1
|
Liu J, Lu F. Beyond simple tails: poly(A) tail-mediated RNA epigenetic regulation. Trends Biochem Sci 2024; 49:846-858. [PMID: 39004583 DOI: 10.1016/j.tibs.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
The poly(A) tail is an essential structural component of mRNA required for the latter's stability and translation. Recent technologies have enabled transcriptome-wide profiling of the length and composition of poly(A) tails, shedding light on their overlooked regulatory capacities. Notably, poly(A) tails contain not only adenine but also uracil, cytosine, and guanine residues. These findings strongly suggest that poly(A) tails could encode a wealth of regulatory information, similar to known reversible RNA chemical modifications. This review aims to succinctly summarize our current knowledge on the composition, dynamics, and regulatory functions of RNA poly(A) tails. Given their capacity to carry rich regulatory information beyond the genetic code, we propose the concept of 'poly(A) tail epigenetic information' as a new layer of RNA epigenetic regulation.
Collapse
Affiliation(s)
- Jingwen Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Falong Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Gordon J, Phizicky D, Schärfen L, Brown C, Arias Escayola D, Kanyo J, Lam T, Simon M, Neugebauer K. Phosphorylation of the nuclear poly(A) binding protein (PABPN1) during mitosis protects mRNA from hyperadenylation and maintains transcriptome dynamics. Nucleic Acids Res 2024; 52:9886-9903. [PMID: 38943343 PMCID: PMC11381358 DOI: 10.1093/nar/gkae562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/23/2024] [Accepted: 06/28/2024] [Indexed: 07/01/2024] Open
Abstract
Polyadenylation controls mRNA biogenesis, nucleo-cytoplasmic export, translation and decay. These processes are interdependent and coordinately regulated by poly(A)-binding proteins (PABPs), yet how PABPs are themselves regulated is not fully understood. Here, we report the discovery that human nuclear PABPN1 is phosphorylated by mitotic kinases at four specific sites during mitosis, a time when nucleoplasm and cytoplasm mix. To understand the functional consequences of phosphorylation, we generated a panel of stable cell lines inducibly over-expressing PABPN1 with point mutations at these sites. Phospho-inhibitory mutations decreased cell proliferation, highlighting the importance of PABPN1 phosphorylation in cycling cells. Dynamic regulation of poly(A) tail length and RNA stability have emerged as important modes of gene regulation. We therefore employed long-read sequencing to determine how PABPN1 phospho-site mutants affected poly(A) tails lengths and TimeLapse-seq to monitor mRNA synthesis and decay. Widespread poly(A) tail lengthening was observed for phospho-inhibitory PABPN1 mutants. In contrast, expression of phospho-mimetic PABPN1 resulted in shorter poly(A) tails with increased non-A nucleotides, in addition to increased transcription and reduced stability of a distinct cohort of mRNAs. Taken together, PABPN1 phosphorylation remodels poly(A) tails and increases mRNA turnover, supporting the model that enhanced transcriptome dynamics reset gene expression programs across the cell cycle.
Collapse
Affiliation(s)
- Jackson M Gordon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - David V Phizicky
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Leonard Schärfen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Courtney L Brown
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Dahyana Arias Escayola
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Jean Kanyo
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT 06520, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT 06520, USA
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
3
|
Dar SA, Malla S, Martinek V, Payea MJ, Lee CT, Martin J, Khandeshi AJ, Martindale JL, Belair C, Maragkakis M. Full-length direct RNA sequencing uncovers stress-granule dependent RNA decay upon cellular stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.31.555629. [PMID: 37693505 PMCID: PMC10491209 DOI: 10.1101/2023.08.31.555629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Cells react to stress by triggering response pathways, leading to extensive alterations in the transcriptome to restore cellular homeostasis. The role of RNA metabolism in shaping the cellular response to stress is vital, yet the global changes in RNA stability under these conditions remain unclear. In this work, we employ direct RNA sequencing with nanopores, enhanced by 5' end adaptor ligation, to comprehensively interrogate the human transcriptome at single-molecule and nucleotide resolution. By developing a statistical framework to identify robust RNA length variations in nanopore data, we find that cellular stress induces prevalent 5' end RNA decay that is coupled to translation and ribosome occupancy. Unlike typical RNA decay models in normal conditions, we show that stress-induced RNA decay is dependent on XRN1 but does not depend on deadenylation or decapping. We observed that RNAs undergoing decay are predominantly enriched in the stress granule transcriptome while inhibition of stress granule formation via genetic ablation of G3BP1 and G3BP2 rescues RNA length. Our findings reveal RNA decay as a key determinant of RNA metabolism upon cellular stress and dependent on stress-granule formation.
Collapse
Affiliation(s)
- Showkat A. Dar
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sulochan Malla
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vlastimil Martinek
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Matthew J. Payea
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | | | - Jessica Martin
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Aditya J. Khandeshi
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L. Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Cedric Belair
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Manolis Maragkakis
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
4
|
Haque MM, Kuppusamy P, Melemedjian OK. Disruption of mitochondrial pyruvate oxidation in dorsal root ganglia drives persistent nociceptive sensitization and causes pervasive transcriptomic alterations. Pain 2024; 165:1531-1549. [PMID: 38285538 PMCID: PMC11189764 DOI: 10.1097/j.pain.0000000000003158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 01/31/2024]
Abstract
ABSTRACT Metabolism is inextricably linked to every aspect of cellular function. In addition to energy production and biosynthesis, metabolism plays a crucial role in regulating signal transduction and gene expression. Altered metabolic states have been shown to maintain aberrant signaling and transcription, contributing to diseases like cancer, cardiovascular disease, and neurodegeneration. Metabolic gene polymorphisms and defects are also associated with chronic pain conditions, as are increased levels of nerve growth factor (NGF). However, the mechanisms by which NGF may modulate sensory neuron metabolism remain unclear. This study demonstrated that intraplantar NGF injection reprograms sensory neuron metabolism. Nerve growth factor suppressed mitochondrial pyruvate oxidation and enhanced lactate extrusion, requiring 24 hours to increase lactate dehydrogenase A and pyruvate dehydrogenase kinase 1 (PDHK1) expression. Inhibiting these metabolic enzymes reversed NGF-mediated effects. Remarkably, directly disrupting mitochondrial pyruvate oxidation induced severe, persistent allodynia, implicating this metabolic dysfunction in chronic pain. Nanopore long-read sequencing of poly(A) mRNA uncovered extensive transcriptomic changes upon metabolic disruption, including altered gene expression, splicing, and poly(A) tail lengths. By linking metabolic disturbance of dorsal root ganglia to transcriptome reprogramming, this study enhances our understanding of the mechanisms underlying persistent nociceptive sensitization. These findings imply that impaired mitochondrial pyruvate oxidation may drive chronic pain, possibly by impacting transcriptomic regulation. Exploring these metabolite-driven mechanisms further might reveal novel therapeutic targets for intractable pain.
Collapse
Affiliation(s)
- Md Mamunul Haque
- Deptartmen of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Panjamurthy Kuppusamy
- Deptartmen of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Ohannes K. Melemedjian
- Deptartmen of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
- UM Center to Advance Chronic Pain Research, Baltimore, MD, United States
- UM Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
5
|
Karasik A, Lorenzi HA, DePass AV, Guydosh NR. Endonucleolytic RNA cleavage drives changes in gene expression during the innate immune response. Cell Rep 2024; 43:114287. [PMID: 38823018 PMCID: PMC11251458 DOI: 10.1016/j.celrep.2024.114287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/05/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024] Open
Abstract
Viral infection triggers several double-stranded RNA (dsRNA) sensors that lead to changes in gene expression in the cell. One of these sensors activates an endonuclease, ribonuclease L (RNase L), that cleaves single-stranded RNA. However, how the resultant widespread RNA fragmentation affects gene expression is not fully understood. Here, we show that this fragmentation induces the ribotoxic stress response via ZAKα, potentially through stalled ribosomes and/or ribosome collisions. The p38 and JNK pathways that are activated as part of this response promote outcomes that inhibit the virus, such as programmed cell death. We also show that RNase L limits the translation of stress-responsive genes. Intriguingly, we found that the activity of the generic endonuclease, RNase A, recapitulates many of the same molecular phenotypes as activated RNase L, demonstrating how widespread RNA cleavage can evoke an antiviral program.
