1
|
Izadi N, Solár P, Hašanová K, Zamani A, Akbar MS, Mrázová K, Bartošík M, Kazda T, Hrstka R, Joukal M. Breaking boundaries: role of the brain barriers in metastatic process. Fluids Barriers CNS 2025; 22:3. [PMID: 39780275 PMCID: PMC11708195 DOI: 10.1186/s12987-025-00618-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Brain metastases (BMs) are the most common intracranial tumors in adults and occur 3-10 times more frequently than primary brain tumors. Despite intensive multimodal therapies, including resection, radiotherapy, and chemotherapy, BMs are associated with poor prognosis and remain challenging to treat. BMs predominantly originate from primary lung (20-56%), breast (5-20%), and melanoma (7-16%) tumors, although they can arise from other cancer types less frequently. The metastatic cascade is a multistep process involving local invasion, intravasation into the bloodstream or lymphatic system, extravasation into normal tissue, and colonization of the distal site. After reaching the brain, circulating tumor cells (CTCs) breach the blood-brain barrier (BBB).The selective permeability of the BBB poses a significant challenge for therapeutic compounds, limiting the treatment efficacy of BMs. Understanding the mechanisms of tumor cell interactions with the BBB is crucial for the development of effective treatments. This review provides an in-depth analysis of the brain barriers, including the BBB, blood-spinal cord barrier, blood-meningeal barrier, blood-arachnoid barrier, and blood-cerebrospinal fluid barrier. It explores the molecular and cellular components of these barriers and their roles in brain metastasis, highlighting the importance of this knowledge for identifying druggable targets to prevent or limit BM formation.
Collapse
Affiliation(s)
- Nasim Izadi
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic
| | - Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University, St Anne University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Klaudia Hašanová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Maryam Shahidian Akbar
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic
| | - Klára Mrázová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic
| | - Martin Bartošík
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic
| | - Tomáš Kazda
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic.
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
2
|
Dunbar KJ, Efe G, Cunningham K, Esquea E, Navaridas R, Rustgi AK. Regulation of metastatic organotropism. Trends Cancer 2024:S2405-8033(24)00279-6. [PMID: 39732596 DOI: 10.1016/j.trecan.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/30/2024]
Abstract
Metastasis is responsible for most cancer-related deaths. Different cancers have their own preferential sites of metastases, a phenomenon termed metastatic organotropism. The mechanisms underlying organotropism are multifactorial and include the generation of a pre-metastatic niche (PMN), metastatic homing, colonization, dormancy, and metastatic outgrowth. Historically, studies of metastatic organotropism have been limited by a lack of models allowing direct comparison of cells exhibiting different patterns of tropism. However, new innovative models and large-scale sequencing efforts have propelled organotropism research. Herein, we summarize the recent discoveries in metastatic organotropism regulation, focusing on lung, liver, brain, and bone tropism. We discuss how emerging technologies are continuing to improve our ability to model and, hopefully, predict and treat organotropism.
Collapse
Affiliation(s)
- Karen J Dunbar
- Herbert Irving Comprehensive Cancer Center, New York, NY, 10032, USA.
| | - Gizem Efe
- Herbert Irving Comprehensive Cancer Center, New York, NY, 10032, USA; Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Katherine Cunningham
- Herbert Irving Comprehensive Cancer Center, New York, NY, 10032, USA; Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Emily Esquea
- Herbert Irving Comprehensive Cancer Center, New York, NY, 10032, USA; Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Raul Navaridas
- Herbert Irving Comprehensive Cancer Center, New York, NY, 10032, USA; Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, New York, NY, 10032, USA; Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA; Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
3
|
Wang X, Huang W, Sun H, Wang H, Wang D, Wang Y. Tomatidine relieves neuronal damage in spinal cord injury by inhibiting the inflammatory responses and apoptosis through blocking the NF-κB/CXCL10 pathway activation. Front Pharmacol 2024; 15:1503925. [PMID: 39726790 PMCID: PMC11669516 DOI: 10.3389/fphar.2024.1503925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Background Spinal cord injury (SCI) is a neurological disease characterized by high disability and mortality rates. Tomatidine, a natural steroid alkaloid, has been evidenced to have neuroprotective properties. However, the underlying mechanisms of tomatidine in treating SCI remain ambiguous. This study aimed to illustrate the molecular mechanisms of tomatidine in modulating the inflammatory response and promoting functional rehabilitation after SCI. Methods Sprague-Dawley (SD) rats were used to construct an in vivo SCI model and were intraperitoneally injected with tomatidine (5, 10, or 20 mg/kg) for 7 days, followed by treatment with the nuclear factor-κB (NF-κB) pathway agonist (PMA). In addition, lipopolysaccharide (LPS)-induced PC-12 cells were used to establish an SCI cell model and were stimulated with tomatidine, PMA, or a CXCL10 inhibitor. The pathophysiological changes and neurological function were evaluated using blood-brain barrier (BBB) scoring, water content determination, hematoxylin and eosin (H&E) staining, and TUNEL assay. Levels of inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, were measured. Cell proliferation, apoptosis, and the expression of C-X-C motif chemokine ligand 10 (CXCL10) were determined. Moreover, the expression of cleaved-caspase 3, caspase 3, CXCL10, p-p65, and p65 were analyzed. Results Our data revealed that tomatidine promoted neuronal damage recovery, reduced histopathological changes, elevated cell proliferation, and inhibited the apoptosis and inflammatory factor levels in spinal cord tissues and LPS-induced PC-12 cells. Moreover, tomatidine decreased the expression of CXCL10 in vitro and in vivo, which was accompanied by the regulation of the NF-κB pathway. However, the NF-κB pathway agonist PMA reversed the protective effect of tomatidine in vitro. PMA also enhanced the CXCL10 expression and stimulated the activation of the NF-κB pathway, as demonstrated by the upregulation of phosphorylated p65. The CXCL10 inhibitor had effects similar to tomatidine on cleaved-caspase 3 expression, CXCL10 expression, and the NF-κB pathway. Conclusion Tomatidine can alleviate neuronal damage in SCI by inhibiting apoptosis and inflammation through the NF-κB/CXCL10 pathway. Our findings provide a novel therapeutic target and candidate for the treatment of SCI.
