1
|
Jiang H, Ye J. The Warburg effect: The hacked mitochondrial-nuclear communication in cancer. Semin Cancer Biol 2025; 112:93-111. [PMID: 40147702 DOI: 10.1016/j.semcancer.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/23/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Mitochondrial-nuclear communication is vital for maintaining cellular homeostasis. This communication begins with mitochondria sensing environmental cues and transmitting signals to the nucleus through the retrograde cascade, involving metabolic signals such as substrates for epigenetic modifications, ATP and AMP levels, calcium flux, etc. These signals inform the nucleus about the cell's metabolic state, remodel epigenome and regulate gene expression, and modulate mitochondrial function and dynamics through the anterograde feedback cascade to control cell fate and physiology. Disruption of this communication can lead to cellular dysfunction and disease progression, particularly in cancer. The Warburg effect is the metabolic hallmark of cancer, characterized by disruption of mitochondrial respiration and increased lactate generation from glycolysis. This metabolic reprogramming rewires retrograde signaling, leading to epigenetic changes and dedifferentiation, further reprogramming mitochondrial function and promoting carcinogenesis. Understanding these processes and their link to tumorigenesis is crucial for uncovering tumorigenesis mechanisms. Therapeutic strategies targeting these disrupted pathways, including metabolic and epigenetic components, provide promising avenues for cancer treatment.
Collapse
Affiliation(s)
- Haowen Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Kollmar J, Xu J, Gonzalves D, Baur JA, Li LZ, Tchou J, Xu HN. Differential Mitochondrial Redox Responses to the Inhibition of NAD + Salvage Pathway of Triple Negative Breast Cancer Cells. Cancers (Basel) 2024; 17:7. [PMID: 39796638 PMCID: PMC11718843 DOI: 10.3390/cancers17010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Cancer cells rely on metabolic reprogramming that is supported by altered mitochondrial redox status and an increased demand for NAD+. Over expression of Nampt, the rate-limiting enzyme of the NAD+ biosynthesis salvage pathway, is common in breast cancer cells, and more so in triple negative breast cancer (TNBC) cells. Targeting the salvage pathway has been pursued for cancer therapy. However, TNBC cells have heterogeneous responses to Nampt inhibition, which contributes to the diverse outcomes. There is a lack of imaging biomarkers to differentiate among TNBC cells under metabolic stress and identify which are responsive. We aimed to characterize and differentiate among a panel of TNBC cell lines under NAD-deficient stress and identify which subtypes are more dependent on the NAD salvage pathway. Methods: Optical redox imaging (ORI), a label-free live cell imaging microscopy technique was utilized to acquire intrinsic fluorescence intensities of NADH and FAD-containing flavoproteins (Fp) thus the mitochondrial redox ratio Fp/(NADH + Fp) in a panel of TNBC cell lines. Various fluorescence probes were then added to the cultures to image the mitochondrial ROS, mitochondrial membrane potential, mitochondrial mass, and cell number. Results: Various TNBC subtypes are sensitive to Nampt inhibition in a dose- and time-dependent manner, they have differential mitochondrial redox responses; furthermore, the mitochondrial redox indices linearly correlated with mitochondrial ROS induced by various doses of a Nampt inhibitor. Moreover, the changes in the redox indices correlated with growth inhibition. Additionally, the redox state was found fully recovered after removing the Nampt inhibitor. Conclusions: This study supports the utility of ORI in rapid metabolic phenotyping of TNBC cells under NAD-deficient stress to identify responsive cells and biomarkers of treatment response, facilitating combination therapy strategies.
Collapse
Affiliation(s)
- Jack Kollmar
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.); (D.G.); (J.T.)
| | - Junmei Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.X.); (L.Z.L.)
| | - Diego Gonzalves
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.); (D.G.); (J.T.)
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Lin Z. Li
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.X.); (L.Z.L.)
| | - Julia Tchou
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.K.); (D.G.); (J.T.)
| | - He N. Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.X.); (L.Z.L.)
| |
Collapse
|
3
|
Ye T, Huang H, Chen K, Yu Y, Yue D, Jiang L, Wu H, Zhang N. Development and validation of prognostic signatures of NAD+ metabolism and immune-related genes in colorectal cancer. Heliyon 2024; 10:e34403. [PMID: 39130406 PMCID: PMC11315184 DOI: 10.1016/j.heliyon.2024.e34403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Background Colorectal cancer (CRC) is a prevalent cause of death from malignant tumors. This study aimed to develop a nicotinamide adenine dinucleotide (NAD+) metabolism and immune-related prognostic signature, providing a theoretical foundation for prognosis and therapy in CRC patients. Methods NAD + metabolism-related and immune-related subtypes of CRC patients were identified by consistent clustering. Differentially expressed genes (DEGs) between the two subtypes of CRC were identified by overlapping. A risk signature was constructed using univariate Cox and least absolute shrinkage and selection operator (LASSO) regression analyses. Independent prognostic predictors were authenticated by Cox analysis. Gene set variation analysis (GSVA) and single-sample gene set enrichment analysis (ssGSEA) were applied to investigate the connection between the prognostic signature and the immune microenvironment. Chemotherapy drug sensitivity and immunotherapy responsiveness were projected using the 'pRRophetic' package and Tumor Immune Dysfunction and Exclusion (TIDE) website. The Human Protein Atlas (HPA) database was used to assess the protein expression of prognostic genes in CRC and normal tissues. Results Using bioinformatics methods, three prognostic genes related to immune-related NAD + metabolism were identified, and the results were used to establish and verify a prognostic signature related to immune-related NAD + metabolism in CRC patients. Cox regression analysis confirmed that the risk score was a reliable independent prognostic predictor. GSVA and ssGSEA indicated that the prognostic signature was associated with the immune microenvironment. TIDE analysis suggested that the signature might act as an immunotherapy predictor. Chemotherapy sensitivity analysis revealed that COMP was correlated with chemotherapy sensitivity in CRC patients and might be a potential therapeutic target. Conclusion This study identified NAD + metabolism-immune-related prognostic genes (MOGAT2, COMP, and DNASE1L3) and developed a prognostic signature for CRC prognosis, which is significant for clinical prognosis prediction and treatment strategy decisions for CRC patients.
Collapse
Affiliation(s)
- Tao Ye
- Department of Rehabilitation, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China
| | - Hong Huang
- The First Clinical College of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China
| | - Kangli Chen
- The First Clinical College of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China
| | - Yuanao Yu
- The First Clinical College of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China
| | - Dongqin Yue
- The First Clinical College of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China
| | - Li Jiang
- The First Clinical College of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China
| | - Huixian Wu
- The First Clinical College of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China
| | - Ning Zhang
- Department of Pharmacy, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, Guizhou, China
| |
Collapse
|
4
|
Gasparrini M, Giovannuzzi S, Nocentini A, Raffaelli N, Supuran CT. Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) in cancer: a patent review. Expert Opin Ther Pat 2024; 34:565-582. [PMID: 38861278 DOI: 10.1080/13543776.2024.2367006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide (NAD) from nicotinamide. In addition to its role as essential redox cofactor, NAD also functions as a substrate for NAD-consuming enzymes, regulating multiple cellular processes such as DNA repair and gene expression, fundamental to sustain energetic needs for tumor growth. In this sense, NAMPT over-expression represents a common strategy that several tumor types adopt to sustain NAD production. In addition to its enzymatic role, NAMPT behaves as cytokine-like protein with pro-inflammatory function. Increasing evidence demonstrated that NAMPT inhibition represents a promising anti-cancer strategy to deplete NAD and impair cellular metabolism in cancer conditions. AREAS COVERED By using Espacenet, we collected the patents which identified new molecules, compounds, formulations and methods able to inhibit NAMPT from 2007 to date. EXPERT OPINION Most of the collected patents focused the attention on the ability of different compounds to inhibit the enzymatic activity of NAMPT, lacking other important aspects related to the extracellular role of NAMPT and the ability of alternative enzymes to counteract NAMPT-mediated NAD depletion. It is necessary to consider also these aspects to promote novel strategies and create novel inhibitors and molecules useful as anti-cancer compounds.
Collapse
Affiliation(s)
- Massimiliano Gasparrini
- Department of Agriculture, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Simone Giovannuzzi
- NEUROFARBA Department, Pharmaceutical Chemistry Section, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Pharmaceutical Chemistry Section, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Nadia Raffaelli
- Department of Agriculture, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical Chemistry Section, University of Florence, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
5
|
Lopes EC, Shi F, Sawant A, Ibrahim M, Gomez-Jenkins M, Hu Z, Manchiraju P, Bhatt V, Wang W, Hinrichs CS, Wallace DC, Su X, Rabinowitz JD, Chan CS, Guo JY, Ganesan S, Lattime EC, White E. RESPIRATION DEFECTS LIMIT SERINE SYNTHESIS REQUIRED FOR LUNG CANCER GROWTH AND SURVIVAL. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596339. [PMID: 38853873 PMCID: PMC11160605 DOI: 10.1101/2024.05.28.596339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Mitochondrial function is important for both energetic and anabolic metabolism. Pathogenic mitochondrial DNA (mtDNA) mutations directly impact these functions, resulting in the detrimental consequences seen in human mitochondrial diseases. The role of pathogenic mtDNA mutations in human cancers is less clear; while pathogenic mtDNA mutations are observed in some cancer types, they are almost absent in others. We report here that the proofreading mutant DNA polymerase gamma ( PolG D256A ) induced a high mtDNA mutation burden in non-small-cell lung cancer (NSCLC), and promoted the accumulation of defective mitochondria, which is responsible for decreased tumor cell proliferation and viability and increased cancer survival. In NSCLC cells, pathogenic mtDNA mutations increased glycolysis and caused dependence on glucose. The glucose dependency sustained mitochondrial energetics but at the cost of a decreased NAD+/NADH ratio that inhibited de novo serine synthesis. Insufficient serine synthesis, in turn, impaired the downstream synthesis of GSH and nucleotides, leading to impaired tumor growth that increased cancer survival. Unlike tumors with intact mitochondrial function, NSCLC with pathogenic mtDNA mutations were sensitive to dietary serine and glycine deprivation. Thus, mitochondrial function in NSCLC is required specifically to sustain sufficient serine synthesis for nucleotide production and redox homeostasis to support tumor growth, explaining why these cancers preserve functional mtDNA. In brief High mtDNA mutation burden in non-small-cell lung cancer (NSCLC) leads to the accumulation of respiration-defective mitochondria and dependency on glucose and glycolytic metabolism. Defective respiratory metabolism causes a massive accumulation of cytosolic nicotinamide adenine dinucleotide + hydrogen (NADH), which impedes serine synthesis and, thereby, glutathione (GSH) and nucleotide synthesis, leading to impaired tumor growth and increased survival. Highlights Proofreading mutations in Polymerase gamma led to a high burden of mitochondrial DNA mutations, promoting the accumulation of mitochondria with respiratory defects in NSCLC.Defective respiration led to reduced proliferation and viability of NSCLC cells increasing survival to cancer.Defective respiration caused glucose dependency to fuel elevated glycolysis.Altered glucose metabolism is associated with high NADH that limits serine synthesis, leading to impaired GSH and nucleotide production.Mitochondrial respiration defects sensitize NSCLC to dietary serine/glycine starvation, further increasing survival. Abstract Figure
Collapse
|
6
|
Lee Y, Vousden KH, Hennequart M. Cycling back to folate metabolism in cancer. NATURE CANCER 2024; 5:701-715. [PMID: 38698089 PMCID: PMC7616045 DOI: 10.1038/s43018-024-00739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/30/2024] [Indexed: 05/05/2024]
Abstract
Metabolic changes contribute to cancer initiation and progression through effects on cancer cells, the tumor microenvironment and whole-body metabolism. Alterations in serine metabolism and the control of one-carbon cycles have emerged as critical for the development of many tumor types. In this Review, we focus on the mitochondrial folate cycle. We discuss recent evidence that, in addition to supporting nucleotide synthesis, mitochondrial folate metabolism also contributes to metastasis through support of antioxidant defense, mitochondrial protein synthesis and the overflow of excess formate. These observations offer potential therapeutic opportunities, including the modulation of formate metabolism through dietary interventions and the use of circulating folate cycle metabolites as biomarkers for cancer detection.