Collapse
Affiliation(s)
- Agnes Karasik
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hernan A Lorenzi
- TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew V DePass
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Sato K, Takayama KI, Inoue S. Stress granule-mediated RNA regulatory mechanism in Alzheimer's disease. Geriatr Gerontol Int 2024; 24 Suppl 1:7-14. [PMID: 37726158 DOI: 10.1111/ggi.14663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/20/2023] [Accepted: 08/27/2023] [Indexed: 09/21/2023]
Abstract
Living organisms experience a range of stresses. To cope effectively with these stresses, eukaryotic cells have evolved a sophisticated mechanism involving the formation of stress granules (SGs), which play a crucial role in protecting various types of RNA species under stress, such as mRNAs and long non-coding RNAs (lncRNAs). SGs are non-membranous cytoplasmic ribonucleoprotein (RNP) granules, and the RNAs they contain are translationally stalled. Importantly, SGs have been thought to contribute to the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD). SGs also contain multiple RNA-binding proteins (RBPs), several of which have been implicated in AD progression. SGs are transient structures that dissipate after stress relief. However, the chronic stresses associated with aging lead to the persistent formation of SGs and subsequently to solid-like pathological SGs, which could impair cellular RNA metabolism and also act as a nidus for the aberrant aggregation of AD-associated proteins. In this paper, we provide a comprehensive summary of the physical basis of SG-enriched RNAs and SG-resident RBPs. We then review the characteristics of AD-associated gene transcripts and their similarity to the SG-enriched RNAs. Furthermore, we summarize and discuss the functional implications of SGs in neuronal RNA metabolism and the aberrant aggregation of AD-associated proteins mediated by SG-resident RBPs in the context of AD pathogenesis. Geriatr Gerontol Int 2024; 24: 7-14.
Collapse
Affiliation(s)
- Kaoru Sato
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Integrated Research Initiative for Living Well with Dementia, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Ken-Ichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| |
Collapse
|
7
|
Dar SA, Malla S, Belair C, Maragkakis M. Differential Poly(A) Tail Length Analysis Using Nanopore Sequencing. Methods Mol Biol 2024; 2723:267-283. [PMID: 37824076 DOI: 10.1007/978-1-0716-3481-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The poly(A) tail is a sequence of several adenosine nucleotides added to the 3' end of RNA molecules transcribed by polymerase II. The dynamics of poly(A) tail length play a significant role in regulating post-transcriptional gene expression by regulating the stability, translation, and decay of messenger RNAs. As a result, an accurate measurement of poly(A) tail length changes is important for understanding its regulatory function in different cellular contexts. Here, we outline a method for using nanopore sequencing and linear mixed models to analyze differences in poly(A) tail length across conditions.
Collapse
Affiliation(s)
- Showkat A Dar
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Sulochan Malla
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Cedric Belair
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Manolis Maragkakis
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
8
|
Krawczyk PS, Tudek A, Mroczek S, Dziembowski A. Transcriptome-Wide Analysis of mRNA Adenylation Status in Yeast Using Nanopore Sequencing. Methods Mol Biol 2024; 2723:193-214. [PMID: 37824072 DOI: 10.1007/978-1-0716-3481-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
There are multiple methods for studying deadenylation, either in vitro or in vivo, which allow for observation of mRNA abundance or poly(A) tail dynamics. However, direct RNA sequencing using the Oxford Nanopore Technologies (ONT) platform makes it possible to conduct transcriptome-wide analyses at the single-molecule level without the PCR bias introduced by other methods. In this chapter, we provide a protocol to measure both RNA levels and poly(A)-tail lengths in the yeast Saccharomyces cerevisiae using ONT.
Collapse
Affiliation(s)
- Pawel S Krawczyk
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | - Seweryn Mroczek
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Andrzej Dziembowski
- International Institute of Molecular and Cell Biology, Warsaw, Poland.
- Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
9
|
Nguyen LAC, Mori M, Yasuda Y, Galipon J. Functional Consequences of Shifting Transcript Boundaries in Glucose Starvation. Mol Cell Biol 2023; 43:611-628. [PMID: 37937348 PMCID: PMC10761120 DOI: 10.1080/10985549.2023.2270406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023] Open
Abstract
Glucose is a major source of carbon and essential for the survival of many organisms, ranging from yeast to human. A sudden 60-fold reduction of glucose in exponentially growing fission yeast induces transcriptome-wide changes in gene expression. This regulation is multilayered, and the boundaries of transcripts are known to vary, with functional consequences at the protein level. By combining direct RNA sequencing with 5'-CAGE and short-read sequencing, we accurately defined the 5'- and 3'-ends of transcripts that are both poly(A) tailed and 5'-capped in glucose starvation, followed by proteome analysis. Our results confirm previous experimentally validated loci with alternative isoforms and reveal several transcriptome-wide patterns. First, we show that sense-antisense gene pairs are more strongly anticorrelated when a time lag is taken into account. Second, we show that the glucose starvation response initially elicits a shortening of 3'-UTRs and poly(A) tails, followed by a shortening of the 5'-UTRs at later time points. These result in domain gains and losses in proteins involved in the stress response. Finally, the relatively poor overlap both between differentially expressed genes (DEGs), differential transcript usage events (DTUs), and differentially detected proteins (DDPs) highlight the need for further study on post-transcriptional regulation mechanisms in glucose starvation.
Collapse
Affiliation(s)
- Lan Anh Catherine Nguyen
- Institute for Advanced Biosciences, Keio University, Yamagata, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa, Fujisawa, Japan
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, Yamagata, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa, Fujisawa, Japan
- Institute of Innovation for Future Society, Nagoya University, Aichi, Nagoya, Japan
| | - Yuji Yasuda
- Institute for Advanced Biosciences, Keio University, Yamagata, Tsuruoka, Japan
- Faculty of Environment and Information Studies, Keio University, Kanagawa, Fujisawa, Japan
| | - Josephine Galipon
- Institute for Advanced Biosciences, Keio University, Yamagata, Tsuruoka, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa, Fujisawa, Japan
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Yonezawa, Japan
| |
Collapse
|
10
|
Karasik A, Lorenzi HA, DePass AV, Guydosh NR. Endonucleolytic RNA cleavage drives changes in gene expression during the innate immune response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555507. [PMID: 37693516 PMCID: PMC10491309 DOI: 10.1101/2023.09.01.555507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Viral infection triggers several dsRNA sensors that lead to changes in gene expression in the cell. One of these sensors activates an endonuclease, RNase L, that cleaves single stranded RNA. However, how the resultant widespread RNA fragmentation affects gene expression is not fully understood. Here we show that this fragmentation induces the Ribotoxic Stress Response via ZAKα, potentially through ribosome collisions. The p38 and JNK pathways that are activated as part of this response promote outcomes that inhibit the virus, such as programmed cell death. We also show that RNase L limits the translation of stress-responsive genes, including antiviral IFIT mRNAs and GADD34 that encodes an antagonist of the Integrated Stress Response. Intriguingly, we found the activity of the generic endonuclease, RNase A, recapitulates many of the same molecular phenotypes as activated RNase L, demonstrating how widespread RNA cleavage can evoke an antiviral program.
Collapse
Affiliation(s)
- Agnes Karasik
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Hernan A Lorenzi
- TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Andrew V DePass
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
11
|
Imai H, Utsumi D, Torihara H, Takahashi K, Kuroyanagi H, Yamashita A. Simultaneous measurement of nascent transcriptome and translatome using 4-thiouridine metabolic RNA labeling and translating ribosome affinity purification. Nucleic Acids Res 2023; 51:e76. [PMID: 37378452 PMCID: PMC10415123 DOI: 10.1093/nar/gkad545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Regulation of gene expression in response to various biological processes, including extracellular stimulation and environmental adaptation requires nascent RNA synthesis and translation. Analysis of the coordinated regulation of dynamic RNA synthesis and translation is required to determine functional protein production. However, reliable methods for the simultaneous measurement of nascent RNA synthesis and translation at the gene level are limited. Here, we developed a novel method for the simultaneous assessment of nascent RNA synthesis and translation by combining 4-thiouridine (4sU) metabolic RNA labeling and translating ribosome affinity purification (TRAP) using a monoclonal antibody against evolutionarily conserved ribosomal P-stalk proteins. The P-stalk-mediated TRAP (P-TRAP) technique recovered endogenous translating ribosomes, allowing easy translatome analysis of various eukaryotes. We validated this method in mammalian cells by demonstrating that acute unfolded protein response (UPR) in the endoplasmic reticulum (ER) induces dynamic reprogramming of nascent RNA synthesis and translation. Our nascent P-TRAP (nP-TRAP) method may serve as a simple and powerful tool for analyzing the coordinated regulation of transcription and translation of individual genes in various eukaryotes.