Collapse
Affiliation(s)
- Xu Wang
- The Yangzhou School of Clinical Medicine of Nanjing Medical University, Yangzhou, China
- Department of Trauma Surgery, Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Wei Huang
- Health Management Center, Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Hao Sun
- Department of Trauma Surgery, Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Hua Wang
- Department of Trauma Surgery, Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yongxiang Wang
- The Yangzhou School of Clinical Medicine of Nanjing Medical University, Yangzhou, China
- Department of Trauma Surgery, Northern Jiangsu People’s Hospital, Yangzhou, China
| |
Collapse
|
4
|
Garzia L. Astrocytes are enablers of brain metastases. Nat Cell Biol 2024; 26:1632-1633. [PMID: 39349589 DOI: 10.1038/s41556-024-01516-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Affiliation(s)
- Livia Garzia
- Research Institute of the McGill University Health Centre, Department of Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Kim B, Park YY, Lee JH. CXCL10 promotes melanoma angiogenesis and tumor growth. Anim Cells Syst (Seoul) 2024; 28:453-465. [PMID: 39268223 PMCID: PMC11391877 DOI: 10.1080/19768354.2024.2402024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Upregulation of CXC motif chemokine 10 (CXCL10) in melanoma patients has been found to be associated with melanoma progression. However, the role of endogenous CXCL10 from the host in melanoma tumor growth remains unclear. In the present study, we found that host-derived endogenous CXCL10 production was dramatically augmented during subcutaneous B16F10 melanoma tumor growth and that host ablation of CXCL10 in Cxcl10-/- mice showed a decrease in both angiogenesis and tumor growth of B16F10 melanoma in vivo. Several signaling pathways involved in production of pro-angiogenic factors and tumor growth were activated by CXCL10 in B16F10 melanoma cells. CXCL10 increased expression of pro-angiogenic factors, such as vascular endothelial growth factor (VEGF), platelet-derived growth factor subunit-B (PDGF-B), fibroblast growth factor 2 (FGF2), hepatocyte growth factor (HGF), and angiopoietin 2 (Angpt2), in B16F10 melanoma cells, resulting in enhanced tube formation and proliferation of human umbilical vein endothelial cells in vitro. In addition, CXCL10 directly enhanced B16F10 melanoma tumor growth in an in vitro three-dimensional cell culture system. Together, our findings reveal that amplified host-derived endogenous CXCL10 is critical for B16F10 melanoma angiogenesis and tumor growth. Therefore, CXCL10 might represent a therapeutic target for melanoma.
Collapse
Affiliation(s)
- Bongjun Kim
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun-Yong Park
- Department of life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Jong-Ho Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, Republic of Korea
- Department of Biomedical Sciences, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
6
|
Ishibashi K, Hirata E. Multifaceted interactions between cancer cells and glial cells in brain metastasis. Cancer Sci 2024; 115:2871-2878. [PMID: 38992968 PMCID: PMC11462981 DOI: 10.1111/cas.16241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 07/13/2024] Open
Abstract
Cancer brain metastasis has a poor prognosis, is commonly observed in clinical practice, and the number of cases is increasing as overall cancer survival improves. However, experiments in mouse models have shown that brain metastasis itself is an inefficient process. One reason for this inefficiency is the brain microenvironment, which differs significantly from that of other organs, making it difficult for cancer cells to adapt. The brain microenvironment consists of unique resident cell types such as neurons, oligodendrocytes, astrocytes, and microglia. Accumulating evidence over the past decades suggests that the interactions between cancer cells and glial cells can positively or negatively influence the development of brain metastasis. Nevertheless, elucidating the complex interactions between cancer cells and glial cells remains challenging, in part due to the limitations of existing experimental models for glial cell culture. In this review, we first provide an overview of glial cell culture methods and then examine recent discoveries regarding the interactions between brain metastatic cancer cells and the surrounding glial cells, with a special focus on astrocytes and microglia. Finally, we discuss future perspectives for understanding the multifaceted interactions between cancer cells and glial cells for the treatment of metastatic brain tumors.
Collapse
Affiliation(s)
- Kojiro Ishibashi
- Division of Tumor Cell Biology and BioimagingCancer Research Institute of Kanazawa UniversityKanazawaIshikawaJapan
| | - Eishu Hirata
- Division of Tumor Cell Biology and BioimagingCancer Research Institute of Kanazawa UniversityKanazawaIshikawaJapan
- WPI Nano Life Science Institute, Kanazawa UniversityKanazawaIshikawaJapan
| |
Collapse
|
7
|
Du T, Li G, Zong Q, Luo H, Pan Y, Ma K. Nuclear alpha-synuclein accelerates cell senescence and neurodegeneration. Immun Ageing 2024; 21:47. [PMID: 38997709 PMCID: PMC11242018 DOI: 10.1186/s12979-024-00429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/16/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND The progression of Parkinson's disease (PD) is related to ageing. The accumulation of nuclear alpha-synuclein (α-syn) may accelerate the occurrence of neurodegenerative diseases, but its role in PD remains poorly understood. METHODS In the present study, α-syn expression was specifically targeted to the nucleus by constructing an adeno-associated virus (AAV) vector in which a nuclear localization sequence (NLS) was added to the α-syn coding sequence. Virus-mediated gene transfer, behavioural tests, RNA-Seq, immunohistochemistry, western blotting, and quantitative real-time PCR were then performed. RESULTS In vivo experiments using a mouse model showed that nuclear α-syn increased the severity of the PD-like phenotype, including the loss of dopaminergic neurons concomitant with motor impairment and the formation of α-syn inclusions. These nuclear inclusions contained α-syn species of high molecular weights and induced strong transcriptional dysregulation, especially induced high expression of p21 and senescence-associated secretory phenotype (SASP)-related genes. In addition, the transcriptional alterations induced by nuclear α-syn were associated with gliosis, inflammation, oxidative and DNA damage, and lysosomal dysfunction, and they eventually accelerated neuronal loss and neurodegeneration. CONCLUSIONS Our results suggest that nuclear α-syn plays a crucial role in PD pathogenesis.
Collapse
Affiliation(s)
- Tingfu Du
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Guoxiang Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Qinglan Zong
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Haiyu Luo
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Yue Pan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Kaili Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China.
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming, 650118, China.
| |
Collapse
|
8
|
Pozzi S, Satchi-Fainaro R. The role of CCL2/CCR2 axis in cancer and inflammation: The next frontier in nanomedicine. Adv Drug Deliv Rev 2024; 209:115318. [PMID: 38643840 DOI: 10.1016/j.addr.2024.115318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
The communication between cells and their microenvironment represents an intrinsic and essential attribute that takes place in several biological processes, including tissue homeostasis and tissue repair. Among these interactions, inflammation is certainly a central biological response that occurs through cytokines and the crosstalk with their respective receptors. In particular, the interaction between CCL2 and its main receptor, CCR2, plays a pivotal role in both harmful and protective inflammatory states, including cancer-mediated inflammation. The activation of the CCL2/CCR2 axis was shown to dictate the migration of macrophages with immune-suppressive phenotype and to aggravate the progression of different cancer types. In addition, this interaction mediates metastasis formation, further limiting the potential therapeutic outcome of anti-cancer drugs. Attempts to inhibit pharmacologically the CCL2/CCR2 axis have yet to show its anti-cancer efficacy as a single agent, but it sheds light on its role as a powerful tool to selectively alleviate pro-tumorigenic and anti-repair inflammation. In this review, we will elucidate the role of CCL2/CCR2 axis in promoting cancer inflammation by activating the host pro-tumorigenic phenotype. Moreover, we will provide some insight into the potential therapeutic benefit of targeting the CCL2/CCR2 axis for cancer and inflammation using novel delivery systems, aiming to sensitize non-responders to currently approved immunotherapies and offer new combinatory approaches.