Collapse
Affiliation(s)
| | | | - Marc Hennequart
- The Francis Crick Institute, London, UK
- Namur Research Institute for Life Sciences (NARILIS), Molecular Physiology Unit (URPHYM), University of Namur, Namur, Belgium
| |
Collapse
|
7
|
Cao XY, Li X, Wang F, Duan Y, Wu X, Lin GQ, Geng M, Huang M, Tian P, Tang S, Gao D. Identification of benzo[b]thiophene-1,1-dioxide derivatives as novel PHGDH covalent inhibitors. Bioorg Chem 2024; 146:107330. [PMID: 38579615 DOI: 10.1016/j.bioorg.2024.107330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
The increased de novo serine biosynthesis confers many advantages for tumorigenesis and metastasis. Phosphoglycerate dehydrogenase (PHGDH), a rate-limiting enzyme in serine biogenesis, exhibits hyperactivity across multiple tumors and emerges as a promising target for cancer treatment. Through screening our in-house compound library, we identified compound Stattic as a potent PHGDH inhibitor (IC50 = 1.98 ± 0.66 µM). Subsequent exploration in structural activity relationships led to the discovery of compound B12 that demonstrated the increased enzymatic inhibitory activity (IC50 = 0.29 ± 0.02 μM). Furthermore, B12 exhibited robust inhibitory effects on the proliferation of MDA-MB-468, NCI-H1975, HT1080 and PC9 cells that overexpress PHGDH. Additionally, using a [U-13C6]-glucose tracing assay, B12 was found to reduce the production of glucose-derived serine in MDA-MB-468 cells. Finally, mass spectrometry-based peptide profiling, mutagenesis experiment and molecular docking study collectively suggested that B12 formed a covalent bond with Cys421 of PHGDH.
Collapse
Affiliation(s)
- Xin-Yu Cao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine,Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinge Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Feng Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine,Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yichen Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xingmei Wu
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine,Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine,Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Meiyu Geng
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264100, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264100, China
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine,Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Shuai Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264100, China.
| | - Dingding Gao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine,Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
8
|
Heath H, Mogol AN, Santaliz Casiano A, Zuo Q, Madak-Erdogan Z. Targeting systemic and gut microbial metabolism in ER + breast cancer. Trends Endocrinol Metab 2024; 35:321-330. [PMID: 38220576 DOI: 10.1016/j.tem.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
Estrogen receptor-positive (ER+) breast tumors have a better overall prognosis than ER- tumors; however, there is a sustained risk of recurrence. Mounting evidence indicates that genetic and epigenetic changes associated with resistance impact critical signaling pathways governing cell metabolism. This review delves into recent literature concerning the metabolic pathways regulated in ER+ breast tumors by the availability of nutrients and endocrine therapies and summarizes research on how changes in systemic and gut microbial metabolism can affect ER activity and responsiveness to endocrine therapy. As targeting of metabolic pathways using dietary or pharmacological approaches enters the clinic, we provide an overview of the supporting literature and suggest future directions.
Collapse
Affiliation(s)
- Hannah Heath
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ayca Nazli Mogol
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | | | - Qianying Zuo
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
9
|
Wu D, Zhang K, Khan FA, Pandupuspitasari NS, Guan K, Sun F, Huang C. A comprehensive review on signaling attributes of serine and serine metabolism in health and disease. Int J Biol Macromol 2024; 260:129607. [PMID: 38253153 DOI: 10.1016/j.ijbiomac.2024.129607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Serine is a metabolite with ever-expanding metabolic and non-metabolic signaling attributes. By providing one‑carbon units for macromolecule biosynthesis and functional modifications, serine and serine metabolism largely impinge on cellular survival and function. Cancer cells frequently have a preference for serine metabolic reprogramming to create a conducive metabolic state for survival and aggressiveness, making intervention of cancer-associated rewiring of serine metabolism a promising therapeutic strategy for cancer treatment. Beyond providing methyl donors for methylation in modulation of innate immunity, serine metabolism generates formyl donors for mitochondrial tRNA formylation which is required for mitochondrial function. Interestingly, fully developed neurons lack the machinery for serine biosynthesis and rely heavily on astrocytic l-serine for production of d-serine to shape synaptic plasticity. Here, we recapitulate recent discoveries that address the medical significance of serine and serine metabolism in malignancies, mitochondrial-associated disorders, and neurodegenerative pathologies. Metabolic control and epigenetic- and posttranslational regulation of serine metabolism are also discussed. Given the metabolic similarities between cancer cells, neurons and germ cells, we further propose the relevance of serine metabolism in testicular homeostasis. Our work provides valuable hints for future investigations that will lead to a deeper understanding of serine and serine metabolism in cellular physiology and pathology.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat 10340, Indonesia
| | | | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
10
|
Huang X, Yang X, Xiang L, Chen Y. Serine metabolism in macrophage polarization. Inflamm Res 2024; 73:83-98. [PMID: 38070057 DOI: 10.1007/s00011-023-01815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 01/10/2024] Open
Abstract
OBJECTIVE Emerging studies have revealed that macrophages possess different dependences on the uptake, synthesis, and metabolism of serine for their activation and functionalization, necessitating our insight into how serine availability and utilization impact macrophage activation and inflammatory responses. METHODS This article summarizes the reports published domestically and internationally about the serine uptake, synthesis, and metabolic flux by the macrophages polarizing with distinct stimuli and under different pathologic conditions, and particularly analyzes how altered serine metabolism rewires the metabolic behaviors of polarizing macrophages and their genetic and epigenetic reprogramming. RESULTS Macrophages dynamically change serine metabolism to orchestrate their anabolism, redox balance, mitochondrial function, epigenetics, and post-translation modification, and thus match the distinct needs for both classical and alternative activation. CONCLUSION Serine metabolism coordinates multiple metabolic pathways to tailor macrophage polarization and their responses to different pathogenic attacks and thus holds the potential as therapeutic target for types of acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
| | - Xue Yang
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, 28 West Changsheng Road, Hengyang, 421001, Hunan, China
| | - Li Xiang
- Hengyang Medical School, Hengyang, China
| | - Yuping Chen
- Hengyang Medical School, Hengyang, China.
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, 28 West Changsheng Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
11
|
Yong J, Cai S, Zeng Z. Targeting NAD + metabolism: dual roles in cancer treatment. Front Immunol 2023; 14:1269896. [PMID: 38116009 PMCID: PMC10728650 DOI: 10.3389/fimmu.2023.1269896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is indispensable for various oxidation-reduction reactions in mammalian cells, particularly during energy production. Malignant cells increase the expression levels of NAD+ biosynthesis enzymes for rapid proliferation and biomass production. Furthermore, mounting proof has indicated that NAD-degrading enzymes (NADases) play a role in creating the immunosuppressive tumor microenvironment (TME). Interestingly, both inhibiting NAD+ synthesis and targeting NADase have positive implications for cancer treatment. Here we summarize the detrimental outcomes of increased NAD+ production, the functions of NAD+ metabolic enzymes in creating an immunosuppressive TME, and discuss the progress and clinical translational potential of inhibitors for NAD+ synthesis and therapies targeting NADase.
Collapse
Affiliation(s)
- Jiaxin Yong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Songqing Cai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| | - Zhaolei Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
12
|
Bui CV, Boswell CW, Ciruna B, Rocheleau JV. Apollo-NADP + reveals in vivo adaptation of NADPH/NADP + metabolism in electrically activated pancreatic β cells. SCIENCE ADVANCES 2023; 9:eadi8317. [PMID: 37792934 PMCID: PMC10550227 DOI: 10.1126/sciadv.adi8317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023]
Abstract
Several genetically encoded sensors have been developed to study live cell NADPH/NADP+ dynamics, but their use has been predominantly in vitro. Here, we developed an in vivo assay using the Apollo-NADP+ sensor and microfluidic devices to measure endogenous NADPH/NADP+ dynamics in the pancreatic β cells of live zebrafish embryos. Flux through the pentose phosphate pathway, the main source of NADPH in many cell types, has been reported to be low in β cells. Thus, it is unclear how these cells compensate to meet NADPH demands. Using our assay, we show that pyruvate cycling is the main source of NADP+ reduction in β cells, with contributions from folate cycling after acute electrical activation. INS1E β cells also showed a stress-induced increase in folate cycling and further suggested that this cycling requires both increased glycolytic intermediates and cytosolic NAD+. Overall, we show in vivo application of the Apollo-NADP+ sensor and reveal that β cells are capable of adapting NADPH/NADP+ redox during stress.
Collapse
Affiliation(s)
- Cindy V. Bui
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Curtis W. Boswell
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Brian Ciruna
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan V. Rocheleau
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Li AM, He B, Karagiannis D, Li Y, Jiang H, Srinivasan P, Ramirez Y, Zhou MN, Curtis C, Gruber JJ, Lu C, Rankin EB, Ye J. Serine starvation silences estrogen receptor signaling through histone hypoacetylation. Proc Natl Acad Sci U S A 2023; 120:e2302489120. [PMID: 37695911 PMCID: PMC10515173 DOI: 10.1073/pnas.2302489120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023] Open
Abstract
Loss of estrogen receptor (ER) pathway activity promotes breast cancer progression, yet how this occurs remains poorly understood. Here, we show that serine starvation, a metabolic stress often found in breast cancer, represses estrogen receptor alpha (ERα) signaling by reprogramming glucose metabolism and epigenetics. Using isotope tracing and time-resolved metabolomic analyses, we demonstrate that serine is required to maintain glucose flux through glycolysis and the TCA cycle to support acetyl-CoA generation for histone acetylation. Consequently, limiting serine depletes histone H3 lysine 27 acetylation (H3K27ac), particularly at the promoter region of ER pathway genes including the gene encoding ERα, ESR1. Mechanistically, serine starvation impairs acetyl-CoA-dependent gene expression by inhibiting the entry of glycolytic carbon into the TCA cycle and down-regulating the mitochondrial citrate exporter SLC25A1, a critical enzyme in the production of nucleocytosolic acetyl-CoA from glucose. Consistent with this model, total H3K27ac and ERα expression are suppressed by SLC25A1 inhibition and restored by acetate, an alternate source of acetyl-CoA, in serine-free conditions. We thus uncover an unexpected role for serine in sustaining ER signaling through the regulation of acetyl-CoA metabolism.