Collapse
Affiliation(s)
- Hirotatsu Imai
- Department of Investigative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa 903-0215, Japan
| | - Daisuke Utsumi
- Department of Dermatology, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa 903-0215, Japan
| | - Hidetsugu Torihara
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa 903-0215, Japan
| | - Kenzo Takahashi
- Department of Dermatology, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa 903-0215, Japan
| | - Hidehito Kuroyanagi
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa 903-0215, Japan
| | - Akio Yamashita
- Department of Investigative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa 903-0215, Japan
| |
Collapse
|
12
|
Li Y, Yi Y, Lv J, Gao X, Yu Y, Babu S, Bruno I, Zhao D, Xia B, Peng W, Zhu J, Chen H, Zhang L, Cao Q, Chen K. Low RNA stability signifies increased post-transcriptional regulation of cell identity genes. Nucleic Acids Res 2023; 51:6020-6038. [PMID: 37125636 PMCID: PMC10325912 DOI: 10.1093/nar/gkad300] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
Cell identity genes are distinct from other genes with respect to the epigenetic mechanisms to activate their transcription, e.g. by super-enhancers and broad H3K4me3 domains. However, it remains unclear whether their post-transcriptional regulation is also unique. We performed a systematic analysis of transcriptome-wide RNA stability in nine cell types and found that unstable transcripts were enriched in cell identity-related pathways while stable transcripts were enriched in housekeeping pathways. Joint analyses of RNA stability and chromatin state revealed significant enrichment of super-enhancers and broad H3K4me3 domains at the gene loci of unstable transcripts. Intriguingly, the RNA m6A methyltransferase, METTL3, preferentially binds to chromatin at super-enhancers, broad H3K4me3 domains and their associated genes. METTL3 binding intensity is positively correlated with RNA m6A methylation and negatively correlated with RNA stability of cell identity genes, probably due to co-transcriptional m6A modifications promoting RNA decay. Nanopore direct RNA-sequencing showed that METTL3 knockdown has a stronger effect on RNA m6A and mRNA stability for cell identity genes. Our data suggest a run-and-brake model, where cell identity genes undergo both frequent transcription and fast RNA decay to achieve precise regulation of RNA expression.
Collapse
Affiliation(s)
- Yanqiang Li
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Yang Yi
- Department of Urology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jie Lv
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Xinlei Gao
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Yang Yu
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Sahana Suresh Babu
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Ivone Bruno
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Dongyu Zhao
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Bo Xia
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington, DC 20052, USA
| | - Jun Zhu
- Systems Biology Center, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Lili Zhang
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Qi Cao
- Department of Urology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kaifu Chen
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
- Broad Institute of MIT and Harvard, Boston, MA 02115, USA
- Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| |
Collapse
|
13
|
Ogami K, Oishi Y, Hoshino SI. Protocol for analyzing intact mRNA poly(A) tail length using nanopore direct RNA sequencing. STAR Protoc 2023; 4:102340. [PMID: 37243600 PMCID: PMC10239010 DOI: 10.1016/j.xpro.2023.102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 05/09/2023] [Indexed: 05/29/2023] Open
Abstract
Poly(A) tail metabolism contributes to post-transcriptional regulation of gene expression. Here, we present a protocol for analyzing intact mRNA poly(A) tail length using nanopore direct RNA sequencing, which excludes truncated RNAs from the measurement. We describe steps for preparing recombinant eIF4E mutant protein, purifying m7G- capped RNAs, library preparation, and sequencing. Resulting data can be used not only for expression profiling and poly(A) tail length estimation but also for detecting alternative splicing and polyadenylation events and RNA base modification. For complete details on the use and execution of this protocol, please refer to Ogami et al. (2022).1.
Collapse
Affiliation(s)
- Koichi Ogami
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603 Japan; Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yuka Oishi
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603 Japan
| | - Shin-Ichi Hoshino
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603 Japan.
| |
Collapse
|
14
|
Zhang G, Luo H, Li X, Hu Z, Wang Q. The Dynamic Poly(A) Tail Acts as a Signal Hub in mRNA Metabolism. Cells 2023; 12:572. [PMID: 36831239 PMCID: PMC9954528 DOI: 10.3390/cells12040572] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/19/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
In eukaryotes, mRNA metabolism requires a sophisticated signaling system. Recent studies have suggested that polyadenylate tail may play a vital role in such a system. The poly(A) tail used to be regarded as a common modification at the 3' end of mRNA, but it is now known to be more than just that. It appears to act as a platform or hub that can be understood in two ways. On the one hand, polyadenylation and deadenylation machinery constantly regulates its dynamic activity; on the other hand, it exhibits the ability to recruit RNA-binding proteins and then interact with diverse factors to send various signals to regulate mRNA metabolism. In this paper, we outline the main complexes that regulate the dynamic activities of poly(A) tails, explain how these complexes participate polyadenylation/deadenylation process and summarize the diverse signals this hub emit. We are trying to make a point that the poly(A) tail can metaphorically act as a "flagman" who is supervised by polyadenylation and deadenylation and sends out signals to regulate the orderly functioning of mRNA metabolism.
Collapse
Affiliation(s)
- Guiying Zhang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haolin Luo
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Xinyi Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Quan Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
15
|
Brouze A, Krawczyk PS, Dziembowski A, Mroczek S. Measuring the tail: Methods for poly(A) tail profiling. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1737. [PMID: 35617484 PMCID: PMC10078590 DOI: 10.1002/wrna.1737] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/31/2023]
Abstract
The 3'-end poly(A) tail is an important and potent feature of most mRNA molecules that affects mRNA fate and translation efficiency. Polyadenylation is a posttranscriptional process that occurs in the nucleus by canonical poly(A) polymerases (PAPs). In some specific instances, the poly(A) tail can also be extended in the cytoplasm by noncanonical poly(A) polymerases (ncPAPs). This epitranscriptomic regulation of mRNA recently became one of the most interesting aspects in the field. Advances in RNA sequencing technologies and software development have allowed the precise measurement of poly(A) tails, identification of new ncPAPs, expansion of the function of known enzymes, discovery and a better understanding of the physiological role of tail heterogeneity, and recognition of a correlation between tail length and RNA translatability. Here, we summarize the development of polyadenylation research methods, including classic low-throughput approaches, Illumina-based genome-wide analysis, and advanced state-of-art techniques that utilize long-read third-generation sequencing with Pacific Biosciences and Oxford Nanopore Technologies platforms. A boost in technical opportunities over recent decades has allowed a better understanding of the regulation of gene expression at the mRNA level. This article is categorized under: RNA Methods > RNA Analyses In Vitro and In Silico.
Collapse
Affiliation(s)
- Aleksandra Brouze
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Paweł Szczepan Krawczyk
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Andrzej Dziembowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.,Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Seweryn Mroczek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
16
|
Jia J, Lu W, Liu B, Fang H, Yu Y, Mo W, Zhang H, Jin X, Shu Y, Long Y, Pei Y, Zhai J. An atlas of plant full-length RNA reveals tissue-specific and monocots-dicots conserved regulation of poly(A) tail length. NATURE PLANTS 2022; 8:1118-1126. [PMID: 35982302 DOI: 10.1038/s41477-022-01224-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Poly(A) tail is a hallmark of eukaryotic messenger RNA and its length plays an essential role in regulating mRNA metabolism. However, a comprehensive resource for plant poly(A) tail length has yet to be established. Here, we applied a poly(A)-enrichment-free, nanopore-based method to profile full-length RNA with poly(A) tail information in plants. Our atlas contains over 120 million polyadenylated mRNA molecules from seven different tissues of Arabidopsis, as well as the shoot tissue of maize, soybean and rice. In most tissues, the size of plant poly(A) tails shows peaks at approximately 20 and 45 nucleotides, while the poly(A) tails in pollen exhibit a distinct pattern with strong peaks centred at 55 and 80 nucleotides. Moreover, poly(A) tail length is regulated in a gene-specific manner-mRNAs with short half-lives in general have long poly(A) tails, while mRNAs with long half-lives are featured with relatively short poly(A) tails that peak at ~45 nucleotides. Across species, poly(A) tails in the nucleus are almost twice as long as in the cytoplasm. Our comprehensive dataset lays the groundwork for future functional and evolutionary studies on poly(A) tail length regulation in plants.
