1
|
Mangione RM, Pierce S, Zheng M, Martin RM, Goncalves C, Kumar A, Scaglione S, de Sousa Morgado C, Penzo A, Lancrey A, Reid RJD, Lautier O, Gaillard PH, Stirling PC, de Almeida SF, Rothstein R, Palancade B. DNA lesions can frequently precede DNA:RNA hybrid accumulation. Nat Commun 2025; 16:2401. [PMID: 40064914 PMCID: PMC11893903 DOI: 10.1038/s41467-025-57588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
While DNA:RNA hybrids contribute to multiple genomic transactions, their unscheduled formation is a recognized source of DNA lesions. Here, through a suite of systematic screens, we rather observed that a wide range of yeast mutant situations primarily triggering DNA damage actually leads to hybrid accumulation. Focusing on Okazaki fragment processing, we establish that genic hybrids can actually form as a consequence of replication-born discontinuities such as unprocessed flaps or unligated Okazaki fragments. Strikingly, such "post-lesion" DNA:RNA hybrids neither detectably contribute to genetic instability, nor disturb gene expression, as opposed to "pre-lesion" hybrids formed upon defective mRNA biogenesis, e.g., in THO complex mutants. Post-lesion hybrids similarly arise in distinct genomic instability situations, triggered by pharmacological or genetic manipulation of DNA-dependent processes, both in yeast and human cells. Altogether, our data establish that the accumulation of transcription-born DNA:RNA hybrids can occur as a consequence of various types of natural or pathological DNA lesions, yet do not necessarily aggravate their genotoxicity.
Collapse
Affiliation(s)
| | - Steven Pierce
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Myriam Zheng
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Robert M Martin
- GIMM-Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | | | - Arun Kumar
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Sarah Scaglione
- Centre de Recherche en Cancérologie de Marseille (CRCM), U1068 Inserm, UMR7258 CNRS, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Cristiana de Sousa Morgado
- GIMM-Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Arianna Penzo
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Astrid Lancrey
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Robert J D Reid
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Ophélie Lautier
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Pierre-Henri Gaillard
- Centre de Recherche en Cancérologie de Marseille (CRCM), U1068 Inserm, UMR7258 CNRS, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, France
| | - Peter C Stirling
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Sérgio F de Almeida
- GIMM-Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Benoit Palancade
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France.
| |
Collapse
|
2
|
Guo XL, Wang YD, Liu YJ, Chu L, Zhu H, Hu Y, Wu RY, Xie HY, Yu J, Li SP, Xiong CY, Li RY, Ke F, Chen L, Chen GQ, Chen L, Bai F, Enver T, Li GH, Li HF, Hong DL. Fetal hepatocytes protect the HSPC genome via fetuin-A. Nature 2025; 637:402-411. [PMID: 39633051 PMCID: PMC11711094 DOI: 10.1038/s41586-024-08307-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
The maintenance of genomic integrity in rapidly proliferating cells is a substantial challenge during embryonic development1-3. Although numerous cell-intrinsic mechanisms have been revealed4-7, little is known about genome-protective effects and influences of developmental tissue microenvironments on tissue-forming cells. Here we show that fetal liver hepatocytes provide protection to haematopoietic stem and progenitor cell (HSPC) genomes. Lineage tracing and depletion in mice demonstrated that delayed hepatocyte development in early fetal livers increased the chromosomal instability of newly colonizing HSPCs. In addition, HSPCs developed tolerance to genotoxins in hepatocyte-conditioned medium, suggesting that hepatocytes protect the HSPC genome in a paracrine manner. Proteomic analyses demonstrated the enrichment of fetuin-A in hepatocyte-conditioned medium but not in early fetal livers. Fetuin-A activates a Toll-like receptor pathway to prevent pathogenic R-loop accumulation in HSPCs undergoing DNA replication and gene transcription in the fetal liver. Numerous haematopoietic regulatory genes frequently involved in leukaemogenic mutations are associated with R-loop-enriched regions. In Fetua-knockout mice, HSPCs showed increased genome instability and susceptibility to malignancy induction. Moreover, low concentrations of fetuin-A correlated with the oncogenesis of childhood leukaemia. Therefore, we uncover a mechanism operating in developmental tissues that offers tissue-forming cell genome protection and is implicated in developmental-related diseases.
Collapse
Affiliation(s)
- Xiao-Lin Guo
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Institute of Haematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Ding Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Institute of Haematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Jun Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Institute of Haematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Chu
- Department of Obstetrics and Gynecology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hua Zhu
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Hu
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Institute of Haematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ren-Yan Wu
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Institute of Haematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Yu Xie
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Institute of Haematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Yu
- National laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shui-Ping Li
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Institute of Haematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao-Yang Xiong
- National laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ruo-Yan Li
- Biomedical Pioneering Innovation Centre (BIOPIC) and Translational Cancer Research Centre, School of Life Sciences, First Hospital, Peking University, Beijing, China
| | - Fang Ke
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Institute of Haematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Chen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Qiang Chen
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Institute of Haematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Units of Stress and Tumor, Chinese Academy of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Hainan Academy of Medical Sciences, School of Basic Medicine and Life Science, Hainan Medical University, Haikou, China
| | - Liang Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fan Bai
- Biomedical Pioneering Innovation Centre (BIOPIC) and Translational Cancer Research Centre, School of Life Sciences, First Hospital, Peking University, Beijing, China
| | - Tariq Enver
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, UK
| | - Guo-Hong Li
- National laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Huai-Fang Li
- Department of Obstetrics and Gynecology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Deng-Li Hong
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Institute of Haematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Research Units of Stress and Tumor, Chinese Academy of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Innovative Research Team of High-level Local Universities in Shanghai, Shanghai, China.
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Stratigi K, Siametis A, Garinis GA. Looping forward: exploring R-loop processing and therapeutic potential. FEBS Lett 2025; 599:244-266. [PMID: 38844597 PMCID: PMC11771710 DOI: 10.1002/1873-3468.14947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 01/28/2025]
Abstract
Recently, there has been increasing interest in the complex relationship between transcription and genome stability, with specific attention directed toward the physiological significance of molecular structures known as R-loops. These structures arise when an RNA strand invades into the DNA duplex, and their formation is involved in a wide range of regulatory functions affecting gene expression, DNA repair processes or cell homeostasis. The persistent presence of R-loops, if not effectively removed, contributes to genome instability, underscoring the significance of the factors responsible for their resolution and modification. In this review, we provide a comprehensive overview of how R-loop processing can drive either a beneficial or a harmful outcome. Additionally, we explore the potential for manipulating such structures to devise rationalized therapeutic strategies targeting the aberrant accumulation of R-loops.
Collapse
Affiliation(s)
- Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology‐HellasHeraklionCreteGreece
| | - Athanasios Siametis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology‐HellasHeraklionCreteGreece
- Department of BiologyUniversity of CreteHeraklionCreteGreece
| | - George A. Garinis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology‐HellasHeraklionCreteGreece
- Department of BiologyUniversity of CreteHeraklionCreteGreece
| |
Collapse
|
4
|
Blaize JL, Garzon JLN, Howlett NG. FANCD2 genome binding is nonrandom and is enriched at large transcriptionally active neural genes prone to copy number variation. Funct Integr Genomics 2024; 24:180. [PMID: 39365306 PMCID: PMC11452531 DOI: 10.1007/s10142-024-01453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Fanconi anemia (FA) is a rare genetic disease characterized by congenital abnormalities and increased risk for bone marrow failure and cancer. Central nervous system defects, including acute and irreversible loss of neurological function and white matter lesions with calcifications, have become increasingly recognized among FA patients, and are collectively referred to as Fanconi Anemia Neurological Syndrome or FANS. The molecular etiology of FANS is poorly understood. In this study, we have used a functional integrative genomics approach to further define the function of the FANCD2 protein and FA pathway. Combined analysis of new and existing FANCD2 ChIP-seq datasets demonstrates that FANCD2 binds nonrandomly throughout the genome with binding enriched at transcription start sites and in broad regions spanning protein-coding gene bodies. FANCD2 demonstrates a strong preference for large neural genes involved in neuronal differentiation, synapse function, and cell adhesion, with many of these genes implicated in neurodevelopmental and neuropsychiatric disorders. Furthermore, FANCD2 binds to regions of the genome that replicate late, undergo mitotic DNA synthesis (MiDAS) under conditions of replication stress, and are hotspots for copy number variation. Our analysis describes an important targeted role for FANCD2 and the FA pathway in the maintenance of large neural gene stability.
Collapse
Affiliation(s)
- Justin L Blaize
- Department of Cell and Molecular Biology, University of Rhode Island, 379 Center for Biotechnology and Life Sciences, 120 Flagg Road, Kingston, RI, USA
| | - Jada Lauren N Garzon
- Department of Cell and Molecular Biology, University of Rhode Island, 379 Center for Biotechnology and Life Sciences, 120 Flagg Road, Kingston, RI, USA
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Niall G Howlett
- Department of Cell and Molecular Biology, University of Rhode Island, 379 Center for Biotechnology and Life Sciences, 120 Flagg Road, Kingston, RI, USA.
| |
Collapse
|
5
|
Lee S, Lee S, Choi N, Kim J, Kweon J, Miller K, Kim J. PCAF promotes R-loop resolution via histone acetylation. Nucleic Acids Res 2024; 52:8643-8660. [PMID: 38936834 PMCID: PMC11347145 DOI: 10.1093/nar/gkae558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
R-loops cause genome instability, disrupting normal cellular functions. Histone acetylation, particularly by p300/CBP-associated factor (PCAF), is essential for maintaining genome stability and regulating cellular processes. Understanding how R-loop formation and resolution are regulated is important because dysregulation of these processes can lead to multiple diseases, including cancer. This study explores the role of PCAF in maintaining genome stability, specifically for R-loop resolution. We found that PCAF depletion promotes the generation of R-loop structures, especially during ongoing transcription, thereby compromising genome stability. Mechanistically, we found that PCAF facilitates histone H4K8 acetylation, leading to recruitment of the a double-strand break repair protein (MRE11) and exonuclease 1 (EXO1) to R-loop sites. These in turn recruit Fanconi anemia (FA) proteins, including FANCM and BLM, to resolve the R-loop structure. Our findings suggest that PCAF, histone acetylation, and FA proteins collaborate to resolve R-loops and ensure genome stability. This study therefore provides novel mechanistic insights into the dynamics of R-loops as well as the role of PCAF in preserving genome stability. These results may help develop therapeutic strategies to target diseases associated with genome instability.