Collapse
Affiliation(s)
- Sabina Pozzi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Sagol School of Neurosciences, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
9
|
Sampaio MCPD, Santos RVC, Albuquerque APDB, Soares AKDA, Cordeiro MF, da Rosa MM, Pereira MC, da Rocha Pitta MG, Rêgo MJBDM. Induction of SK-MEL-28 Invasion by Brain Cortical Cell-Conditioned Medium Through CXCL10 Signaling. J Interferon Cytokine Res 2024; 44:198-207. [PMID: 38512222 DOI: 10.1089/jir.2023.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Melanoma, an infrequent yet significant variant of skin cancer, emerges as a primary cause of brain metastasis among various malignancies. Despite recognizing the involvement of inflammatory molecules, particularly chemokines, in shaping the metastatic microenvironment, the intricate cellular signaling mechanisms underlying cerebral metastasis remain elusive. In our pursuit to unravel the role of cytokines in melanoma metastasis, we devised a protocol utilizing mixed cerebral cortical cells and SK-MEL-28 melanoma cell lines. Contrary to expectations, we observed no discernible morphological change in melanoma cells exposed to a cerebral conditioned medium (CM). However, a substantial increase in both migration and proliferation was quantitatively noted. Profiling the chemokine secretion by melanoma in response to the cerebral CM unveiled the pivotal role of interferon gamma-induced protein 10 (CXCL10), inhibiting the secretion of interleukin 8 (CXCL8). Furthermore, through a transwell assay, we demonstrated that knockdown CXCL10 led to a significant decrease in the migration of the SK-MEL-28 cell line. In conclusion, our findings suggest that a cerebral CM induces melanoma cell migration, while modulating the secretion of CXCL10 and CXCL8 in the context of brain metastases. These insights advance our understanding of the underlying mechanisms in melanoma cerebral metastasis, paving the way for further exploration and targeted therapeutic interventions.
Collapse
Affiliation(s)
- Maria Clara Pinheiro Duarte Sampaio
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Renata Virgínia Cavalcanti Santos
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Amanda Pinheiro de Barros Albuquerque
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | | | - Marina Ferraz Cordeiro
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Michelle Melgarejo da Rosa
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Michelly Cristiny Pereira
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Maira Galdino da Rocha Pitta
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Moacyr Jesus Barreto de Melo Rêgo
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
10
|
Bejarano L, Kauzlaric A, Lamprou E, Lourenco J, Fournier N, Ballabio M, Colotti R, Maas R, Galland S, Massara M, Soukup K, Lilja J, Brouland JP, Hottinger AF, Daniel RT, Hegi ME, Joyce JA. Interrogation of endothelial and mural cells in brain metastasis reveals key immune-regulatory mechanisms. Cancer Cell 2024; 42:378-395.e10. [PMID: 38242126 DOI: 10.1016/j.ccell.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/11/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Brain metastasis (BrM) is a common malignancy, predominantly originating from lung, melanoma, and breast cancers. The vasculature is a key component of the BrM tumor microenvironment with critical roles in regulating metastatic seeding and progression. However, the heterogeneity of the major BrM vascular components, namely endothelial and mural cells, is still poorly understood. We perform single-cell and bulk RNA-sequencing of sorted vascular cell types and detect multiple subtypes enriched specifically in BrM compared to non-tumor brain, including previously unrecognized immune regulatory subtypes. We integrate the human data with mouse models, creating a platform to interrogate vascular targets for the treatment of BrM. We find that the CD276 immune checkpoint molecule is significantly upregulated in the BrM vasculature, and anti-CD276 blocking antibodies prolonged survival in preclinical trials. This study provides important insights into the complex interactions between the vasculature, immune cells, and cancer cells, with translational relevance for designing therapeutic interventions.
Collapse
Affiliation(s)
- Leire Bejarano
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Annamaria Kauzlaric
- Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Translational Data Science Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Eleni Lamprou
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Joao Lourenco
- Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Translational Data Science Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nadine Fournier
- Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Translational Data Science Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Michelle Ballabio
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland
| | - Roberto Colotti
- In Vivo Imaging Facility (IVIF), University of Lausanne, Lausanne, Switzerland
| | - Roeltje Maas
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Sabine Galland
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Matteo Massara
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Klara Soukup
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland
| | - Johanna Lilja
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland
| | - Jean-Philippe Brouland
- Department of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Andreas F Hottinger
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Roy T Daniel
- Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Monika E Hegi
- Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Neuroscience Research Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| |
Collapse
|
11
|
Monteran L, Zait Y, Erez N. It's all about the base: stromal cells are central orchestrators of metastasis. Trends Cancer 2024; 10:208-229. [PMID: 38072691 DOI: 10.1016/j.trecan.2023.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 03/16/2024]
Abstract
The tumor microenvironment (TME) is an integral part of tumors and plays a central role in all stages of carcinogenesis and progression. Each organ has a unique and heterogeneous microenvironment, which affects the ability of disseminated cells to grow in the new and sometimes hostile metastatic niche. Resident stromal cells, such as fibroblasts, osteoblasts, and astrocytes, are essential culprits in the modulation of metastatic progression: they transition from being sentinels of tissue integrity to being dysfunctional perpetrators that support metastatic outgrowth. Therefore, better understanding of the complexity of their reciprocal interactions with cancer cells and with other components of the TME is essential to enable the design of novel therapeutic approaches to prevent metastatic relapse.
Collapse
Affiliation(s)
- Lea Monteran
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Zait
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Erez
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
12
|
Ju W, Cai HH, Zheng W, Li DM, Zhang W, Yang XH, Yan ZX. Cross‑talk between lymphangiogenesis and malignant melanoma cells: New opinions on tumour drainage and immunization (Review). Oncol Lett 2024; 27:81. [PMID: 38249813 PMCID: PMC10797314 DOI: 10.3892/ol.2024.14215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Malignant melanoma (MM) is a highly aggressive tumour that can easily metastasize through the lymphatic system at the early stages. Lymph node (LN) involvement and lymphatic vessel (LV) density (LVD) represent a harbinger of an adverse prognosis, indicating a strong link between the state of the lymphatic system and the advancement of MM. Permeable capillary lymphatic vessels are the optimal conduits for melanoma cell (MMC) invasion, and lymphatic endothelial cells (LECs) can also release a variety of chemokines that actively attract MMCs expressing chemokine ligands through a gradient orientation. Moreover, due to the lower oxidative stress environment in the lymph compared with the blood circulation, MMCs are more likely to survive and colonize. The number of LVs surrounding MM is associated with tumour-infiltrating lymphocytes (TILs), which is crucial for the effectiveness of immunotherapy. On the other hand, MMCs can release various endothelial growth factors such as VEGF-C/D-VEGFR3 to mediate LN education and promote lymphangiogenesis. Tumour-derived extracellular vesicles are also used to promote lymphangiogenesis and create a microenvironment that is more conducive to tumour progression. MM is surrounded by a large number of lymphocytes. However, both LECs and MMCs are highly plastic, playing multiple roles in evading immune surveillance. They achieve this by expressing inhibitory ligands or reducing antigen recognition. In recent years, tertiary lymphoid structures have been shown to be associated with response to anti-immune checkpoint therapy, which is often a positive prognostic feature in MM. The present review discusses the interaction between lymphangiogenesis and MM metastasis, and it was concluded that the relationship between LVD and TILs and patient prognosis is analogous to a dynamically tilted scale.