Collapse
Affiliation(s)
- Jinbu Jia
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Wenqin Lu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Bo Liu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Huihui Fang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
- School of Life Science and Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, China
| | - Yiming Yu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Weipeng Mo
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Hong Zhang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Xianhao Jin
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Yi Shu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Yanping Long
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China
| | - Yanxi Pei
- School of Life Science and Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, China
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, China.
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
17
|
Gao Y, Liu X, Jin Y, Wu J, Li S, Li Y, Chen B, Zhang Y, Wei L, Li W, Li R, Lin C, Reddy ASN, Jaiswal P, Gu L. Drought induces epitranscriptome and proteome changes in stem-differentiating xylem of Populus trichocarpa. PLANT PHYSIOLOGY 2022; 190:459-479. [PMID: 35670753 PMCID: PMC9434199 DOI: 10.1093/plphys/kiac272] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/11/2022] [Indexed: 05/25/2023]
Abstract
Understanding gene expression and regulation requires insights into RNA transcription, processing, modification, and translation. However, the relationship between the epitranscriptome and the proteome under drought stress remains undetermined in poplar (Populus trichocarpa). In this study, we used Nanopore direct RNA sequencing and tandem mass tag-based proteomic analysis to examine epitranscriptomic and proteomic regulation induced by drought treatment in stem-differentiating xylem (SDX). Our results revealed a decreased full-length read ratio under drought treatment and, especially, a decreased association between transcriptome and proteome changes in response to drought. Epitranscriptome analysis of cellulose- and lignin-related genes revealed an increased N6-Methyladenosine (m6A) ratio, which was accompanied by decreased RNA abundance and translation, under drought stress. Interestingly, usage of the distal poly(A) site increased during drought stress. Finally, we found that transcripts of highly expressed genes tend to have shorter poly(A) tail length (PAL), and drought stress increased the percentage of transcripts with long PAL. These findings provide insights into the interplay among m6A, polyadenylation, PAL, and translation under drought stress in P. trichocarpa SDX.
Collapse
Affiliation(s)
| | | | - Yandong Jin
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ji Wu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yaxing Li
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Binqing Chen
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaxin Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Linxiao Wei
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ruili Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chentao Lin
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | | |
Collapse
|
18
|
Alzahrani MR, Guan BJ, Zagore LL, Wu J, Chen CW, Licatalosi DD, Baker KE, Hatzoglou M. Newly synthesized mRNA escapes translational repression during the acute phase of the mammalian unfolded protein response. PLoS One 2022; 17:e0271695. [PMID: 35947624 PMCID: PMC9365188 DOI: 10.1371/journal.pone.0271695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
Endoplasmic Reticulum (ER) stress, caused by the accumulation of misfolded proteins in the ER, elicits a homeostatic mechanism known as the Unfolded Protein Response (UPR). The UPR reprograms gene expression to promote adaptation to chronic ER stress. The UPR comprises an acute phase involving inhibition of bulk protein synthesis and a chronic phase of transcriptional induction coupled with the partial recovery of protein synthesis. However, the role of transcriptional regulation in the acute phase of the UPR is not well understood. Here we analyzed the fate of newly synthesized mRNA encoding the protective and homeostatic transcription factor X-box binding protein 1 (XBP1) during this acute phase. We have previously shown that global translational repression induced by the acute UPR was characterized by decreased translation and increased stability of XBP1 mRNA. We demonstrate here that this stabilization is independent of new transcription. In contrast, we show XBP1 mRNA newly synthesized during the acute phase accumulates with long poly(A) tails and escapes translational repression. Inhibition of newly synthesized RNA polyadenylation during the acute phase decreased cell survival with no effect in unstressed cells. Furthermore, during the chronic phase of the UPR, levels of XBP1 mRNA with long poly(A) tails decreased in a manner consistent with co-translational deadenylation. Finally, additional pro-survival, transcriptionally-induced mRNAs show similar regulation, supporting the broad significance of the pre-steady state UPR in translational control during ER stress. We conclude that the biphasic regulation of poly(A) tail length during the UPR represents a previously unrecognized pro-survival mechanism of mammalian gene regulation.
Collapse
Affiliation(s)
- Mohammed R. Alzahrani
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Leah L. Zagore
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jing Wu
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Chien-Wen Chen
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Donny D. Licatalosi
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, United States of America
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Kristian E. Baker
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
19
|
Liu Y, Zhang Y, Wang J, Lu F. Transcriptome-wide measurement of poly(A) tail length and composition at subnanogram total RNA sensitivity by PAIso-seq. Nat Protoc 2022; 17:1980-2007. [PMID: 35831615 DOI: 10.1038/s41596-022-00704-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/23/2022] [Indexed: 12/14/2022]
Abstract
Poly(A) tails are added to the 3' ends of most mRNAs in a non-templated manner and play essential roles in post-transcriptional regulation, including mRNA export, stability and translation. Measuring poly(A) tails is critical for understanding their regulatory roles in almost every aspect of biological and medical studies. Previous methods for analyzing poly(A) tails require large amounts of input RNA (microgram-level total RNA), which limits their application. We recently developed a poly(A) inclusive full-length RNA isoform-sequencing method (PAIso-seq) at single-oocyte-level sensitivity (a single mammalian oocyte contains ~0.5 ng of total RNA) based on PacBio sequencing that enabled accurate measurement of the poly(A) tail length and non-A residues within the body of poly(A) tails along with the full-length cDNA, providing the opportunity to study precious in vivo samples with very limited input material. Here, we describe a detailed protocol for PAIso-seq library preparation from single mouse oocytes or bulk oocyte samples. In addition, we provide a complete bioinformatic pipeline to perform the analysis from the raw data to downstream analysis. The minimum time required is ~14.5 h for PAIso-seq double-stranded cDNA preparation, 2 d for PacBio sequencing in HiFi mode and 8 h for the initial data analysis.
Collapse
Affiliation(s)
- Yusheng Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| | - Yiwei Zhang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Jiaqiang Wang
- College of Life Science, Northeast Agricultural University, Harbin, China.
| | - Falong Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
20
|
Kwak Y, Daly CWP, Fogarty EA, Grimson A, Kwak H. Dynamic and widespread control of poly(A) tail length during macrophage activation. RNA (NEW YORK, N.Y.) 2022; 28:947-971. [PMID: 35512831 PMCID: PMC9202586 DOI: 10.1261/rna.078918.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
The poly(A) tail enhances translation and transcript stability, and tail length is under dynamic control during cell state transitions. Tail regulation plays essential roles in translational timing and fertilization in early development, but poly(A) tail dynamics have not been fully explored in post-embryonic systems. Here, we examined the landscape and impact of tail length control during macrophage activation. Upon activation, more than 1500 mRNAs, including proinflammatory genes, underwent distinctive changes in tail lengths. Increases in tail length correlated with mRNA levels regardless of transcriptional activity, and many mRNAs that underwent tail extension encode proteins necessary for immune function and post-transcriptional regulation. Strikingly, we found that ZFP36, whose protein product destabilizes target transcripts, undergoes tail extension. Our analyses indicate that many mRNAs undergoing tail lengthening are, in turn, degraded by elevated levels of ZFP36, constituting a post-transcriptional feedback loop that ensures transient regulation of transcripts integral to macrophage activation. Taken together, this study establishes the complexity, relevance, and widespread nature of poly(A) tail dynamics, and the resulting post-transcriptional regulation during macrophage activation.
