegetative amoebae grow and divide while food resources are plentiful, and multicellular development is initiated upon starvation, which includes distinct life cycle stages. CKs are produced in D. discoideum throughout its life cycle and their functions have been well studied during the later stages of multicellular development of D. discoideum. To investigate potential expanded roles of CKs, this study focused on vegetative growth and early developmental stages. We found that iptA-deficiency results in cytokinesis defects, and both iptA-deficiency and overexpression results in dysregulated tricarboxylic acid (TCA) cycle and amino acid metabolism, as well as increased levels of adenosine monophosphate (AMP). Collectively, these findings extend our understanding of CK function in amoebae, indicating that iptA loss and overexpression alter biological processes during vegetative growth that are distinct from those reported during later development.
Collapse
Affiliation(s)
- Megan M Aoki
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Anna B Kisiala
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | | | | | - Jared Treverton
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Elias Habib
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - R J Neil Emery
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Craig R Brunetti
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
8
|
Mongès A, Yaakoub H, Bidon B, Glévarec G, Héricourt F, Carpin S, Chauderon L, Drašarová L, Spíchal L, Binder BM, Papon N, Rochange S. Are Histidine Kinases of Arbuscular Mycorrhizal Fungi Involved in the Response to Ethylene and Cytokinins? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:656-665. [PMID: 37851914 DOI: 10.1094/mpmi-05-23-0056-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Signals are exchanged at all stages of the arbuscular mycorrhizal (AM) symbiosis between fungi and their host plants. Root-exuded strigolactones are well-known early symbiotic cues, but the role of other phytohormones as interkingdom signals has seldom been investigated. Here we focus on ethylene and cytokinins, for which candidate receptors have been identified in the genome of the AM fungus Rhizophagus irregularis. Ethylene is known from the literature to affect asymbiotic development of AM fungi, and in the present study, we found that three cytokinin forms could stimulate spore germination in R. irregularis. Heterologous complementation of a Saccharomyces cerevisiae mutant strain with the candidate ethylene receptor RiHHK6 suggested that this protein can sense and transduce an ethylene signal. Accordingly, its N-terminal domain expressed in Pichia pastoris displayed saturable binding to radiolabeled ethylene. Thus, RiHHK6 displays the expected characteristics of an ethylene receptor. In contrast, the candidate cytokinin receptor RiHHK7 did not complement the S. cerevisiae mutant strain or Medicago truncatula cytokinin receptor mutants and seemed unable to bind cytokinins, suggesting that another receptor is involved in the perception of these phytohormones. Taken together, our results support the hypothesis that AM fungi respond to a range of phytohormones and that these compounds bear multiple functions in the rhizosphere beyond their known roles as internal plant developmental regulators. Our analysis of two phytohormone receptor candidates also sheds new light on the possible perception mechanisms in AM fungi. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Ayla Mongès
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, INP Toulouse, 31326 Castanet-Tolosan, France
| | - Hajar Yaakoub
- UNIV Angers, IRF, SFR 4208 ICAT, F-49000 Angers, France
| | | | - Gaëlle Glévarec
- EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, Tours, France
| | - François Héricourt
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d'Orléans, INRAE USC1328, 45067 Orléans Cedex 2, France
| | - Sabine Carpin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), Université d'Orléans, INRAE USC1328, 45067 Orléans Cedex 2, France
| | - Lucie Chauderon
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, INP Toulouse, 31326 Castanet-Tolosan, France
| | - Lenka Drašarová
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic
| | - Lukáš Spíchal
- Czech Advanced Technology and Research Institute, Šlechtitelů 27, Olomouc CZ-783 71, Palacký University, Olomouc, Czech Republic
| | - Brad M Binder
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, U.S.A
| | - Nicolas Papon
- UNIV Angers, IRF, SFR 4208 ICAT, F-49000 Angers, France
| | - Soizic Rochange
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, INP Toulouse, 31326 Castanet-Tolosan, France
| |
Collapse
|
9
|
Anderson JC. Ill Communication: Host Metabolites as Virulence-Regulating Signals for Plant-Pathogenic Bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:49-71. [PMID: 37253693 DOI: 10.1146/annurev-phyto-021621-114026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Plant bacterial pathogens rely on host-derived signals to coordinate the deployment of virulence factors required for infection. In this review, I describe how diverse plant-pathogenic bacteria detect and respond to plant-derived metabolic signals for the purpose of virulence gene regulation. I highlight examples of how pathogens perceive host metabolites through membrane-localized receptors as well as intracellular response mechanisms. Furthermore, I describe how individual strains may coordinate their virulence using multiple distinct host metabolic signals, and how plant signals may positively or negatively regulate virulence responses. I also describe how plant defenses may interfere with the perception of host metabolites as a means to dampen pathogen virulence. The emerging picture is that recognition of host metabolic signals for the purpose of virulence gene regulation represents an important primary layer of interaction between pathogenic bacteria and host plants that shapes infection outcomes.
Collapse
Affiliation(s)
- Jeffrey C Anderson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA;
| |
Collapse
|
10
|
Cai G, Cao Y, Tian M, Mo H, Chen X, Li Z, Ji Q, He K, Du G, Yang H. Characterization of the transcriptional responses of Armillaria gallica 012m to GA3. Arch Microbiol 2023; 205:308. [PMID: 37594611 DOI: 10.1007/s00203-023-03621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/19/2023]
Abstract
Gastrodia elata needs to establish a symbiotic relationship with Armillaria strains to obtain nutrients and energy. However, the signaling cross talk between G. elata and Armillaria strains is still unclear. During our experiment, we found that the vegetative mycelium of Armillaria gallica 012m grew significantly better in the media containing gibberellic acid (GA3) than the blank control group (BK). To explore the response mechanism, we performed an RNA-sequencing experiment to profile the transcriptome changes of A. gallica 012m cultured in the medium with exogenous GA3. The transcriptome-guided differential expression genes (DEGs) analysis of GA3 and BK showed that a total of 1309 genes were differentially expressed, including 361 upregulated genes and 948 downregulated genes. Some of those DEGs correlated with the biological process, including positive regulation of chromosome segregation, mitotic metaphase/anaphase transition, attachment of mitotic spindle microtubules to kinetochore, mitotic cytokinesis, and nuclear division. These analyses explained that GA3 actively promoted the growth of A. gallica to some extent. Further analysis of protein domain features showed that the deduced polypeptide contained 41 candidate genes of GA receptor, and 27 of them were expressed in our samples. We speculate that GA receptors exist in A. gallica 012m. Comparative studies of proteins showed that the postulated GA receptor domains of A. gallica 012m have a higher homologous correlation with fungi than others based on cluster analysis.
Collapse
Affiliation(s)
- Guolei Cai
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, 2929 Yuehua Street, Chenggong District, Kunming, Yunnan, China
| | - Yapu Cao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, 2929 Yuehua Street, Chenggong District, Kunming, Yunnan, China
| | - Menghua Tian
- Zhaotong Tianma Research Institute, Zhaotong, Yunnan, China
| | - Haiying Mo
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, 2929 Yuehua Street, Chenggong District, Kunming, Yunnan, China
| | - Xin Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, 2929 Yuehua Street, Chenggong District, Kunming, Yunnan, China
| | - Zhihao Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, 2929 Yuehua Street, Chenggong District, Kunming, Yunnan, China
| | - Qiaolin Ji
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, 2929 Yuehua Street, Chenggong District, Kunming, Yunnan, China
| | - Kaixiang He
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, China
| | - Gang Du
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, 2929 Yuehua Street, Chenggong District, Kunming, Yunnan, China.
| | - Haiying Yang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, China.
| |
Collapse
|
11
|
Wang Z, Song L, Liu X, Shen X, Li X. Bacterial second messenger c-di-GMP: Emerging functions in stress resistance. Microbiol Res 2023; 268:127302. [PMID: 36640720 DOI: 10.1016/j.micres.2023.127302] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
In natural environments, bacteria constantly encounter various stressful conditions, including nutrient starvation, toxic chemicals, and oxidative stress. The ability to adapt to these adverse conditions is crucial for bacterial survival. Frequently, bacteria utilize nucleotide signaling molecules such as cyclic diguanylate (c-di-GMP) to regulate their behaviors when encounter stress conditions. c-di-GMP is a ubiquitous bacterial second messenger regulating the transition between the planktonic state and biofilm state. An essential feature of biofilms is the production of extracellular matrix that covers bacterial cells and offers a physical barrier protecting the cells from environmental assaults. Beyond that, accumulating evidences have demonstrated that changes in the environment, including stress stimuli, cause the alteration of intracellular levels of c-di-GMP in bacterial cells, which is immediately sensed by a variety of downstream effectors that induce an appropriate stress response. In this review, we summarize recent research on the role of c-di-GMP signaling in bacterial responses to diverse stress conditions.