Collapse
Affiliation(s)
- Wei Ju
- Department of Burns and Plastic Surgery, The Fourth People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Hong-Hua Cai
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Wei Zheng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - De-Ming Li
- Department of Burns and Plastic Surgery, The Fourth People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
| | - Wei Zhang
- Department of Burns and Plastic Surgery, The Fourth People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
| | - Xi-Hu Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Zhi-Xin Yan
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| |
Collapse
|
13
|
Shapir Itai Y, Barboy O, Salomon R, Bercovich A, Xie K, Winter E, Shami T, Porat Z, Erez N, Tanay A, Amit I, Dahan R. Bispecific dendritic-T cell engager potentiates anti-tumor immunity. Cell 2024; 187:375-389.e18. [PMID: 38242085 DOI: 10.1016/j.cell.2023.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/24/2023] [Accepted: 12/05/2023] [Indexed: 01/21/2024]
Abstract
Immune checkpoint inhibition treatment using aPD-1 monoclonal antibodies is a promising cancer immunotherapy approach. However, its effect on tumor immunity is narrow, as most patients do not respond to the treatment or suffer from recurrence. We show that the crosstalk between conventional type I dendritic cells (cDC1) and T cells is essential for an effective aPD-1-mediated anti-tumor response. Accordingly, we developed a bispecific DC-T cell engager (BiCE), a reagent that facilitates physical interactions between PD-1+ T cells and cDC1. BiCE treatment promotes the formation of active dendritic/T cell crosstalk in the tumor and tumor-draining lymph nodes. In vivo, single-cell and physical interacting cell analysis demonstrates the distinct and superior immune reprogramming of the tumors and tumor-draining lymph nodes treated with BiCE as compared to conventional aPD-1 treatment. By bridging immune cells, BiCE potentiates cell circuits and communication pathways needed for effective anti-tumor immunity.
Collapse
Affiliation(s)
- Yuval Shapir Itai
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Oren Barboy
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ran Salomon
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Akhiad Bercovich
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ken Xie
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eitan Winter
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tamar Shami
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ziv Porat
- Flow Cytometry Unit, Life Science Core Facility, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Neta Erez
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Rony Dahan
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
14
|
Liu W. The Involvement of Cysteine-X-Cysteine Motif Chemokine Receptors in Skin Homeostasis and the Pathogenesis of Allergic Contact Dermatitis and Psoriasis. Int J Mol Sci 2024; 25:1005. [PMID: 38256077 PMCID: PMC10815665 DOI: 10.3390/ijms25021005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Members of the C-X-C motif chemokine receptor (CXCR) superfamily play central roles in initiating the innate immune response in mammalian cells by orchestrating selective cell migration and immune cell activation. With its multilayered structure, the skin, which is the largest organ in the body, performs a crucial defense function, protecting the human body from harmful environmental threats and pathogens. CXCRs contribute to primary immunological defense; these receptors are differentially expressed by different types of skin cells and act as key players in initiating downstream innate immune responses. While the initiation of inflammatory responses by CXCRs is essential for pathogen elimination and tissue healing, overactivation of these receptors can enhance T-cell-mediated autoimmune responses, resulting in excessive inflammation and the development of several skin disorders, including psoriasis, atopic dermatitis, allergic contact dermatitis, vitiligo, autoimmune diseases, and skin cancers. In summary, CXCRs serve as critical links that connect innate immunity and adaptive immunity. In this article, we present the current knowledge about the functions of CXCRs in the homeostasis function of the skin and their contributions to the pathogenesis of allergic contact dermatitis and psoriasis. Furthermore, we will examine the research progress and efficacy of therapeutic approaches that target CXCRs.
Collapse
Affiliation(s)
- Wenjie Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
15
|
Zhou D, Gong Z, Wu D, Ma C, Hou L, Niu X, Xu T. Harnessing immunotherapy for brain metastases: insights into tumor-brain microenvironment interactions and emerging treatment modalities. J Hematol Oncol 2023; 16:121. [PMID: 38104104 PMCID: PMC10725587 DOI: 10.1186/s13045-023-01518-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023] Open
Abstract
Brain metastases signify a deleterious milestone in the progression of several advanced cancers, predominantly originating from lung, breast and melanoma malignancies, with a median survival timeframe nearing six months. Existing therapeutic regimens yield suboptimal outcomes; however, burgeoning insights into the tumor microenvironment, particularly the immunosuppressive milieu engendered by tumor-brain interplay, posit immunotherapy as a promising avenue for ameliorating brain metastases. In this review, we meticulously delineate the research advancements concerning the microenvironment of brain metastases, striving to elucidate the panorama of their onset and evolution. We encapsulate three emergent immunotherapeutic strategies, namely immune checkpoint inhibition, chimeric antigen receptor (CAR) T cell transplantation and glial cell-targeted immunoenhancement. We underscore the imperative of aligning immunotherapy development with in-depth understanding of the tumor microenvironment and engendering innovative delivery platforms. Moreover, the integration with established or avant-garde physical methodologies and localized applications warrants consideration in the prevailing therapeutic schema.
Collapse
Affiliation(s)
- Dairan Zhou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
| | - Zhenyu Gong
- Department of Neurosurgery, Klinikum Rechts Der Isar, Technical University of Munich, Munich, 81675, Germany
| | - Dejun Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Chao Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China
| | - Xiaomin Niu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 241 Huaihai West Road, Xuhui District, Shanghai, 200030, People's Republic of China.
| | - Tao Xu
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai, 200003, People's Republic of China.
| |
Collapse
|
16
|
Huang X, Yang C, Huang M. Protective mechanism of the EZH2/microRNA-15a-5p/CXCL10 axis in rats with depressive-like behaviors. J Chem Neuroanat 2023; 132:102283. [PMID: 37146769 DOI: 10.1016/j.jchemneu.2023.102283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
OBJECTIVE Enhancer of zeste homolog 2 (EZH2), microRNA-15a-5p (miR-15a-5p), and chemokine C-X-C ligand 10 (CXCL10) have been studied in many diseases. However, the investigation of the EZH2/miR-15a-5p/CXCL10 axis in depression is not sufficient. Our study aimed to investigate the regulatory functions of the EZH2/miR-15a-5p/CXCL10 axis in rats with depressive-like behaviors. METHODS The rat model of depression-like behaviors was established by chronic unpredictable mild stress (CUMS), and EZH2, miR-15a-5p, and CXCL10 expression levels in rats with depression-like behaviors were detected. The silenced EZH2 or enhanced miR-15a-5p recombinant lentivirus was injected into the rats with depression-like behaviors to assess the changes in behavioral tests, hippocampal pathological structure, levels of inflammatory cytokines in the hippocampus, and hippocampal neuron apoptosis. The regulatory relationships among EZH2, miR-15a-5p, and CXCL10 were measured. RESULTS miR-15a-5p expression was reduced, and EZH2 and CXCL10 expression levels were elevated in rats with depressive-like behaviors. Downregulation of EZH2 or elevation of miR-15a-5p improved depressive behavior, and inhibited hippocampal inflammatory response and hippocampal neuron apoptosis. EZH2 promoted histone methylation at the promoter of miR-15a-5p, and miR-15a-5p bound to CXCL10 to inhibit its expression. CONCLUSION Our study summarizes that EZH2 promotes the hypermethylation of the miR-15a-5p promoter, thereby promoting CXCL10 expression. Upregulation of miR-15a-5p or inhibition of EZH2 can improve the symptoms in rats with depressive-like behaviors.