Collapse
Affiliation(s)
- Yeonui Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
- Graduate Field of Genetics, Genomics, and Development, Cornell University, Ithaca, New York 14853, USA
| | - Ciarán W P Daly
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
- Graduate Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | - Elizabeth A Fogarty
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Hojoong Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
21
|
Liu M, Hao L, Yang S, Wu X. PolyAtailor: measuring poly(A) tail length from short-read and long-read sequencing data. Brief Bioinform 2022; 23:6620877. [PMID: 35769001 DOI: 10.1093/bib/bbac271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/23/2022] [Accepted: 06/09/2022] [Indexed: 12/18/2022] Open
Abstract
The poly(A) tail is a dynamic addition to the eukaryotic mRNA and the change in its length plays an essential role in regulating gene expression through affecting nuclear export, mRNA stability and translation. Only recently high-throughput sequencing strategies began to emerge for transcriptome-wide profiling of poly(A) tail length in diverse developmental stages and organisms. However, there is currently no easy-to-use and universal tool for measuring poly(A) tails in sequencing data from different sequencing protocols. Here we established PolyAtailor, a unified and efficient framework, for identifying and analyzing poly(A) tails from PacBio-based long reads or next generation short reads. PolyAtailor provides two core functions for measuring poly(A) tails, namely Tail_map and Tail_scan, which can be used for profiling tails with or without using a reference genome. Particularly, PolyAtailor can identify all potential tails in a read, providing users with detailed information such as tail position, tail length, tail sequence and tail type. Moreover, PolyAtailor integrates rich functions for poly(A) tail and poly(A) site analyses, such as differential poly(A) length analysis, poly(A) site identification and annotation, and statistics and visualization of base composition in tails. We compared PolyAtailor with three latest methods, FLAMAnalysis, FLEPSeq and PAIsoSeqAnalysis, using data from three sequencing protocols in HeLa samples and Arabidopsis. Results show that PolyAtailor is effective in measuring poly(A) tail length and detecting significance of differential poly(A) length, which achieves much higher sensitivity and accuracy than competing methods. PolyAtailor is available at https://github.com/BMILAB/PolyAtailor.
Collapse
Affiliation(s)
- Mengfei Liu
- Pasteurien College, Soochow University, Suzhou, Jiangsu 215000, China.,Department of Automation, Xiamen University, Xiamen, Fujian 361005, China
| | - Linlin Hao
- Pasteurien College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Sien Yang
- Pasteurien College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Xiaohui Wu
- Pasteurien College, Soochow University, Suzhou, Jiangsu 215000, China
| |
Collapse
|
22
|
He XJ, Barron AB, Yang L, Chen H, He YZ, Zhang LZ, Huang Q, Wang ZL, Wu XB, Yan WY, Zeng ZJ. Extent and complexity of RNA processing in honey bee queen and worker caste development. iScience 2022; 25:104301. [PMID: 35573188 PMCID: PMC9097701 DOI: 10.1016/j.isci.2022.104301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/12/2022] [Accepted: 04/21/2022] [Indexed: 11/03/2022] Open
Abstract
The distinct honeybee (Apis mellifera) worker and queen castes have become a model for the study of genomic mechanisms of phenotypic plasticity. Here we performed a nanopore-based direct RNA sequencing with exceptionally long reads to compare the mRNA transcripts between queen and workers at three points during their larval development. We found thousands of significantly differentially expressed transcript isoforms (DEIs) between queen and worker larvae. These DEIs were formatted by a flexible splicing system. We showed that poly(A) tails participated in this caste differentiation by negatively regulating the expression of DEIs. Hundreds of isoforms uniquely expressed in either queens or workers during their larval development, and isoforms were expressed at different points in queen and worker larval development demonstrating a dynamic relationship between isoform expression and developmental mechanisms. These findings show the full complexity of RNA processing and transcript expression in honey bee phenotypic plasticity. Honeybee caste differentiation has a complexity of RNA processing Isoforms differentially express between queens and workers during larval development Isoforms are formatted by a flexible alternative splicing system Poly(A) tails are negatively correlated with isoform expression
Collapse
Affiliation(s)
- Xu Jiang He
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. of China.,Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi 330045, P. R. of China
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Liu Yang
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, Hubei 430021, P. R. of China
| | - Hu Chen
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, Hubei 430021, P. R. of China
| | - Yu Zhu He
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. of China
| | - Li Zhen Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. of China
| | - Qiang Huang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. of China
| | - Zi Long Wang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. of China
| | - Xiao Bo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. of China
| | - Wei Yu Yan
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. of China
| | - Zhi Jiang Zeng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. of China.,Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi 330045, P. R. of China
| |
Collapse
|
23
|
Kwak Y, Kwak H. Genome-Wide Identification of Polyadenylation Dynamics with TED-Seq. Methods Mol Biol 2022; 2404:281-298. [PMID: 34694615 DOI: 10.1007/978-1-0716-1851-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polyadenylation and deadenylation of mRNA are major RNA modifications associated with nucleus-to-cytoplasm translocation, mRNA stability, translation efficiency, and mRNA decay pathways. Our current knowledge of polyadenylation and deadenylation has been expanded due to recent advances in transcriptome-wide poly(A) tail length assays. Whereas these methods measure poly(A) length by quantifying the adenine (A) base stretch at the 3' end of mRNA, we developed a more cost-efficient technique that does not rely on A-base counting, called tail-end-displacement sequencing (TED-seq). Through sequencing highly size-selected 3' RNA fragments including the poly(A) tail pieces, TED-seq provides accurate measure of transcriptome-wide poly(A)-tail lengths in high resolution, economically suitable for larger scale analysis under various biologically transitional contexts.
Collapse
Affiliation(s)
- Yeonui Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Graduate Field of Genetics, Genomics, and Developmental Biology, Cornell University, Ithaca, NY, USA
| | - Hojoong Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
24
|
Coon SL, Li T, Iben JR, Mattijssen S, Maraia RJ. Single-molecule polyadenylated tail sequencing (SM-PAT-Seq) to measure polyA tail lengths transcriptome-wide. Methods Enzymol 2021; 655:119-137. [PMID: 34183118 DOI: 10.1016/bs.mie.2021.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Polyadenylation of the 3' end of mRNAs is an important mechanism for regulating their stability and translation. We developed a nucleotide-resolution, transcriptome-wide, single-molecule SM-PAT-Seq method to accurately measure the polyA tail lengths of individual transcripts using long-read sequencing. The method generates cDNA using a double stranded splint adaptor targeting the far 3' end of the polyA tail for first strand synthesis along with random hexamers for second strand synthesis. This straight-forward method yields accurate polyA tail sequence lengths, can identify non-A residues in those tails, and quantitate transcript abundance.
Collapse
Affiliation(s)
- Steven L Coon
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Tianwei Li
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - James R Iben
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Sandy Mattijssen
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
25
|
Campos-Melo D, Hawley ZCE, Droppelmann CA, Strong MJ. The Integral Role of RNA in Stress Granule Formation and Function. Front Cell Dev Biol 2021; 9:621779. [PMID: 34095105 PMCID: PMC8173143 DOI: 10.3389/fcell.2021.621779] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Stress granules (SGs) are phase-separated, membraneless, cytoplasmic ribonucleoprotein (RNP) assemblies whose primary function is to promote cell survival by condensing translationally stalled mRNAs, ribosomal components, translation initiation factors, and RNA-binding proteins (RBPs). While the protein composition and the function of proteins in the compartmentalization and the dynamics of assembly and disassembly of SGs has been a matter of study for several years, the role of RNA in these structures had remained largely unknown. RNA species are, however, not passive members of RNA granules in that RNA by itself can form homo and heterotypic interactions with other RNA molecules leading to phase separation and nucleation of RNA granules. RNA can also function as molecular scaffolds recruiting multivalent RBPs and their interactors to form higher-order structures. With the development of SG purification techniques coupled to RNA-seq, the transcriptomic landscape of SGs is becoming increasingly understood, revealing the enormous potential of RNA to guide the assembly and disassembly of these transient organelles. SGs are not only formed under acute stress conditions but also in response to different diseases such as viral infections, cancer, and neurodegeneration. Importantly, these granules are increasingly being recognized as potential precursors of pathological aggregates in neurodegenerative diseases. In this review, we examine the current evidence in support of RNA playing a significant role in the formation of SGs and explore the concept of SGs as therapeutic targets.