Collapse
Affiliation(s)
- Albert M. Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA94305
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA94305
| | - Bo He
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA94305
| | - Dimitris Karagiannis
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY10032
| | - Yang Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA94305
| | - Haowen Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA94305
| | - Preethi Srinivasan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA94305
| | - Yaniel Ramirez
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA94305
| | - Meng-Ning Zhou
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA94305
| | - Christina Curtis
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA94305
- Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA94305
| | - Joshua J. Gruber
- Department of Internal Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75235
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY10032
| | - Erinn B. Rankin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA94305
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA94305
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA94305
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA94305
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA94305
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA94305
| |
Collapse
|
14
|
Abstract
Amino acid dysregulation has emerged as an important driver of disease progression in various contexts. l-Serine lies at a central node of metabolism, linking carbohydrate metabolism, transamination, glycine, and folate-mediated one-carbon metabolism to protein synthesis and various downstream bioenergetic and biosynthetic pathways. l-Serine is produced locally in the brain but is sourced predominantly from glycine and one-carbon metabolism in peripheral tissues via liver and kidney metabolism. Compromised regulation or activity of l-serine synthesis and disposal occurs in the context of genetic diseases as well as chronic disease states, leading to low circulating l-serine levels and pathogenesis in the nervous system, retina, heart, and aging muscle. Dietary interventions in preclinical models modulate sensory neuropathy, retinopathy, tumor growth, and muscle regeneration. A serine tolerance test may provide a quantitative readout of l-serine homeostasis that identifies patients who may be susceptible to neuropathy or responsive to therapy.
Collapse
Affiliation(s)
- Michal K Handzlik
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA; ,
| | - Christian M Metallo
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA; ,
| |
Collapse
|
15
|
Wu D, Zhang K, Khan FA, Wu Q, Pandupuspitasari NS, Tang Y, Guan K, Sun F, Huang C. The emerging era of lactate: A rising star in cellular signaling and its regulatory mechanisms. J Cell Biochem 2023; 124:1067-1081. [PMID: 37566665 DOI: 10.1002/jcb.30458] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Cellular metabolites are ancient molecules with pleiotropic implications in health and disease. Beyond their cognate roles, they have signaling functions as the ligands for specific receptors and the precursors for epigenetic or posttranslational modifications. Lactate has long been recognized as a metabolic waste and fatigue product mainly produced from glycolytic metabolism. Recent evidence however suggests lactate is an unique molecule with diverse signaling attributes in orchestration of numerous biological processes, including tumor immunity and neuronal survival. The copious metabolic and non-metabolic functions of lactate mediated by its bidirectional shuttle between cells or intracellular organelles lead to a phenotype called "lactormone." Importantly, the mechanisms of lactate signaling, via acting as a molecular sensor and a regulator of NAD+ metabolism and AMP-activated protein kinase signaling, and via the newly identified lactate-driven lactylation, have been discovered. Further, we include a brief discussion about the autocrine regulation of efferocytosis by lactate in Sertoli cells which favoraerobic glycolysis. By emphasizing a repertoire of the most recent discovered mechanisms of lactate signaling, this review will open tantalizing avenues for future investigations cracking the regulatory topology of lactate signaling covered in the veil of mystery.
Collapse
Affiliation(s)
- Di Wu
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Kejia Zhang
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, Ministry of Research and Technology National Research and Innovation Agency, Jakarta, Indonesia
| | - Qin Wu
- Jinan Second People's Hospital & The Ophthalmologic Hospital of Jinan, Jinan, China
| | | | - Yuan Tang
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Fei Sun
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Chunjie Huang
- School of Medicine, Institute of Reproductive Medicine, Nantong University, Nantong, China
| |
Collapse
|
16
|
Ricci L, Stanley FU, Eberhart T, Mainini F, Sumpton D, Cardaci S. Pyruvate transamination and NAD biosynthesis enable proliferation of succinate dehydrogenase-deficient cells by supporting aerobic glycolysis. Cell Death Dis 2023; 14:403. [PMID: 37414778 PMCID: PMC10326256 DOI: 10.1038/s41419-023-05927-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/06/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023]
Abstract
Succinate dehydrogenase (SDH) is the mitochondrial enzyme converting succinate to fumarate in the tricarboxylic acid (TCA) cycle. SDH acts as a tumor suppressor with germline loss-of-function mutations in its encoding genes predisposing to aggressive familial neuroendocrine and renal cancer syndromes. Lack of SDH activity disrupts the TCA cycle, imposes Warburg-like bioenergetic features, and commits cells to rely on pyruvate carboxylation for anabolic needs. However, the spectrum of metabolic adaptations enabling SDH-deficient tumors to cope with a dysfunctional TCA cycle remains largely unresolved. By using previously characterized Sdhb-deleted kidney mouse cells, here we found that SDH deficiency commits cells to rely on mitochondrial glutamate-pyruvate transaminase (GPT2) activity for proliferation. We showed that GPT2-dependent alanine biosynthesis is crucial to sustain reductive carboxylation of glutamine, thereby circumventing the TCA cycle truncation determined by SDH loss. By driving the reductive TCA cycle anaplerosis, GPT2 activity fuels a metabolic circuit maintaining a favorable intracellular NAD+ pool to enable glycolysis, thus meeting the energetic demands of SDH-deficient cells. As a metabolic syllogism, SDH deficiency confers sensitivity to NAD+ depletion achieved by pharmacological inhibition of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the NAD+ salvage pathway. Beyond identifying an epistatic functional relationship between two metabolic genes in the control of SDH-deficient cell fitness, this study disclosed a metabolic strategy to increase the sensitivity of tumors to interventions limiting NAD availability.
Collapse
Affiliation(s)
- Luisa Ricci
- Cancer Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Federico Uchenna Stanley
- Cancer Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Tanja Eberhart
- Cancer Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Francesco Mainini
- Cancer Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | | | - Simone Cardaci
- Cancer Metabolism Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
| |
Collapse
|
17
|
Tang H, Wang L, Wang T, Yang J, Zheng S, Tong J, Jiang S, Zhang X, Zhang K. Recent advances of targeting nicotinamide phosphoribosyltransferase (NAMPT) for cancer drug discovery. Eur J Med Chem 2023; 258:115607. [PMID: 37413882 DOI: 10.1016/j.ejmech.2023.115607] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme for the biosynthesis of NAD+ in the salvage pathway. NAMPT is overexpressed in various cancers, associating with a poor prognosis and tumor progression. Beyond cancer metabolism, recent evidence unravels additional roles of NAMPT in cancer biology, including DNA repair machinery, crosstalk with oncogenic signaling pathways, cancer cell stemness, and immune responses. NAMPT is a promising therapeutic target for cancer. However, first-generation NAMPT inhibitors exhibited limited efficacy and dose-limiting toxicities in clinical trials. Multiple strategies are being exploited to improve their efficacy and minimize toxic-side effects. This review discusses the biomarkers predictive of response to NAMPT inhibitors, and summarizes the most significant advances in the evolution of structurally distinct NAMPT inhibitors, the manipulation of targeted delivery technologies via antibody-drug conjugates (ADCs), PhotoActivated ChemoTherapy (PACT) and the intratumoral delivery system, as well as the development and pharmacological outcomes of NAMPT degraders. Finally, a discussion of future perspectives and challenges in this area is also included.
Collapse
Affiliation(s)
- He Tang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lin Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tianyu Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiamei Yang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuai Zheng
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jun Tong
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiangyu Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Kuojun Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
18
|
Yang H, Li X, Jin H, Turkez H, Ozturk G, Doganay HL, Zhang C, Nielsen J, Uhlén M, Borén J, Mardinoglu A. Longitudinal metabolomics analysis reveals the acute effect of cysteine and NAC included in the combined metabolic activators. Free Radic Biol Med 2023:S0891-5849(23)00429-X. [PMID: 37245532 DOI: 10.1016/j.freeradbiomed.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
Growing evidence suggests that the depletion of plasma NAD+ and glutathione (GSH) may play an important role in the development of metabolic disorders. The administration of Combined Metabolic Activators (CMA), consisting of GSH and NAD+ precursors, has been explored as a promising therapeutic strategy to target multiple altered pathways associated with the pathogenesis of the diseases. Although studies have examined the therapeutic effect of CMA that contains N-acetyl-l-cysteine (NAC) as a metabolic activator, a system-wide comparison of the metabolic response to the administration of CMA with NAC and cysteine remains lacking. In this placebo-controlled study, we studied the acute effect of the CMA administration with different metabolic activators, including NAC or cysteine with/without nicotinamide or flush free niacin, and performed longitudinal untargeted-metabolomics profiling of plasma obtained from 70 well-characterized healthy volunteers. The time-series metabolomics data revealed the metabolic pathways affected after the administration of CMAs showed high similarity between CMA containing nicotinamide and NAC or cysteine as metabolic activators. Our analysis also showed that CMA with cysteine is well-tolerated and safe in healthy individuals throughout the study. Last, our study systematically provided insights into a complex and dynamics landscape involved in amino acid, lipid and nicotinamide metabolism, reflecting the metabolic responses to CMA administration containing different metabolic activators.