Collapse
Affiliation(s)
- Zhuo Wang
- Yuncheng Key Laboratory of Halophiles Resources Utilization, College of Life Sciences, Yuncheng University, Yuncheng, Shanxi 044000, People's Republic of China
| | - Li Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xiaozhen Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xin Li
- Yuncheng Key Laboratory of Halophiles Resources Utilization, College of Life Sciences, Yuncheng University, Yuncheng, Shanxi 044000, People's Republic of China.
| |
Collapse
|
12
|
Ding Y, Zou LH, Wu J, Ramakrishnan M, Gao Y, Zhao L, Zhou M. The pattern of DNA methylation alteration, and its association with the expression changes of non-coding RNAs and mRNAs in Moso bamboo under abiotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111451. [PMID: 36075278 DOI: 10.1016/j.plantsci.2022.111451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/01/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Epigenetic changes play an important role in plant growth and development and in stress response. However, DNA methylation pattern and its relationship with the expression changes of non-coding RNAs and mRNAs of Moso bamboo in response to abiotic stress is still largely unknown. In this work, we used whole-genome bisulfite sequencing in combination with whole-transcriptome sequencing to analyze the DNA methylation and transcription patterns of mRNAs and non-coding RNAs in Moso bamboo under abiotic stresses such as cold, heat, ultraviolet (UV) and salinity. We found that CHH methylation in the promoter region was positively correlated with gene expression, while CHG and CHH methylations in the gene body regions were negatively associated with gene expression. Moreover, CG and CHG methylations in the promoter regions were negatively correlated with the transcript abundance of long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs). Similarly, the methylation levels of three contexts in the genic regions were negatively correlated with the transcript abundance of lncRNAs and miRNAs but positively correlated with that of circRNAs. In addition, we suggested that the reduction of 21-nt and 24-nt small interfering RNA (siRNA) expression tended to increase methylation levels in the genic regions. We found that stress-responsive genes such as CRPK1, HSFB2A and CIPK were differentially methylated and expressed. Our results also proposed that DNA methylation may regulate the expression of the transcription factors (TFs) and plant hormone signalling genes such as IAA9, MYC2 and ERF110 in response to abiotic stress. This study firstly reports the abiotic stress-responsive DNA methylation pattern and its involvement of expression of coding RNAs and non-coding RNAs in Moso bamboo. The results expand the knowledge of epigenetic mechanisms in Moso bamboo under abiotic stress and support in-depth deciphering of the function of specific non-coding RNAs in future studies.
Collapse
Affiliation(s)
- Yiqian Ding
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Long-Hai Zou
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China.
| | - Jiajun Wu
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Muthusamy Ramakrishnan
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Yubang Gao
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Liangzhen Zhao
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China; Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingbing Zhou
- The State Key Laboratory of Subtropical Silviculture; Institute of Bamboo, Zhejiang A&F University, Lin'an, Hangzhou 311300, China.
| |
Collapse
|
13
|
Autoinducer-2 and bile salts induce c-di-GMP synthesis to repress the T3SS via a T3SS chaperone. Nat Commun 2022; 13:6684. [PMID: 36335118 PMCID: PMC9637222 DOI: 10.1038/s41467-022-34607-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 10/31/2022] [Indexed: 11/07/2022] Open
Abstract
Cyclic di-GMP (c-di-GMP) transduces extracellular stimuli into intracellular responses, coordinating a plethora of important biological processes. Low levels of c-di-GMP are often associated with highly virulent behavior that depends on the type III secretion system (T3SS) effectors encoded, whereas elevated levels of c-di-GMP lead to the repression of T3SSs. However, extracellular signals that modulate c-di-GMP metabolism to control T3SSs and c-di-GMP effectors that relay environmental stimuli to changes in T3SS activity remain largely obscure. Here, we show that the quorum sensing signal autoinducer-2 (AI-2) induces c-di-GMP synthesis via a GAPES1 domain-containing diguanylate cyclase (DGC) YeaJ to repress T3SS-1 gene expression in Salmonella enterica serovar Typhimurium. YeaJ homologs capable of sensing AI-2 are present in many other species belonging to Enterobacterales. We also reveal that taurocholate and taurodeoxycholate bind to the sensory domain of the DGC YedQ to induce intracellular accumulation of c-di-GMP, thus repressing the expression of T3SS-1 genes. Further, we find that c-di-GMP negatively controls the function of T3SSs through binding to the widely conserved CesD/SycD/LcrH family of T3SS chaperones. Our results support a model in which bacteria sense changes in population density and host-derived cues to regulate c-di-GMP synthesis, thereby modulating the activity of T3SSs via a c-di-GMP-responsive T3SS chaperone.
Collapse
|
14
|
Xie Y, Li J, Ding Y, Shao X, Sun Y, Xie F, Liu S, Tang S, Deng X. An atlas of bacterial two-component systems reveals function and plasticity in signal transduction. Cell Rep 2022; 41:111502. [DOI: 10.1016/j.celrep.2022.111502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/11/2022] [Accepted: 09/22/2022] [Indexed: 11/03/2022] Open
|
15
|
Abstract
Bacteria have evolved many different signal transduction systems to sense and respond to changing environmental conditions. Signal integration is mainly achieved by signal recognition at extracytosolic ligand-binding domains (LBDs) of receptors. Hundreds of different LBDs have been reported, and our understanding of their sensing properties is growing. Receptors must function over a range of environmental pH values, but there is little information available on the robustness of sensing as a function of pH. Here, we have used isothermal titration calorimetry to determine the pH dependence of ligand recognition by nine LBDs that cover all major LBD superfamilies, of periplasmic solute-binding proteins, and cytosolic LBDs. We show that periplasmic LBDs recognize ligands over a very broad pH range, frequently stretching over eight pH units. This wide pH range contrasts with a much narrower pH response range of the cytosolic LBDs analyzed. Many LBDs must be dimeric to bind ligands, and analytical ultracentrifugation studies showed that the LBD of the Tar chemoreceptor forms dimers over the entire pH range tested. The pH dependences of Pseudomonas aeruginosa motility and chemotaxis were bell-shaped and centered at pH 7.0. Evidence for pH robustness of signaling in vivo was obtained by Förster Resonance Energy Transfer (FRET) measurements of the chemotaxis pathway responses in Escherichia coli. Bacteria have evolved several strategies to cope with extreme pH, such as periplasmic chaperones for protein refolding. The intrinsic pH resistance of periplasmic LBDs appears to be another strategy that permits bacteria to survive under adverse conditions.
Collapse
|
16
|
Dual Regulatory Role Exerted by Cyclic Dimeric GMP To Control FsnR-Mediated Bacterial Swimming. mBio 2022; 13:e0141422. [PMID: 36069448 DOI: 10.1128/mbio.01414-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial motility has great medical and ecological significance because of its essential role in bacterial survival and pathogenesis. Cyclic dimeric GMP (c-di-GMP), a second messenger in bacteria, is the predominant regulator of flagellar synthesis and motility and possesses turnover mechanisms that have been thoroughly investigated. Therefore, much attention has been focused on identifying the upstream stimulatory signals and downstream modules that respond to altered c-di-GMP levels. Here, we systematically analyzed c-di-GMP cyclases and phosphodiesterases in Stenotrophomonas maltophilia to screen for motility regulators. Of these enzymes, we identified and characterized a new phosphodiesterase named SisP, which was found to facilitate bacterial swimming upon stimulation with ferrous iron. SisP-mediated degradation of c-di-GMP leads to FsnR-dependent transcription of flagellar genes. Remarkably, c-di-GMP controls FsnR via two independent mechanisms: by direct binding and indirectly by modulating its phosphorylation state. In this study, we deciphered a novel "one stone, two birds" regulatory strategy of c-di-GMP and uncovered the signal that stimulates c-di-GMP hydrolysis. Facilitation of bacterial swimming motility by ferrous iron might contribute to the higher risk of bacterial infection in acutely ill patients. IMPORTANCE Stenotrophomonas maltophilia has become a great threat to human health because of the high mortality of infected patients. Swimming motility plays a crucial role in regulating bacterial virulence and adaptation. However, limited progress has been made in cyclic dimeric GMP (c-di-GMP) controlling swimming motility of S. maltophilia. Here, we characterized c-di-GMP turnover enzymes encoded by S. maltophilia and dissected the regulatory details of a phosphodiesterase named SisP. We demonstrated that SisP degrades c-di-GMP to fully activate FsnR through directly releasing FsnR from the FsnR-c-di-GMP complex and indirectly increasing its phosphorylation level. This finding uncovered a quantitative, rather than an on-off, regulatory manner employed by c-di-GMP to regulate activities of its effectors. Identification of the specific activation of SisP by ferrous iron proposes SisP as a putative drug-target for controlling bacterial infection and ferrous iron at the wounds or cuts as a putative factor contributing to the higher risk of bacterial infection.