Collapse
Affiliation(s)
- Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Zachary C E Hawley
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Cristian A Droppelmann
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Pathology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
26
|
Kandhari N, Kraupner-Taylor CA, Harrison PF, Powell DR, Beilharz TH. The Detection and Bioinformatic Analysis of Alternative 3 ' UTR Isoforms as Potential Cancer Biomarkers. Int J Mol Sci 2021; 22:5322. [PMID: 34070203 PMCID: PMC8158509 DOI: 10.3390/ijms22105322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
Alternative transcript cleavage and polyadenylation is linked to cancer cell transformation, proliferation and outcome. This has led researchers to develop methods to detect and bioinformatically analyse alternative polyadenylation as potential cancer biomarkers. If incorporated into standard prognostic measures such as gene expression and clinical parameters, these could advance cancer prognostic testing and possibly guide therapy. In this review, we focus on the existing methodologies, both experimental and computational, that have been applied to support the use of alternative polyadenylation as cancer biomarkers.
Collapse
Affiliation(s)
- Nitika Kandhari
- Development and Stem Cells Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (N.K.); (C.A.K.-T.); (P.F.H.)
| | - Calvin A. Kraupner-Taylor
- Development and Stem Cells Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (N.K.); (C.A.K.-T.); (P.F.H.)
| | - Paul F. Harrison
- Development and Stem Cells Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (N.K.); (C.A.K.-T.); (P.F.H.)
- Monash Bioinformatics Platform, Monash University, Melbourne, VIC 3800, Australia;
| | - David R. Powell
- Monash Bioinformatics Platform, Monash University, Melbourne, VIC 3800, Australia;
| | - Traude H. Beilharz
- Development and Stem Cells Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (N.K.); (C.A.K.-T.); (P.F.H.)
| |
Collapse
|
27
|
Niazi AM, Krause M, Valen E. Transcript Isoform-Specific Estimation of Poly(A) Tail Length by Nanopore Sequencing of Native RNA. Methods Mol Biol 2021; 2284:543-567. [PMID: 33835463 DOI: 10.1007/978-1-0716-1307-8_30] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The poly(A) tail is a homopolymeric stretch of adenosine at the 3'-end of mature RNA transcripts and its length plays an important role in nuclear export, stability, and translational regulation of mRNA. Existing techniques for genome-wide estimation of poly(A) tail length are based on short-read sequencing. These methods are limited because they sequence a synthetic DNA copy of mRNA instead of the native transcripts. Furthermore, they can identify only a short segment of the transcript proximal to the poly(A) tail which makes it difficult to assign the measured poly(A) length uniquely to a single transcript isoform. With the introduction of native RNA sequencing by Oxford Nanopore Technologies, it is now possible to sequence full-length native RNA. A single long read contains both the transcript and the associated poly(A) tail, thereby making transcriptome-wide isoform-specific poly(A) tail length assessment feasible. We developed tailfindr-an R-based package for estimating poly(A) tail length from Oxford Nanopore sequencing data. In this chapter, we describe in detail the pipeline for transcript isoform-specific poly(A) tail profiling based on native RNA Nanopore sequencing-from library preparation to downstream data analysis with tailfindr.
Collapse
Affiliation(s)
- Adnan M Niazi
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Maximilian Krause
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
28
|
Slobodin B, Dikstein R. So close, no matter how far: multiple paths connecting transcription to mRNA translation in eukaryotes. EMBO Rep 2020; 21:e50799. [PMID: 32803873 PMCID: PMC7507372 DOI: 10.15252/embr.202050799] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/22/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Transcription of DNA into mRNA and translation of mRNA into proteins are two major processes underlying gene expression. Due to the distinct molecular mechanisms, timings, and locales of action, these processes are mainly considered to be independent. During the last two decades, however, multiple factors and elements were shown to coordinate transcription and translation, suggesting an intricate level of synchronization. This review discusses the molecular mechanisms that impact both processes in eukaryotic cells of different origins. The emerging global picture suggests evolutionarily conserved regulation and coordination between transcription and mRNA translation, indicating the importance of this phenomenon for the fine-tuning of gene expression and the adjustment to constantly changing conditions.
Collapse
Affiliation(s)
- Boris Slobodin
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovotIsrael
| | - Rivka Dikstein
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
29
|
Wu X, Wang J, Wu X, Hong Y, Li QQ. Heat Shock Responsive Gene Expression Modulated by mRNA Poly(A) Tail Length. FRONTIERS IN PLANT SCIENCE 2020; 11:1255. [PMID: 32922425 PMCID: PMC7456977 DOI: 10.3389/fpls.2020.01255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/30/2020] [Indexed: 05/31/2023]
Abstract
Poly(A) tail length (PAL) has been implicated in the regulation of mRNA translation activities. However, the extent of such regulation at the transcriptome level is less understood in plants. Herein, we report the development and optimization of a large-scale sequencing technique called the Assay for PAL-sequencing (APAL-seq). To explore the role of PAL on post-transcriptional modification and translation, we performed PAL profiling of Arabidopsis transcriptome in response to heat shock. Transcripts of 2,477 genes were found to have variable PAL upon heat treatments. Further study of the transcripts of 14 potential heat-responsive genes identified two distinct groups of genes. In one group, PAL was heat stress-independent, and in the other, PAL was heat stress-sensitive. Meanwhile, the protein expression of HSP70 and HSP17.6C was determined to test the impact of PAL on translational activity. In the absence of heat stress, neither gene demonstrated protein expression; however, under gradual or abrupt heat stress, both transcripts showed enhanced protein expression with elongated PAL. Interestingly, HSP17.6C protein levels were positively correlated with the severity of heat treatment and peaked when treated with abrupt heat. Our results suggest that plant genes have a high variability of PALs and that PAL contributes to swift posttranslational stress responses.
Collapse
Affiliation(s)
- Xuan Wu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Jie Wang
- Department of Biology, Miami University, Oxford, OH, United States
| | - Xiaohui Wu
- Department of Automation, Xiamen University, Xiamen, China
| | - Yiling Hong
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Qingshun Quinn Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
- Department of Biology, Miami University, Oxford, OH, United States
| |
Collapse
|
30
|
Yu F, Zhang Y, Cheng C, Wang W, Zhou Z, Rang W, Yu H, Wei Y, Wu Q, Zhang Y. Poly(A)-seq: A method for direct sequencing and analysis of the transcriptomic poly(A)-tails. PLoS One 2020; 15:e0234696. [PMID: 32544193 PMCID: PMC7297374 DOI: 10.1371/journal.pone.0234696] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
Poly(A) tails at the 3' end of eukaryotic messenger RNAs control mRNA stability and translation efficiency. Facilitated by various NGS methods, alternative polyadenylation sites determining the 3'-UTR length of gene transcripts have been extensively studied. However, poly(A) lengths demonstrating dynamic and developmental regulation remain largely unexplored. The recently developed NGS-based methods for genome-wide poly(A) profiling have promoted the study of genom-wide poly(A) dynamics. Here we present a straight forward NGS-method for poly(A) profiling, which applies a direct 3'-end adaptor ligation and the template switching for 5'-end adaptor ligation for cDNA library construction. Poly(A) lengths are directly calculated from base call data using a self-developed pipeline pA-finder. The libraries were directly sequenced from the 3'-UTR regions into the followed poly(A) tails, firstly on NextSeq 500 to produce single-end 300-nt reads, demonstrating the method feasibility and that optimization of the fragmented RNA size for cDNA library construction could detecting longer poly (A) tails. We next applied Poly(A)-seq cDNA libraries containing 40-nt and 120-nt poly(A) tail spike-in RNAs on HiSeq X-ten and NovaSeq 6000 to obtain 150-nt and 250-nt pair-end reads. The sequencing profiles of the spike-in RNAs demonstrated both high accuracy and high quality score in reading poly(A) tails. The poly(A) signal bleeding into the 3' adaptor sequence and a sharp decreased quality score at the junction were observed, allowing the modification of pA-finder to remove homopolymeric signal bleeding. We hope that wide applications of Poly(A)-seq help facilitate the study of the development- and disease-related poly(A) dynamics and regulation, and of the recent emerging mixed tailing regulation.