Collapse
Affiliation(s)
- Seo Yun Lee
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Soo Hyeon Lee
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Nak Hun Choi
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Ja Young Kim
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Jun Hee Kweon
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jae Jin Kim
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
6
|
Ala U, Fagoonee S. RNA-binding protein transcripts as potential biomarkers for detecting Primary Sclerosing Cholangitis and for predicting its progression to Cholangiocarcinoma. Front Mol Biosci 2024; 11:1388294. [PMID: 38903178 PMCID: PMC11187294 DOI: 10.3389/fmolb.2024.1388294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Primary Sclerosing Cholangitis (PSC) is a persistent inflammatory liver condition that affects the bile ducts and is commonly diagnosed in young individuals. Despite efforts to incorporate various clinical, biochemical and molecular parameters for diagnosing PSC, it remains challenging, and no biomarkers characteristic of the disease have been identified hitherto. PSC is linked with an uncertain prognosis, and there is a pressing need to explore multiomics databases to establish a new biomarker panel for the early detection of PSC's gradual progression into Cholangiocarcinoma (CCA) and for the development of effective therapeutic interventions. Apart from non-coding RNAs, other components of the Ribonucleoprotein (RNP) complex, such as RNA-Binding Proteins (RBPs), also hold great promise as biomarkers due to their versatile expression in pathological conditions. In the present review, an update on the RBP transcripts that show dysregulated expression in PSC and CCA is provided. Moreover, by utilizing a bioinformatic data mining approach, we give insight into those RBP transcripts that also exhibit differential expression in liver and gall bladder, as well as in body fluids, and are promising as biomarkers for diagnosing and predicting the prognosis of PSC. Expression data were bioinformatically extracted from public repositories usingTCGA Bile Duct Cancer dataset for CCA and specific NCBI GEO datasets for both PSC and CCA; more specifically, RBPs annotations were obtained from RBP World database. Interestingly, our comprehensive analysis shows an elevated expression of the non-canonical RBPs, FANCD2, as well as the microtubule dynamics regulator, ASPM, transcripts in the body fluids of patients with PSC and CCA compared with their respective controls, with the same trend in expression being observed in gall bladder and liver cancer tissues. Consequently, the manipulation of tissue expression of RBP transcripts might be considered as a strategy to mitigate the onset of CCA in PSC patients, and warrants further experimental investigation. The analysis performed herein may be helpful in the identification of non-invasive biomarkers for the early detection of PSC and for predicting its progression into CCA. In conclusion, future clinical research should investigate in more depth the full potential of RBP transcripts as biomarkers for human pathologies.
Collapse
Affiliation(s)
- Ugo Ala
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center “Guido Tarone”, Turin, Italy
| |
Collapse
|
7
|
Valenzisi P, Marabitti V, Pichierri P, Franchitto A. WRNIP1 prevents transcription-associated genomic instability. eLife 2024; 12:RP89981. [PMID: 38488661 PMCID: PMC10942783 DOI: 10.7554/elife.89981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
R-loops are non-canonical DNA structures that form during transcription and play diverse roles in various physiological processes. Disruption of R-loop homeostasis can lead to genomic instability and replication impairment, contributing to several human diseases, including cancer. Although the molecular mechanisms that protect cells against such events are not fully understood, recent research has identified fork protection factors and DNA damage response proteins as regulators of R-loop dynamics. In this study, we identify the Werner helicase-interacting protein 1 (WRNIP1) as a novel factor that counteracts transcription-associated DNA damage upon replication perturbation. Loss of WRNIP1 leads to R-loop accumulation, resulting in collisions between the replisome and transcription machinery. We observe co-localization of WRNIP1 with transcription/replication complexes and R-loops after replication perturbation, suggesting its involvement in resolving transcription-replication conflicts. Moreover, WRNIP1-deficient cells show impaired replication restart from transcription-induced fork stalling. Notably, transcription inhibition and RNase H1 overexpression rescue all the defects caused by loss of WRNIP1. Importantly, our findings highlight the critical role of WRNIP1 ubiquitin-binding zinc finger (UBZ) domain in preventing pathological persistence of R-loops and limiting DNA damage, thereby safeguarding genome integrity.
Collapse
Affiliation(s)
- Pasquale Valenzisi
- Section of Mechanisms Biomarkers and Models, Department of Environment and Health, Istituto Superiore di SanitaRomeItaly
| | - Veronica Marabitti
- Section of Mechanisms Biomarkers and Models, Department of Environment and Health, Istituto Superiore di SanitaRomeItaly
| | - Pietro Pichierri
- Section of Mechanisms Biomarkers and Models, Department of Environment and Health, Istituto Superiore di SanitaRomeItaly
| | - Annapaola Franchitto
- Section of Mechanisms Biomarkers and Models, Department of Environment and Health, Istituto Superiore di SanitaRomeItaly
| |
Collapse
|
8
|
Olazabal-Herrero A, He B, Kwon Y, Gupta AK, Dutta A, Huang Y, Boddu P, Liang Z, Liang F, Teng Y, Lan L, Chen X, Pei H, Pillai MM, Sung P, Kupfer GM. The FANCI/FANCD2 complex links DNA damage response to R-loop regulation through SRSF1-mediated mRNA export. Cell Rep 2024; 43:113610. [PMID: 38165804 PMCID: PMC10865995 DOI: 10.1016/j.celrep.2023.113610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 01/04/2024] Open
Abstract
Fanconi anemia (FA) is characterized by congenital abnormalities, bone marrow failure, and cancer susceptibility. The central FA protein complex FANCI/FANCD2 (ID2) is activated by monoubiquitination and recruits DNA repair proteins for interstrand crosslink (ICL) repair and replication fork protection. Defects in the FA pathway lead to R-loop accumulation, which contributes to genomic instability. Here, we report that the splicing factor SRSF1 and FANCD2 interact physically and act together to suppress R-loop formation via mRNA export regulation. We show that SRSF1 stimulates FANCD2 monoubiquitination in an RNA-dependent fashion. In turn, FANCD2 monoubiquitination proves crucial for the assembly of the SRSF1-NXF1 nuclear export complex and mRNA export. Importantly, several SRSF1 cancer-associated mutants fail to interact with FANCD2, leading to inefficient FANCD2 monoubiquitination, decreased mRNA export, and R-loop accumulation. We propose a model wherein SRSF1 and FANCD2 interaction links DNA damage response to the avoidance of pathogenic R-loops via regulation of mRNA export.
Collapse
Affiliation(s)
- Anne Olazabal-Herrero
- Department of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA; Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT 06511, USA
| | - Boxue He
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Abhishek K Gupta
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT 06511, USA
| | - Arijit Dutta
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yuxin Huang
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Prajwal Boddu
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT 06511, USA
| | - Zhuobin Liang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Fengshan Liang
- Department of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA; Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT 06511, USA
| | - Yaqun Teng
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02129, USA; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02129, USA; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Xiaoyong Chen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Huadong Pei
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Manoj M Pillai
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT 06511, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Gary M Kupfer
- Department of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
9
|
Zhang S, Liu Y, Sun Y, Liu Q, Gu Y, Huang Y, Zeng Z, Tang F, Ouyang Y. Aberrant R-loop-mediated immune evasion, cellular communication, and metabolic reprogramming affect cancer progression: a single-cell analysis. Mol Cancer 2024; 23:11. [PMID: 38200551 PMCID: PMC10777569 DOI: 10.1186/s12943-023-01924-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Dysregulation of R-loop homeostasis is closely related to various human diseases, including cancer. However, the causality of aberrant R-loops in tumor progression remains unclear. In this study, using single-cell RNA-sequencing datasets from lung adenocarcinoma (LUAD), we constructed an R-loop scoring model to characterize the R-loop state according to the identified R-loop regulators related to EGFR mutations, tissue origins, and TNM stage. We then evaluated the relationships of the R-loop score with the tumor microenvironment (TME) and treatment response. Furthermore, the potential roles of FANCI-mediated R-loops in LUAD were explored using a series of in vitro experiments. Results showed that malignant cells with low R-loop scores displayed glycolysis and epithelial-mesenchymal transition pathway activation and immune escape promotion, thereby hampering the antitumor therapeutic effects. Cell communication analysis suggested that low R-loop scores contributed to T cell exhaustion. We subsequently validated the prognostic value of R-loop scores by using bulk transcriptome datasets across 33 tumor types. The R-loop scoring model well predicted patients' therapeutic response to targeted therapy, chemotherapy, or immunotherapy in 32 independent cohorts. Remarkably, changes in R-loop distribution mediated by FANCI deficiency blocked the activity of Ras signaling pathway, suppressing tumor-cell proliferation and dissemination. In conclusion, this study reveals the underlying molecular mechanism of metabolic reprogramming and T cell exhaustion under R-loop score patterns, and the changes in R-loops mediated by R-loop regulators resulting in tumor progression. Therefore, incorporating anticancer methods based on R-loop or R-loop regulators into the treatment schemes of precision medicine may be beneficial.
Collapse
Affiliation(s)
- Shichao Zhang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yang Liu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yichi Sun
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Qin Liu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yan Gu
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| | - Ya Huang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| | - Zhu Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China.
| | - Fuzhou Tang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China.
| | - Yan Ouyang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
10
|
Zhang B, Li Y, Zhang J, Wang Y, Liang C, Lu T, Zhang C, Liu L, Qin Y, He J, Zhao X, Yu J, Hao J, Yang J, Li MJ, Yao Z, Ma S, Cheng H, Cheng T, Shi L. ADAR1 links R-loop homeostasis to ATR activation in replication stress response. Nucleic Acids Res 2023; 51:11668-11687. [PMID: 37831098 PMCID: PMC10681745 DOI: 10.1093/nar/gkad839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Unscheduled R-loops are a major source of replication stress and DNA damage. R-loop-induced replication defects are sensed and suppressed by ATR kinase, whereas it is not known whether R-loop itself is actively involved in ATR activation and, if so, how this is achieved. Here, we report that the nuclear form of RNA-editing enzyme ADAR1 promotes ATR activation and resolves genome-wide R-loops, a process that requires its double-stranded RNA-binding domains. Mechanistically, ADAR1 interacts with TOPBP1 and facilitates its loading on perturbed replication forks by enhancing the association of TOPBP1 with RAD9 of the 9-1-1 complex. When replication is inhibited, DNA-RNA hybrid competes with TOPBP1 for ADAR1 binding to promote the translocation of ADAR1 from damaged fork to accumulate at R-loop region. There, ADAR1 recruits RNA helicases DHX9 and DDX21 to unwind R-loops, simultaneously allowing TOPBP1 to stimulate ATR more efficiently. Collectively, we propose that the tempo-spatially regulated assembly of ADAR1-nucleated protein complexes link R-loop clearance and ATR activation, while R-loops crosstalk with blocked replication forks by transposing ADAR1 to finetune ATR activity and safeguard the genome.
Collapse
Affiliation(s)
- Biao Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Yi Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Jieyou Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Yuejiao Wang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Can Liang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Ting Lu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Chunyong Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Ling Liu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Yan Qin
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Jiahuan He
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 100006, Beijing, China
| | - Xiangnan Zhao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Jia Yu
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 100006, Beijing, China
| | - Jihui Hao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Jie Yang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Mulin Jun Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Zhi Yao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Shuai Ma
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
- Tianjin Institutes of Health Science, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Lei Shi
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
11
|
Gambelli A, Ferrando A, Boncristiani C, Schoeftner S. Regulation and function of R-loops at repetitive elements. Biochimie 2023; 214:141-155. [PMID: 37619810 DOI: 10.1016/j.biochi.2023.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/13/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
R-loops are atypical, three-stranded nucleic acid structures that contain a stretch of RNA:DNA hybrids and an unpaired, single stranded DNA loop. R-loops are physiological relevant and can act as regulators of gene expression, chromatin structure, DNA damage repair and DNA replication. However, unscheduled and persistent R-loops are mutagenic and can mediate replication-transcription conflicts, leading to DNA damage and genome instability if left unchecked. Detailed transcriptome analysis unveiled that 85% of the human genome, including repetitive regions, hold transcriptional activity. This anticipates that R-loops management plays a central role for the regulation and integrity of genomes. This function is expected to have a particular relevance for repetitive sequences that make up to 75% of the human genome. Here, we review the impact of R-loops on the function and stability of repetitive regions such as centromeres, telomeres, rDNA arrays, transposable elements and triplet repeat expansions and discuss their relevance for associated pathological conditions.