Collapse
|
17
|
Anand G, Gupta R, Marash I, Leibman-Markus M, Bar M. Cytokinin production and sensing in fungi. Microbiol Res 2022; 262:127103. [DOI: 10.1016/j.micres.2022.127103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/07/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
|
18
|
Nakano M, Omae N, Tsuda K. Inter-organismal phytohormone networks in plant-microbe interactions. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102258. [PMID: 35820321 DOI: 10.1016/j.pbi.2022.102258] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/10/2022] [Accepted: 06/10/2022] [Indexed: 05/14/2023]
Abstract
Phytohormones are produced by plants and play central roles in interactions with pathogenic and beneficial microbes as well as plant growth and development. Each phytohormone pathway consists of its biosynthesis, transport, perception, and signaling and is intertwined with each other at various levels to form phytohormone networks in plants. Different kinds of microbes also produce phytohormones that exert physiological roles within microbes and manipulate phytohormone networks in plants by using phytohormones, their mimics, and proteinaceous effectors. In turn, plant-derived phytohormones can directly or indirectly through plant signaling networks affect microbial metabolism and community assembly. Therefore, phytohormone networks in plants and microbes are connected through plant and microbial phytohormones and other molecules to form inter-organismal phytohormone networks. In this review, we summarize recent progress on molecular mechanisms of inter-organismal phytohormone networks and discuss future steps necessary for advancing our understanding of phytohormone networks.
Collapse
Affiliation(s)
- Masahito Nakano
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Natsuki Omae
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Kenichi Tsuda
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
19
|
Li Z, Chen Q, Gao F, Meng Q, Li M, Zhang Y, Zhang P, Zhang M, Liu Z. Controlled-release urea combined with fulvic acid enhanced carbon/nitrogen metabolic processes and maize growth. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3644-3654. [PMID: 34888887 DOI: 10.1002/jsfa.11711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Controlled-release urea (CRU) or fulvic acid (FA), when applied, have been shown to increase nitrogen (N) use efficiency (NUE) or to stimulate plant growth, yet their interactive effects are not well explored. The objective of this study was to investigate the synergistic mechanisms of CRU combined with FA (CRU + FA) on maize (Zea mays L.) growth. Through the experimental design with five treatments, the N metabolism through the transcriptomic analysis of maize leaf, endogenous hormones, photosynthesis enzymes in maize leaf and root, and maize yield and NUE were evaluated. RESULTS Compared with CRU treatment, CRU + FA treatment significantly increased auxin, nitrate reductase, and glutamate dehydrogenase in leaf by 35.4%, 43.9%, 40.8% and 19.5%, respectively, as well as, the relative content of the leaf chlorophyll and photosynthetic rate by 14.8% and 45.6%, respectively, at 12-leaf collar stage; the carbon/nitrogen (C/N) metabolic process was significantly enriched in CRU + FA treatment by 312 and 418 genes, according to transcriptome profiles of C/N metabolic in leaves from various fertilizer treated maize; maize yield and NUE of CRU + FA treatment were increased by 6.3% and 38.4%, respectively. CONCLUSIONS These results demonstrated that CRU + FA is a viable fertilization scheme that can enhance maize growth, yield and NUE through their synergies in improving N uptake, promoting photosynthesis, increasing C/N metabolic processes, and enhancing enzyme activities. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zeli Li
- National Engineering Laboratory for Efficient Use of Soil and Fertilizer Resources, College of Resources and the Environment, Shandong Agricultural University, Taian, China
| | - Qi Chen
- National Engineering Laboratory for Efficient Use of Soil and Fertilizer Resources, College of Resources and the Environment, Shandong Agricultural University, Taian, China
| | - Feng Gao
- National Engineering Laboratory for Efficient Use of Soil and Fertilizer Resources, College of Resources and the Environment, Shandong Agricultural University, Taian, China
| | - Qingmin Meng
- National Engineering Laboratory for Efficient Use of Soil and Fertilizer Resources, College of Resources and the Environment, Shandong Agricultural University, Taian, China
| | - Mingyang Li
- National Engineering Laboratory for Efficient Use of Soil and Fertilizer Resources, College of Resources and the Environment, Shandong Agricultural University, Taian, China
| | - Yan Zhang
- Shandong Pengbo Biotechnology Co., Ltd, Taian, China
| | - Peng Zhang
- Shandong Wanhao Fertilizer Co. Ltd, Jinan, China
| | - Min Zhang
- National Engineering Laboratory for Efficient Use of Soil and Fertilizer Resources, College of Resources and the Environment, Shandong Agricultural University, Taian, China
| | - Zhiguang Liu
- National Engineering Laboratory for Efficient Use of Soil and Fertilizer Resources, College of Resources and the Environment, Shandong Agricultural University, Taian, China
| |
Collapse
|
20
|
Cai L, Ma W, Zou L, Xu X, Xu Z, Deng C, Qian W, Chen X, Chen G. Xanthomonas oryzae Pv. oryzicola Response Regulator VemR Is Co-opted by the Sensor Kinase CheA for Phosphorylation of Multiple Pathogenicity-Related Targets. Front Microbiol 2022; 13:928551. [PMID: 35756024 PMCID: PMC9218911 DOI: 10.3389/fmicb.2022.928551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Two-component systems (TCSs) (cognate sensor histidine kinase/response regulator pair, HK/RR) play a crucial role in bacterial adaptation, survival, and productive colonization. An atypical orphan single-domain RR VemR was characterized by the non-vascular pathogen Xanthomonas oryzae pv. oryzicola (Xoc) is known to cause bacterial leaf streak (BLS) disease in rice. Xoc growth and pathogenicity in rice, motility, biosynthesis of extracellular polysaccharide (EPS), and the ability to trigger HR in non-host tobacco were severely compromised in the deletion mutant strain RΔvemR as compared to the wild-type strain RS105. Site-directed mutagenesis and phosphotransfer experiments revealed that the conserved aspartate (D56) residue within the stand-alone phosphoacceptor receiver (REC) domain is essential for phosphorelay and the regulatory activity of Xoc VemR. Yeast two-hybrid (Y2H) and co-immunoprecipitation (co-IP) data identified CheA as the HK co-opting the RR VemR for phosphorylation. Affinity proteomics identified several downstream VemR-interacting proteins, such as 2-oxoglutarate dehydrogenase (OGDH), DNA-binding RR SirA, flagellar basal body P-ring formation protein FlgA, Type 4a pilus retraction ATPase PilT, stress-inducible sensor HK BaeS, septum site-determining protein MinD, cytoskeletal protein CcmA, and Type III and VI secretion system proteins HrpG and Hcp, respectively. Y2H and deletion mutant analyses corroborated that VemR interacted with OGDH, SirA, FlgA, and HrpG; thus, implicating multi-layered control of diverse cellular processes including carbon metabolism, motility, and pathogenicity in the rice. Physical interaction between VemR and HrpG suggested cross-talk interaction between CheA/VemR- and HpaS/HrpG-mediated signal transduction events orchestrating the hrp gene expression.
Collapse
Affiliation(s)
- Lulu Cai
- State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxiu Ma
- State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lifang Zou
- State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiameng Xu
- State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengyin Xu
- State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chaoying Deng
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaobin Chen
- State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Gongyou Chen
- State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Bacterial Transcriptional Regulators: A Road Map for Functional, Structural, and Biophysical Characterization. Int J Mol Sci 2022; 23:ijms23042179. [PMID: 35216300 PMCID: PMC8879271 DOI: 10.3390/ijms23042179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
The different niches through which bacteria move during their life cycle require a fast response to the many environmental queues they encounter. The sensing of these stimuli and their correct response is driven primarily by transcriptional regulators. This kind of protein is involved in sensing a wide array of chemical species, a process that ultimately leads to the regulation of gene transcription. The allosteric-coupling mechanism of sensing and regulation is a central aspect of biological systems and has become an important field of research during the last decades. In this review, we summarize the state-of-the-art techniques applied to unravel these complex mechanisms. We introduce a roadmap that may serve for experimental design, depending on the answers we seek and the initial information we have about the system of study. We also provide information on databases containing available structural information on each family of transcriptional regulators. Finally, we discuss the recent results of research about the allosteric mechanisms of sensing and regulation involving many transcriptional regulators of interest, highlighting multipronged strategies and novel experimental techniques. The aim of the experiments discussed here was to provide a better understanding at a molecular level of how bacteria adapt to the different environmental threats they face.