Collapse
Affiliation(s)
- Fengyun Yu
- Laboratory for Genomics Regulation and Human Health, ABLife Inc., Wuhan, PR China
- ABLife BioBigData Instibute, Wuhan, PR China
| | - Yu Zhang
- Center for Genomics Analysis, ABLife Inc., Wuhan, PR China
| | - Chao Cheng
- ABLife BioBigData Instibute, Wuhan, PR China
- Center for Genomics Analysis, ABLife Inc., Wuhan, PR China
| | - Wenqing Wang
- Center for Genomics Analysis, ABLife Inc., Wuhan, PR China
| | - Zisong Zhou
- Center for Genomics Analysis, ABLife Inc., Wuhan, PR China
| | - Wenliang Rang
- Laboratory for Genomics Regulation and Human Health, ABLife Inc., Wuhan, PR China
| | - Han Yu
- Laboratory for Genomics Regulation and Human Health, ABLife Inc., Wuhan, PR China
| | - Yaxun Wei
- Center for Genomics Analysis, ABLife Inc., Wuhan, PR China
| | - Qijia Wu
- Laboratory for Genomics Regulation and Human Health, ABLife Inc., Wuhan, PR China
| | - Yi Zhang
- Laboratory for Genomics Regulation and Human Health, ABLife Inc., Wuhan, PR China
- ABLife BioBigData Instibute, Wuhan, PR China
- Center for Genomics Analysis, ABLife Inc., Wuhan, PR China
| |
Collapse
|
31
|
Bilska A, Kusio-Kobiałka M, Krawczyk PS, Gewartowska O, Tarkowski B, Kobyłecki K, Nowis D, Golab J, Gruchota J, Borsuk E, Dziembowski A, Mroczek S. Immunoglobulin expression and the humoral immune response is regulated by the non-canonical poly(A) polymerase TENT5C. Nat Commun 2020; 11:2032. [PMID: 32341344 PMCID: PMC7184606 DOI: 10.1038/s41467-020-15835-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/28/2020] [Indexed: 02/06/2023] Open
Abstract
TENT5C is a non-canonical cytoplasmic poly(A) polymerase highly expressed by activated B cells to suppress their proliferation. Here we measure the global distribution of poly(A) tail lengths in responsive B cells using a Nanopore direct RNA-sequencing approach, showing that TENT5C polyadenylates immunoglobulin mRNAs regulating their half-life and consequently steady-state levels. TENT5C is upregulated in differentiating plasma cells by innate signaling. Compared with wild-type, Tent5c−/− mice produce fewer antibodies and have diminished T-cell-independent immune response despite having more CD138high plasma cells as a consequence of accelerated differentiation. B cells from Tent5c−/− mice also have impaired capacity of the secretory pathway, with reduced ER volume and unfolded protein response. Importantly, these functions of TENT5C are dependent on its enzymatic activity as catalytic mutation knock-in mice display the same defect as Tent5c−/−. These findings define the role of the TENT5C enzyme in the humoral immune response. Regulating polyadenylation is important for mRNA stability, which can in turn affect B cell maturation and humoral immune responses. Here the authors use Nanopore poly(A) sequencing to explore the importance of the cytoplasmic poly(A) polymerase TENT5C, particularly in the production of immunoglobulins.
Collapse
Affiliation(s)
- Aleksandra Bilska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Monika Kusio-Kobiałka
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Paweł S Krawczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland
| | - Olga Gewartowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland
| | - Bartosz Tarkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland
| | - Kamil Kobyłecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Dominika Nowis
- Genomic Medicine, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland.,Laboratory of Experimental Medicine, Center of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland.,Centre of Preclinical Research, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Jakub Gruchota
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland
| | - Ewa Borsuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland.,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland.,Department of Embryology, Institute of Zoology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Andrzej Dziembowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland. .,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warsaw, Poland. .,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland.
| | - Seweryn Mroczek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland. .,Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland.
| |
Collapse
|
32
|
Slobodin B, Bahat A, Sehrawat U, Becker-Herman S, Zuckerman B, Weiss AN, Han R, Elkon R, Agami R, Ulitsky I, Shachar I, Dikstein R. Transcription Dynamics Regulate Poly(A) Tails and Expression of the RNA Degradation Machinery to Balance mRNA Levels. Mol Cell 2020; 78:434-444.e5. [PMID: 32294471 DOI: 10.1016/j.molcel.2020.03.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/25/2020] [Accepted: 03/14/2020] [Indexed: 02/02/2023]
Abstract
Gene expression is regulated by the rates of synthesis and degradation of mRNAs, but how these processes are coordinated is poorly understood. Here, we show that reduced transcription dynamics of specific genes leads to enhanced m6A deposition, preferential activity of the CCR4-Not complex, shortened poly(A) tails, and reduced stability of the respective mRNAs. These effects are also exerted by internal ribosome entry site (IRES) elements, which we found to be transcriptional pause sites. However, when transcription dynamics, and subsequently poly(A) tails, are globally altered, cells buffer mRNA levels by adjusting the expression of mRNA degradation machinery. Stress-provoked global impediment of transcription elongation leads to a dramatic inhibition of the mRNA degradation machinery and massive mRNA stabilization. Accordingly, globally enhanced transcription, such as following B cell activation or glucose stimulation, has the opposite effects. This study uncovers two molecular pathways that maintain balanced gene expression in mammalian cells by linking transcription to mRNA stability.
Collapse
Affiliation(s)
- Boris Slobodin
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Anat Bahat
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Urmila Sehrawat
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shirly Becker-Herman
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Binyamin Zuckerman
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Amanda N Weiss
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ruiqi Han
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Igor Ulitsky
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Idit Shachar
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
33
|
Translation Efficiency and Degradation of ER-Associated mRNAs Modulated by ER-Anchored poly(A)-Specific Ribonuclease (PARN). Cells 2020; 9:cells9010162. [PMID: 31936572 PMCID: PMC7017053 DOI: 10.3390/cells9010162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 12/21/2022] Open
Abstract
Translation is spatiotemporally regulated and endoplasmic reticulum (ER)-associated mRNAs are generally in efficient translation. It is unclear whether the ER-associated mRNAs are deadenylated or degraded on the ER surface in situ or in the cytosol. Here, we showed that ER possessed active deadenylases, particularly the poly(A)-specific ribonuclease (PARN), in common cell lines and mouse tissues. Consistently, purified recombinant PARN exhibited a strong ability to insert into the Langmuir monolayer and liposome. ER-anchored PARN was found to be able to reshape the poly(A) length profile of the ER-associated RNAs by suppressing long poly(A) tails without significantly influencing the cytosolic RNAs. The shortening of long poly(A) tails did not affect global translation efficiency, which suggests that the non-specific action of PARN towards long poly(A) tails was beyond the scope of translation regulation on the ER surface. Transcriptome sequencing analysis indicated that the ER-anchored PARN trigged the degradation of a small subset of ER-enriched transcripts. The ER-anchored PARN modulated the translation of its targets by redistributing ribosomes to heavy polysomes, which suggests that PARN might play a role in dynamic ribosome reallocation. During DNA damage response, MK2 phosphorylated PARN-Ser557 to modulate PARN translocation from the ER to cytosol. The ER-anchored PARN modulated DNA damage response and thereby cell viability by promoting the decay of ER-associated MDM2 transcripts with low ribosome occupancy. These findings revealed that highly regulated communication between mRNA degradation rate and translation efficiency is present on the ER surface in situ and PARN might contribute to this communication by modulating the dynamic ribosome reallocation between transcripts with low and high ribosome occupancies.
Collapse
|
34
|
Morishita Y, Arvan P. Lessons from animal models of endocrine disorders caused by defects of protein folding in the secretory pathway. Mol Cell Endocrinol 2020; 499:110613. [PMID: 31605742 PMCID: PMC6886696 DOI: 10.1016/j.mce.2019.110613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/26/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023]
Abstract
Most peptide hormones originate from secretory protein precursors synthesized within the endoplasmic reticulum (ER). In this specialized organelle, the newly-made prohormones must fold to their native state. Completion of prohormone folding usually occurs prior to migration through the secretory pathway, as unfolded/misfolded prohormones are retained by mechanisms collectively known as ER quality control. Not only do most monomeric prohormones need to fold properly, but many also dimerize or oligomerize within the ER. If oligomerization occurs before completion of monomer folding then when a poorly folded peptide prohormone is retained by quality control mechanisms, it may confer ER retention upon its oligomerization partners. Conversely, oligomerization between well-folded and improperly folded partners might help to override ER quality control, resulting in rescue of misfolded forms. Both scenarios appear to be possible in different animal models of endocrine disorders caused by genetic defects of protein folding in the secretory pathway. In this paper, we briefly review three such conditions, including familial neurohypophyseal diabetes insipidus, insulin-deficient diabetes mellitus, and hypothyroidism with defective thyroglobulin.