Collapse
Affiliation(s)
- Hong Yang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| | - Xiangyu Li
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden; Bash Biotech Inc, 600 West Broadway, Suite 700, San Diego, CA, 92101, USA
| | - Han Jin
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Gurkan Ozturk
- Research Institute for Health Sciences and Technologies (SABITA), International School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Hamdi Levent Doganay
- Gastroenterology and Hepatology Unit, VM Pendik Medicalpark Teaching Hospital, İstanbul, Turkey; Department of Internal Medicine, Bahçeşehir University (BAU), Istanbul, Turkey
| | - Cheng Zhang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen, Denmark
| | - Mathias Uhlén
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
19
|
Zhang D, Li AM, Hu G, Huang M, Yang F, Zhang L, Wellen KE, Xu X, Conn CS, Zou W, Kahn M, Rhoades SD, Weljie AM, Fuchs SY, Amankulor N, Yoshor D, Ye J, Koumenis C, Gong Y, Fan Y. PHGDH-mediated endothelial metabolism drives glioblastoma resistance to chimeric antigen receptor T cell immunotherapy. Cell Metab 2023; 35:517-534.e8. [PMID: 36804058 PMCID: PMC10088869 DOI: 10.1016/j.cmet.2023.01.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 10/24/2022] [Accepted: 01/26/2023] [Indexed: 02/19/2023]
Abstract
The efficacy of immunotherapy is limited by the paucity of T cells delivered and infiltrated into the tumors through aberrant tumor vasculature. Here, we report that phosphoglycerate dehydrogenase (PHGDH)-mediated endothelial cell (EC) metabolism fuels the formation of a hypoxic and immune-hostile vascular microenvironment, driving glioblastoma (GBM) resistance to chimeric antigen receptor (CAR)-T cell immunotherapy. Our metabolome and transcriptome analyses of human and mouse GBM tumors identify that PHGDH expression and serine metabolism are preferentially altered in tumor ECs. Tumor microenvironmental cues induce ATF4-mediated PHGDH expression in ECs, triggering a redox-dependent mechanism that regulates endothelial glycolysis and leads to EC overgrowth. Genetic PHGDH ablation in ECs prunes over-sprouting vasculature, abrogates intratumoral hypoxia, and improves T cell infiltration into the tumors. PHGDH inhibition activates anti-tumor T cell immunity and sensitizes GBM to CAR T therapy. Thus, reprogramming endothelial metabolism by targeting PHGDH may offer a unique opportunity to improve T cell-based immunotherapy.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Albert M Li
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Guanghui Hu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Menggui Huang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fan Yang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lin Zhang
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaowei Xu
- Department of Pathology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Crystal S Conn
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark Kahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seth D Rhoades
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Serge Y Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nduka Amankulor
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Yoshor
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yanqing Gong
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Jekabsons MB, Merrell M, Skubiz AG, Thornton N, Milasta S, Green D, Chen T, Wang YH, Avula B, Khan IA, Zhou YD. Breast cancer cells that preferentially metastasize to lung or bone are more glycolytic, synthesize serine at greater rates, and consume less ATP and NADPH than parent MDA-MB-231 cells. Cancer Metab 2023; 11:4. [PMID: 36805760 PMCID: PMC9940388 DOI: 10.1186/s40170-023-00303-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/25/2023] [Indexed: 02/22/2023] Open
Abstract
Gene expression signatures associated with breast cancer metastases suggest that metabolic re-wiring is important for metastatic growth in lungs, bones, and other organs. However, since pathway fluxes depend on additional factors such as ATP demand, allosteric effects, and post-translational modification, flux analysis is necessary to conclusively establish phenotypes. In this study, the metabolic phenotypes of breast cancer cell lines with low (T47D) or high (MDA-MB-231) metastatic potential, as well as lung (LM)- and bone (BoM)-homing lines derived from MDA-MB-231 cells, were assessed by 13C metabolite labeling from [1,2-13C] glucose or [5-13C] glutamine and the rates of nutrient and oxygen consumption and lactate production. MDA-MB-231 and T47D cells produced 55 and 63%, respectively, of ATP from oxidative phosphorylation, whereas LM and BoM cells were more glycolytic, deriving only 20-25% of their ATP from mitochondria. ATP demand by BoM and LM cells was approximately half the rate of the parent cells. Of the anabolic fluxes assessed, nucleotide synthesis was the major ATP consumer for all cell lines. Glycolytic NADH production by LM cells exceeded the rate at which it could be oxidized by mitochondria, suggesting that the malate-aspartate shuttle was not involved in re-oxidation of these reducing equivalents. Serine synthesis was undetectable in MDA-MB-231 cells, whereas 3-5% of glucose was shunted to serine by LM and BoM lines. Proliferation rates of T47D, BoM, and LM lines tightly correlated with their respiration-normalized NADPH production rates. In contrast, MDA-MB-231 cells produced NADPH and GSH at higher rates, suggesting this line is more oxidatively stressed. Approximately half to two-thirds of NADPH produced by T47D, MDA-MB-231, and BoM cells was from the oxidative PPP, whereas the majority in LM cells was from the folate cycle. All four cell lines used the non-oxidative PPP to produce pentose phosphates, although this was most prominent for LM cells. Taken together, the metabolic phenotypes of LM and BoM lines differed from the parent line and from each other, supporting the metabolic re-wiring hypothesis as a feature of metastasis to lung and bone.
Collapse
Affiliation(s)
- Mika B. Jekabsons
- grid.251313.70000 0001 2169 2489Department of Biology, University of Mississippi, University, MS 38677 USA
| | - Mollie Merrell
- grid.251313.70000 0001 2169 2489Department of Biology, University of Mississippi, University, MS 38677 USA
| | - Anna G. Skubiz
- grid.251313.70000 0001 2169 2489Department of Biology, University of Mississippi, University, MS 38677 USA
| | - Noah Thornton
- grid.251313.70000 0001 2169 2489Department of Biology, University of Mississippi, University, MS 38677 USA
| | - Sandra Milasta
- grid.240871.80000 0001 0224 711XDepartment of Immunology, St Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Douglas Green
- grid.240871.80000 0001 0224 711XDepartment of Immunology, St Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Taosheng Chen
- grid.240871.80000 0001 0224 711XDepartment of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Yan-Hong Wang
- grid.251313.70000 0001 2169 2489National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677 USA
| | - Bharathi Avula
- grid.251313.70000 0001 2169 2489National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677 USA
| | - Ikhlas A. Khan
- grid.251313.70000 0001 2169 2489National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677 USA ,grid.251313.70000 0001 2169 2489Department of Biomedical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677 USA
| | - Yu-Dong Zhou
- grid.251313.70000 0001 2169 2489Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677 USA
| |
Collapse
|
21
|
Gao D, Tang S, Cen Y, Yuan L, Lan X, Li QH, Lin GQ, Huang M, Tian P. Discovery of Novel Drug-like PHGDH Inhibitors to Disrupt Serine Biosynthesis for Cancer Therapy. J Med Chem 2023; 66:285-305. [PMID: 36594670 DOI: 10.1021/acs.jmedchem.2c01202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Being the rate-limiting enzyme within the serine biosynthesis pathway, phosphoglycerate dehydrogenase (PHGDH) is abnormally overexpressed in numerous malignant tumor cells and is a promising target for cancer treatment. Here, we report a series of novel PHGDH inhibitors using a focused compound screening and structural optimization approach. The lead compound D8 displayed good enzymatic inhibitory activity (IC50 = 2.8 ± 0.1 μM), high binding affinity (Kd = 2.33 μM), and sensitivity to the cell lines with the PHGDH gene amplification or overexpression. Furthermore, D8 was proven to restrict the de novo serine synthesis from glucose within MDA-MB-468 cells. X-ray crystallographic analysis, molecular dynamics simulations, and mutagenesis experiments on PHGDH revealed the binding site at D175 inside the NAD+-binding pocket. Finally, D8 exhibited excellent in vivo pharmacokinetic properties (F = 82.0%) and exerted evident antitumor efficacy in the PC9 xenograft mouse model.
Collapse
Affiliation(s)
- Dingding Gao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuai Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yixin Cen
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang Yuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaojing Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qing-Hua Li
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
22
|
Zhao HX, Li X, Liu JL, Guan GQ, Dan XG. Metabolomic profiling of bovine leucocytes transformed by Theileria annulata under BW720c treatment. Parasit Vectors 2022; 15:356. [PMID: 36199104 PMCID: PMC9533618 DOI: 10.1186/s13071-022-05450-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background When Theileria annulata infects host cells, it undertakes unlimited proliferation as tumor cells. Although the transformed cells will recover their limited reproductive characteristics and enter the apoptosis process after treatment with buparvaquone (BW720c), the metabolites and metabolic pathways involved are not clear. Methods The transformed cells of T. annulata were used as experimental materials, and the buparvaquone treatment group and DMSO control group were used. Qualitative and quantitative analysis was undertaken of 36 cell samples based on the LC–QTOF platform in positive and negative ion modes. The metabolites of the cell samples after 72 h of drug treatment were analyzed, as were the different metabolites and metabolic pathways involved in the BW720c treatment. Finally, the differential metabolites and metabolic pathways in the transformed cells were found. Results A total of 1425 metabolites were detected in the negative ion mode and 1298 metabolites were detected in the positive ion mode. After drug treatment for 24 h, 48 h, and 72 h, there were 56, 162, and 243 differential metabolites in negative ion mode, and 35, 121, and 177 differential metabolites in positive ion mode, respectively. These differential metabolites are mainly concentrated on various essential amino acids. Conclusion BW720c treatment induces metabolic disturbances in T. annulata-infected cells by regulating the metabolism of leucine, arginine, and l-carnitine, and induces host cell apoptosis. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05450-0.
Collapse
Affiliation(s)
- Hong-Xi Zhao
- School of Agriculture, Ningxia University, Yinchuan, 750021, People's Republic of China.
| | - Xia Li
- School of Agriculture, Ningxia University, Yinchuan, 750021, People's Republic of China
| | - Jun-Long Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, People's Republic of China
| | - Gui-Quan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, People's Republic of China
| | - Xin-Gang Dan
- School of Agriculture, Ningxia University, Yinchuan, 750021, People's Republic of China.
| |
Collapse
|
23
|
Van Nyen T, Planque M, van Wagensveld L, Duarte JAG, Zaal EA, Talebi A, Rossi M, Körner PR, Rizzotto L, Moens S, De Wispelaere W, Baiden-Amissah REM, Sonke GS, Horlings HM, Eelen G, Berardi E, Swinnen JV, Berkers CR, Carmeliet P, Lambrechts D, Davidson B, Agami R, Fendt SM, Annibali D, Amant F. Serine metabolism remodeling after platinum-based chemotherapy identifies vulnerabilities in a subgroup of resistant ovarian cancers. Nat Commun 2022; 13:4578. [PMID: 35931688 PMCID: PMC9355973 DOI: 10.1038/s41467-022-32272-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Resistance to platinum-based chemotherapy represents a major clinical challenge for many tumors, including epithelial ovarian cancer. Patients often experience several response-relapse events, until tumors become resistant and life expectancy drops to 12-15 months. Despite improved knowledge of the molecular determinants of platinum resistance, the lack of clinical applicability limits exploitation of many potential targets, leaving patients with limited options. Serine biosynthesis has been linked to cancer growth and poor prognosis in various cancer types, however its role in platinum-resistant ovarian cancer is not known. Here, we show that a subgroup of resistant tumors decreases phosphoglycerate dehydrogenase (PHGDH) expression at relapse after platinum-based chemotherapy. Mechanistically, we observe that this phenomenon is accompanied by a specific oxidized nicotinamide adenine dinucleotide (NAD+) regenerating phenotype, which helps tumor cells in sustaining Poly (ADP-ribose) polymerase (PARP) activity under platinum treatment. Our findings reveal metabolic vulnerabilities with clinical implications for a subset of platinum resistant ovarian cancers.