Collapse
|
22
|
Tagua VG, Molina‐Henares MA, Travieso ML, Nisa‐Martínez R, Quesada JM, Espinosa‐Urgel M, Ramos‐González MI. C‐di‐GMP
and biofilm are regulated in
Pseudomonas putida
by the
CfcA
/
CfcR
two‐component system in response to salts. Environ Microbiol 2022; 24:158-178. [DOI: 10.1111/1462-2920.15891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 12/14/2021] [Accepted: 12/26/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Víctor G. Tagua
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | | | - María L. Travieso
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | - Rafael Nisa‐Martínez
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | - José Miguel Quesada
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | - Manuel Espinosa‐Urgel
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | | |
Collapse
|
23
|
Gupta R, Elkabetz D, Leibman-Markus M, Sayas T, Schneider A, Jami E, Kleiman M, Bar M. Cytokinin drives assembly of the phyllosphere microbiome and promotes disease resistance through structural and chemical cues. THE ISME JOURNAL 2022; 16:122-137. [PMID: 34272494 PMCID: PMC8692462 DOI: 10.1038/s41396-021-01060-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023]
Abstract
The plant hormone cytokinin (CK) is an important developmental regulator, promoting morphogenesis and delaying differentiation and senescence. From developmental processes, to growth, to stress tolerance, CKs are central in plant life. CKs are also known to mediate plant immunity and disease resistance, and several classes of microbes can also produce CKs, affecting the interaction with their plant hosts. While host species and genotype can be a driving force in shaping the plant microbiome, how plant developmental hormones such as CK can shape the microbiome is largely uninvestigated. Here, we examined the relationship between CK and the phyllosphere microbiome, finding that CK acts as a selective force in microbiome assembly, increasing richness, and promoting the presence of Firmicutes. CK-mediated immunity was found to partially depend on the microbial community, and bacilli isolated from previously described CK-rich plant genotypes, which overexpress a CK biosynthesis gene or have increased CK sensitivity, induced plant immunity, and promoted disease resistance. Using a biomimetic system, we investigated the relationship between the leaf microstructure, which is differentially patterned upon changes in CK content or signaling, and the growth of different phyllosphere microbes. We found that leaf structures derived from CK-rich plant genotypes support bacilli in the biomimetic system. CK was able to promote the growth, swarming, and biofilm formation of immunity inducing bacillus isolates in vitro. Overall, our results indicate that host genotype and hormonal profiles can act as a strong selective force in microbiome assembly, underlying differential immunity profiles, and pathogen resistance as a result.
Collapse
Affiliation(s)
- Rupali Gupta
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Dorin Elkabetz
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
- Department of Plant Pathology and Microbiology, Hebrew University of Jerusalem, Rehovot, Israel
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Tali Sayas
- Department of Vegetable and Field crops, Plant Sciences Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Anat Schneider
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
- Department of Plant Pathology and Microbiology, Hebrew University of Jerusalem, Rehovot, Israel
| | - Elie Jami
- Department of Ruminant Science, Animal Science Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Maya Kleiman
- Department of Vegetable and Field crops, Plant Sciences Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
- Agro-NanoTechnology and Advanced Materials Center, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel.
| |
Collapse
|
24
|
Xie Y, Ding Y, Shao X, Yao C, Li J, Liu J, Deng X. Pseudomonas syringae senses polyphenols via phosphorelay crosstalk to inhibit virulence. EMBO Rep 2021; 22:e52805. [PMID: 34580996 DOI: 10.15252/embr.202152805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 01/04/2023] Open
Abstract
Bacteria use a variety of mechanisms, such as two-component regulatory systems (TCSs), to rapidly sense and respond to distinct conditions and signals in their host organisms. For example, a type III secretion system (T3SS) is a key determinant of the virulence of the model plant pathogen Pseudomonas syringae and contains the TCS RhpRS as a key regulator. However, the plant-derived compound targeting RhpRS remains unknown. Here, we report that RhpRS directly interacts with polyphenols and responds by switching off P. syringae T3SS via crosstalk with alternative histidine kinases. We identify three natural polyphenols that induce the expression of the rhpRS operon in an RhpS-dependent manner. The presence of these three specific polyphenols inhibits the phosphatase activity of RhpS, thus suppressing T3SS activation in T3SS-inducing conditions. The Pro40 residue of RhpS is essential to respond to these polyphenols. In addition, three non-cognate histidine kinases cooperatively phosphorylate RhpR and antagonize the rhpS mutant phenotype. This work illustrates that plant polyphenols can directly target P. syringae RhpRS, which results in bacterial virulence being switched off via a phosphorylation-related crosstalk.
Collapse
Affiliation(s)
- Yingpeng Xie
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Yiqing Ding
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Xiaolong Shao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Chunyan Yao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Jingwei Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Jingui Liu
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| |
Collapse
|
25
|
Lazar JT, Tabor JJ. Bacterial two-component systems as sensors for synthetic biology applications. CURRENT OPINION IN SYSTEMS BIOLOGY 2021; 28:100398. [PMID: 34917859 PMCID: PMC8670732 DOI: 10.1016/j.coisb.2021.100398] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Two-component systems (TCSs) are a ubiquitous family of signal transduction pathways that enable bacteria to sense and respond to diverse physical, chemical, and biological stimuli outside and inside the cell. Synthetic biologists have begun to repurpose TCSs for applications in optogenetics, materials science, gut microbiome engineering, and soil nutrient biosensing, among others. New engineering methods including genetic refactoring, DNA-binding domain swapping, detection threshold tuning, and phosphorylation cross-talk insulation are being used to increase the reliability of TCS sensor performance and tailor TCS signaling properties to the requirements of specific applications. There is now potential to combine these methods with large-scale gene synthesis and laboratory screening to discover the inputs sensed by many uncharacterized TCSs and develop a large new family of genetically-encoded sensors that respond to an unrivaled breadth of stimuli.
Collapse
Affiliation(s)
- John T Lazar
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Jeffrey J Tabor
- Department of Bioengineering, Rice University, Houston, TX, USA
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| |
Collapse
|
26
|
Dabravolski SA, Isayenkov SV. Evolution of the Cytokinin Dehydrogenase (CKX) Domain. J Mol Evol 2021; 89:665-677. [PMID: 34757471 DOI: 10.1007/s00239-021-10035-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/30/2021] [Indexed: 01/05/2023]
Abstract
Plant hormone cytokinins are important regulators of plant development, response to environmental stresses and interplay with other plant hormones. Cytokinin dehydrogenases (CKXs) are proteins responsible for the irreversible break-down of cytokinins to the adenine and aldehyde. Even though plant CKXs have been extensively studied, homologous proteins from other taxa remain mainly uncharacterised. Here we present our study on the molecular evolution and divergence of the CKX from bacteria, fungi, amoeba and viridiplantae. Although CKXs are present in eukaryotes and prokaryotes, they are missing in algae and metazoan taxa. The prevalent domain architecture consists of the FAD-binding and cytokinin binding domains, whereas some bacteria appear to have only cytokinin binding domain proteins. The CKXs play important role in the various aspects of plant life including control of plant development, response to biotic and abiotic stress, influence nutrition. Results of our study suggested that CKX originates from the FAD-linked C-terminal oxidase and has a defence-oriented function. The obtained results significantly extend the current understanding of the cytokinin dehydrogenases structure-function from the relationship to homologues from other taxa and provide a starting point baseline for their future functional characterization.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], Dovatora str. 7/11, 21002, Vitebsk, Belarus
| | - Stanislav V Isayenkov
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China.