Collapse
Affiliation(s)
- Xuezhu Huang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610000, Sichuan, China; Mental Medicine College, The Medical University of Wenzhou, Wenzhou 325000 Zhejiang, China; Clinical Psychology Department, Nanchong Centre Hospital Affiliated to the Medical College of North Sichuan, Nanchong 637000, Sichuan, China.
| | - Chuang Yang
- Department of Psychiatry, the No. 1 Hospital Affiliated to The Medical University of Wenzhou, Wenzhou 325000 Zhejiang, China
| | - Min Huang
- Clinical Psychology Department, Nanchong Centre Hospital Affiliated to The Medical College of North Sichuan, Nanchong 637000, Sichuan, China
| |
Collapse
|
17
|
McDonald B, Barth K, Schmidt MHH. The origin of brain malignancies at the blood-brain barrier. Cell Mol Life Sci 2023; 80:282. [PMID: 37688612 PMCID: PMC10492883 DOI: 10.1007/s00018-023-04934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
Despite improvements in extracranial therapy, survival rate for patients suffering from brain metastases remains very poor. This is coupled with the incidence of brain metastases continuing to rise. In this review, we focus on core contributions of the blood-brain barrier to the origin of brain metastases. We first provide an overview of the structure and function of the blood-brain barrier under physiological conditions. Next, we discuss the emerging idea of a pre-metastatic niche, namely that secreted factors and extracellular vesicles from a primary tumor site are able to travel through the circulation and prime the neurovasculature for metastatic invasion. We then consider the neurotropic mechanisms that circulating tumor cells possess or develop that facilitate disruption of the blood-brain barrier and survival in the brain's parenchyma. Finally, we compare and contrast brain metastases at the blood-brain barrier to the primary brain tumor, glioma, examining the process of vessel co-option that favors the survival and outgrowth of brain malignancies.
Collapse
Affiliation(s)
- Brennan McDonald
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany.
| | - Kathrin Barth
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Dresden, Germany
| |
Collapse
|
18
|
Chandra S, Di Meco A, Dodiya HB, Popovic J, Cuddy LK, Weigle IQ, Zhang X, Sadleir K, Sisodia SS, Vassar R. The gut microbiome regulates astrocyte reaction to Aβ amyloidosis through microglial dependent and independent mechanisms. Mol Neurodegener 2023; 18:45. [PMID: 37415149 DOI: 10.1186/s13024-023-00635-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Previous studies show that antibiotic-mediated (abx) alteration of the gut microbiome (GMB) results in a reduction of amyloid beta (Aβ) plaques and proinflammatory microglial phenotype in male APPPS1-21 mice. However, the effect of GMB perturbation on astrocyte phenotypes and microglial-astrocyte communication in the context of amyloidosis has not been examined. METHODS To study whether the GMB modulates astrocyte phenotype in the context of amyloidosis, APPPS1-21 male and female mice were treated with broad-spectrum abx leading to GMB perturbation. GFAP + astrocytes, plaque-associated astrocytes (PAA), PAA morphological parameters, and astrocyte complement component C3 levels were quantified using a combination of immunohistochemistry, immunoblotting, widefield microscopy, and confocal microscopy. Furthermore, these same astrocyte phenotypes were assessed in abx-treated APPPS1-21 male mice that received either fecal matter transplant (FMT) from untreated APPPS1-21 male donors to restore their microbiome or vehicle control. To assess complete absence of the GMB on astrocyte phenotypes, the same astrocyte phenotypes were quantified in APPPS1-21 male mice raised in germ-free (GF) or specific-pathogen free conditions (SPF). Lastly, we assessed whether microglia are necessary for abx-induced astrocyte phenotypes by depleting microglia in APPPS1-21 male mice via treatment with a colony-stimulating factor 1 receptor (CSF1R) inhibitor (PLX5622) and vehicle control or PLX5622 and abx. RESULTS Herein, we demonstrate that postnatal treatment of male APPPS1-21 mice with broad-spectrum abx leading to GMB perturbation reduces GFAP + reactive astrocytes and PAAs, suggesting that the GMB plays a role in regulating reactive astrocyte induction and recruitment to Aβ plaques. Additionally, we show that compared to controls, PAAs in abx-treated male APPPS1-21 mice exhibit an altered morphology with increased number and length of processes and reduced astrocytic complement C3, consistent with a homeostatic phenotype. GFAP + astrocyte reduction, PAA reduction, astrocyte morphological changes, and C3 levels are restored when abx-treated mice are subject to FMT from untreated APPPS1-21 male donor mice. Next, we found that APPPS1-21 male mice raised in GF conditions have similar astrocyte phenotypes as abx-treated male APPPS1-21 male mice. Correlational analysis revealed that pathogenic bacteria depleted by abx correlate with GFAP + astrocytosis, PAAs, and astrocyte morphological changes. Finally, we determined that abx-mediated reduction in GFAP + astrocytosis, PAAs, and astrocytic C3 expression is independent of microglia. However, abx-induced astrocyte morphological alterations are dependent on the presence of microglia, suggesting that there is both microglial independent and dependent GMB control of reactive astrocyte phenotypes. CONCLUSIONS We show for the first time, in the context of amyloidosis, that the GMB plays an important role in controlling reactive astrocyte induction, morphology, and astrocyte recruitment to Aβ plaques. GMB regulation of these astrocytic phenotypes is both independent and dependent on microglia.
Collapse
Affiliation(s)
- Sidhanth Chandra
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Antonio Di Meco
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Hemraj B Dodiya
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Jelena Popovic
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Leah K Cuddy
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Ian Q Weigle
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Xiaoqiong Zhang
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Katherine Sadleir
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sangram S Sisodia
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| | - Robert Vassar
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Northwestern University, Tarry Building Room 8-711, 300 East Superior Street, Chicago, IL, 60611, USA.
| |
Collapse
|
19
|
Geissler M, Jia W, Kiraz EN, Kulacz I, Liu X, Rombach A, Prinz V, Jussen D, Kokkaliaris KD, Medyouf H, Sevenich L, Czabanka M, Broggini T. The Brain Pre-Metastatic Niche: Biological and Technical Advancements. Int J Mol Sci 2023; 24:10055. [PMID: 37373202 DOI: 10.3390/ijms241210055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Metastasis, particularly brain metastasis, continues to puzzle researchers to this day, and exploring its molecular basis promises to break ground in developing new strategies for combatting this deadly cancer. In recent years, the research focus has shifted toward the earliest steps in the formation of metastasis. In this regard, significant progress has been achieved in understanding how the primary tumor affects distant organ sites before the arrival of tumor cells. The term pre-metastatic niche was introduced for this concept and encompasses all influences on sites of future metastases, ranging from immunological modulation and ECM remodeling to the softening of the blood-brain barrier. The mechanisms governing the spread of metastasis to the brain remain elusive. However, we begin to understand these processes by looking at the earliest steps in the formation of metastasis. This review aims to present recent findings on the brain pre-metastatic niche and to discuss existing and emerging methods to further explore the field. We begin by giving an overview of the pre-metastatic and metastatic niches in general before focusing on their manifestations in the brain. To conclude, we reflect on the methods usually employed in this field of research and discuss novel approaches in imaging and sequencing.