Collapse
Affiliation(s)
- Tom Van Nyen
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Leuven, Belgium
| | - Lilian van Wagensveld
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre, Maastricht, The Netherlands
- GROW, School for Oncology and Developmental Biology, Maastricht, The Netherlands
- Department of Research, Netherlands Comprehensive Cancer Organization (IKNL), Utrecht, The Netherlands
| | - Joao A G Duarte
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Leuven, Belgium
| | - Esther A Zaal
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Division of Cell Biology, Metabolism and Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Matteo Rossi
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Leuven, Belgium
| | - Pierre-René Körner
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Lara Rizzotto
- TRACE PDX Platform, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Stijn Moens
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Wout De Wispelaere
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Regina E M Baiden-Amissah
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Gabe S Sonke
- Department of Medical Oncology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Hugo M Horlings
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Emanuele Berardi
- Department of Development and Regeneration, KU Leuven, 3000, Leuven, Belgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
| | - Celia R Berkers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH, Utrecht, The Netherlands
- Division of Cell Biology, Metabolism and Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, VIB, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, 3000, Leuven, Belgium
- VIB Center for Cancer Biology, VIB, 3000, Leuven, Belgium
| | - Ben Davidson
- University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, N-0316, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, N-0310, Oslo, Norway
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands
- Erasmus MC, Department of Genetics, Rotterdam University, 3015 GD, Rotterdam, The Netherlands
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000, Leuven, Belgium
| | - Daniela Annibali
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium.
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066 CX, Amsterdam, The Netherlands.
| | - Frédéric Amant
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), 3000, Leuven, Belgium.
- Department of Obstetrics and Gynecology, University Hospitals Leuven and Department of Oncology, 3000, Leuven, Belgium.
- Centre for Gynecologic Oncology Amsterdam (CGOA), Antoni Van Leeuwenhoek-Netherlands Cancer Institute (AvL-NKI), University Medical Center (UMC), Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Li Z, Ji BW, Dixit PD, Tchourine K, Lien EC, Hosios AM, Abbott KL, Rutter JC, Westermark AM, Gorodetsky EF, Sullivan LB, Vander Heiden MG, Vitkup D. Cancer cells depend on environmental lipids for proliferation when electron acceptors are limited. Nat Metab 2022; 4:711-723. [PMID: 35739397 PMCID: PMC10305743 DOI: 10.1038/s42255-022-00588-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/17/2022] [Indexed: 01/31/2023]
Abstract
Production of oxidized biomass, which requires regeneration of the cofactor NAD+, can be a proliferation bottleneck that is influenced by environmental conditions. However, a comprehensive quantitative understanding of metabolic processes that may be affected by NAD+ deficiency is currently missing. Here, we show that de novo lipid biosynthesis can impose a substantial NAD+ consumption cost in proliferating cancer cells. When electron acceptors are limited, environmental lipids become crucial for proliferation because NAD+ is required to generate precursors for fatty acid biosynthesis. We find that both oxidative and even net reductive pathways for lipogenic citrate synthesis are gated by reactions that depend on NAD+ availability. We also show that access to acetate can relieve lipid auxotrophy by bypassing the NAD+ consuming reactions. Gene expression analysis demonstrates that lipid biosynthesis strongly anti-correlates with expression of hypoxia markers across tumor types. Overall, our results define a requirement for oxidative metabolism to support biosynthetic reactions and provide a mechanistic explanation for cancer cell dependence on lipid uptake in electron acceptor-limited conditions, such as hypoxia.
Collapse
Affiliation(s)
- Zhaoqi Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian W Ji
- Department of Systems Biology, Columbia University, New York, NY, USA
- Physician-Scientist Training Pathway, Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Purushottam D Dixit
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Physics, University of Florida, Gainesville, FL, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
- University of Florida Cancer Center, University of Florida, Gainesville, FL, USA
| | | | - Evan C Lien
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aaron M Hosios
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Keene L Abbott
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Justine C Rutter
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Health Sciences and Technology (HST) and Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA, USA
| | - Anna M Westermark
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elizabeth F Gorodetsky
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lucas B Sullivan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Dennis Vitkup
- Department of Systems Biology, Columbia University, New York, NY, USA.
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.
| |
Collapse
|
25
|
Choudhury FK. Mitochondrial Redox Metabolism: The Epicenter of Metabolism during Cancer Progression. Antioxidants (Basel) 2021; 10:antiox10111838. [PMID: 34829708 PMCID: PMC8615124 DOI: 10.3390/antiox10111838] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial redox metabolism is the central component in the cellular metabolic landscape, where anabolic and catabolic pathways are reprogrammed to maintain optimum redox homeostasis. During different stages of cancer, the mitochondrial redox status plays an active role in navigating cancer cells’ progression and regulating metabolic adaptation according to the constraints of each stage. Mitochondrial reactive oxygen species (ROS) accumulation induces malignant transformation. Once vigorous cell proliferation renders the core of the solid tumor hypoxic, the mitochondrial electron transport chain mediates ROS signaling for bringing about cellular adaptation to hypoxia. Highly aggressive cells are selected in this process, which are capable of progressing through the enhanced oxidative stress encountered during different stages of metastasis for distant colonization. Mitochondrial oxidative metabolism is suppressed to lower ROS generation, and the overall cellular metabolism is reprogrammed to maintain the optimum NADPH level in the mitochondria required for redox homeostasis. After reaching the distant organ, the intrinsic metabolic limitations of that organ dictate the success of colonization and flexibility of the mitochondrial metabolism of cancer cells plays a pivotal role in their adaptation to the new environment.
Collapse
Affiliation(s)
- Feroza K Choudhury
- Drug Metabolism and Pharmacokinetics Department, Genentech Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
26
|
Immunometabolism in haematopoietic stem cell transplantation and adoptive cellular therapies. Curr Opin Hematol 2021; 27:353-359. [PMID: 33003083 DOI: 10.1097/moh.0000000000000615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW Controlling T cell activity through metabolic manipulation has become a prominent feature in immunology and practitioners of both adoptive cellular therapy (ACT) and haematopoietic stem cell transplantation (HSCT) have utilized metabolic interventions to control T cell function. This review will survey recent metabolic research efforts in HSCT and ACT to paint a broad picture of immunometabolism and highlight advances in each area. RECENT FINDINGS In HSCT, recent publications have focused on modifying reactive oxygen species, sirtuin signalling or the NAD salvage pathway within alloreactive T cells and regulatory T cells. In ACT, metabolic interventions that bolster memory T cell development, increase mitochondrial density and function, or block regulatory signals in the tumour microenvironment (TME) have recently been published. SUMMARY Metabolic interventions control immune responses. In ACT, efforts seek to improve the in-vivo metabolic fitness of T cells, while in HSCT energies have focused on blocking alloreactive T cell expansion or promoting regulatory T cells. Methods to identify new, metabolically targetable pathways, as well as the ability of metabolic biomarkers to predict disease onset and therapeutic response, will continue to advance the field towards clinically applicable interventions.
Collapse
|
27
|
Podsednik A, Jiang J, Jacob A, Li LZ, Xu HN. Optical Redox Imaging of Treatment Responses to Nampt Inhibition and Combination Therapy in Triple-Negative Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22115563. [PMID: 34070254 PMCID: PMC8197351 DOI: 10.3390/ijms22115563] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/02/2023] Open
Abstract
We evaluated the utility of optical redox imaging (ORI) to identify the therapeutic response of triple-negative breast cancers (TNBC) under various drug treatments. Cultured HCC1806 and MDA-MB-231 cells treated with FK866 (nicotinamide phosphoribosyltransferase (Nampt) inhibitor), FX11 (lactate dehydrogenase A inhibitor), paclitaxel, and their combinations were subjected to ORI, followed by imaging fluorescently labeled reactive oxygen species (ROS). Cell growth inhibition was measured by a cell viability assay. We found that both cell lines experienced significant NADH decrease and redox ratio (Fp/(NADH+Fp)) increase due to FK866 treatment; however, HCC1806 was much more responsive than MDA-MB-231. We further studied HCC1806 with the main findings: (i) nicotinamide riboside (NR) partially restored NADH in FK866-treated cells; (ii) FX11 induced an over 3-fold NADH increase in FK866 or FK866+NR pretreated cells; (iii) FK866 combined with paclitaxel caused synergistic increases in both Fp and the redox ratio; (iv) FK866 sensitized cells to paclitaxel treatments, which agrees with the redox changes detected by ORI; (v) Fp and the redox ratio positively correlated with cell growth inhibition; and (vi) Fp and NADH positively correlated with ROS level. Our study supports the utility of ORI for detecting the treatment responses of TNBC to Nampt inhibition and the sensitization effects on standard chemotherapeutics.
Collapse
|
28
|
Rathore R, Van Tine B. Targeting one-carbon metabolism requires mTOR inhibition: a new therapeutic approach in osteosarcoma. Mol Cell Oncol 2021; 8:1902250. [PMID: 34027041 PMCID: PMC8128185 DOI: 10.1080/23723556.2021.1902250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The rate-limiting enzyme of serine biosynthesis, 3-phosphoglycerate dehydrogenase (PHGDH), contributes to rapid growth and proliferation when it is overexpressed in cancer. We recently described the metabolic adaptations that occur upon PHGDH inhibition in osteosarcoma. PHGDH inhibition causes metabolite accumulation that activates the mechanistic target of rapamycin (mTOR) signaling, sensitizing osteosarcoma to non-rapalog mTOR inhibition.
Collapse
Affiliation(s)
- Richa Rathore
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Brian Van Tine
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri, USA.,Division of Pediatric Hematology and Oncology, Children's Hospital, St. Louis, Missouri, USA.,Siteman Cancer Center, St. Louis, Missouri, USA
| |
Collapse
|
29
|
A retrospective overview of PHGDH and its inhibitors for regulating cancer metabolism. Eur J Med Chem 2021; 217:113379. [PMID: 33756126 DOI: 10.1016/j.ejmech.2021.113379] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/20/2022]
Abstract
Emerging evidence suggests that cancer metabolism is closely associated to the serine biosynthesis pathway (SSP), in which glycolytic intermediate 3-phosphoglycerate is converted to serine through a three-step enzymatic transformation. As the rate-limiting enzyme in the first step of SSP, phosphoglycerate dehydrogenase (PHGDH) is overexpressed in various diseases, especially in cancer. Genetic knockdown or silencing of PHGDH exhibits obvious anti-tumor response both in vitro and in vivo, demonstrating that PHGDH is a promising drug target for cancer therapy. So far, several types of PHGDH inhibitors have been identified as a significant and newly emerging option for anticancer treatment. Herein, this comprehensive review summarizes the recent achievements of PHGDH, especially its critical role in cancer and the development of PHGDH inhibitors in drug discovery.