Collapse
Affiliation(s)
- Alice Gambelli
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Alessandro Ferrando
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Chiara Boncristiani
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Stefan Schoeftner
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy.
| |
Collapse
|
12
|
Xia D, Zhu X, Wang Y, Gong P, Su HS, Xu X. Implications of ubiquitination and the maintenance of replication fork stability in cancer therapy. Biosci Rep 2023; 43:BSR20222591. [PMID: 37728310 PMCID: PMC10550789 DOI: 10.1042/bsr20222591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023] Open
Abstract
DNA replication forks are subject to intricate surveillance and strict regulation by sophisticated cellular machinery. Such close regulation is necessary to ensure the accurate duplication of genetic information and to tackle the diverse endogenous and exogenous stresses that impede this process. Stalled replication forks are vulnerable to collapse, which is a major cause of genomic instability and carcinogenesis. Replication stress responses, which are organized via a series of coordinated molecular events, stabilize stalled replication forks and carry out fork reversal and restoration. DNA damage tolerance and repair pathways such as homologous recombination and Fanconi anemia also contribute to replication fork stabilization. The signaling network that mediates the transduction and interplay of these pathways is regulated by a series of post-translational modifications, including ubiquitination, which affects the activity, stability, and interactome of substrates. In particular, the ubiquitination of replication protein A and proliferating cell nuclear antigen at stalled replication forks promotes the recruitment of downstream regulators. In this review, we describe the ubiquitination-mediated signaling cascades that regulate replication fork progression and stabilization. In addition, we discuss the targeting of replication fork stability and ubiquitination system components as a potential therapeutic approach for the treatment of cancer.
Collapse
Affiliation(s)
- Donghui Xia
- Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine (sgh-dhhCPM), Dehua Hospital, Dehua, Quanzhou 362500, China
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
- State Key Laboratory of Agro-biotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuefei Zhu
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors and Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Ying Wang
- State Key Laboratory of Agro-biotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Peng Gong
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors and Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Hong-Shu Su
- Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine (sgh-dhhCPM), Dehua Hospital, Dehua, Quanzhou 362500, China
| | - Xingzhi Xu
- Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine (sgh-dhhCPM), Dehua Hospital, Dehua, Quanzhou 362500, China
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
13
|
de Vivo A, Song H, Lee Y, Tirado-Class N, Sanchez A, Westerheide S, Dungrawala H, Kee Y. OTUD5 limits replication fork instability by organizing chromatin remodelers. Nucleic Acids Res 2023; 51:10467-10483. [PMID: 37713620 PMCID: PMC10602872 DOI: 10.1093/nar/gkad732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/01/2023] [Accepted: 08/25/2023] [Indexed: 09/17/2023] Open
Abstract
Proper regulation of replication fork progression is important for genomic maintenance. Subverting the transcription-induced conflicts is crucial in preserving the integrity of replication forks. Various chromatin remodelers, such as histone chaperone and histone deacetylases are known to modulate replication stress, but how these factors are organized or collaborate are not well understood. Here we found a new role of the OTUD5 deubiquitinase in limiting replication stress. We found that OTUD5 is recruited to replication forks, and its depletion causes replication fork stress. Through its C-terminal disordered tail, OTUD5 assembles a complex containing FACT, HDAC1 and HDAC2 at replication forks. A cell line engineered to specifically uncouple FACT interaction with OTUD5 exhibits increases in FACT loading onto chromatin, R-loop formation, and replication fork stress. OTUD5 mediates these processes by recruiting and stabilizing HDAC1 and HDAC2, which decreases H4K16 acetylation and FACT recruitment. Finally, proteomic analysis revealed that the cells with deficient OTUD5-FACT interaction activates the Fanconi Anemia pathway for survival. Altogether, this study identified a new interaction network among OTUD5-FACT-HDAC1/2 that limits transcription-induced replication stress.
Collapse
Affiliation(s)
- Angelo de Vivo
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, FL 33647, USA
| | - Hongseon Song
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno-Joongang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Yujin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno-Joongang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Neysha Tirado-Class
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, FL 33647, USA
| | - Anthony Sanchez
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, FL 33647, USA
| | - Sandy Westerheide
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, FL 33647, USA
| | - Huzefa Dungrawala
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, FL 33647, USA
| | - Younghoon Kee
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, FL 33647, USA
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno-Joongang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| |
Collapse
|
14
|
Li F, Zafar A, Luo L, Denning AM, Gu J, Bennett A, Yuan F, Zhang Y. R-Loops in Genome Instability and Cancer. Cancers (Basel) 2023; 15:4986. [PMID: 37894353 PMCID: PMC10605827 DOI: 10.3390/cancers15204986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
R-loops are unique, three-stranded nucleic acid structures that primarily form when an RNA molecule displaces one DNA strand and anneals to the complementary DNA strand in a double-stranded DNA molecule. R-loop formation can occur during natural processes, such as transcription, in which the nascent RNA molecule remains hybridized with the template DNA strand, while the non-template DNA strand is displaced. However, R-loops can also arise due to many non-natural processes, including DNA damage, dysregulation of RNA degradation pathways, and defects in RNA processing. Despite their prevalence throughout the whole genome, R-loops are predominantly found in actively transcribed gene regions, enabling R-loops to serve seemingly controversial roles. On one hand, the pathological accumulation of R-loops contributes to genome instability, a hallmark of cancer development that plays a role in tumorigenesis, cancer progression, and therapeutic resistance. On the other hand, R-loops play critical roles in regulating essential processes, such as gene expression, chromatin organization, class-switch recombination, mitochondrial DNA replication, and DNA repair. In this review, we summarize discoveries related to the formation, suppression, and removal of R-loops and their influence on genome instability, DNA repair, and oncogenic events. We have also discussed therapeutical opportunities by targeting pathological R-loops.
Collapse
Affiliation(s)
- Fang Li
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alyan Zafar
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Liang Luo
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ariana Maria Denning
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jun Gu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ansley Bennett
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Fenghua Yuan
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Yanbin Zhang
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
15
|
Sato K, Knipscheer P. G-quadruplex resolution: From molecular mechanisms to physiological relevance. DNA Repair (Amst) 2023; 130:103552. [PMID: 37572578 DOI: 10.1016/j.dnarep.2023.103552] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Guanine-rich DNA sequences can fold into stable four-stranded structures called G-quadruplexes or G4s. Research in the past decade demonstrated that G4 structures are widespread in the genome and prevalent in regulatory regions of actively transcribed genes. The formation of G4s has been tightly linked to important biological processes including regulation of gene expression and genome maintenance. However, they can also pose a serious threat to genome integrity especially by impeding DNA replication, and G4-associated somatic mutations have been found accumulated in the cancer genomes. Specialised DNA helicases and single stranded DNA binding proteins that can resolve G4 structures play a crucial role in preventing genome instability. The large variety of G4 unfolding proteins suggest the presence of multiple G4 resolution mechanisms in cells. Recently, there has been considerable progress in our detailed understanding of how G4s are resolved, especially during DNA replication. In this review, we first discuss the current knowledge of the genomic G4 landscapes and the impact of G4 structures on DNA replication and genome integrity. We then describe the recent progress on the mechanisms that resolve G4 structures and their physiological relevance. Finally, we discuss therapeutic opportunities to target G4 structures.
Collapse
Affiliation(s)
- Koichi Sato
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, the Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
16
|
Xu W, Yang Y, Yu Y, Wen C, Zhao S, Cao L, Zhao S, Qin Y, Chen ZJ. FAAP100 is required for the resolution of transcription-replication conflicts in primordial germ cells. BMC Biol 2023; 21:174. [PMID: 37580696 PMCID: PMC10426154 DOI: 10.1186/s12915-023-01676-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND The maintenance of genome stability in primordial germ cells (PGCs) is crucial for the faithful transmission of genetic information and the establishment of reproductive reserve. Numerous studies in recent decades have linked the Fanconi anemia (FA) pathway with fertility, particularly PGC development. However, the role of FAAP100, an essential component of the FA core complex, in germ cell development is unexplored. RESULTS We find that FAAP100 plays an essential role in R-loop resolution and replication fork protection to counteract transcription-replication conflicts (TRCs) during mouse PGC proliferation. FAAP100 deletion leads to FA pathway inactivation, increases TRCs as well as cotranscriptional R-loops, and contributes to the collapse of replication forks and the generation of DNA damage. Then, the activated p53 signaling pathway triggers PGC proliferation defects, ultimately resulting in insufficient establishment of reproductive reserve in both sexes of mice. CONCLUSIONS Our findings suggest that FAAP100 is required for the resolution of TRCs in PGCs to safeguard their genome stability.
Collapse
Affiliation(s)
- Weiwei Xu
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Yajuan Yang
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Yongze Yu
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Canxin Wen
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Simin Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Lili Cao
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Shidou Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
| | - Yingying Qin
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, Shandong, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China.
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China.
| |
Collapse
|
17
|
Kitagawa R, Niikura Y, Becker A, Houghton PJ, Kitagawa K. EWSR1 maintains centromere identity. Cell Rep 2023; 42:112568. [PMID: 37243594 PMCID: PMC10758295 DOI: 10.1016/j.celrep.2023.112568] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 04/03/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023] Open
Abstract
The centromere is essential for ensuring high-fidelity transmission of chromosomes. CENP-A, the centromeric histone H3 variant, is thought to be the epigenetic mark of centromere identity. CENP-A deposition at the centromere is crucial for proper centromere function and inheritance. Despite its importance, the precise mechanism responsible for maintenance of centromere position remains obscure. Here, we report a mechanism to maintain centromere identity. We demonstrate that CENP-A interacts with EWSR1 (Ewing sarcoma breakpoint region 1) and EWSR1-FLI1 (the oncogenic fusion protein in Ewing sarcoma). EWSR1 is required for maintaining CENP-A at the centromere in interphase cells. EWSR1 and EWSR1-FLI1 bind CENP-A through the SYGQ2 region within the prion-like domain, important for phase separation. EWSR1 binds to R-loops through its RNA-recognition motif in vitro. Both the domain and motif are required for maintaining CENP-A at the centromere. Therefore, we conclude that EWSR1 guards CENP-A in centromeric chromatins by binding to centromeric RNA.
Collapse
Affiliation(s)
- Risa Kitagawa
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA
| | - Yohei Niikura
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA
| | - Argentina Becker
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA
| | - Katsumi Kitagawa
- Greehey Children's Cancer Research Institute, Mays Cancer Center, Department of Molecular Medicine, UT Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229-3000, USA.
| |
Collapse
|
18
|
Lee SY, Miller KM, Kim JJ. Clinical and Mechanistic Implications of R-Loops in Human Leukemias. Int J Mol Sci 2023; 24:ijms24065966. [PMID: 36983041 PMCID: PMC10052022 DOI: 10.3390/ijms24065966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Genetic mutations or environmental agents are major contributors to leukemia and are associated with genomic instability. R-loops are three-stranded nucleic acid structures consisting of an RNA-DNA hybrid and a non-template single-stranded DNA. These structures regulate various cellular processes, including transcription, replication, and DSB repair. However, unregulated R-loop formation can cause DNA damage and genomic instability, which are potential drivers of cancer including leukemia. In this review, we discuss the current understanding of aberrant R-loop formation and how it influences genomic instability and leukemia development. We also consider the possibility of R-loops as therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Seo-Yun Lee
- Department of Life Science and Multidisciplinary, Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jae-Jin Kim
- Department of Life Science and Multidisciplinary, Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
19
|
Saha S, Pommier Y. R-loops, type I topoisomerases and cancer. NAR Cancer 2023; 5:zcad013. [PMID: 37600974 PMCID: PMC9984992 DOI: 10.1093/narcan/zcad013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
R-loops are abundant and dynamic structures ubiquitously present in human cells both in the nuclear and mitochondrial genomes. They form in cis in the wake of transcription complexes and in trans apart from transcription complexes. In this review, we focus on the relationship between R-loops and topoisomerases, and cancer genomics and therapies. We summarize the topological parameters associated with the formation and resolution of R-loops, which absorb and release high levels of genomic negative supercoiling (Sc-). We review the deleterious consequences of excessive R-loops and rationalize how human type IA (TOP3B) and type IB (TOP1) topoisomerases regulate and resolve R-loops in coordination with helicase and RNase H enzymes. We also review the drugs (topoisomerase inhibitors, splicing inhibitors, G4 stabilizing ligands) and cancer predisposing genes (BRCA1/2, transcription, and splicing genes) known to induce R-loops, and whether stabilizing R-loops and thereby inducing genomic damage can be viewed as a strategy for cancer treatment.