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, NAS of Ukraine, Osipovskogo str., 2a, Kyiv-123, Kyiv, 04123, Ukraine.
| |
Collapse
|
27
|
Cytokinin Inhibits Fungal Development and Virulence by Targeting the Cytoskeleton and Cellular Trafficking. mBio 2021; 12:e0306820. [PMID: 34663100 PMCID: PMC8524340 DOI: 10.1128/mbio.03068-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cytokinin (CK) is an important plant developmental regulator, having activities in many aspects of plant life and response to the environment. CKs are involved in diverse processes in the plant, including stem cell maintenance, vascular differentiation, growth and branching of roots and shoots, leaf senescence, nutrient balance, and stress tolerance. In some cases, phytopathogens secrete CKs. It has been suggested that to achieve pathogenesis in the host, CK-secreting biotrophs manipulate CK signaling to regulate the host cell cycle and nutrient allocation. CK is known to induce host plant resistance to several classes of phytopathogens from a few works, with induced host immunity via salicylic acid signaling suggested to be the prevalent mechanism for this host resistance. Here, we show that CK directly inhibits the growth, development, and virulence of fungal phytopathogens. Focusing on Botrytis cinerea (Bc), we demonstrate that various aspects of fungal development can be reversibly inhibited by CK. We also found that CK affects both budding and fission yeast in a similar manner. Investigating the mechanism by which CK influences fungal development, we conducted RNA next-generation sequencing (RNA-NGS) on mock- and CK-treated B. cinerea samples, finding that CK alters the cell cycle, cytoskeleton, and endocytosis. Cell biology experiments demonstrated that CK affects cytoskeleton components and cellular trafficking in Bc, lowering endocytic rates and endomembrane compartment sizes, likely leading to reduced growth rates and arrested developmental programs. Mutant analyses in yeast confirmed that the endocytic pathway is altered by CK. Our work uncovers a remarkably conserved role for a plant growth hormone in fungal biology, suggesting that pathogen-host interactions resulted in fascinating molecular adaptations on fundamental processes in eukaryotic biology.
Collapse
|
28
|
The predatory soil bacterium Lysobacter reprograms quorum sensing system to regulate antifungal antibiotic production in a cyclic-di-GMP-independent manner. Commun Biol 2021; 4:1131. [PMID: 34561536 PMCID: PMC8463545 DOI: 10.1038/s42003-021-02660-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
Soil bacteria often harbour various toxins to against eukaryotic or prokaryotic. Diffusible signal factors (DSFs) represent a unique group of quorum sensing (QS) chemicals that modulate interspecies competition in bacteria that do not produce antibiotic-like molecules. However, the molecular mechanism by which DSF-mediated QS systems regulate antibiotic production for interspecies competition remains largely unknown in soil biocontrol bacteria. In this study, we find that the necessary QS system component protein RpfG from Lysobacter, in addition to being a cyclic dimeric GMP (c-di-GMP) phosphodiesterase (PDE), regulates the biosynthesis of an antifungal factor (heat-stable antifungal factor, HSAF), which does not appear to depend on the enzymatic activity. Interestingly, we show that RpfG interacts with three hybrid two-component system (HyTCS) proteins, HtsH1, HtsH2, and HtsH3, to regulate HSAF production in Lysobacter. In vitro studies show that each of these proteins interacted with RpfG, which reduced the PDE activity of RpfG. Finally, we show that the cytoplasmic proportions of these proteins depended on their phosphorylation activity and binding to the promoter controlling the genes implicated in HSAF synthesis. These findings reveal a previously uncharacterized mechanism of DSF signalling in antibiotic production in soil bacteria. Li et al shows that the quorum sensing system component protein RpfG from Lysobacter, in addition to being a cyclic dimeric GMP (c-di-GMP) phosphodiesterase, also regulates the biosynthesis of an antifungal factor. They show that RpfG regulates the production of HSAF through a direct interaction with three hybrid two component system (HyTCS) proteins, providing insights into the antifungal defence in soil bacteria.
Collapse
|
29
|
Liu W, Triplett L, Chen XL. Emerging Roles of Posttranslational Modifications in Plant-Pathogenic Fungi and Bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:99-124. [PMID: 33909479 DOI: 10.1146/annurev-phyto-021320-010948] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Posttranslational modifications (PTMs) play crucial roles in regulating protein function and thereby control many cellular processes and biological phenotypes in both eukaryotes and prokaryotes. Several recent studies illustrate how plant fungal and bacterial pathogens use these PTMs to facilitate development, stress response, and host infection. In this review, we discuss PTMs that have key roles in the biological and infection processes of plant-pathogenic fungi and bacteria. The emerging roles of PTMs during pathogen-plant interactions are highlighted. We also summarize traditional tools and emerging proteomics approaches for PTM research. These discoveries open new avenues for investigating the fundamental infection mechanisms of plant pathogens and the discovery of novel strategies for plant disease control.
Collapse
Affiliation(s)
- Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Lindsay Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, USA;
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
30
|
Matilla MA, Velando F, Martín-Mora D, Monteagudo-Cascales E, Krell T. A catalogue of signal molecules that interact with sensor kinases, chemoreceptors and transcriptional regulators. FEMS Microbiol Rev 2021; 46:6356564. [PMID: 34424339 DOI: 10.1093/femsre/fuab043] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteria have evolved many different signal transduction systems that sense signals and generate a variety of responses. Generally, most abundant are transcriptional regulators, sensor histidine kinases and chemoreceptors. Typically, these systems recognize their signal molecules with dedicated ligand-binding domains (LBDs), which, in turn, generate a molecular stimulus that modulates the activity of the output module. There are an enormous number of different LBDs that recognize a similarly diverse set of signals. To give a global perspective of the signals that interact with transcriptional regulators, sensor kinases and chemoreceptors, we manually retrieved information on the protein-ligand interaction from about 1,200 publications and 3D structures. The resulting 811 proteins were classified according to the Pfam family into 127 groups. These data permit a delineation of the signal profiles of individual LBD families as well as distinguishing between families that recognize signals in a promiscuous manner and those that possess a well-defined ligand range. A major bottleneck in the field is the fact that the signal input of many signaling systems is unknown. The signal repertoire reported here will help the scientific community design experimental strategies to identify the signaling molecules for uncharacterised sensor proteins.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Félix Velando
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Elizabet Monteagudo-Cascales
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| |
Collapse
|
31
|
The Hulks and the Deadpools of the Cytokinin Universe: A Dual Strategy for Cytokinin Production, Translocation, and Signal Transduction. Biomolecules 2021; 11:biom11020209. [PMID: 33546210 PMCID: PMC7913349 DOI: 10.3390/biom11020209] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cytokinins are plant hormones, derivatives of adenine with a side chain at the N6-position. They are involved in many physiological processes. While the metabolism of trans-zeatin and isopentenyladenine, which are considered to be highly active cytokinins, has been extensively studied, there are others with less obvious functions, such as cis-zeatin, dihydrozeatin, and aromatic cytokinins, which have been comparatively neglected. To help explain this duality, we present a novel hypothesis metaphorically comparing various cytokinin forms, enzymes of CK metabolism, and their signalling and transporter functions to the comics superheroes Hulk and Deadpool. Hulk is a powerful but short-lived creation, whilst Deadpool presents a more subtle and enduring force. With this dual framework in mind, this review compares different cytokinin metabolites, and their biosynthesis, translocation, and sensing to illustrate the different mechanisms behind the two CK strategies. This is put together and applied to a plant developmental scale and, beyond plants, to interactions with organisms of other kingdoms, to highlight where future study can benefit the understanding of plant fitness and productivity.
Collapse
|
32
|
Eichmann R, Richards L, Schäfer P. Hormones as go-betweens in plant microbiome assembly. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:518-541. [PMID: 33332645 PMCID: PMC8629125 DOI: 10.1111/tpj.15135] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 05/04/2023]
Abstract
The interaction of plants with complex microbial communities is the result of co-evolution over millions of years and contributed to plant transition and adaptation to land. The ability of plants to be an essential part of complex and highly dynamic ecosystems is dependent on their interaction with diverse microbial communities. Plant microbiota can support, and even enable, the diverse functions of plants and are crucial in sustaining plant fitness under often rapidly changing environments. The composition and diversity of microbiota differs between plant and soil compartments. It indicates that microbial communities in these compartments are not static but are adjusted by the environment as well as inter-microbial and plant-microbe communication. Hormones take a crucial role in contributing to the assembly of plant microbiomes, and plants and microbes often employ the same hormones with completely different intentions. Here, the function of hormones as go-betweens between plants and microbes to influence the shape of plant microbial communities is discussed. The versatility of plant and microbe-derived hormones essentially contributes to the creation of habitats that are the origin of diversity and, thus, multifunctionality of plants, their microbiota and ultimately ecosystems.