Collapse
|
30
|
Jeong S, Savino AM, Chirayil R, Barin E, Cheng Y, Park SM, Schurer A, Mullarky E, Cantley LC, Kharas MG, Keshari KR. High Fructose Drives the Serine Synthesis Pathway in Acute Myeloid Leukemic Cells. Cell Metab 2021; 33:145-159.e6. [PMID: 33357456 PMCID: PMC8168776 DOI: 10.1016/j.cmet.2020.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/16/2020] [Accepted: 12/04/2020] [Indexed: 12/31/2022]
Abstract
A significant increase in dietary fructose consumption has been implicated as a potential driver of cancer. Metabolic adaptation of cancer cells to utilize fructose confers advantages for their malignant growth, but compelling therapeutic targets have not been identified. Here, we show that fructose metabolism of leukemic cells can be inhibited by targeting the de novo serine synthesis pathway (SSP). Leukemic cells, unlike their normal counterparts, become significantly dependent on the SSP in fructose-rich conditions as compared to glucose-rich conditions. This metabolic program is mediated by the ratio of redox cofactors, NAD+/NADH, and the increased SSP flux is beneficial for generating alpha-ketoglutarate from glutamine, which allows leukemic cells to proliferate even in the absence of glucose. Inhibition of PHGDH, a rate-limiting enzyme in the SSP, dramatically reduces leukemia engraftment in mice in the presence of high fructose, confirming the essential role of the SSP in the metabolic plasticity of leukemic cells.
Collapse
Affiliation(s)
- Sangmoo Jeong
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Angela Maria Savino
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rachel Chirayil
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ersilia Barin
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yuanming Cheng
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sun-Mi Park
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alexandra Schurer
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Edouard Mullarky
- Meyer Cancer Center, Weill Cornell Medical College, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medical College, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Michael G Kharas
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
31
|
Krug K, Jaehnig EJ, Satpathy S, Blumenberg L, Karpova A, Anurag M, Miles G, Mertins P, Geffen Y, Tang LC, Heiman DI, Cao S, Maruvka YE, Lei JT, Huang C, Kothadia RB, Colaprico A, Birger C, Wang J, Dou Y, Wen B, Shi Z, Liao Y, Wiznerowicz M, Wyczalkowski MA, Chen XS, Kennedy JJ, Paulovich AG, Thiagarajan M, Kinsinger CR, Hiltke T, Boja ES, Mesri M, Robles AI, Rodriguez H, Westbrook TF, Ding L, Getz G, Clauser KR, Fenyö D, Ruggles KV, Zhang B, Mani DR, Carr SA, Ellis MJ, Gillette MA. Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy. Cell 2020; 183:1436-1456.e31. [PMID: 33212010 PMCID: PMC8077737 DOI: 10.1016/j.cell.2020.10.036] [Citation(s) in RCA: 308] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/14/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023]
Abstract
The integration of mass spectrometry-based proteomics with next-generation DNA and RNA sequencing profiles tumors more comprehensively. Here this "proteogenomics" approach was applied to 122 treatment-naive primary breast cancers accrued to preserve post-translational modifications, including protein phosphorylation and acetylation. Proteogenomics challenged standard breast cancer diagnoses, provided detailed analysis of the ERBB2 amplicon, defined tumor subsets that could benefit from immune checkpoint therapy, and allowed more accurate assessment of Rb status for prediction of CDK4/6 inhibitor responsiveness. Phosphoproteomics profiles uncovered novel associations between tumor suppressor loss and targetable kinases. Acetylproteome analysis highlighted acetylation on key nuclear proteins involved in the DNA damage response and revealed cross-talk between cytoplasmic and mitochondrial acetylation and metabolism. Our results underscore the potential of proteogenomics for clinical investigation of breast cancer through more accurate annotation of targetable pathways and biological features of this remarkably heterogeneous malignancy.
Collapse
Affiliation(s)
- Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Eric J Jaehnig
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Lili Blumenberg
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Alla Karpova
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Meenakshi Anurag
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - George Miles
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Philipp Mertins
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Max Delbrück Center for Molecular Medicine in the Helmholtz Society and Berlin Institute of Health, Berlin, Germany
| | - Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Lauren C Tang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - David I Heiman
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Song Cao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Yosef E Maruvka
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Jonathan T Lei
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chen Huang
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ramani B Kothadia
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Antonio Colaprico
- Division of Biostatistics, Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chet Birger
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Jarey Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Human Genetics, and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yongchao Dou
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhiao Shi
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuxing Liao
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maciej Wiznerowicz
- Poznan University of Medical Sciences, Poznań 61-701, Poland; International Institute for Molecular Oncology, 60-203 Poznań, Poland
| | - Matthew A Wyczalkowski
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Xi Steven Chen
- Division of Biostatistics, Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jacob J Kennedy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Amanda G Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Thomas F Westbrook
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Human Genetics, and Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li Ding
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02114, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Kelly V Ruggles
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
32
|
Rathore R, Schutt CR, Van Tine BA. PHGDH as a mechanism for resistance in metabolically-driven cancers. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:762-774. [PMID: 33511334 PMCID: PMC7840151 DOI: 10.20517/cdr.2020.46] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At the forefront of cancer research is the rapidly evolving understanding of metabolic reprogramming within cancer cells. The expeditious adaptation to metabolic inhibition allows cells to evolve and acquire resistance to targeted treatments, which makes therapeutic exploitation complex but achievable. 3-phosphoglycerate dehydrogenase (PHGDH) is the rate-limiting enzyme of de novo serine biosynthesis and is highly expressed in a variety of cancers, including breast cancer, melanoma, and Ewing’s sarcoma. This review will investigate the role of PHGDH in normal biological processes, leading to the role of PHGDH in the progression of cancer. With an understanding of the molecular mechanisms by which PHGDH expression advances cancer growth, we will highlight the known mechanisms of resistance to cancer therapeutics facilitated by PHGDH biology and identify avenues for combatting PHGDH-driven resistance with inhibitors of PHGDH to allow for the development of effective metabolic therapies.
Collapse
Affiliation(s)
- Richa Rathore
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Charles R Schutt
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Brian A Van Tine
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA.,Siteman Cancer Center, St. Louis, MO 63110, USA
| |
Collapse
|
33
|
Mpilla GB, Philip PA, El-Rayes B, Azmi AS. Pancreatic neuroendocrine tumors: Therapeutic challenges and research limitations. World J Gastroenterol 2020; 26:4036-4054. [PMID: 32821069 PMCID: PMC7403797 DOI: 10.3748/wjg.v26.i28.4036] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic neuroendocrine tumors (PNETs) are known to be the second most common epithelial malignancy of the pancreas. PNETs can be listed among the slowest growing as well as the fastest growing human cancers. The prevalence of PNETs is deceptively low; however, its incidence has significantly increased over the past decades. According to the American Cancer Society’s estimate, about 4032 (> 7% of all pancreatic malignancies) individuals will be diagnosed with PNETs in 2020. PNETs often cause severe morbidity due to excessive secretion of hormones (such as serotonin) and/or overall tumor mass. Patients can live for many years (except for those patients with poorly differentiated G3 neuroendocrine tumors); thus, the prevalence of the tumors that is the number of patients actually dealing with the disease at any given time is fairly high because the survival is much longer than pancreatic ductal adenocarcinoma. Due to significant heterogeneity, the management of PNETs is very complex and remains an unmet clinical challenge. In terms of research studies, modest improvements have been made over the past decades in the identification of potential oncogenic drivers in order to enhance the quality of life and increase survival for this growing population of patients. Unfortunately, the majority of systematic therapies approved for the management of advanced stage PNETs lack objective response or at most result in modest benefits in survival. In this review, we aim to discuss the broad challenges associated with the management and the study of PNETs.
Collapse
Affiliation(s)
- Gabriel Benyomo Mpilla
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Philip Agop Philip
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Bassel El-Rayes
- Department of Hematology Oncology, Emory Winship Institute, Atlanta, GA 30322, United States
| | - Asfar Sohail Azmi
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| |
Collapse
|
34
|
Reina-Campos M, Diaz-Meco MT, Moscat J. The complexity of the serine glycine one-carbon pathway in cancer. J Cell Biol 2020; 219:jcb.201907022. [PMID: 31690618 PMCID: PMC7039202 DOI: 10.1083/jcb.201907022] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/09/2019] [Accepted: 09/19/2019] [Indexed: 12/21/2022] Open
Abstract
Perturbations in cellular metabolism are ubiquitous in cancer. Here Reina-Campos et al. review the role of one-carbon metabolism in tumorigenesis. The serine glycine and one-carbon pathway (SGOCP) is a crucially important metabolic network for tumorigenesis, of unanticipated complexity, and with implications in the clinic. Solving how this network is regulated is key to understanding the underlying mechanisms of tumor heterogeneity and therapy resistance. Here, we review its role in cancer by focusing on key enzymes with tumor-promoting functions and important products of the SGOCP that are of physiological relevance for tumorigenesis. We discuss the regulatory mechanisms that coordinate the metabolic flux through the SGOCP and their deregulation, as well as how the actions of this metabolic network affect other cells in the tumor microenvironment, including endothelial and immune cells.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Maria T Diaz-Meco
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Jorge Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| |
Collapse
|
35
|
Abstract
The concept that dietary changes could improve the response to cancer therapy is extremely attractive to many patients, who are highly motivated to take control of at least some aspect of their treatment. Growing insight into cancer metabolism is highlighting the importance of nutrient supply to tumor development and therapeutic response. Cancers show diverse metabolic requirements, influenced by factors such as tissue of origin, microenvironment, and genetics. Dietary modulation will therefore need to be matched to the specific characteristics of both cancers and treatment, a precision approach requiring a detailed understanding of the mechanisms that determine the metabolic vulnerabilities of each cancer.
Collapse
Affiliation(s)
- Mylène Tajan
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Karen H Vousden
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
36
|
Dalton WB. Parkin on serine: a Parkinson disease gene suppresses serine synthesis in cancer. J Clin Invest 2020; 130:2820-2822. [PMID: 32420915 PMCID: PMC7259987 DOI: 10.1172/jci137411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Phosphoglycerate dehydrogenase (PHGDH) catalyzes the first step in the synthesis of the amino acid serine, important for protein synthesis, one-carbon metabolism, lipid production, redox homeostasis, and other key processes of normal and cancer metabolism. While PHGDH is often overexpressed in cancer cells, how it is regulated has been unclear. In this issue of the JCI, Liu and colleagues describe a new aspect of PHGDH regulation, demonstrating that the Parkinson disease gene and tumor suppressor Parkin bound and ubiquitinated PHGDH. Parkin promoted PHGDH degradation, suppressed serine synthesis, and inhibited tumor growth in human cancer cell line xenografts. Conversely, inactivation of Parkin not only accelerated tumor growth, but also sensitized tumors to small molecule inhibitors of PHGDH. These results offer a new link between Parkin and the serine synthesis pathway, and they bear translational potential that warrants further study in Parkin-deficient human cancers.