Collapse
Affiliation(s)
- Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Emerging role for R-loop formation in hepatocellular carcinoma. Genes Genomics 2023; 45:543-551. [PMID: 36635460 DOI: 10.1007/s13258-022-01360-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
The pathophysiological characteristics of hepatocellular carcinoma (HCC) is closely associated with genomic instability. Genomic instability has long been considered to be a hallmark of both human genetic disease and cancers. It is now well accepted that regulating R-loop formation to minimized levels is one of critical modulation to maintain genome integrity, and that improper regulation of R-loop metabolism causes genomic instability via DNA breakage, ultimately resulting in replicative senescence and even tumorigenesis. Given that R-loop is natural by-product formed during normal transcription condition, and that several types of cancer have defense mechanism against the genomic instability resulted from R-loop formation, modulating functional implication of proteins involved in the intrinsic and specific mechanisms of abnormal R-loop formation in cancers therefore could play an important part in appropriated therapeutic strategies for HCC cohorts. In this review, we highlight the latest understanding on how R-loops promote genomic instability and address how alterations in these pathways link to human HCC.
Collapse
|
21
|
Said M, Barra V, Balzano E, Talhaoui I, Pelliccia F, Giunta S, Naim V. FANCD2 promotes mitotic rescue from transcription-mediated replication stress in SETX-deficient cancer cells. Commun Biol 2022; 5:1395. [PMID: 36543851 PMCID: PMC9772326 DOI: 10.1038/s42003-022-04360-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Replication stress (RS) is a leading cause of genome instability and cancer development. A substantial source of endogenous RS originates from the encounter between the transcription and replication machineries operating on the same DNA template. This occurs predominantly under specific contexts, such as oncogene activation, metabolic stress, or a deficiency in proteins that specifically act to prevent or resolve those transcription-replication conflicts (TRCs). One such protein is Senataxin (SETX), an RNA:DNA helicase involved in resolution of TRCs and R-loops. Here we identify a synthetic lethal interaction between SETX and proteins of the Fanconi anemia (FA) pathway. Depletion of SETX induces spontaneous under-replication and chromosome fragility due to active transcription and R-loops that persist in mitosis. These fragile loci are targeted by the Fanconi anemia protein, FANCD2, to facilitate the resolution of under-replicated DNA, thus preventing chromosome mis-segregation and allowing cells to proliferate. Mechanistically, we show that FANCD2 promotes mitotic DNA synthesis that is dependent on XPF and MUS81 endonucleases. Importantly, co-depleting FANCD2 together with SETX impairs cancer cell proliferation, without significantly affecting non-cancerous cells. Therefore, we uncovered a synthetic lethality between SETX and FA proteins for tolerance of transcription-mediated RS that may be exploited for cancer therapy.
Collapse
Affiliation(s)
- Maha Said
- grid.14925.3b0000 0001 2284 9388CNRS UMR9019, Université Paris-Saclay, Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Viviana Barra
- grid.10776.370000 0004 1762 5517Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Elisa Balzano
- grid.7841.aDepartment of Biology & Biotechnology “Charles Darwin”, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Ibtissam Talhaoui
- grid.14925.3b0000 0001 2284 9388CNRS UMR9019, Université Paris-Saclay, Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Franca Pelliccia
- grid.7841.aDepartment of Biology & Biotechnology “Charles Darwin”, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Simona Giunta
- grid.7841.aDepartment of Biology & Biotechnology “Charles Darwin”, University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Valeria Naim
- grid.14925.3b0000 0001 2284 9388CNRS UMR9019, Université Paris-Saclay, Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif, France
| |
Collapse
|
22
|
The BRCA1 BRCT promotes antisense RNA production and double-stranded RNA formation to suppress ribosomal R-loops. Proc Natl Acad Sci U S A 2022; 119:e2217542119. [PMID: 36490315 PMCID: PMC9897471 DOI: 10.1073/pnas.2217542119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
R-loops, or RNA:DNA hybrids, can induce DNA damage, which requires DNA repair factors including breast cancer type 1 susceptibility protein (BRCA1) to restore genomic integrity. To date, several pathogenic mutations have been found within the tandem BRCA1 carboxyl-terminal (BRCT) domains that mediate BRCA1 interactions with proteins and DNA in response to DNA damage. Here, we describe a nonrepair role of BRCA1 BRCT in suppressing ribosomal R-loops via two mechanisms. Through its RNA binding and annealing activities, BRCA1 BRCT facilitates the formation of double-stranded RNA between ribosomal RNA (rRNA) and antisense-rRNA (as-rRNA), hereby minimizing rRNA hybridization to ribosomal DNA to form R-loops. BRCA1 BRCT also promotes RNA polymerase I-dependent transcription of as-rRNA to enhance double-stranded rRNA (ds-rRNA) formation. In addition, BRCA1 BRCT-mediated as-rRNA production restricts rRNA maturation in unperturbed cells. Hence, impairing as-rRNA transcription and ds-rRNA formation due to BRCA1 BRCT deficiency deregulates rRNA processing and increases ribosomal R-loops and DNA breaks. Our results link ribosomal biogenesis dysfunction to BRCA1-associated genomic instability.
Collapse
|
23
|
RAD18 opposes transcription-associated genome instability through FANCD2 recruitment. PLoS Genet 2022; 18:e1010309. [DOI: 10.1371/journal.pgen.1010309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/20/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
DNA replication is a vulnerable time for genome stability maintenance. Intrinsic stressors, as well as oncogenic stress, can challenge replication by fostering conflicts with transcription and stabilizing DNA:RNA hybrids. RAD18 is an E3 ubiquitin ligase for PCNA that is involved in coordinating DNA damage tolerance pathways to preserve genome stability during replication. In this study, we show that RAD18 deficient cells have higher levels of transcription-replication conflicts and accumulate DNA:RNA hybrids that induce DNA double strand breaks and replication stress. We find that these effects are driven in part by failure to recruit the Fanconi Anemia protein FANCD2 at difficult to replicate and R-loop prone genomic sites. FANCD2 activation caused by splicing inhibition or aphidicolin treatment is critically dependent on RAD18 activity. Thus, we highlight a RAD18-dependent pathway promoting FANCD2-mediated suppression of R-loops and transcription-replication conflicts.
Collapse
|
24
|
Thada V, Greenberg RA. Unpaved roads: How the DNA damage response navigates endogenous genotoxins. DNA Repair (Amst) 2022; 118:103383. [PMID: 35939975 PMCID: PMC9703833 DOI: 10.1016/j.dnarep.2022.103383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/03/2023]
Abstract
Accurate DNA repair is essential for cellular and organismal homeostasis, and DNA repair defects result in genetic diseases and cancer predisposition. Several environmental factors, such as ultraviolet light, damage DNA, but many other molecules with DNA damaging potential are byproducts of normal cellular processes. In this review, we highlight some of the prominent sources of endogenous DNA damage as well as their mechanisms of repair, with a special focus on repair by the homologous recombination and Fanconi anemia pathways. We also discuss how modulating DNA damage caused by endogenous factors may augment current approaches used to treat BRCA-deficient cancers. Finally, we describe how synthetic lethal interactions may be exploited to exacerbate DNA repair deficiencies and cause selective toxicity in additional types of cancers.
Collapse
|
25
|
Transcription-replication conflicts in primordial germ cells necessitate the Fanconi anemia pathway to safeguard genome stability. Proc Natl Acad Sci U S A 2022; 119:e2203208119. [PMID: 35969748 PMCID: PMC9407672 DOI: 10.1073/pnas.2203208119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Germ cells are capable of preserving their genetic information with high fidelity. We report that rapidly dividing mouse primordial germ cells (PGCs) are faced with high levels of endogenous replication stress due to frequent occurrence of transcription–replication conflicts (TRCs). Thus, PGCs have an increased requirement for the replication-coupled Fanconi anemia (FA) pathway to counteract TRC-induced replication stress, enabling their rapid proliferation to establish a sufficient reproductive reserve. This work provides insights into the unique genome feature of developing PGCs and helps to explain the reproductive defects in FA individuals. Preserving a high degree of genome integrity and stability in germ cells is of utmost importance for reproduction and species propagation. However, the regulatory mechanisms of maintaining genome stability in the developing primordial germ cells (PGCs), in which rapid proliferation is coupled with global hypertranscription, remain largely unknown. Here, we find that mouse PGCs encounter a constitutively high frequency of transcription–replication conflicts (TRCs), which lead to R-loop accumulation and impose endogenous replication stress on PGCs. We further demonstrate that the Fanconi anemia (FA) pathway is activated by TRCs and has a central role in the coordination between replication and transcription in the rapidly proliferating PGCs, as disabling the FA pathway leads to TRC and R-loop accumulation, replication fork destabilization, increased DNA damage, dramatic loss of mitotically dividing mouse PGCs, and consequent sterility of both sexes. Overall, our findings uncover the unique source and resolving mechanism of endogenous replication stress during PGC proliferation, provide a biological explanation for reproductive defects in individuals with FA, and improve our understanding of the monitoring strategies for genome stability during germ cell development.
Collapse
|
26
|
Petermann E, Lan L, Zou L. Sources, resolution and physiological relevance of R-loops and RNA-DNA hybrids. Nat Rev Mol Cell Biol 2022; 23:521-540. [PMID: 35459910 DOI: 10.1038/s41580-022-00474-x] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
RNA-DNA hybrids are generated during transcription, DNA replication and DNA repair and are crucial intermediates in these processes. When RNA-DNA hybrids are stably formed in double-stranded DNA, they displace one of the DNA strands and give rise to a three-stranded structure called an R-loop. R-loops are widespread in the genome and are enriched at active genes. R-loops have important roles in regulating gene expression and chromatin structure, but they also pose a threat to genomic stability, especially during DNA replication. To keep the genome stable, cells have evolved a slew of mechanisms to prevent aberrant R-loop accumulation. Although R-loops can cause DNA damage, they are also induced by DNA damage and act as key intermediates in DNA repair such as in transcription-coupled repair and RNA-templated DNA break repair. When the regulation of R-loops goes awry, pathological R-loops accumulate, which contributes to diseases such as neurodegeneration and cancer. In this Review, we discuss the current understanding of the sources of R-loops and RNA-DNA hybrids, mechanisms that suppress and resolve these structures, the impact of these structures on DNA repair and genome stability, and opportunities to therapeutically target pathological R-loops.