Collapse
Affiliation(s)
- Maximilian Geissler
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Weiyi Jia
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Emine Nisanur Kiraz
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Ida Kulacz
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Xiao Liu
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Adrian Rombach
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Vincent Prinz
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Daniel Jussen
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
| | - Konstantinos D Kokkaliaris
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| | - Hind Medyouf
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60528 Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lisa Sevenich
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60528 Frankfurt am Main, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marcus Czabanka
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| | - Thomas Broggini
- Department of Neurosurgery, University Hospital, Goethe-University, 60528 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| |
Collapse
|
20
|
Alsabbagh R, Ahmed M, Alqudah MAY, Hamoudi R, Harati R. Insights into the Molecular Mechanisms Mediating Extravasation in Brain Metastasis of Breast Cancer, Melanoma, and Lung Cancer. Cancers (Basel) 2023; 15:cancers15082258. [PMID: 37190188 DOI: 10.3390/cancers15082258] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Brain metastasis is an incurable end-stage of systemic cancer associated with poor prognosis, and its incidence is increasing. Brain metastasis occurs through a multi-step cascade where cancer cells spread from the primary tumor site to the brain. The extravasation of tumor cells through the blood-brain barrier (BBB) is a critical step in brain metastasis. During extravasation, circulating cancer cells roll along the brain endothelium (BE), adhere to it, then induce alterations in the endothelial barrier to transmigrate through the BBB and enter the brain. Rolling and adhesion are generally mediated by selectins and adhesion molecules induced by inflammatory mediators, while alterations in the endothelial barrier are mediated by proteolytic enzymes, including matrix metalloproteinase, and the transmigration step mediated by factors, including chemokines. However, the molecular mechanisms mediating extravasation are not yet fully understood. A better understanding of these mechanisms is essential as it may serve as the basis for the development of therapeutic strategies for the prevention or treatment of brain metastases. In this review, we summarize the molecular events that occur during the extravasation of cancer cells through the blood-brain barrier in three types of cancer most likely to develop brain metastasis: breast cancer, melanoma, and lung cancer. Common molecular mechanisms driving extravasation in these different tumors are discussed.
Collapse
Affiliation(s)
- Rama Alsabbagh
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Munazza Ahmed
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad A Y Alqudah
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Rifat Hamoudi
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London W1W 7EJ, UK
| | - Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
21
|
Adler O, Zait Y, Cohen N, Blazquez R, Doron H, Monteran L, Scharff Y, Shami T, Mundhe D, Glehr G, Kanner AA, Horn S, Yahalom V, Haferkamp S, Hutchinson JA, Bleckmann A, Nahary L, Benhar I, Yust Katz S, Pukrop T, Erez N. Reciprocal interactions between innate immune cells and astrocytes facilitate neuroinflammation and brain metastasis via lipocalin-2. NATURE CANCER 2023; 4:401-418. [PMID: 36797502 DOI: 10.1038/s43018-023-00519-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/17/2023] [Indexed: 04/19/2023]
Abstract
Brain metastasis still encompass very grim prognosis and therefore understanding the underlying mechanisms is an urgent need toward developing better therapeutic strategies. We uncover the intricate interactions between recruited innate immune cells and resident astrocytes in the brain metastatic niche that facilitate metastasis of melanoma and breast cancer. We show that granulocyte-derived lipocalin-2 (LCN2) induces inflammatory activation of astrocytes, leading to myeloid cell recruitment to the brain. LCN2 is central to inducing neuroinflammation as its genetic targeting or bone-marrow transplantation from LCN2-/- mice was sufficient to attenuate neuroinflammation and inhibit brain metastasis. Moreover, high LCN2 levels in patient blood and brain metastases in multiple cancer types were strongly associated with disease progression and poor survival. Our findings uncover a previously unknown mechanism, establishing a central role for the reciprocal interactions between granulocytes and astrocytes in promoting brain metastasis and implicate LCN2 as a prognostic marker and potential therapeutic target.
Collapse
Affiliation(s)
- Omer Adler
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Zait
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Cohen
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Raquel Blazquez
- Department of Internal Medicine III, Hematology and Medical Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Hila Doron
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lea Monteran
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yeela Scharff
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Shami
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dhanashree Mundhe
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gunther Glehr
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Andrew A Kanner
- Department of Neurosurgery, Rabin Medical Center and Sackler Faculty of Medicine Tel Aviv University, Tel Aviv, Israel
| | - Suzana Horn
- Department of Pathology, Rabin Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Vered Yahalom
- Blood Services & Apheresis Institute, Rabin Medical Center and Tel Aviv University, Tel Aviv, Israel
| | - Sebastian Haferkamp
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - James A Hutchinson
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Annalen Bleckmann
- Department of Hematology/Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
- Medical Clinic A, Haematology, Haemostasiology, Oncology and Pulmonology, University Hospital Münster, Münster, Germany
- West German Cancer Center, University Hospital Münster, Münster, Germany
| | - Limor Nahary
- The Shmunis School of Biomedicine and Cancer Research, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Itai Benhar
- The Shmunis School of Biomedicine and Cancer Research, the George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shlomit Yust Katz
- Neuro-Oncology Unit, Davidoff Cancer Center at Rabin Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Medical Oncology, University Hospital Regensburg, Regensburg, Germany
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Neta Erez
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
22
|
Nascentes Melo LM, Kumar S, Riess V, Szylo KJ, Eisenburger R, Schadendorf D, Ubellacker JM, Tasdogan A. Advancements in melanoma cancer metastasis models. Pigment Cell Melanoma Res 2023; 36:206-223. [PMID: 36478190 DOI: 10.1111/pcmr.13078] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/15/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Metastatic melanoma is a complex and deadly disease. Due to its complexity, the development of novel therapeutic strategies to inhibit metastatic melanoma remains an outstanding challenge. Our ability to study metastasis is advanced with the development of in vitro and in vivo models that better mimic the different steps of the metastatic cascade beginning from primary tumor initiation to final metastatic seeding. In this review, we provide a comprehensive summary of in vitro models, in vivo models, and in silico platforms to study the individual steps of melanoma metastasis. Furthermore, we highlight the advantages and limitations of each model and discuss the challenges of how to improve current models to enhance translation for melanoma cancer patients and future therapies.
Collapse
Affiliation(s)
| | - Suresh Kumar
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Valeria Riess
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Krystina J Szylo
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Robin Eisenburger
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Jessalyn M Ubellacker
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| |
Collapse
|
23
|
Chen WW, Chu TSM, Xu L, Zhao CN, Poon WS, Leung GKK, Kong FMS. Immune related biomarkers for cancer metastasis to the brain. Exp Hematol Oncol 2022; 11:105. [PMID: 36527157 PMCID: PMC9756766 DOI: 10.1186/s40164-022-00349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/14/2022] [Indexed: 12/23/2022] Open
Abstract
Brain metastasis accounts for a large number of cancer-related deaths. The host immune system, involved at each step of the metastatic cascade, plays an important role in both the initiation of the brain metastasis and their treatment responses to various modalities, through either local and or systemic effect. However, few reliable immune biomarkers have been identified in predicting the development and the treatment outcome in patients with cancer brain metastasis. Here, we provide a focused perspective of immune related biomarkers for cancer metastasis to the brain and a thorough discussion of the potential utilization of specific biomarkers such as tumor mutation burden (TMB), genetic markers, circulating and tumor-infiltrating immune cells, cytokines, in predicting the brain disease progression and regression after therapeutic intervention. We hope to inspire the field to extend the research and establish practical guidelines for developing and validating immune related biomarkers to provide personalized treatment and improve treatment outcomes in patients with metastatic brain cancers.
Collapse
Affiliation(s)
- Wei-Wei Chen
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Timothy Shun Man Chu
- Royal Victoria Infirmary, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle Upon Tyne, NE1 4LP, UK
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - LiangLiang Xu
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cai-Ning Zhao
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Wai-Sang Poon
- Neuro-Medical Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Surgery, School of Clinical Medicine,LKS Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Gilberto Ka-Kit Leung
- Department of Surgery, School of Clinical Medicine,LKS Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Feng-Ming Spring Kong
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, SAR, China.