Collapse
|
37
|
Li AM, Ye J. The PHGDH enigma: Do cancer cells only need serine or also a redox modulator? Cancer Lett 2020; 476:97-105. [PMID: 32032680 PMCID: PMC7092752 DOI: 10.1016/j.canlet.2020.01.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/29/2022]
Abstract
Upregulation of serine biosynthesis pathway activity is an increasingly apparent feature of many cancers. Most notably, the first rate-limiting enzyme of the pathway, phosphoglycerate dehydrogenase (PHGDH), is genomically amplified in some melanomas and breast cancers and can be transcriptionally regulated by various tumor suppressors and oncogenes. Yet emerging evidence suggests that serine-in particular, serine biosynthetic pathway activity-may promote cancer in ways beyond providing the building blocks to support cell proliferation. Here, we summarize how mammalian cells tightly control serine synthesis before discussing alternate ways in which increased serine synthetic flux through PHGDH may benefit cancer cells, such as maintenance of TCA cycle flux through alpha-ketoglutarate (αKG) and modulation of cellular redox balance. We will also provide an overview of the current landscape of therapeutics targeting serine synthesis and offer a perspective on future strategies.
Collapse
Affiliation(s)
- Albert M Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
38
|
Therapeutic Strategies and Biomarkers to Modulate PARP Activity for Targeted Cancer Therapy. Cancers (Basel) 2020; 12:cancers12040972. [PMID: 32295316 PMCID: PMC7226473 DOI: 10.3390/cancers12040972] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
Poly-(ADP-ribose) polymerase 1 (PARP1) is commonly known for its vital role in DNA damage response and repair. However, its enzymatic activity has been linked to a plethora of physiological and pathophysiological transactions ranging from cellular proliferation, survival and death. For instance, malignancies with BRCA1/2 mutations heavily rely on PARP activity for survival. Thus, the use of PARP inhibitors is a well-established intervention in these types of tumors. However, recent studies indicate that the therapeutic potential of attenuating PARP1 activity in recalcitrant tumors, especially where PARP1 is aberrantly overexpressed and hyperactivated, may extend its therapeutic utility in wider cancer types beyond BRCA-deficiency. Here, we discuss treatment strategies to expand the tumor-selective therapeutic application of PARP inhibitors and novel approaches with predictive biomarkers to perturb NAD+ levels and hyperPARylation that inactivate PARP in recalcitrant tumors. We also provide an overview of genetic alterations that transform non-BRCA mutant cancers to a state of "BRCAness" as potential biomarkers for synthetic lethality with PARP inhibitors. Finally, we discuss a paradigm shift for the use of novel PARP inhibitors outside of cancer treatment, where it has the potential to rescue normal cells from severe oxidative damage during ischemia-reperfusion injury induced by surgery and radiotherapy.
Collapse
|
39
|
Zhao X, Fu J, Du J, Xu W. The Role of D-3-Phosphoglycerate Dehydrogenase in Cancer. Int J Biol Sci 2020; 16:1495-1506. [PMID: 32226297 PMCID: PMC7097917 DOI: 10.7150/ijbs.41051] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Serine, a non-essential amino acid, can be imported from the extracellular environment by transporters and de novo synthesized from glycolytic 3-phosphoglycerate (3-PG) in the serine biosynthetic pathway (SSP). It has been reported that active serine synthesis might be needed for the synthesis of proteins, lipids, and nucleotides and the balance of folate metabolism and redox homeostasis, which are necessary for cancer cell proliferation. Human D-3-phosphoglycerate dehydrogenase (PHGDH), the first and only rate-limiting enzyme in the de novo serine biosynthetic pathway, catalyzes the oxidation of 3-PG derived from glycolysis to 3-phosphohydroxypyruvate (3-PHP). PHGDH is highly expressed in tumors as a result of amplification, transcription, or its degradation and stability alteration, which dysregulates the serine biosynthesis pathway via metabolic enzyme activity to nourish tumors. And some recent researches reported that PHGDH promoted some tumors growth via non-metabolic way by upregulating target cancer-promoting genes. In this article, we reviewed the type, structure, expression and inhibitors of PHGDH, as well as the role it plays in cancer and tumor resistance to chemotherapy.
Collapse
Affiliation(s)
- Xiaoya Zhao
- Central Laboratory, Jinhua Hospital of Zhejiang University, Jinhua 321000, Zhejiang Province, China
| | - Jianfei Fu
- Department of Medical Oncology, Jinhua Hospital of Zhejiang University, Jinhua 321000, Zhejiang Province, China
| | - Jinlin Du
- Department of Colorectal Surgery, Jinhua Hospital of Zhejiang University, Jinhua 321000, Zhejiang Province, China
| | - Wenxia Xu
- Central Laboratory, Jinhua Hospital of Zhejiang University, Jinhua 321000, Zhejiang Province, China
| |
Collapse
|
40
|
Heske CM. Beyond Energy Metabolism: Exploiting the Additional Roles of NAMPT for Cancer Therapy. Front Oncol 2020; 9:1514. [PMID: 32010616 PMCID: PMC6978772 DOI: 10.3389/fonc.2019.01514] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor cells have increased requirements for NAD+. Thus, many cancers exhibit an increased reliance on NAD+ production pathways. This dependence may be exploited therapeutically through pharmacological targeting of NAMPT, the rate-limiting enzyme in the NAD+ salvage pathway. Despite promising preclinical data using NAMPT inhibitors in cancer models, early NAMPT inhibitors showed limited efficacy in several early phase clinical trials, necessitating the identification of strategies, such as drug combinations, to enhance their efficacy. While the effect of NAMPT inhibitors on impairment of energy metabolism in cancer cells has been well-described, more recent insights have uncovered a number of additional targetable cellular processes that are impacted by inhibition of NAMPT. These include sirtuin function, DNA repair machinery, redox homeostasis, molecular signaling, cellular stemness, and immune processes. This review highlights the recent findings describing the effects of NAMPT inhibitors on the non-metabolic functions of malignant cells, with a focus on how this information can be leveraged clinically. Combining NAMPT inhibitors with other therapies that target NAD+-dependent processes or selecting tumors with specific vulnerabilities that can be co-targeted with NAMPT inhibitors may represent opportunities to exploit the multiple functions of this enzyme for greater therapeutic benefit.
Collapse
Affiliation(s)
- Christine M Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
41
|
Abstract
Warburg and coworkers' observation of altered glucose metabolism in tumours has been neglected for several decades, which, in part, was because of an initial misinterpretation of the basis of their finding. Following the realisation that genetic alterations are often linked to metabolism, and that the tumour micro-environment imposes different demands on cancer cells, has led to a reinvestigation of cancer metabolism in recent years. Increasing our understanding of the drivers and consequences of the Warburg effect in cancer and beyond will help to identify new therapeutic strategies as well as to identify new prognostic and therapeutic biomarkers. Here we discuss the initial findings of Warburg and coworkers regarding cancer cell glucose metabolism, how these studies came into focus again in recent years following the discovery of metabolic oncogenes, and the therapeutic potential that lies within targeting the altered metabolic phenotype in cancer. In addition, another essential nutrient in cancer metabolism, glutamine, will be discussed.
Collapse
|
42
|
Diehl FF, Lewis CA, Fiske BP, Vander Heiden MG. Cellular redox state constrains serine synthesis and nucleotide production to impact cell proliferation. Nat Metab 2019; 1:861-867. [PMID: 31598584 PMCID: PMC6785045 DOI: 10.1038/s42255-019-0108-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 08/07/2019] [Indexed: 12/24/2022]
Abstract
The de novo serine synthesis pathway is upregulated in many cancers. However, even cancer cells with increased serine synthesis take up large amounts of serine from the environment1 and we confirm that exogenous serine is needed for maximal proliferation of these cells. Here we show that even when enzymes in the serine synthesis pathway are genetically upregulated, the demand for oxidized NAD+ constrains serine synthesis, rendering serine-deprived cells sensitive to conditions that decrease the cellular NAD+/NADH ratio. Further, purine depletion is a major consequence of reduced intracellular serine availability, particularly when NAD+ regeneration is impaired. Thus, cells rely on exogenous serine consumption to maintain purine biosynthesis. In support of this explanation, providing exogenous purine nucleobases, or increasing NAD+ availability to facilitate de novo serine and purine synthesis, both rescue maximal proliferation even in the absence of extracellular serine. Together, these data indicate that NAD+ is an endogenous limitation for cancer cells to synthesize the serine needed for purine production to support rapid proliferation.
Collapse
Affiliation(s)
- Frances F Diehl
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Brian P Fiske
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
43
|
Xu XL, Grant GA. Determinants of substrate specificity in D-3-phosphoglycerate dehydrogenase. Conversion of the M. tuberculosis enzyme from one that does not use α-ketoglutarate as a substrate to one that does. Arch Biochem Biophys 2019; 671:218-224. [PMID: 31344342 DOI: 10.1016/j.abb.2019.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/09/2019] [Accepted: 07/21/2019] [Indexed: 10/26/2022]
Abstract
d-3-Phosphoglycerate dehydrogenase (PGDH) converts d-3-phosphoglycerate (PGA) to phosphohydroxypyruvate (PHP) in the first step of l-serine biosynthesis. This reaction is reversible, and some PGDHs are capable of using α-ketoglutarate (αKG) instead of PHP in the reverse direction to produce α-hydroxyglutarate. The enzymes so far shown to have this ability are Type II PGDHs, suggesting that this may be a common feature of the Type II enzymes. Type I PGDHs examined so far do not share this feature. Inspection of PGDH sequences shows that a GCFCI … WXKX motif is commonly found in Type II PGDHs while a GRAGT … WXRX motif is commonly associated with Type I PGDHs. The removal of the cationic side chain at the first position shown above in the Type I PGDH from Mycobacterium tuberculosis converts it to an enzyme capable of using αKG where the native enzyme is not. It also produces an enzyme that regenerates NAD+ in the forward reaction when coupled to phosphoserine aminotransferase, as was previously shown for E. coli PGDH. Substitution of an arginyl residue for a lysyl residue at the second position of ecPGDH, decreases the kcat/Km of the enzyme by approximately 50-fold when using αKG, but only approximately 3-fold when using PHP. This suggests that a PGDH dependent cycle that conserves NAD+ in E. coli may be operative in many other organisms expressing the GCFCI … WXKX motif.