Collapse
Affiliation(s)
- Eva Petermann
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Li Y, Zhang Y, Yang Q, Zhou X, Guo Y, Ding F, Liu Z, Luo A. Silencing of FANCI Promotes DNA Damage and Sensitizes Ovarian Cancer Cells to Carboplatin. Curr Cancer Drug Targets 2022; 22:591-602. [PMID: 35362384 DOI: 10.2174/1568009622666220331091709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/31/2022] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ovarian cancer (OVCA) has unique epigenetic alterations and defects in homologous recombination (HR). Despite initial sensitivity to platinum-based chemotherapy, HR dysfunctional tumors eventually acquire drug resistance. Fanconi anemia (FA) is characterized by bone marrow failure (BMF) and a reduced ability to eradicate DNA interstrand cross-links (ICL). However, the mechanism of chemoresistance mediated by FANCI was unclear in OVCA. OBJECTIVE We explore to identify whether FANCI was involved in chemoresistance in OVCA. METHODS FANCI expression and epigenetic alterations were analyzed, respectively, using TIMER and cBioPortal. The correlation between FANCI expression and the survival of OVCA patients was analyzed using Kaplan-Meier Plotter, GSE63885 and TCGA-OVCA database. FANCI expression in OVCA was detected by immunohistochemistry. Cell proliferation, migration, and invasion in FANCI inhibiting cells were assessed by CCK8 and Transwell. Apoptosis and DNA damage were examined by flow cytometry and immunofluorescence. Meanwhile, the activity of caspase 3/7 was detected by Caspase-Glo® 3/7 kit. In addition, the expression of FANCI, γH2AX, and apoptosis effectors was examined by western blot. RESULTS FANCI has copy number variations (CNVs) in OVCA. The high expression of FANCI in OVCA patients was associated with poor survival. Moreover, FANCI expression was correlated with the response to chemotherapy in OVCA. FANCI expression in OVCA cells was induced by carboplatin in a time-dependent manner. Silencing of FANCI had no effect on cell proliferation, but it hindered OVCA cell migration and invasion. Mechanically, knockdown of FANCI enhanced DNA damage induced apoptosis through CHK1/2-P53-P21 pathway. CONCLUSION FANCI may be a potential therapeutic target for OVCA patients.
Collapse
Affiliation(s)
- Yuqing Li
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China
| | - Yanan Zhang
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China
| | - Qi Yang
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China
| | - Xuantong Zhou
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China
| | - Yuanyuan Guo
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China
| | - Fang Ding
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China
| | - Zhihua Liu
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China
| | - Aiping Luo
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P. R. China
| |
Collapse
|
28
|
Badra Fajardo N, Taraviras S, Lygerou Z. Fanconi anemia proteins and genome fragility: unraveling replication defects for cancer therapy. Trends Cancer 2022; 8:467-481. [DOI: 10.1016/j.trecan.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
|
29
|
Marabitti V, Valenzisi P, Lillo G, Malacaria E, Palermo V, Pichierri P, Franchitto A. R-Loop-Associated Genomic Instability and Implication of WRN and WRNIP1. Int J Mol Sci 2022; 23:ijms23031547. [PMID: 35163467 PMCID: PMC8836129 DOI: 10.3390/ijms23031547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
Maintenance of genome stability is crucial for cell survival and relies on accurate DNA replication. However, replication fork progression is under constant attack from different exogenous and endogenous factors that can give rise to replication stress, a source of genomic instability and a notable hallmark of pre-cancerous and cancerous cells. Notably, one of the major natural threats for DNA replication is transcription. Encounters or conflicts between replication and transcription are unavoidable, as they compete for the same DNA template, so that collisions occur quite frequently. The main harmful transcription-associated structures are R-loops. These are DNA structures consisting of a DNA–RNA hybrid and a displaced single-stranded DNA, which play important physiological roles. However, if their homeostasis is altered, they become a potent source of replication stress and genome instability giving rise to several human diseases, including cancer. To combat the deleterious consequences of pathological R-loop persistence, cells have evolved multiple mechanisms, and an ever growing number of replication fork protection factors have been implicated in preventing/removing these harmful structures; however, many others are perhaps still unknown. In this review, we report the current knowledge on how aberrant R-loops affect genome integrity and how they are handled, and we discuss our recent findings on the role played by two fork protection factors, the Werner syndrome protein (WRN) and the Werner helicase-interacting protein 1 (WRNIP1) in response to R-loop-induced genome instability.
Collapse
|
30
|
Kannan A, Cuartas J, Gangwani P, Branzei D, Gangwani L. Mutation in senataxin alters the mechanism of R-loop resolution in amyotrophic lateral sclerosis 4. Brain 2022; 145:3072-3094. [PMID: 35045161 PMCID: PMC9536298 DOI: 10.1093/brain/awab464] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/08/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022] Open
Abstract
Mutation in the senataxin (SETX) gene causes an autosomal dominant neuromuscular disorder, amyotrophic lateral sclerosis 4 (ALS4), characterized by degeneration of motor neurons, muscle weakness and atrophy. SETX is an RNA-DNA helicase that mediates resolution of co-transcriptional RNA:DNA hybrids (R-loops). The process of R-loop resolution is essential for the normal functioning of cells, including neurons. The molecular basis of ALS4 pathogenesis and the mechanism of R-loop resolution are unclear. We report that the zinc finger protein ZPR1 binds to RNA:DNA hybrids, recruits SETX onto R-loops and is critical for R-loop resolution. ZPR1 deficiency disrupts the integrity of R-loop resolution complexes containing SETX and causes increased R-loop accumulation throughout gene transcription. We uncover that SETX is a downstream target of ZPR1 and that overexpression of ZPR1 can rescue R-loop resolution complexe assembly in SETX-deficient cells but not vice versa. To uncover the mechanism of R-loop resolution, we examined the function of SETX-ZPR1 complexes using two genetic motor neuron disease models with altered R-loop resolution. Notably, chronic low levels of SETX-ZPR1 complexes onto R-loops result in a decrease of R-loop resolution activity causing an increase in R-loop levels in spinal muscular atrophy. ZPR1 overexpression increases recruitment of SETX onto R-loops, decreases R-loops and rescues the spinal muscular atrophy phenotype in motor neurons and patient cells. Strikingly, interaction of SETX with ZPR1 is disrupted in ALS4 patients that have heterozygous SETX (L389S) mutation. ZPR1 fails to recruit the mutant SETX homodimer but recruits the heterodimer with partially disrupted interaction between SETX and ZPR1. Interestingly, disruption of SETX-ZPR1 complexes causes increase in R-loop resolution activity leading to fewer R-loops in ALS4. Modulation of ZPR1 levels regulates R-loop accumulation and rescues the pathogenic R-loop phenotype in ALS4 patient cells. These findings originate a new concept, ‘opposite alterations in a cell biological activity (R-loop resolution) result in similar pathogenesis (neurodegeneration) in different genetic motor neuron disorders’. We propose that ZPR1 collaborates with SETX and may function as a molecular brake to regulate SETX-dependent R-loop resolution activity critical for the normal functioning of motor neurons.
Collapse
Affiliation(s)
- Annapoorna Kannan
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
| | - Juliana Cuartas
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
| | - Pratik Gangwani
- Automated Driving Compute System Architecture, GM Global Technical Center - Sloan Engineering Center, Warren, Michigan 48092, USA
| | - Dana Branzei
- The FIRC Institute of Molecular Oncology Foundation, IFOM Foundation, Via Adamello 16, Milan 20139, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Laxman Gangwani
- Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905, USA
| |
Collapse
|
31
|
Mani C, Acharya G, Kshirsagar S, Vijayan M, Khan H, Hemachandra Reddy P, Palle K. A Novel Role for BRIP1/FANCJ in Neuronal Cells Health and in Resolving Oxidative Stress-Induced DNA Lesions. J Alzheimers Dis 2021; 85:207-221. [PMID: 34776453 DOI: 10.3233/jad-215305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND DNA damage accumulation and mitochondrial abnormalities are elevated in neurons during aging and may contribute to neurodegenerative pathologic conditions such as Alzheimer's disease. BRCA1 interacting protein 1 or BRIP1 is a 5' to 3' DNA helicase that catalyzes many abnormal DNA structures during DNA replication, gene transcription, and recombination, and contribute to genomic integrity. OBJECTIVE BRIP1 functions were reasonably well studied in DNA repair; however, there is limited data on its role and regulation during aging and neurodegenerative diseases. METHODS We used immunohistochemistry, western blot, and qRT-PCR assays to analyze the expression of BRIP1. Immunofluorescence studies were performed to study the formation of R-loops, reactive oxygen species (ROS) generation, and mitochondrial morphology. Flow cytometry and transmission electron microscopy were used to evaluate mitochondrial ROS and mitochondrial structures, respectively. Oxygen consumption rate was measured using Seahorse, and the Presto Blue™ assays were used to evaluate cell viability. RESULTS Our results demonstrate the expression of BRIP1 in mouse and human brain tissues and in neuronal cell lines. BRIP1 levels were elevated in the hippocampal regions of the brains, specifically in the dentate gyrus. BRIP1 downregulation in neuronal cells caused increased R-loop formation basally and in response to H2O2 treatment. Furthermore, BRIP1 deficient cells exhibited elevated levels of excitotoxicity induced by L-Glutamic acid exposure as evidenced by (mitochondrial) ROS levels, deteriorated mitochondrial health, and cell death compared to BRIP1 proficient neuronal cells. CONCLUSION Overall, our results indicate an important role for BRIP1 in maintaining neuronal cell health and homeostasis by suppressing cellular oxidative stress.
Collapse
Affiliation(s)
- Chinnadurai Mani
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ganesh Acharya
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Hafiz Khan
- Julia Jones Matthews Department of Public Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Komaraiah Palle
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
32
|
Sanchez A, Lee D, Kim DI, Miller KM. Making Connections: Integrative Signaling Mechanisms Coordinate DNA Break Repair in Chromatin. Front Genet 2021; 12:747734. [PMID: 34659365 PMCID: PMC8514019 DOI: 10.3389/fgene.2021.747734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 01/25/2023] Open
Abstract
DNA double-strand breaks (DSBs) are hazardous to genome integrity and can promote mutations and disease if not handled correctly. Cells respond to these dangers by engaging DNA damage response (DDR) pathways that are able to identify DNA breaks within chromatin leading ultimately to their repair. The recognition and repair of DSBs by the DDR is largely dependent on the ability of DNA damage sensing factors to bind to and interact with nucleic acids, nucleosomes and their modified forms to target these activities to the break site. These contacts orientate and localize factors to lesions within chromatin, allowing signaling and faithful repair of the break to occur. Coordinating these events requires the integration of several signaling and binding events. Studies are revealing an enormously complex array of interactions that contribute to DNA lesion recognition and repair including binding events on DNA, as well as RNA, RNA:DNA hybrids, nucleosomes, histone and non-histone protein post-translational modifications and protein-protein interactions. Here we examine several DDR pathways that highlight and provide prime examples of these emerging concepts. A combination of approaches including genetic, cellular, and structural biology have begun to reveal new insights into the molecular interactions that govern the DDR within chromatin. While many questions remain, a clearer picture has started to emerge for how DNA-templated processes including transcription, replication and DSB repair are coordinated. Multivalent interactions with several biomolecules serve as key signals to recruit and orientate proteins at DNA lesions, which is essential to integrate signaling events and coordinate the DDR within the milieu of the nucleus where competing genome functions take place. Genome architecture, chromatin structure and phase separation have emerged as additional vital regulatory mechanisms that also influence genome integrity pathways including DSB repair. Collectively, recent advancements in the field have not only provided a deeper understanding of these fundamental processes that maintain genome integrity and cellular homeostasis but have also started to identify new strategies to target deficiencies in these pathways that are prevalent in human diseases including cancer.