Collapse
Affiliation(s)
- Ruth Eichmann
- Institute of Molecular BotanyUlm UniversityUlm89069Germany
| | - Luke Richards
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
| | - Patrick Schäfer
- Institute of Molecular BotanyUlm UniversityUlm89069Germany
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
33
|
Rashotte AM. The evolution of cytokinin signaling and its role in development before Angiosperms. Semin Cell Dev Biol 2021; 109:31-38. [DOI: 10.1016/j.semcdb.2020.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 02/02/2023]
|
34
|
Singh D, Gupta P, Singla-Pareek SL, Siddique KH, Pareek A. The Journey from Two-Step to Multi-Step Phosphorelay Signaling Systems. Curr Genomics 2021; 22:59-74. [PMID: 34045924 PMCID: PMC8142344 DOI: 10.2174/1389202921666210105154808] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/21/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The two-component signaling (TCS) system is an important signal transduction machinery in prokaryotes and eukaryotes, excluding animals, that uses a protein phosphorylation mechanism for signal transmission. CONCLUSION Prokaryotes have a primitive type of TCS machinery, which mainly comprises a membrane-bound sensory histidine kinase (HK) and its cognate cytoplasmic response regulator (RR). Hence, it is sometimes referred to as two-step phosphorelay (TSP). Eukaryotes have more sophisticated signaling machinery, with an extra component - a histidine-containing phosphotransfer (HPT) protein that shuttles between HK and RR to communicate signal baggage. As a result, the TSP has evolved from a two-step phosphorelay (His-Asp) in simple prokaryotes to a multi-step phosphorelay (MSP) cascade (His-Asp-His-Asp) in complex eukaryotic organisms, such as plants, to mediate the signaling network. This molecular evolution is also reflected in the form of considerable structural modifications in the domain architecture of the individual components of the TCS system. In this review, we present TCS system's evolutionary journey from the primitive TSP to advanced MSP type across the genera. This information will be highly useful in designing the future strategies of crop improvement based on the individual members of the TCS machinery.
Collapse
Affiliation(s)
| | | | | | | | - Ashwani Pareek
- Address correspondence to this author at the Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Tel/Fax: 91-11-26704504 / 26742558; E-mail:
| |
Collapse
|
35
|
De Saeger J, Park J, Chung HS, Hernalsteens JP, Van Lijsebettens M, Inzé D, Van Montagu M, Depuydt S. Agrobacterium strains and strain improvement: Present and outlook. Biotechnol Adv 2020; 53:107677. [PMID: 33290822 DOI: 10.1016/j.biotechadv.2020.107677] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/03/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022]
Abstract
Almost 40 years ago the first transgenic plant was generated through Agrobacterium tumefaciens-mediated transformation, which, until now, remains the method of choice for gene delivery into plants. Ever since, optimized Agrobacterium strains have been developed with additional (genetic) modifications that were mostly aimed at enhancing the transformation efficiency, although an optimized strain also exists that reduces unwanted plasmid recombination. As a result, a collection of very useful strains has been created to transform a wide variety of plant species, but has also led to a confusing Agrobacterium strain nomenclature. The latter is often misleading for choosing the best-suited strain for one's transformation purposes. To overcome this issue, we provide a complete overview of the strain classification. We also indicate different strain modifications and their purposes, as well as the obtained results with regard to the transformation process sensu largo. Furthermore, we propose additional improvements of the Agrobacterium-mediated transformation process and consider several worthwhile modifications, for instance, by circumventing a defense response in planta. In this regard, we will discuss pattern-triggered immunity, pathogen-associated molecular pattern detection, hormone homeostasis and signaling, and reactive oxygen species in relationship to Agrobacterium transformation. We will also explore alterations that increase agrobacterial transformation efficiency, reduce plasmid recombination, and improve biocontainment. Finally, we recommend the use of a modular system to best utilize the available knowledge for successful plant transformation.
Collapse
Affiliation(s)
- Jonas De Saeger
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jihae Park
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Marine Sciences, Incheon National University, Incheon 406-840, South Korea
| | - Hoo Sun Chung
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | | | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Marc Van Montagu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Stephen Depuydt
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Incheon 406-840, South Korea; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| |
Collapse
|
36
|
Cytokinin and Ethylene Cell Signaling Pathways from Prokaryotes to Eukaryotes. Cells 2020; 9:cells9112526. [PMID: 33238457 PMCID: PMC7700396 DOI: 10.3390/cells9112526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Cytokinins (CKs) and ethylene (ET) are among the most ancient organic chemicals on Earth. A wide range of organisms including plants, algae, fungi, amoebae, and bacteria use these substances as signaling molecules to regulate cellular processes. Because of their ancestral origin and ubiquitous occurrence, CKs and ET are also considered to be ideal molecules for inter-kingdom communication. Their signal transduction pathways were first historically deciphered in plants and are related to the two-component systems, using histidine kinases as primary sensors. Paradoxically, although CKs and ET serve as signaling molecules in different kingdoms, it has been supposed for a long time that the canonical CK and ET signaling pathways are restricted to terrestrial plants. These considerations have now been called into question following the identification over recent years of genes encoding CK and ET receptor homologs in many other lineages within the tree of life. These advances shed new light on the dissemination and evolution of these hormones as both intra- and inter-specific communication molecules in prokaryotic and eukaryotic organisms.
Collapse
|
37
|
Pons S, Fournier S, Chervin C, Bécard G, Rochange S, Frei Dit Frey N, Puech Pagès V. Phytohormone production by the arbuscular mycorrhizal fungus Rhizophagus irregularis. PLoS One 2020; 15:e0240886. [PMID: 33064769 PMCID: PMC7567356 DOI: 10.1371/journal.pone.0240886] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/05/2020] [Indexed: 11/18/2022] Open
Abstract
Arbuscular mycorrhizal symbiosis is a mutualistic interaction between most land plants and fungi of the glomeromycotina subphylum. The initiation, development and regulation of this symbiosis involve numerous signalling events between and within the symbiotic partners. Among other signals, phytohormones are known to play important roles at various stages of the interaction. During presymbiotic steps, plant roots exude strigolactones which stimulate fungal spore germination and hyphal branching, and promote the initiation of symbiosis. At later stages, different plant hormone classes can act as positive or negative regulators of the interaction. Although the fungus is known to reciprocally emit regulatory signals, its potential contribution to the phytohormonal pool has received little attention, and has so far only been addressed by indirect assays. In this study, using mass spectrometry, we analyzed phytohormones released into the medium by germinated spores of the arbuscular mycorrhizal fungus Rhizophagus irregularis. We detected the presence of a cytokinin (isopentenyl adenosine) and an auxin (indole-acetic acid). In addition, we identified a gibberellin (gibberellin A4) in spore extracts. We also used gas chromatography to show that R. irregularis produces ethylene from methionine and the α-keto γ-methylthio butyric acid pathway. These results highlight the possibility for AM fungi to use phytohormones to interact with their host plants, or to regulate their own development.
Collapse
Affiliation(s)
- Simon Pons
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- MetaboHub-Metatoul AgromiX, Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Sylvie Fournier
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- MetaboHub-Metatoul AgromiX, Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Christian Chervin
- Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP, INRA, Castanet-Tolosan, France
| | - Guillaume Bécard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Soizic Rochange
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Nicolas Frei Dit Frey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- * E-mail: (VPP); (NFDF)
| | - Virginie Puech Pagès
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- MetaboHub-Metatoul AgromiX, Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- * E-mail: (VPP); (NFDF)
| |
Collapse
|
38
|
Shahbaz MU, Qian S, Yun F, Zhang J, Yu C, Tian F, Yang F, Chen H. Identification of the Regulatory Components Mediated by the Cyclic di-GMP Receptor Filp and Its Interactor PilZX3 and Functioning in Virulence of Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1196-1208. [PMID: 32720873 DOI: 10.1094/mpmi-04-20-0088-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The degenerate GGDEF/EAL domain protein Filp was previously shown to function as a cyclic di-GMP (c-di-GMP) signal receptor through its specific interaction with an atypical PilZ domain protein PilZX3 (formerly PXO_02715) and that this interaction is involved in regulating virulence in Xanthomonas oryzae pv. oryzae. As a step toward understanding the regulatory role of Filp/PilZX3-mediated c-di-GMP signaling in the virulence of X. oryzae pv. oryzae, differentially expressed proteins (DEPs) downstream of Filp/PilZX3 were identified by isobaric tagging for relative and absolute quantitation (iTRAQ). A total of 2,346 proteins were identified, of which 157 displayed significant differential expression in different strains. Western blot and quantitative reverse transcription-PCR analyses showed that the expression of HrrP (histidine kinase-response regulator hybrid protein), PhrP (PhoPQ-regulated protein), ProP (prophage Lp2 protein 6) were increased in the ∆filp, ∆pilZX3, and ∆filp∆pilZX3 mutant strains, while expression of CheW1 (chemotaxis protein CheW1), EdpX2 (the second EAL domain protein identified in X. oryzae pv. oryzae), HGdpX2 (the second HD-GYP domain protein identified in X. oryzae pv. oryzae) was decreased in all mutant strains compared with that in the wild type, which was consistent with the iTRAQ data. Deletion of the hrrP and proP genes resulted in significant increases in virulence, whereas deletion of the cheW1, hGdpX2, or tdrX2 genes resulted in decreased virulence. Enzyme assays indicated that EdpX2 and HGdpX2 were active phosphodiesterases (PDEs). This study provides a proteomic description of putative regulatory pathway of Filp and PilZX3 and characterized novel factors that contributed to the virulence of X. oryzae pv. oryzae regulated by c-di-GMP signaling.