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
24
|
Elizalde-Díaz JP, Miranda-Narváez CL, Martínez-Lazcano JC, Martínez-Martínez E. The relationship between chronic immune response and neurodegenerative damage in long COVID-19. Front Immunol 2022; 13:1039427. [PMID: 36591299 PMCID: PMC9800881 DOI: 10.3389/fimmu.2022.1039427] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
In the past two years, the world has faced the pandemic caused by the severe acute respiratory syndrome 2 coronavirus (SARS-CoV-2), which by August of 2022 has infected around 619 million people and caused the death of 6.55 million individuals globally. Although SARS-CoV-2 mainly affects the respiratory tract level, there are several reports, indicating that other organs such as the heart, kidney, pancreas, and brain can also be damaged. A characteristic observed in blood serum samples of patients suffering COVID-19 disease in moderate and severe stages, is a significant increase in proinflammatory cytokines such as interferon-α (IFN-α), interleukin-1β (IL-1β), interleukin-2 (IL-2), interleukin-6 (IL-6) and interleukin-18 (IL-18), as well as the presence of autoantibodies against interferon-α (IFN-α), interferon-λ (IFN-λ), C-C motif chemokine ligand 26 (CCL26), CXC motif chemokine ligand 12 (CXCL12), family with sequence similarity 19 (chemokine (C-C motif)-like) member A4 (FAM19A4), and C-C motif chemokine ligand 1 (CCL1). Interestingly, it has been described that the chronic cytokinemia is related to alterations of blood-brain barrier (BBB) permeability and induction of neurotoxicity. Furthermore, the generation of autoantibodies affects processes such as neurogenesis, neuronal repair, chemotaxis and the optimal microglia function. These observations support the notion that COVID-19 patients who survived the disease present neurological sequelae and neuropsychiatric disorders. The goal of this review is to explore the relationship between inflammatory and humoral immune markers and the major neurological damage manifested in post-COVID-19 patients.
Collapse
Affiliation(s)
- José Pedro Elizalde-Díaz
- Laboratory of Cell Communication & Extracellular Vesicles, Division of Basic Science, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | - Clara Leticia Miranda-Narváez
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - Juan Carlos Martínez-Lazcano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - Eduardo Martínez-Martínez
- Laboratory of Cell Communication & Extracellular Vesicles, Division of Basic Science, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| |
Collapse
|
25
|
Maurya SK, Khan P, Rehman AU, Kanchan RK, Perumal N, Mahapatra S, Chand HS, Santamaria-Barria JA, Batra SK, Nasser MW. Rethinking the chemokine cascade in brain metastasis: Preventive and therapeutic implications. Semin Cancer Biol 2022; 86:914-930. [PMID: 34968667 PMCID: PMC9234104 DOI: 10.1016/j.semcancer.2021.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 01/27/2023]
Abstract
Brain metastasis (BrM) is one of the major causes of death in cancer patients and is associated with an estimated 10-40 % of total cancer cases. The survival rate of brain metastatic patients has not improved due to intratumor heterogeneity, the survival adaptations of brain homing metastatic cells, and the lack of understanding of underlying molecular mechanisms that limit the availability of effective therapies. The heterogeneous population of immune cells and tumor-initiating cells or cancer stem cells in the tumor microenvironment (TME) release various factors, such as chemokines that upon binding to their cognate receptors enhance tumor growth at primary sites and help tumor cells metastasize to the brain. Furthermore, brain metastatic sites have unique heterogeneous microenvironment that fuels cancer cells in establishing BrM. This review explores the crosstalk of chemokines with the heterogeneous TME during the progression of BrM and recognizes potential therapeutic approaches. We also discuss and summarize different targeted, immunotherapeutic, chemotherapeutic, and combinatorial strategies (with chemo-/immune- or targeted-therapies) to attenuate chemokines mediated BrM.
Collapse
Affiliation(s)
- Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Asad Ur Rehman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Ranjana K Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Naveenkumar Perumal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Hitendra S Chand
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | | | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA.
| |
Collapse
|
26
|
Karz A, Dimitrova M, Kleffman K, Alvarez-Breckenridge C, Atkins MB, Boire A, Bosenberg M, Brastianos P, Cahill DP, Chen Q, Ferguson S, Forsyth P, Glitza Oliva IC, Goldberg SB, Holmen SL, Knisely JPS, Merlino G, Nguyen DX, Pacold ME, Perez-Guijarro E, Smalley KSM, Tawbi HA, Wen PY, Davies MA, Kluger HM, Mehnert JM, Hernando E. Melanoma central nervous system metastases: An update to approaches, challenges, and opportunities. Pigment Cell Melanoma Res 2022; 35:554-572. [PMID: 35912544 PMCID: PMC10171356 DOI: 10.1111/pcmr.13059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023]
Abstract
Brain metastases are the most common brain malignancy. This review discusses the studies presented at the third annual meeting of the Melanoma Research Foundation in the context of other recent reports on the biology and treatment of melanoma brain metastases (MBM). Although symptomatic MBM patients were historically excluded from immunotherapy trials, efforts from clinicians and patient advocates have resulted in more inclusive and even dedicated clinical trials for MBM patients. The results of checkpoint inhibitor trials were discussed in conversation with current standards of care for MBM patients, including steroids, radiotherapy, and targeted therapy. Advances in the basic scientific understanding of MBM, including the role of astrocytes and metabolic adaptations to the brain microenvironment, are exposing new vulnerabilities which could be exploited for therapeutic purposes. Technical advances including single-cell omics and multiplex imaging are expanding our understanding of the MBM ecosystem and its response to therapy. This unprecedented level of spatial and temporal resolution is expected to dramatically advance the field in the coming years and render novel treatment approaches that might improve MBM patient outcomes.
Collapse
Affiliation(s)
- Alcida Karz
- Department of Pathology, NYU Grossman School of Medicine, New York, USA.,Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA
| | - Maya Dimitrova
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA.,Department of Medicine, NYU Grossman School of Medicine, New York, USA
| | - Kevin Kleffman
- Department of Pathology, NYU Grossman School of Medicine, New York, USA.,Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA
| | | | - Michael B Atkins
- Georgetown-Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Adrienne Boire
- Human Oncology and Pathogenesis Program, Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Marcus Bosenberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research NCI, NIH, USA
| | - Priscilla Brastianos
- MGH Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Qing Chen
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Sherise Ferguson
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peter Forsyth
- Department of Neuro-Oncology and Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sarah B Goldberg
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Sheri L Holmen
- Huntsman Cancer Institute and Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Jonathan P S Knisely
- Meyer Cancer Center and Department of Radiation Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research NCI, NIH, USA
| | - Don X Nguyen
- Department of Pathology, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michael E Pacold
- Department of Radiation Oncology, NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - Eva Perez-Guijarro
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research NCI, NIH, USA
| | - Keiran S M Smalley
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Hussein A Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, United States, Boston, Massachusetts, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Harriet M Kluger
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Janice M Mehnert
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA.,Department of Medicine, NYU Grossman School of Medicine, New York, USA
| | - Eva Hernando
- Department of Pathology, NYU Grossman School of Medicine, New York, USA.,Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA
| |
Collapse
|
27
|
Siglec-15 as a New Perspective Therapy Target in Human Giant Cell Tumor of Bone. Curr Oncol 2022; 29:7655-7671. [PMID: 36290882 PMCID: PMC9600077 DOI: 10.3390/curroncol29100605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 01/13/2023] Open
Abstract
The main features of a giant cell tumor of bone (GCTB) are frequent recurrence and aggressive osteolysis, which leads to a poor prognosis in patients. Although the treatment methods for a GCTB, such as scraping and resection, effectively inhibit the disease, the tendency toward malignant transformation remains. Therefore, it is important to identify new treatment methods for a GCTB. In this study, we first found high Siglec-15 expression in GCTB tissues, which was significantly associated with Campanacci staging and tumor recurrence. In Spearman's analysis, Siglec-15 expression was significantly correlated with Ki-67 levels in tumor tissues. In vitro, the mRNA and protein levels of Siglec-15 were high in GCTB stromal cells (Hs737. T), and Siglec-15 knockdown inhibited the biological characteristics of GCTB stromal cells. The RNA sequencing results enabled a prediction of the downstream genes by using the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and MCODE analyses, and the findings showed that CXCL8 was significantly regulated by Siglec-15 and might be a promising downstream target gene of Siglec-15. Therefore, Siglec-15 may be a potential immunotherapy target for a GCTB.