Collapse
Affiliation(s)
- Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Doohyung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Dae In Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
33
|
Transcription/Replication Conflicts in Tumorigenesis and Their Potential Role as Novel Therapeutic Targets in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13153755. [PMID: 34359660 PMCID: PMC8345052 DOI: 10.3390/cancers13153755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Multiple myeloma is a hematologic cancer characterized by the accumulation of malignant plasma cells in the bone marrow. It remains a mostly incurable disease due to the inability to overcome refractory disease and drug-resistant relapse. Oncogenic transformation of PC in multiple myeloma is thought to occur within the secondary lymphoid organs. However, the precise molecular events leading to myelomagenesis remain obscure. Here, we identified genes involved in the prevention and the resolution of conflicts between the replication and transcription significantly overexpressed during the plasma cell differentiation process and in multiple myeloma cells. We discussed the potential role of these factors in myelomagenesis and myeloma biology. The specific targeting of these factors might constitute a new therapeutic strategy in multiple myeloma. Abstract Plasma cells (PCs) have an essential role in humoral immune response by secretion of antibodies, and represent the final stage of B lymphocytes differentiation. During this differentiation, the pre-plasmablastic stage is characterized by highly proliferative cells that start to secrete immunoglobulins (Igs). Thus, replication and transcription must be tightly regulated in these cells to avoid transcription/replication conflicts (TRCs), which could increase replication stress and lead to genomic instability. In this review, we analyzed expression of genes involved in TRCs resolution during B to PC differentiation and identified 41 genes significantly overexpressed in the pre-plasmablastic stage. This illustrates the importance of mechanisms required for adequate processing of TRCs during PCs differentiation. Furthermore, we identified that several of these factors were also found overexpressed in purified PCs from patients with multiple myeloma (MM) compared to normal PCs. Malignant PCs produce high levels of Igs concomitantly with cell cycle deregulation. Therefore, increasing the TRCs occurring in MM cells could represent a potent therapeutic strategy for MM patients. Here, we describe the potential roles of TRCs resolution factors in myelomagenesis and discuss the therapeutic interest of targeting the TRCs resolution machinery in MM.
Collapse
|
34
|
Jia N, Guo C, Nakazawa Y, van den Heuvel D, Luijsterburg MS, Ogi T. Dealing with transcription-blocking DNA damage: Repair mechanisms, RNA polymerase II processing and human disorders. DNA Repair (Amst) 2021; 106:103192. [PMID: 34358806 DOI: 10.1016/j.dnarep.2021.103192] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/15/2022]
Abstract
Transcription-blocking DNA lesions (TBLs) in genomic DNA are triggered by a wide variety of DNA-damaging agents. Such lesions cause stalling of elongating RNA polymerase II (RNA Pol II) enzymes and fully block transcription when unresolved. The toxic impact of DNA damage on transcription progression is commonly referred to as transcription stress. In response to RNA Pol II stalling, cells activate and employ transcription-coupled repair (TCR) machineries to repair cytotoxic TBLs and resume transcription. Increasing evidence indicates that the modification and processing of stalled RNA Pol II is an integral component of the cellular response to and the repair of TBLs. If TCR pathways fail, the prolonged stalling of RNA Pol II will impede global replication and transcription as well as block the access of other DNA repair pathways that may act upon the TBL. Consequently, such prolonged stalling will trigger profound genome instability and devastating clinical features. In this review, we will discuss the mechanisms by which various types of TBLs are repaired by distinct TCR pathways and how RNA Pol II processing is regulated during these processes. We will also discuss the clinical consequences of transcription stress and genotype-phenotype correlations of related TCR-deficiency disorders.
Collapse
Affiliation(s)
- Nan Jia
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Chaowan Guo
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yuka Nakazawa
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Diana van den Heuvel
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.
| |
Collapse
|
35
|
Barabino SML, Citterio E, Ronchi AE. Transcription Factors, R-Loops and Deubiquitinating Enzymes: Emerging Targets in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13153753. [PMID: 34359655 PMCID: PMC8345071 DOI: 10.3390/cancers13153753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The advent of DNA massive sequencing technologies has allowed for the first time an extensive look into the heterogeneous spectrum of genes and mutations underpinning myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML). In this review, we wish to explore the most recent advances and the rationale for the potential therapeutic interest of three main actors in myelo-leukemic transformation: transcription factors that govern myeloid differentiation; RNA splicing factors, which ensure proper mRNA maturation and whose mutations increase R-loops formation; and deubiquitinating enzymes, which contribute to genome stability in hematopoietic stem cells (HSCs). Abstract Myeloid neoplasms encompass a very heterogeneous family of diseases characterized by the failure of the molecular mechanisms that ensure a balanced equilibrium between hematopoietic stem cells (HSCs) self-renewal and the proper production of differentiated cells. The origin of the driver mutations leading to preleukemia can be traced back to HSC/progenitor cells. Many properties typical to normal HSCs are exploited by leukemic stem cells (LSCs) to their advantage, leading to the emergence of a clonal population that can eventually progress to leukemia with variable latency and evolution. In fact, different subclones might in turn develop from the original malignant clone through accumulation of additional mutations, increasing their competitive fitness. This process ultimately leads to a complex cancer architecture where a mosaic of cellular clones—each carrying a unique set of mutations—coexists. The repertoire of genes whose mutations contribute to the progression toward leukemogenesis is broad. It encompasses genes involved in different cellular processes, including transcriptional regulation, epigenetics (DNA and histones modifications), DNA damage signaling and repair, chromosome segregation and replication (cohesin complex), RNA splicing, and signal transduction. Among these many players, transcription factors, RNA splicing proteins, and deubiquitinating enzymes are emerging as potential targets for therapeutic intervention.
Collapse
|
36
|
Gusho E, Laimins L. Human Papillomaviruses Target the DNA Damage Repair and Innate Immune Response Pathways to Allow for Persistent Infection. Viruses 2021; 13:1390. [PMID: 34372596 PMCID: PMC8310235 DOI: 10.3390/v13071390] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022] Open
Abstract
Persistent infection with high-risk human papillomaviruses (HPVs) is the major risk factor associated with development of anogenital and oropharyngeal cancers. Initial infection by HPVs occurs into basal epithelial cells where viral genomes are established as nuclear episomes and persist until cleared by the immune response. Productive replication or amplification occurs upon differentiation and is dependent upon activation of the ataxia-telangiectasia mutated (ATM), ataxia telangiectasia and RAD3-related (ATR) DNA damage repair (DDR) pathways. In addition to activating DDR pathways, HPVs must escape innate immune surveillance mechanisms by antagonizing sensors, adaptors, interferons and antiviral gene expression. Both DDR and innate immune pathways are key host mechanisms that crosstalk with each other to maintain homeostasis of cells persistently infected with HPVs. Interestingly, it is still not fully understood why some HPV infections get cleared while others do not. Targeting of these two processes with antiviral therapies may provide opportunities for treatment of cancers caused by high-risk HPVs.
Collapse
Affiliation(s)
| | - Laimonis Laimins
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
37
|
Lemonidis K, Arkinson C, Rennie ML, Walden H. Mechanism, specificity, and function of FANCD2-FANCI ubiquitination and deubiquitination. FEBS J 2021; 289:4811-4829. [PMID: 34137174 DOI: 10.1111/febs.16077] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022]
Abstract
Fanconi anemia (FA) is a rare genetic disorder caused by mutations in any of the currently 22 known FA genes. The products of these genes, along with other FA-associated proteins, participate in a biochemical pathway, known as the FA pathway. This pathway is responsible for the repair of DNA interstrand cross-links (ICL) and the maintenance of genomic stability in response to replication stress. At the center of the pathway is the monoubiquitination of two FA proteins, FANCD2 and FANCI, on two specific lysine residues. This is achieved by the combined action of the UBE2T ubiquitin-conjugating enzyme and a large multicomponent E3 ligase, known as the FA-core complex. This E2-E3 pair specifically targets the FANCI-FANCD2 heterodimer (ID2 complex) for ubiquitination on DNA. Deubiquitination of both FANCD2 and FANCI, which is also critical for ICL repair, is achieved by the USP1-UAF1 complex. Recent work suggests that FANCD2 ubiquitination transforms the ID2 complex into a sliding DNA clamp. Further, ID2 ubiquitination on FANCI does not alter the closed ID2 conformation observed upon FANCD2 ubiquitination and the associated ID2Ub complex with high DNA affinity. However, the resulting dimonoubiquitinated complex is highly resistant to USP1-UAF1 deubiquitination. This review will provide an update on recent work focusing on how specificity in FANCD2 ubiquitination and deubiquitination is achieved. Recent findings shedding light to the mechanisms, molecular functions, and biological roles of FANCI/FANCD2 ubiquitination and deubiquitination will be also discussed. ENZYMES: UBA1 (6.2.1.45), UBE2T (2.3.2.23), FANCL (2.3.2.27), USP1 (3.4.19.12).
Collapse
Affiliation(s)
- Kimon Lemonidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| | - Connor Arkinson
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| | - Martin L Rennie
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| | - Helen Walden
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
38
|
Dettori LG, Torrejon D, Chakraborty A, Dutta A, Mohamed M, Papp C, Kuznetsov VA, Sung P, Feng W, Bah A. A Tale of Loops and Tails: The Role of Intrinsically Disordered Protein Regions in R-Loop Recognition and Phase Separation. Front Mol Biosci 2021; 8:691694. [PMID: 34179096 PMCID: PMC8222781 DOI: 10.3389/fmolb.2021.691694] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
R-loops are non-canonical, three-stranded nucleic acid structures composed of a DNA:RNA hybrid, a displaced single-stranded (ss)DNA, and a trailing ssRNA overhang. R-loops perform critical biological functions under both normal and disease conditions. To elucidate their cellular functions, we need to understand the mechanisms underlying R-loop formation, recognition, signaling, and resolution. Previous high-throughput screens identified multiple proteins that bind R-loops, with many of these proteins containing folded nucleic acid processing and binding domains that prevent (e.g., topoisomerases), resolve (e.g., helicases, nucleases), or recognize (e.g., KH, RRMs) R-loops. However, a significant number of these R-loop interacting Enzyme and Reader proteins also contain long stretches of intrinsically disordered regions (IDRs). The precise molecular and structural mechanisms by which the folded domains and IDRs synergize to recognize and process R-loops or modulate R-loop-mediated signaling have not been fully explored. While studying one such modular R-loop Reader, the Fragile X Protein (FMRP), we unexpectedly discovered that the C-terminal IDR (C-IDR) of FMRP is the predominant R-loop binding site, with the three N-terminal KH domains recognizing the trailing ssRNA overhang. Interestingly, the C-IDR of FMRP has recently been shown to undergo spontaneous Liquid-Liquid Phase Separation (LLPS) assembly by itself or in complex with another non-canonical nucleic acid structure, RNA G-quadruplex. Furthermore, we have recently shown that FMRP can suppress persistent R-loops that form during transcription, a process that is also enhanced by LLPS via the assembly of membraneless transcription factories. These exciting findings prompted us to explore the role of IDRs in R-loop processing and signaling proteins through a comprehensive bioinformatics and computational biology study. Here, we evaluated IDR prevalence, sequence composition and LLPS propensity for the known R-loop interactome. We observed that, like FMRP, the majority of the R-loop interactome, especially Readers, contains long IDRs that are highly enriched in low complexity sequences with biased amino acid composition, suggesting that these IDRs could directly interact with R-loops, rather than being “mere flexible linkers” connecting the “functional folded enzyme or binding domains”. Furthermore, our analysis shows that several proteins in the R-loop interactome are either predicted to or have been experimentally demonstrated to undergo LLPS or are known to be associated with phase separated membraneless organelles. Thus, our overall results present a thought-provoking hypothesis that IDRs in the R-loop interactome can provide a functional link between R-loop recognition via direct binding and downstream signaling through the assembly of LLPS-mediated membrane-less R-loop foci. The absence or dysregulation of the function of IDR-enriched R-loop interactors can potentially lead to severe genomic defects, such as the widespread R-loop-mediated DNA double strand breaks that we recently observed in Fragile X patient-derived cells.