Collapse
Affiliation(s)
- Muhammad Umar Shahbaz
- State Key Laboratory for Biology Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Plant Pathology Section, Plant Pathology Research Institute, AARI, Faisalabad 38850, Pakistan
| | - Shanshan Qian
- State Key Laboratory for Biology Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fei Yun
- National Tobacco Cultivation and Physiology and Biochemistry Research Centre/Key Laboratory for Tobacco Cultivation of Tobacco Industry, Henan Agricultural University, Zhengzhou 450002, China
| | - Jie Zhang
- State Key Laboratory for Biology Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chao Yu
- State Key Laboratory for Biology Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fang Tian
- State Key Laboratory for Biology Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fenghuan Yang
- State Key Laboratory for Biology Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huamin Chen
- State Key Laboratory for Biology Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
39
|
Research Progress on the Roles of Cytokinin in Plant Response to Stress. Int J Mol Sci 2020; 21:ijms21186574. [PMID: 32911801 PMCID: PMC7555750 DOI: 10.3390/ijms21186574] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/05/2023] Open
Abstract
Cytokinins promote plant growth and development under normal plant growth conditions and also play an important role in plant resistance to stress. Understanding the working mechanisms of cytokinins under adverse conditions will help to make full use of cytokinins in agriculture to increase production and efficiency of land use. In this article, we review the progress that has been made in cytokinin research in plant response to stress and propose its future application prospects.
Collapse
|
40
|
Abstract
Originally known for their roles in a myriad of bacterial processes, the two-component signaling systems are now found far beyond the bacterial domain. Papon and Stock highlight the many interesting features of these widespread signaling systems.
Collapse
|
41
|
Aoki MM, Emery RJN, Anjard C, Brunetti CR, Huber RJ. Cytokinins in Dictyostelia - A Unique Model for Studying the Functions of Signaling Agents From Species to Kingdoms. Front Cell Dev Biol 2020; 8:511. [PMID: 32714926 PMCID: PMC7316887 DOI: 10.3389/fcell.2020.00511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Cytokinins (CKs) are a diverse group of evolutionarily significant growth-regulating molecules. While the CK biosynthesis and signal transduction pathways are the most well-understood in plant systems, these molecules have been identified in all kingdoms of life. This review follows the recent discovery of an expanded CK profile in the social amoeba, Dictyostelium discoideum. A comprehensive review on the present knowledge of CK biosynthesis, signal transduction, and CK-small molecule interactions within members of Dictyostelia will be summarized. In doing so, the utility of social amoebae will be highlighted as a model system for studying the evolution of these hormone-like signaling agents, which will set the stage for future research in this area.
Collapse
Affiliation(s)
- Megan M Aoki
- Department of Biology, Trent University, Peterborough, ON, Canada
| | - R J Neil Emery
- Department of Biology, Trent University, Peterborough, ON, Canada
| | - Christophe Anjard
- Institut Lumière Matière, CNRS UMR 5306, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Craig R Brunetti
- Department of Biology, Trent University, Peterborough, ON, Canada
| | - Robert J Huber
- Department of Biology, Trent University, Peterborough, ON, Canada
| |
Collapse
|
42
|
Timilsina S, Potnis N, Newberry EA, Liyanapathiranage P, Iruegas-Bocardo F, White FF, Goss EM, Jones JB. Xanthomonas diversity, virulence and plant-pathogen interactions. Nat Rev Microbiol 2020; 18:415-427. [PMID: 32346148 DOI: 10.1038/s41579-020-0361-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2020] [Indexed: 12/19/2022]
Abstract
Xanthomonas spp. encompass a wide range of plant pathogens that use numerous virulence factors for pathogenicity and fitness in plant hosts. In this Review, we examine recent insights into host-pathogen co-evolution, diversity in Xanthomonas populations and host specificity of Xanthomonas spp. that have substantially improved our fundamental understanding of pathogen biology. We emphasize the virulence factors in xanthomonads, such as type III secreted effectors including transcription activator-like effectors, type II secretion systems, diversity resulting in host specificity, evolution of emerging strains, activation of susceptibility genes and strategies of host evasion. We summarize the genomic diversity in several Xanthomonas spp. and implications for disease outbreaks, management strategies and breeding for disease resistance.
Collapse
Affiliation(s)
- Sujan Timilsina
- Plant Pathology Department, University of Florida, Gainesville, FL, USA
| | - Neha Potnis
- Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Eric A Newberry
- Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | | | | | - Frank F White
- Plant Pathology Department, University of Florida, Gainesville, FL, USA
| | - Erica M Goss
- Plant Pathology Department, University of Florida, Gainesville, FL, USA. .,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
| | - Jeffrey B Jones
- Plant Pathology Department, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
43
|
Kim SW, Goossens A, Libert C, Van Immerseel F, Staal J, Beyaert R. Phytohormones: Multifunctional nutraceuticals against metabolic syndrome and comorbid diseases. Biochem Pharmacol 2020; 175:113866. [PMID: 32088261 DOI: 10.1016/j.bcp.2020.113866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/18/2020] [Indexed: 12/12/2022]
Abstract
Metabolic syndrome is characterized by the co-occurrence of diverse symptoms initiating the development of type 2 diabetes, cardiovascular diseases, and a variety of comorbid diseases. The complex constellation of numerous comorbidities makes it difficult to develop common therapeutic approaches that ameliorate these pathological features simultaneously. The plant hormones abscisic acid, salicylic acid, auxin, and cytokinins, have shown promising anti-inflammatory and pro-metabolic effects that could mitigate several disorders relevant to metabolic syndrome. Intriguingly, besides plants, human cells and gut microbes also endogenously produce these molecules, indicating a role in the complex interplay between inflammatory responses associated with metabolic syndrome, the gut microbiome, and nutrition. Here, we introduce how bioactive phytohormones can be generated endogenously and through the gut microbiome. These molecules subsequently influence immune responses and metabolism. We also elaborate on how phytohormones can beneficially modulate metabolic syndrome comorbidities, and propose them as nutraceuticals.
Collapse
Affiliation(s)
- Seo Woo Kim
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; VIB-UGent Center for Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Alain Goossens
- VIB-UGent Center for Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Claude Libert
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jens Staal
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Rudi Beyaert
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
44
|
Wang FF, Qian W. The roles of histidine kinases in sensing host plant and cell-cell communication signal in a phytopathogenic bacterium. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180311. [PMID: 30967026 DOI: 10.1098/rstb.2018.0311] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
It has long been known that phytopathogenic bacteria react to plant-specific stimuli or environmental factors. However, how bacterial cells sense these environmental cues remains incompletely studied. Recently, three kinds of histidine kinases (HKs) were identified as receptors to perceive plant-associated or quorum-sensing signals. Among these kinases, HK VgrS detects iron depletion by binding to ferric iron via an ExxE motif, RpfC binds diffusible signal factor (DSF) by its N-terminal peptide and activates its autokinase activity through relaxation of autoinhibition, and PcrK specifically senses plant hormone-cytokinin and elicits bacterial responses to oxidative stress. These HKs are critical sensors that regulate the virulence of a Gram-negative bacterium, Xanthomonas campestris pv. campestris. Research progress on the signal perception of phytopathogenic bacterial HKs suggests that inter-kingdom signalling between host plants and pathogens controls pathogenesis and can be used as a potential molecular target to protect plants from bacterial diseases. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Fang-Fang Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China
| | - Wei Qian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101 , People's Republic of China
| |
Collapse
|
45
|
Kabbara S, Bidon B, Kilani J, Osman M, Hamze M, Stock AM, Papon N. Cytokinin Sensing in Bacteria. Biomolecules 2020; 10:E186. [PMID: 31991754 PMCID: PMC7072313 DOI: 10.3390/biom10020186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 01/05/2023] Open
Abstract
Although it has long been known that bacteria detect and react to plant chemicals to establish an interaction, the cellular signaling mechanisms involved in these perception processes have hitherto remained obscure. Some exciting recent advances in the field have described, for the first time, how some phytopathogenic bacteria sense the host plant hormones, cytokinins. These discoveries not only advance the understanding of cell signaling circuitries engaged in cytokinin sensing in non-plant organisms, but also increase our knowledge of the broad role of these ancient molecules in regulating intra- and interspecific communications.