Collapse
Affiliation(s)
- Yoshiaki Morishita
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan School of Medicine, Brehm Tower Room 5112, 1000, Wall St., Ann Arbor, MI, USA.
| |
Collapse
|
35
|
Hasegawa Y, Struhl K. Promoter-specific dynamics of TATA-binding protein association with the human genome. Genome Res 2019; 29:1939-1950. [PMID: 31732535 PMCID: PMC6886507 DOI: 10.1101/gr.254466.119] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
Abstract
Transcription factor binding to target sites in vivo is a dynamic process that involves cycles of association and dissociation, with individual proteins differing in their binding dynamics. The dynamics at individual sites on a genomic scale have been investigated in yeast cells, but comparable experiments have not been done in multicellular eukaryotes. Here, we describe a tamoxifen-inducible, time-course ChIP-seq approach to measure transcription factor binding dynamics at target sites throughout the human genome. As observed in yeast cells, the TATA-binding protein (TBP) typically displays rapid turnover at RNA polymerase (Pol) II-transcribed promoters, slow turnover at Pol III promoters, and very slow turnover at the Pol I promoter. Turnover rates vary widely among Pol II promoters in a manner that does not correlate with the level of TBP occupancy. Human Pol II promoters with slow TBP dissociation preferentially contain a TATA consensus motif, support high transcriptional activity of downstream genes, and are linked with specific activators and chromatin remodelers. These properties of human promoters with slow TBP turnover differ from those of yeast promoters with slow turnover. These observations suggest that TBP binding dynamics differentially affect promoter function and gene expression, possibly at the level of transcriptional reinitiation/bursting.
Collapse
Affiliation(s)
- Yuko Hasegawa
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
36
|
Krause M, Niazi AM, Labun K, Torres Cleuren YN, Müller FS, Valen E. tailfindr: alignment-free poly(A) length measurement for Oxford Nanopore RNA and DNA sequencing. RNA (NEW YORK, N.Y.) 2019; 25:1229-1241. [PMID: 31266821 PMCID: PMC6800471 DOI: 10.1261/rna.071332.119] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/25/2019] [Indexed: 05/02/2023]
Abstract
Polyadenylation at the 3'-end is a major regulator of messenger RNA and its length is known to affect nuclear export, stability, and translation, among others. Only recently have strategies emerged that allow for genome-wide poly(A) length assessment. These methods identify genes connected to poly(A) tail measurements indirectly by short-read alignment to genetic 3'-ends. Concurrently, Oxford Nanopore Technologies (ONT) established full-length isoform-specific RNA sequencing containing the entire poly(A) tail. However, assessing poly(A) length through base-calling has so far not been possible due to the inability to resolve long homopolymeric stretches in ONT sequencing. Here we present tailfindr, an R package to estimate poly(A) tail length on ONT long-read sequencing data. tailfindr operates on unaligned, base-called data. It measures poly(A) tail length from both native RNA and DNA sequencing, which makes poly(A) tail studies by full-length cDNA approaches possible for the first time. We assess tailfindr's performance across different poly(A) lengths, demonstrating that tailfindr is a versatile tool providing poly(A) tail estimates across a wide range of sequencing conditions.
Collapse
Affiliation(s)
- Maximilian Krause
- Computational Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5008 Bergen, Norway
| | - Adnan M Niazi
- Computational Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
| | - Kornel Labun
- Computational Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
| | - Yamila N Torres Cleuren
- Computational Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
| | - Florian S Müller
- Computational Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5008 Bergen, Norway
| |
Collapse
|
37
|
uORF-Tools-Workflow for the determination of translation-regulatory upstream open reading frames. PLoS One 2019; 14:e0222459. [PMID: 31513641 PMCID: PMC6742470 DOI: 10.1371/journal.pone.0222459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022] Open
Abstract
Ribosome profiling (ribo-seq) provides a means to analyze active translation by determining ribosome occupancy in a transcriptome-wide manner. The vast majority of ribosome protected fragments (RPFs) resides within the protein-coding sequence of mRNAs. However, commonly reads are also found within the transcript leader sequence (TLS) (aka 5’ untranslated region) preceding the main open reading frame (ORF), indicating the translation of regulatory upstream ORFs (uORFs). Here, we present a workflow for the identification of translation-regulatory uORFs. Specifically, uORF-Tools uses Ribo-TISH to identify uORFs within a given dataset and generates a uORF annotation file. In addition, a comprehensive human uORF annotation file, based on 35 ribo-seq files, is provided, which can serve as an alternative input file for the workflow. To assess the translation-regulatory activity of the uORFs, stimulus-induced changes in the ratio of the RPFs residing in the main ORFs relative to those found in the associated uORFs are determined. The resulting output file allows for the easy identification of candidate uORFs, which have translation-inhibitory effects on their associated main ORFs. uORF-Tools is available as a free and open Snakemake workflow at https://github.com/Biochemistry1-FFM/uORF-Tools. It is easily installed and all necessary tools are provided in a version-controlled manner, which also ensures lasting usability. uORF-Tools is designed for intuitive use and requires only limited computing times and resources.
Collapse
|
38
|
Widespread PERK-dependent repression of ER targets in response to ER stress. Sci Rep 2019; 9:4330. [PMID: 30867432 PMCID: PMC6416471 DOI: 10.1038/s41598-019-38705-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/04/2019] [Indexed: 12/11/2022] Open
Abstract
The UPR (Unfolded Protein Response) is a well-orchestrated response to ER protein folding and processing overload, integrating both transcriptional and translational outputs. Its three arms in mammalian cells, the PERK translational response arm, together with the ATF6 and IRE1-XBP1-mediated transcriptional arms, have been thoroughly investigated. Using ribosome footprint profiling, we performed a deep characterization of gene expression programs involved in the early and late ER stress responses, within WT or PERK -/- Mouse Embryonic Fibroblasts (MEFs). We found that both repression and activation gene expression programs, affecting hundreds of genes, are significantly hampered in the absence of PERK. Specifically, PERK -/- cells do not show global translational inhibition, nor do they specifically activate early gene expression programs upon short exposure to ER stress. Furthermore, while PERK -/- cells do activate/repress late ER-stress response genes, the response is substantially weaker. Importantly, we highlight a widespread PERK-dependent repression program, consisting of ER targeted proteins, including transmembrane proteins, glycoproteins, and proteins with disulfide bonds. This phenomenon occurs in various different cell types, and has a major translational regulatory component. Moreover, we revealed a novel interplay between PERK and the XBP1-ATF6 arms of the UPR, whereby PERK attenuates the expression of a specific subset of XBP1-ATF6 targets, further illuminating the complexity of the integrated ER stress response.
Collapse
|
39
|
Nicholson AL, Pasquinelli AE. Tales of Detailed Poly(A) Tails. Trends Cell Biol 2018; 29:191-200. [PMID: 30503240 DOI: 10.1016/j.tcb.2018.11.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 11/18/2022]
Abstract
Poly(A) tails are non-templated additions of adenosines at the 3' ends of most eukaryotic mRNAs. In the nucleus, these RNAs are co-transcriptionally cleaved at a poly(A) site and then polyadenylated before being exported to the cytoplasm. In the cytoplasm, poly(A) tails play pivotal roles in the translation and stability of the mRNA. One challenge in studying poly(A) tails is that they are difficult to sequence and accurately measure. However, recent advances in sequencing technology, computational algorithms, and other assays have enabled a more detailed look at poly(A) tail length genome-wide throughout many developmental stages and organisms. With the help of these advances, our understanding of poly(A) tail length has evolved over the past 5 years with the recognition that highly expressed genes can have short poly(A) tails and the elucidation of the seemingly contradictory roles for poly(A)-binding protein (PABP) in facilitating both protection and deadenylation.
Collapse
Affiliation(s)
- Angela L Nicholson
- Division of Biology, University of California, San Diego (USCD), La Jolla, CA 92093-0349, USA
| | - Amy E Pasquinelli
- Division of Biology, University of California, San Diego (USCD), La Jolla, CA 92093-0349, USA.
| |
Collapse
|