Collapse
Affiliation(s)
- Leonardo G Dettori
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Diego Torrejon
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Arijita Chakraborty
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Arijit Dutta
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Mohamed Mohamed
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Csaba Papp
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States.,Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Vladimir A Kuznetsov
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, United States.,Bioinformatics Institute, ASTAR Biomedical Institutes, Singapore, Singapore
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Wenyi Feng
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Alaji Bah
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
39
|
Palancade B, Rothstein R. The Ultimate (Mis)match: When DNA Meets RNA. Cells 2021; 10:cells10061433. [PMID: 34201169 PMCID: PMC8227541 DOI: 10.3390/cells10061433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/20/2022] Open
Abstract
RNA-containing structures, including ribonucleotide insertions, DNA:RNA hybrids and R-loops, have recently emerged as critical players in the maintenance of genome integrity. Strikingly, different enzymatic activities classically involved in genome maintenance contribute to their generation, their processing into genotoxic or repair intermediates, or their removal. Here we review how this substrate promiscuity can account for the detrimental and beneficial impacts of RNA insertions during genome metabolism. We summarize how in vivo and in vitro experiments support the contribution of DNA polymerases and homologous recombination proteins in the formation of RNA-containing structures, and we discuss the role of DNA repair enzymes in their removal. The diversity of pathways that are thus affected by RNA insertions likely reflects the ancestral function of RNA molecules in genome maintenance and transmission.
Collapse
Affiliation(s)
- Benoit Palancade
- Institut Jacques Monod, Université de Paris, CNRS, F-75006 Paris, France
- Correspondence: (B.P.); (R.R.)
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Correspondence: (B.P.); (R.R.)
| |
Collapse
|
40
|
ARID1A regulates R-loop associated DNA replication stress. PLoS Genet 2021; 17:e1009238. [PMID: 33826602 PMCID: PMC8055027 DOI: 10.1371/journal.pgen.1009238] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/19/2021] [Accepted: 03/20/2021] [Indexed: 01/29/2023] Open
Abstract
ARID1A is a core DNA-binding subunit of the BAF chromatin remodeling complex, and is lost in up to 7% of all cancers. The frequency of ARID1A loss increases in certain cancer types, such as clear cell ovarian carcinoma where ARID1A protein is lost in about 50% of cases. While the impact of ARID1A loss on the function of the BAF chromatin remodeling complexes is likely to drive oncogenic gene expression programs in specific contexts, ARID1A also binds genome stability regulators such as ATR and TOP2. Here we show that ARID1A loss leads to DNA replication stress associated with R-loops and transcription-replication conflicts in human cells. These effects correlate with altered transcription and replication dynamics in ARID1A knockout cells and to reduced TOP2A binding at R-loop sites. Together this work extends mechanisms of replication stress in ARID1A deficient cells with implications for targeting ARID1A deficient cancers. DNA is an incredibly busy molecule. It is bound by an ever-changing array of proteins, which control how our cells read the instructions encoded within DNA, through a process called transcription. DNA also must be replicated, condensed, and segregated every time a cell divides. These processes of DNA replicating and transcribing must not interfere with one another or the cell risks damage to DNA and potentially changes to the DNA code called mutations. In cancer many DNA transactions are perturbed, and this has been associated with damaging collisions between replication and transcription. Here we find that a gene called ARID1A, which is frequently lost in cancer cells, prevents such collisions between replication and transcription machinery. Loss of ARID1A has many effects on the cell, but in this context it seems to change the location and activity of an important regulator of DNA twisting and untangling called Topoisomerase 2A. Understanding how loss of ARID1A creates stresses on dividing cancer cells provides new opportunities to develop or apply therapies that could exploit this stress.
Collapse
|
41
|
FANCD2 modulates the mitochondrial stress response to prevent common fragile site instability. Commun Biol 2021; 4:127. [PMID: 33514811 PMCID: PMC7846573 DOI: 10.1038/s42003-021-01647-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Common fragile sites (CFSs) are genomic regions frequently involved in cancer-associated rearrangements. Most CFSs lie within large genes, and their instability involves transcription- and replication-dependent mechanisms. Here, we uncover a role for the mitochondrial stress response pathway in the regulation of CFS stability in human cells. We show that FANCD2, a master regulator of CFS stability, dampens the activation of the mitochondrial stress response and prevents mitochondrial dysfunction. Genetic or pharmacological activation of mitochondrial stress signaling induces CFS gene expression and concomitant relocalization to CFSs of FANCD2. FANCD2 attenuates CFS gene transcription and promotes CFS gene stability. Mechanistically, we demonstrate that the mitochondrial stress-dependent induction of CFS genes is mediated by ubiquitin-like protein 5 (UBL5), and that a UBL5-FANCD2 dependent axis regulates the mitochondrial UPR in human cells. We propose that FANCD2 coordinates nuclear and mitochondrial activities to prevent genome instability.
Collapse
|
42
|
Gueiderikh A, Maczkowiak-Chartois F, Rouvet G, Souquère-Besse S, Apcher S, Diaz JJ, Rosselli F. Fanconi anemia A protein participates in nucleolar homeostasis maintenance and ribosome biogenesis. SCIENCE ADVANCES 2021; 7:7/1/eabb5414. [PMID: 33523834 PMCID: PMC7775781 DOI: 10.1126/sciadv.abb5414] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/28/2020] [Indexed: 05/22/2023]
Abstract
Fanconi anemia (FA), the most common inherited bone marrow failure and leukemia predisposition syndrome, is generally attributed to alterations in DNA damage responses due to the loss of function of the DNA repair and replication rescue activities of the FANC pathway. Here, we report that FANCA deficiency, whose inactivation has been identified in two-thirds of FA patients, is associated with nucleolar homeostasis loss, mislocalization of key nucleolar proteins, including nucleolin (NCL) and nucleophosmin 1 (NPM1), as well as alterations in ribosome biogenesis and protein synthesis. FANCA coimmunoprecipitates with NCL and NPM1 in a FANCcore complex-independent manner and, unique among the FANCcore complex proteins, associates with ribosomal subunits, influencing the stoichiometry of the translational machineries. In conclusion, we have identified unexpected nucleolar and translational consequences specifically associated with FANCA deficiency that appears to be involved in both DNA damage and nucleolar stress responses, challenging current hypothesis on FA physiopathology.
Collapse
Affiliation(s)
- Anna Gueiderikh
- CNRS-UMR9019, Équipe labellisée "La Ligue contre le Cancer," 94805 Villejuif, France
- Gustave Roussy Cancer Center, 94805 Villejuif, France
- Université Paris-Saclay-Paris Sud, Orsay, France
| | - Frédérique Maczkowiak-Chartois
- CNRS-UMR9019, Équipe labellisée "La Ligue contre le Cancer," 94805 Villejuif, France
- Gustave Roussy Cancer Center, 94805 Villejuif, France
- Université Paris-Saclay-Paris Sud, Orsay, France
| | - Guillaume Rouvet
- CNRS-UMR9019, Équipe labellisée "La Ligue contre le Cancer," 94805 Villejuif, France
- Gustave Roussy Cancer Center, 94805 Villejuif, France
- Université Paris-Saclay-Paris Sud, Orsay, France
| | - Sylvie Souquère-Besse
- Gustave Roussy Cancer Center, 94805 Villejuif, France
- Université Paris-Saclay-Paris Sud, Orsay, France
- CNRS-UMS3655, 94805 Villejuif, France
| | - Sébastien Apcher
- Gustave Roussy Cancer Center, 94805 Villejuif, France
- Université Paris-Saclay-Paris Sud, Orsay, France
- INSERM-UMR1015, 94805 Villejuif, France
| | - Jean-Jacques Diaz
- Université Lyon, Université Claude Bernard Lyon 1, Inserm 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, 69373 Lyon cedex 08, France
| | - Filippo Rosselli
- CNRS-UMR9019, Équipe labellisée "La Ligue contre le Cancer," 94805 Villejuif, France.
- Gustave Roussy Cancer Center, 94805 Villejuif, France
- Université Paris-Saclay-Paris Sud, Orsay, France
| |
Collapse
|
43
|
Shao X, Joergensen AM, Howlett NG, Lisby M, Oestergaard VH. A distinct role for recombination repair factors in an early cellular response to transcription-replication conflicts. Nucleic Acids Res 2020; 48:5467-5484. [PMID: 32329774 PMCID: PMC7261159 DOI: 10.1093/nar/gkaa268] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/20/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
Transcription-replication (T-R) conflicts are profound threats to genome integrity. However, whilst much is known about the existence of T-R conflicts, our understanding of the genetic and temporal nature of how cells respond to them is poorly established. Here, we address this by characterizing the early cellular response to transient T-R conflicts (TRe). This response specifically requires the DNA recombination repair proteins BLM and BRCA2 as well as a non-canonical monoubiquitylation-independent function of FANCD2. A hallmark of the TRe response is the rapid co-localization of these three DNA repair factors at sites of T-R collisions. We find that the TRe response relies on basal activity of the ATR kinase, yet it does not lead to hyperactivation of this key checkpoint protein. Furthermore, specific abrogation of the TRe response leads to DNA damage in mitosis, and promotes chromosome instability and cell death. Collectively our findings identify a new role for these well-established tumor suppressor proteins at an early stage of the cellular response to conflicts between DNA transcription and replication.