Collapse
Affiliation(s)
- Samar Kabbara
- Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, F-49333 Angers, France; (S.K.); (B.B.); (J.K.)
| | - Baptiste Bidon
- Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, F-49333 Angers, France; (S.K.); (B.B.); (J.K.)
| | - Jaafar Kilani
- Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, F-49333 Angers, France; (S.K.); (B.B.); (J.K.)
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science and Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon; (M.O.); (M.H.)
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science and Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon; (M.O.); (M.H.)
| | - Ann M. Stock
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| | - Nicolas Papon
- Groupe d’Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, F-49333 Angers, France; (S.K.); (B.B.); (J.K.)
| |
Collapse
|
46
|
Pons S, Fournier S, Chervin C, Bécard G, Rochange S, Frei Dit Frey N, Puech Pagès V. Phytohormone production by the arbuscular mycorrhizal fungus Rhizophagus irregularis. PLoS One 2020. [PMID: 33064769 DOI: 10.1101/2020.06.11.146126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Arbuscular mycorrhizal symbiosis is a mutualistic interaction between most land plants and fungi of the glomeromycotina subphylum. The initiation, development and regulation of this symbiosis involve numerous signalling events between and within the symbiotic partners. Among other signals, phytohormones are known to play important roles at various stages of the interaction. During presymbiotic steps, plant roots exude strigolactones which stimulate fungal spore germination and hyphal branching, and promote the initiation of symbiosis. At later stages, different plant hormone classes can act as positive or negative regulators of the interaction. Although the fungus is known to reciprocally emit regulatory signals, its potential contribution to the phytohormonal pool has received little attention, and has so far only been addressed by indirect assays. In this study, using mass spectrometry, we analyzed phytohormones released into the medium by germinated spores of the arbuscular mycorrhizal fungus Rhizophagus irregularis. We detected the presence of a cytokinin (isopentenyl adenosine) and an auxin (indole-acetic acid). In addition, we identified a gibberellin (gibberellin A4) in spore extracts. We also used gas chromatography to show that R. irregularis produces ethylene from methionine and the α-keto γ-methylthio butyric acid pathway. These results highlight the possibility for AM fungi to use phytohormones to interact with their host plants, or to regulate their own development.
Collapse
Affiliation(s)
- Simon Pons
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- MetaboHub-Metatoul AgromiX, Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Sylvie Fournier
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- MetaboHub-Metatoul AgromiX, Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Christian Chervin
- Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP, INRA, Castanet-Tolosan, France
| | - Guillaume Bécard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Soizic Rochange
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Nicolas Frei Dit Frey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Virginie Puech Pagès
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- MetaboHub-Metatoul AgromiX, Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| |
Collapse
|
47
|
Abstract
Signal transduction systems configured around a core phosphotransfer step between a histidine kinase and a cognate response regulator protein occur in organisms from all domains of life. These systems, termed two-component systems, constitute the majority of multi-component signaling pathways in Bacteria but are less prevalent in Archaea and Eukarya. The core signaling domains are modular, allowing versatility in configuration of components into single-step phosphotransfer and multi-step phosphorelay pathways, the former being predominant in bacteria and the latter in eukaryotes. Two-component systems regulate key cellular regulatory processes that provide adaptive responses to environmental stimuli and are of interest for the development of antimicrobial therapeutics, biotechnology applications, and biosensor engineering. In bacteria, two-component systems have been found to mediate responses to an extremely broad array of extracellular and intracellular chemical and physical stimuli, whereas in archaea and eukaryotes, the use of two-component systems is more limited. This review summarizes recent advances in exploring the repertoire of sensor histidine kinases in the Archaea and Eukarya domains of life.
Collapse
Affiliation(s)
- Nicolas Papon
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP, EA 3142), SFR ICAT 4208, UNIV Angers, UNIV Brest, Angers, France
| | - Ann M Stock
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| |
Collapse
|
48
|
Signal perception during plant-bacteria interactions: from chemicals to physical signals. SCIENCE CHINA-LIFE SCIENCES 2019; 63:305-307. [PMID: 31872376 DOI: 10.1007/s11427-019-1594-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
|
49
|
Jaworek P, Tarkowski P, Hluska T, Kouřil Š, Vrobel O, Nisler J, Kopečný D. Characterization of five CHASE-containing histidine kinase receptors from Populus × canadensis cv. Robusta sensing isoprenoid and aromatic cytokinins. PLANTA 2019; 251:1. [PMID: 31776777 DOI: 10.1007/s00425-019-03297-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Five poplar CHASE-containing histidine kinase receptors bind cytokinins and display kinase activities. Both endogenous isoprenoid and aromatic cytokinins bind to the receptors in live cell assays. Cytokinins are phytohormones that play key roles in various developmental processes in plants. The poplar species Populus × canadensis, cv. Robusta, is the first organism found to contain aromatic cytokinins. Here, we report the functional characterization of five CHASE-containing histidine kinases from P. × canadensis: PcHK2, PcHK3a, PcHK3b, PcHK4a and PcHK4b. A qPCR analysis revealed high transcript levels of all PcHKs other than PcHK4b across multiple poplar organs. The ligand specificity was determined using a live cell Escherichia coli assay and we provide evidence based on UHPLC-MS/MS data that ribosides can be true ligands. PcHK2 exhibited higher sensitivity to iP-type cytokinins than the other receptors, while PcHK3a and PcHK3b bound these cytokinins much more weakly, because they possess two isoleucine residues that clash with the cytokinin base and destabilize its binding. All receptors display kinase activity but their activation ratios in the presence/absence of cytokinin differ significantly. PcHK4a displays over 400-fold higher kinase activity in the presence of cytokinin, suggesting involvement in strong responses to changes in cytokinin levels. trans-Zeatin was both the most abundant cytokinin in poplar and that with the highest variation in abundance, which is consistent with its strong binding to all five HKs and activation of cytokinin signaling via A-type response regulators. The aromatic cytokinins' biological significance remains unclear, their levels vary diurnally, seasonally, and annually. PcHK3 and PcHK4 display the strongest binding at pH 7.5 and 5.5, respectively, in line with their putative membrane localization in the endoplasmic reticulum and plasma membrane.
Collapse
Affiliation(s)
- Pavel Jaworek
- Department of Phytochemistry, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
- Department of Protein Biochemistry and Proteomics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Petr Tarkowski
- Department of Phytochemistry, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Centre of the Region Haná for Biotechnological and Agricultural Research, Crop Research Institute, Šlechtitelů 29, 783 71, Olomouc, Czech Republic
| | - Tomáš Hluska
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Centre of the Region Haná for Biotechnological and Agricultural Research, Crop Research Institute, Šlechtitelů 29, 783 71, Olomouc, Czech Republic
| | - Štěpán Kouřil
- Department of Phytochemistry, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Ondřej Vrobel
- Department of Phytochemistry, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Centre of the Region Haná for Biotechnological and Agricultural Research, Crop Research Institute, Šlechtitelů 29, 783 71, Olomouc, Czech Republic
| | - Jaroslav Nisler
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, AS CR & Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - David Kopečný
- Department of Protein Biochemistry and Proteomics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
50
|
Xu G. Evolution of LuxR solos in bacterial communication: receptors and signals. Biotechnol Lett 2019; 42:181-186. [PMID: 31732826 DOI: 10.1007/s10529-019-02763-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022]
Abstract
Cell-cell communication in bacteria needs chemical signals and cognate receptors. Many Gram-negative bacteria use acyl-homoserine lactones (AHLs) and cognate LuxR-type receptors to regulate their quorum sensing (QS) systems. The signal synthase-receptor (LuxI-LuxR) pairs may have co-evolved together. However, many LuxR solo (orphan LuxR) regulators sense more signals than just AHLs, and expand the regulatory networks for inter-species and inter-kingdom communication. Moreover, there are also some QS regulators from the TetR family. LuxR solo regulators might have evolved by gene duplication and horizontal gene transfer. An increased understanding of the evolutionary roles of QS regulators would be helpful for engineering of cell-cell communication circuits in bacteria.
Collapse
Affiliation(s)
- Gangming Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|