Collapse
Affiliation(s)
- Xiao Lan Xu
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8103, St. Louis, 63110, MO, United States
| | - Gregory A Grant
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8103, St. Louis, 63110, MO, United States; Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8103, St. Louis, 63110, MO, United States.
| |
Collapse
|
44
|
Dalton WB, Helmenstine E, Walsh N, Gondek LP, Kelkar DS, Read A, Natrajan R, Christenson ES, Roman B, Das S, Zhao L, Leone RD, Shinn D, Groginski T, Madugundu AK, Patil A, Zabransky DJ, Medford A, Lee J, Cole AJ, Rosen M, Thakar M, Ambinder A, Donaldson J, DeZern AE, Cravero K, Chu D, Madero-Marroquin R, Pandey A, Hurley PJ, Lauring J, Park BH. Hotspot SF3B1 mutations induce metabolic reprogramming and vulnerability to serine deprivation. J Clin Invest 2019; 129:4708-4723. [PMID: 31393856 DOI: 10.1172/jci125022] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cancer-associated mutations in the spliceosome gene SF3B1 create a neomorphic protein that produces aberrant mRNA splicing in hundreds of genes, but the ensuing biologic and therapeutic consequences of this missplicing are not well understood. Here we have provided evidence that aberrant splicing by mutant SF3B1 altered the transcriptome, proteome, and metabolome of human cells, leading to missplicing-associated downregulation of metabolic genes, decreased mitochondrial respiration, and suppression of the serine synthesis pathway. We also found that mutant SF3B1 induces vulnerability to deprivation of the nonessential amino acid serine, which was mediated by missplicing-associated downregulation of the serine synthesis pathway enzyme PHGDH. This vulnerability was manifest both in vitro and in vivo, as dietary restriction of serine and glycine in mice was able to inhibit the growth of SF3B1MUT xenografts. These findings describe a role for SF3B1 mutations in altered energy metabolism, and they offer a new therapeutic strategy against SF3B1MUT cancers.
Collapse
Affiliation(s)
- W Brian Dalton
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, and
| | - Eric Helmenstine
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, and
| | - Noel Walsh
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, and
| | - Lukasz P Gondek
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, and
| | - Dhanashree S Kelkar
- McKusick-Nathans Institute of Genetic Medicine, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Abigail Read
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Eric S Christenson
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, and
| | | | - Samarjit Das
- Department of Pathology, Cardiovascular Division.,Department of Anesthesiology and Critical Care Medicine, and
| | - Liang Zhao
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Robert D Leone
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Daniel Shinn
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, and
| | - Taylor Groginski
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, and
| | - Anil K Madugundu
- McKusick-Nathans Institute of Genetic Medicine, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Arun Patil
- McKusick-Nathans Institute of Genetic Medicine, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Daniel J Zabransky
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, and
| | - Arielle Medford
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, and.,Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Justin Lee
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, and
| | - Alex J Cole
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, and
| | - Marc Rosen
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, and
| | - Maya Thakar
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, and
| | - Alexander Ambinder
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, and
| | - Joshua Donaldson
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, and
| | - Amy E DeZern
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, and
| | - Karen Cravero
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, and
| | - David Chu
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, and
| | - Rafael Madero-Marroquin
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, and.,Department of Medicine, Icahn School of Medicine, Mount Sinai St. Luke's Roosevelt Hospital Center, New York, New York, USA
| | - Akhilesh Pandey
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, and.,McKusick-Nathans Institute of Genetic Medicine, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India.,Department of Pathology and
| | - Paula J Hurley
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, and.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Josh Lauring
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, and.,Janssen Research and Development, Spring House, Pennsylvania, USA
| | - Ben Ho Park
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, and.,Department of Chemical and Biomolecular Engineering, The Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Division of Hematology, Oncology, Department of Medicine, Vanderbilt Ingram Cancer Center, Nashville, Tennessee, USA
| |
Collapse
|
45
|
Zhu Y, Liu J, Park J, Rai P, Zhai RG. Subcellular compartmentalization of NAD + and its role in cancer: A sereNADe of metabolic melodies. Pharmacol Ther 2019; 200:27-41. [PMID: 30974124 PMCID: PMC7010080 DOI: 10.1016/j.pharmthera.2019.04.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential biomolecule involved in many critical processes. Its role as both a driver of energy production and a signaling molecule underscores its importance in health and disease. NAD+ signaling impacts multiple processes that are dysregulated in cancer, including DNA repair, cell proliferation, differentiation, redox regulation, and oxidative stress. Distribution of NAD+ is highly compartmentalized, with each subcellular NAD+ pool differentially regulated and preferentially involved in distinct NAD+-dependent signaling or metabolic events. Emerging evidence suggests that targeting NAD+ metabolism is likely to repress many specific mechanisms underlying tumor development and progression, including proliferation, survival, metabolic adaptations, invasive capabilities, heterotypic interactions with the tumor microenvironment, and stress response including notably DNA maintenance and repair. Here we provide a comprehensive overview of how compartmentalized NAD+ metabolism in mitochondria, nucleus, cytosol, and extracellular space impacts cancer formation and progression, along with a discussion of the therapeutic potential of NAD+-targeting drugs in cancer.
Collapse
Affiliation(s)
- Yi Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jiaqi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China
| | - Joun Park
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Priyamvada Rai
- Department of Medicine/Medical Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rong G Zhai
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China.
| |
Collapse
|
46
|
Curcumin and its Potential for Systemic Targeting of Inflamm-Aging and Metabolic Reprogramming in Cancer. Int J Mol Sci 2019; 20:ijms20051180. [PMID: 30857125 PMCID: PMC6429141 DOI: 10.3390/ijms20051180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/24/2022] Open
Abstract
Pleiotropic effects of curcumin have been the subject of intensive research. The interest in this molecule for preventive medicine may further increase because of its potential to modulate inflamm-aging. Although direct data related to its effect on inflamm-aging does not exist, there is a strong possibility that its well-known anti-inflammatory properties may be relevant to this phenomenon. Curcumin's binding to various proteins, which was shown to be dependent on cellular oxidative status, is yet another feature for exploration in depth. Finally, the binding of curcumin to various metabolic enzymes is crucial to curcumin's interference with powerful metabolic machinery, and can also be crucial for metabolic reprogramming of cancer cells. This review offers a synthesis and functional links that may better explain older data, some observational, in light of the most recent findings on curcumin. Our focus is on its modes of action that have the potential to alleviate specific morbidities of the 21st century.
Collapse
|
47
|
Jiang H, Yu Y, Liu S, Zhu M, Dong X, Wu J, Zhang Z, Zhang M, Zhang Y. Proteomic Study of a Parkinson's Disease Model of Undifferentiated SH-SY5Y Cells Induced by a Proteasome Inhibitor. Int J Med Sci 2019; 16:84-92. [PMID: 30662332 PMCID: PMC6332475 DOI: 10.7150/ijms.28595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/05/2018] [Indexed: 11/23/2022] Open
Abstract
UNLABELLED Parkinson's disease (PD) is one of the most common nervous system degenerative diseases. However, the etiology of this disease remains elusive. Here, a proteasome inhibitor (PSI)-induced undifferentiated SH-SY5Y PD model was established to analyze protein alterations through proteomic study. METHODS Cultured undifferentiated SH-SY5Y cells were divided into a control group and a group treated with 2.5 µM PSI (PSI-treated group). An methyl thiazolyl tetrazolium (MTT) assay was applied to detect cell viability. Acridine orange/ethidium bromide (AO/EB), α-synuclein immunofluorescence and hematoxylin and eosin (H&E) staining were applied to evaluate apoptosis and cytoplasmic inclusions, respectively. The protein spots that were significantly changed were separated, analyzed by 2D gel electrophoresis and DIGE De Cyder software, and subsequently identified by MALDI-TOF mass spectrometry and database searching. RESULTS The results of the MTT assay showed that there was a time and dose dependent change in cell viability following incubation with PSI. After 24 h incubation, PSI resulted in early apoptosis, and cytoplasmic inclusions were found in the PSI-treated group through H&E staining and α-synuclein immunofluorescence. Thus, undifferentiated SH-SY5Y cells could be used as PD model following PSI-induced inhibition of proteasomal function. In total, 18 proteins were differentially expressed between the groups, 7 of which were up-regulated and 11 of which were down-regulated. Among them, 5 protein spots were identified as being involved in the ubiquitin proteasome pathway-induced PD process. CONCLUSIONS Mitochondrial heat shock protein 75 (MTHSP75), phosphoglycerate dehydrogenase (PHGDH), laminin binding protein (LBP), tyrosine 3/tryptophan 5-monooxygenase activation protein (14-3-3ε) and YWHAZ protein (14-3-3ζ) are involved in mitochondrial dysfunction, serine synthesis, amyloid clearance, apoptosis process and neuroprotection. These findings may provide new clues to deepen our understanding of PD pathogenesis.
Collapse
Affiliation(s)
- Huiyi Jiang
- Department of pediatrics, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yang Yu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Chang Chun, Jilin Province, China.,Key Laboratory of Medical Cell Biology, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning Province, China
| | - Shicheng Liu
- Department of pediatrics, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Mingqin Zhu
- Departments of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiang Dong
- Key Laboratory of Medical Cell Biology, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning Province, China
| | - Jinying Wu
- Key Laboratory of Medical Cell Biology, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning Province, China
| | - Zhou Zhang
- Key Laboratory of Medical Cell Biology, Institute of Translational Medicine, China Medical University, Shenyang, Liaoning Province, China
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Chang Chun, Jilin Province, China
| | - Ying Zhang
- Departments of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
48
|
Yaku K, Okabe K, Hikosaka K, Nakagawa T. NAD Metabolism in Cancer Therapeutics. Front Oncol 2018; 8:622. [PMID: 30631755 PMCID: PMC6315198 DOI: 10.3389/fonc.2018.00622] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022] Open
Abstract
Cancer cells have a unique energy metabolism for sustaining rapid proliferation. The preference for anaerobic glycolysis under normal oxygen conditions is a unique trait of cancer metabolism and is designated as the Warburg effect. Enhanced glycolysis also supports the generation of nucleotides, amino acids, lipids, and folic acid as the building blocks for cancer cell division. Nicotinamide adenine dinucleotide (NAD) is a co-enzyme that mediates redox reactions in a number of metabolic pathways, including glycolysis. Increased NAD levels enhance glycolysis and fuel cancer cells. In fact, nicotinamide phosphoribosyltransferase (Nampt), a rate-limiting enzyme for NAD synthesis in mammalian cells, is frequently amplified in several cancer cells. In addition, Nampt-specific inhibitors significantly deplete NAD levels and subsequently suppress cancer cell proliferation through inhibition of energy production pathways, such as glycolysis, tricarboxylic acid (TCA) cycle, and oxidative phosphorylation. NAD also serves as a substrate for poly(ADP-ribose) polymerase (PARP), sirtuin, and NAD gylycohydrolase (CD38 and CD157); thus, NAD regulates DNA repair, gene expression, and stress response through these enzymes. Thus, NAD metabolism is implicated in cancer pathogenesis beyond energy metabolism and considered a promising therapeutic target for cancer treatment. In this review, we present recent findings with respect to NAD metabolism and cancer pathogenesis. We also discuss the current and future perspectives regarding the therapeutics that target NAD metabolic pathways.
Collapse
Affiliation(s)
- Keisuke Yaku
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Keisuke Okabe
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan.,First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Keisuke Hikosaka
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Takashi Nakagawa
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan.,Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|