Collapse
Affiliation(s)
- Xin Shao
- Department of Biology, University of Copenhagen, Copenhagen N 2200, Denmark
| | | | - Niall G Howlett
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Vibe H Oestergaard
- Department of Biology, University of Copenhagen, Copenhagen N 2200, Denmark
| |
Collapse
|
44
|
Achar YJ, Foiani M. Ubiquitilated Fanconi ID complex embraces DNA. Cell Res 2020; 30:554-555. [PMID: 32472046 DOI: 10.1038/s41422-020-0345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
| | - Marco Foiani
- IFOM (Fondazione Istituto FIRC di Oncologia Molecolare) Via Adamello 16, 20139, Milan, Italy. .,Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
45
|
Liang F, Miller AS, Tang C, Maranon D, Williamson EA, Hromas R, Wiese C, Zhao W, Sung P, Kupfer GM. The DNA-binding activity of USP1-associated factor 1 is required for efficient RAD51-mediated homologous DNA pairing and homology-directed DNA repair. J Biol Chem 2020; 295:8186-8194. [PMID: 32350107 DOI: 10.1074/jbc.ra120.013714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Indexed: 11/06/2022] Open
Abstract
USP1-associated factor 1 (UAF1) is an integral component of the RAD51-associated protein 1 (RAD51AP1)-UAF1-ubiquitin-specific peptidase 1 (USP1) trimeric deubiquitinase complex. This complex acts on DNA-bound, monoubiquitinated Fanconi anemia complementation group D2 (FANCD2) protein in the Fanconi anemia pathway of the DNA damage response. Moreover, RAD51AP1 and UAF1 cooperate to enhance homologous DNA pairing mediated by the recombinase RAD51 in DNA repair via the homologous recombination (HR) pathway. However, whereas the DNA-binding activity of RAD51AP1 has been shown to be important for RAD51-mediated homologous DNA pairing and HR-mediated DNA repair, the role of DNA binding by UAF1 in these processes is unclear. We have isolated mutant UAF1 variants that are impaired in DNA binding and tested them together with RAD51AP1 in RAD51-mediated HR. This biochemical analysis revealed that the DNA-binding activity of UAF1 is indispensable for enhanced RAD51 recombinase activity within the context of the UAF1-RAD51AP1 complex. In cells, DNA-binding deficiency of UAF1 increased DNA damage sensitivity and impaired HR efficiency, suggesting that UAF1 and RAD51AP1 have coordinated roles in DNA binding during HR and DNA damage repair. Our findings show that even though UAF1's DNA-binding activity is redundant with that of RAD51AP1 in FANCD2 deubiquitination, it is required for efficient HR-mediated chromosome damage repair.
Collapse
Affiliation(s)
- Fengshan Liang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Pediatrics, Section of Hematology-Oncology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Adam S Miller
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Caroline Tang
- Department of Pediatrics, Section of Hematology-Oncology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - David Maranon
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Elizabeth A Williamson
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Robert Hromas
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Gary M Kupfer
- Department of Pediatrics, Section of Hematology-Oncology, Yale University School of Medicine, New Haven, Connecticut, USA .,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
46
|
Liu W, Palovcak A, Li F, Zafar A, Yuan F, Zhang Y. Fanconi anemia pathway as a prospective target for cancer intervention. Cell Biosci 2020; 10:39. [PMID: 32190289 PMCID: PMC7075017 DOI: 10.1186/s13578-020-00401-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Fanconi anemia (FA) is a recessive genetic disorder caused by biallelic mutations in at least one of 22 FA genes. Beyond its pathological presentation of bone marrow failure and congenital abnormalities, FA is associated with chromosomal abnormality and genomic instability, and thus represents a genetic vulnerability for cancer predisposition. The cancer relevance of the FA pathway is further established with the pervasive occurrence of FA gene alterations in somatic cancers and observations of FA pathway activation-associated chemotherapy resistance. In this article we describe the role of the FA pathway in canonical interstrand crosslink (ICL) repair and possible contributions of FA gene alterations to cancer development. We also discuss the perspectives and potential of targeting the FA pathway for cancer intervention.
Collapse
Affiliation(s)
- Wenjun Liu
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
| | - Anna Palovcak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
| | - Fang Li
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
| | - Alyan Zafar
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
| | - Fenghua Yuan
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
| | - Yanbin Zhang
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Gautier Building Room 311, 1011 NW 15th Street, Miami, FL 33136 USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| |
Collapse
|
47
|
Sanchez A, de Vivo A, Tonzi P, Kim J, Huang TT, Kee Y. Transcription-replication conflicts as a source of common fragile site instability caused by BMI1-RNF2 deficiency. PLoS Genet 2020; 16:e1008524. [PMID: 32142505 PMCID: PMC7080270 DOI: 10.1371/journal.pgen.1008524] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/18/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Common fragile sites (CFSs) are breakage-prone genomic loci, and are considered to be hotspots for genomic rearrangements frequently observed in cancers. Understanding the underlying mechanisms for CFS instability will lead to better insight on cancer etiology. Here we show that Polycomb group proteins BMI1 and RNF2 are suppressors of transcription-replication conflicts (TRCs) and CFS instability. Cells depleted of BMI1 or RNF2 showed slower replication forks and elevated fork stalling. These phenotypes are associated with increase occupancy of RNA Pol II (RNAPII) at CFSs, suggesting that the BMI1-RNF2 complex regulate RNAPII elongation at these fragile regions. Using proximity ligase assays, we showed that depleting BMI1 or RNF2 causes increased associations between RNAPII with EdU-labeled nascent forks and replisomes, suggesting increased TRC incidences. Increased occupancy of a fork protective factor FANCD2 and R-loop resolvase RNH1 at CFSs are observed in RNF2 CRISPR-KO cells, which are consistent with increased transcription-associated replication stress in RNF2-deficient cells. Depleting FANCD2 or FANCI proteins further increased genomic instability and cell death of the RNF2-deficient cells, suggesting that in the absence of RNF2, cells depend on these fork-protective factors for survival. These data suggest that the Polycomb proteins have non-canonical roles in suppressing TRC and preserving genomic integrity.
Collapse
Affiliation(s)
- Anthony Sanchez
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida, United States of America
| | - Angelo de Vivo
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida, United States of America
| | - Peter Tonzi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Jeonghyeon Kim
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida, United States of America
| | - Tony T. Huang
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Younghoon Kee
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida, United States of America
| |
Collapse
|
48
|
Brambati A, Zardoni L, Nardini E, Pellicioli A, Liberi G. The dark side of RNA:DNA hybrids. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 784:108300. [PMID: 32430097 DOI: 10.1016/j.mrrev.2020.108300] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/07/2020] [Accepted: 02/23/2020] [Indexed: 12/15/2022]
Abstract
RNA:DNA hybrids form when nascent transcripts anneal to the DNA template strand or any homologous DNA region. Co-transcriptional RNA:DNA hybrids, organized in R-loop structures together with the displaced non-transcribed strand, assist gene expression, DNA repair and other physiological cellular functions. A dark side of the matter is that RNA:DNA hybrids are also a cause of DNA damage and human diseases. In this review, we summarize recent advances in the understanding of the mechanisms by which the impairment of hybrid turnover promotes DNA damage and genome instability via the interference with DNA replication and DNA double-strand break repair. We also discuss how hybrids could contribute to cancer, neurodegeneration and susceptibility to viral infections, focusing on dysfunctions associated with the anti-R-loop helicase Senataxin.
Collapse
Affiliation(s)
- Alessandra Brambati
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, CNR, Via Abbiategrasso 207, 27100, Pavia, Italy.
| | - Luca Zardoni
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, CNR, Via Abbiategrasso 207, 27100, Pavia, Italy; Scuola Universitaria Superiore, IUSS, 27100, Pavia, Italy
| | - Eleonora Nardini
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, CNR, Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Achille Pellicioli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Giordano Liberi
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, CNR, Via Abbiategrasso 207, 27100, Pavia, Italy; IFOM Foundation, Via Adamello 16, 20139, Milan, Italy.
| |
Collapse
|
49
|
Marabitti V, Lillo G, Malacaria E, Palermo V, Pichierri P, Franchitto A. Checkpoint Defects Elicit a WRNIP1-Mediated Response to Counteract R-Loop-Associated Genomic Instability. Cancers (Basel) 2020; 12:cancers12020389. [PMID: 32046194 PMCID: PMC7072626 DOI: 10.3390/cancers12020389] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/04/2022] Open
Abstract
Conflicts between replication and transcription are a common source of genomic instability, a characteristic of almost all human cancers. Aberrant R-loops can cause a block to replication fork progression. A growing number of factors are involved in the resolution of these harmful structures and many perhaps are still unknown. Here, we reveal that the Werner interacting protein 1 (WRNIP1)-mediated response is implicated in counteracting aberrant R-loop accumulation. Using human cellular models with compromised Ataxia-Telangiectasia and Rad3-Related (ATR)-dependent checkpoint activation, we show that WRNIP1 is stabilized in chromatin and is needed for maintaining genome integrity by mediating the Ataxia Telangiectasia Mutated (ATM)-dependent phosphorylation of Checkpoint kinase 1 (CHK1). Furthermore, we demonstrated that loss of Werner Syndrome protein (WRN) or ATR signaling leads to formation of R-loop-dependent parental ssDNA upon mild replication stress, which is covered by Radiorestistance protein 51 (RAD51). We prove that Werner helicase-interacting protein 1 (WRNIP1) chromatin retention is also required to stabilize the association of RAD51 with ssDNA in proximity of R-loops. Therefore, in these pathological contexts, ATM inhibition or WRNIP1 abrogation is accompanied by increased levels of genomic instability. Overall, our findings suggest a novel function for WRNIP1 in preventing R-loop-driven genome instability, providing new clues to understand the way replication–transcription conflicts are handled.
Collapse
|
50
|
Carrasco-Salas Y, Malapert A, Sulthana S, Molcrette B, Chazot-Franguiadakis L, Bernard P, Chédin F, Faivre-Moskalenko C, Vanoosthuyse V. The extruded non-template strand determines the architecture of R-loops. Nucleic Acids Res 2020; 47:6783-6795. [PMID: 31066439 PMCID: PMC6648340 DOI: 10.1093/nar/gkz341] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/16/2019] [Accepted: 04/26/2019] [Indexed: 01/05/2023] Open
Abstract
Three-stranded R-loop structures have been associated with genomic instability phenotypes. What underlies their wide-ranging effects on genome stability remains poorly understood. Here we combined biochemical and atomic force microscopy approaches with single molecule R-loop footprinting to demonstrate that R-loops formed at the model Airn locus in vitro adopt a defined set of three-dimensional conformations characterized by distinct shapes and volumes, which we call R-loop objects. Interestingly, we show that these R-loop objects impose specific physical constraints on the DNA, as revealed by the presence of stereotypical angles in the surrounding DNA. Biochemical probing and mutagenesis experiments revealed that the formation of R-loop objects at Airn is dictated by the extruded non-template strand, suggesting that R-loops possess intrinsic sequence-driven properties. Consistent with this, we show that R-loops formed at the fission yeast gene sum3 do not form detectable R-loop objects. Our results reveal that R-loops differ by their architectures and that the organization of the non-template strand is a fundamental characteristic of R-loops, which could explain that only a subset of R-loops is associated with replication-dependent DNA breaks.
Collapse
Affiliation(s)
- Yeraldinne Carrasco-Salas
- Université de Lyon, ENSL, UCBL, CNRS, Laboratoire de Physique, 46 Allée d'Italie, 69007 Lyon, France
| | - Amélie Malapert
- Université de Lyon, ENSL, UCBL, CNRS, Laboratory of Biology and Modelling of the Cell (LBMC), 46 Allée d'Italie, 69007 Lyon, France
| | - Shaheen Sulthana
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Bastien Molcrette
- Université de Lyon, ENSL, UCBL, CNRS, Laboratoire de Physique, 46 Allée d'Italie, 69007 Lyon, France
| | - Léa Chazot-Franguiadakis
- Université de Lyon, ENSL, UCBL, CNRS, Laboratoire de Physique, 46 Allée d'Italie, 69007 Lyon, France
| | - Pascal Bernard
- Université de Lyon, ENSL, UCBL, CNRS, Laboratory of Biology and Modelling of the Cell (LBMC), 46 Allée d'Italie, 69007 Lyon, France
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | | - Vincent Vanoosthuyse
- Université de Lyon, ENSL, UCBL, CNRS, Laboratory of Biology and Modelling of the Cell (LBMC), 46 Allée d'Italie, 69007 Lyon, France
| |
Collapse
|