Collapse
|
28
|
Pozzi S, Scomparin A, Ben-Shushan D, Yeini E, Ofek P, Nahmad AD, Soffer S, Ionescu A, Ruggiero A, Barzel A, Brem H, Hyde TM, Barshack I, Sinha S, Ruppin E, Weiss T, Madi A, Perlson E, Slutsky I, Florindo HF, Satchi-Fainaro R. MCP-1/CCR2 axis inhibition sensitizes the brain microenvironment against melanoma brain metastasis progression. JCI Insight 2022; 7:154804. [PMID: 35980743 PMCID: PMC9536270 DOI: 10.1172/jci.insight.154804] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
Development of resistance to chemo- and immunotherapies often occurs following treatment of melanoma brain metastasis (MBM). The brain microenvironment (BME), particularly astrocytes, cooperate toward MBM progression by upregulating secreted factors, among which we found that monocyte chemoattractant protein-1 (MCP-1) and its receptors, CCR2 and CCR4, were overexpressed in MBM compared with primary lesions. Among other sources of MCP-1 in the brain, we show that melanoma cells altered astrocyte secretome and evoked MCP-1 expression and secretion, which in turn induced CCR2 expression in melanoma cells, enhancing in vitro tumorigenic properties, such as proliferation, migration, and invasion of melanoma cells. In vivo pharmacological blockade of MCP-1 or molecular knockout of CCR2/CCR4 increased the infiltration of cytotoxic CD8+ T cells and attenuated the immunosuppressive phenotype of the BME as shown by decreased infiltration of Tregs and tumor-associated macrophages/microglia in several models of intracranially injected MBM. These in vivo strategies led to decreased MBM outgrowth and prolonged the overall survival of the mice. Our findings highlight the therapeutic potential of inhibiting interactions between BME and melanoma cells for the treatment of this disease.
Collapse
Affiliation(s)
- Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anna Scomparin
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Dikla Ben-Shushan
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paula Ofek
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alessio D Nahmad
- The School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shelly Soffer
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Ionescu
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Antonella Ruggiero
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adi Barzel
- The School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, United States of America
| | - Iris Barshack
- Department of Pathology, Sheba Medical Center, Tel Hashomer, Israel
| | - Sanju Sinha
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, United States of America
| | - Eytan Ruppin
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, United States of America
| | - Tomer Weiss
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Asaf Madi
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
29
|
Perelroizen R, Philosof B, Budick-Harmelin N, Chernobylsky T, Ron A, Katzir R, Shimon D, Tessler A, Adir O, Gaoni-Yogev A, Meyer T, Krivitsky A, Shidlovsky N, Madi A, Ruppin E, Mayo L. Astrocyte immunometabolic regulation of the tumour microenvironment drives glioblastoma pathogenicity. Brain 2022; 145:3288-3307. [PMID: 35899587 DOI: 10.1093/brain/awac222] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Malignant brain tumours are the cause of a disproportionate level of morbidity and mortality among cancer patients, an unfortunate statistic that has remained constant for decades. Despite considerable advances in the molecular characterization of these tumours, targeting the cancer cells has yet to produce significant advances in treatment. An alternative strategy is to target cells in the glioblastoma microenvironment, such as tumour-associated astrocytes. Astrocytes control multiple processes in health and disease, ranging from maintaining the brain's metabolic homeostasis, to modulating neuroinflammation. However, their role in glioblastoma pathogenicity is not well understood. Here we report that depletion of reactive astrocytes regresses glioblastoma and prolongs mouse survival. Analysis of the tumour-associated astrocyte translatome revealed astrocytes initiate transcriptional programmes that shape the immune and metabolic compartments in the glioma microenvironment. Specifically, their expression of CCL2 and CSF1 governs the recruitment of tumour-associated macrophages and promotes a pro-tumourigenic macrophage phenotype. Concomitantly, we demonstrate that astrocyte-derived cholesterol is key to glioma cell survival, and that targeting astrocytic cholesterol efflux, via ABCA1, halts tumour progression. In summary, astrocytes control glioblastoma pathogenicity by reprogramming the immunological properties of the tumour microenvironment and supporting the non-oncogenic metabolic dependency of glioblastoma on cholesterol. These findings suggest that targeting astrocyte immunometabolic signalling may be useful in treating this uniformly lethal brain tumour.
Collapse
Affiliation(s)
- Rita Perelroizen
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Bar Philosof
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Noga Budick-Harmelin
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tom Chernobylsky
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Ron
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Rotem Katzir
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Dor Shimon
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Adi Tessler
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Orit Adir
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Anat Gaoni-Yogev
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tom Meyer
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Avivit Krivitsky
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nuphar Shidlovsky
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Asaf Madi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eytan Ruppin
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lior Mayo
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
30
|
Marin J, Journe F, Ghanem GE, Awada A, Kindt N. Cytokine Landscape in Central Nervous System Metastases. Biomedicines 2022; 10:biomedicines10071537. [PMID: 35884845 PMCID: PMC9313120 DOI: 10.3390/biomedicines10071537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
The central nervous system is the location of metastases in more than 40% of patients with lung cancer, breast cancer and melanoma. These metastases are associated with one of the poorest prognoses in advanced cancer patients, mainly due to the lack of effective treatments. In this review, we explore the involvement of cytokines, including interleukins and chemokines, during the development of brain and leptomeningeal metastases from the epithelial-to-mesenchymal cell transition and blood–brain barrier extravasation to the interaction between cancer cells and cells from the brain microenvironment, including astrocytes and microglia. Furthermore, the role of the gut–brain axis on cytokine release during this process will also be addressed.
Collapse
Affiliation(s)
- Julie Marin
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.M.); (F.J.); (G.E.G.); (A.A.)
| | - Fabrice Journe
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.M.); (F.J.); (G.E.G.); (A.A.)
- Laboratory of Human Anatomy and Experimental Oncology, Institut Santé, Université de Mons (UMons), 7000 Mons, Belgium
| | - Ghanem E. Ghanem
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.M.); (F.J.); (G.E.G.); (A.A.)
| | - Ahmad Awada
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.M.); (F.J.); (G.E.G.); (A.A.)
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Nadège Kindt
- Laboratory of Clinical and Experimental Oncology (LOCE), Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.M.); (F.J.); (G.E.G.); (A.A.)
- Correspondence:
| |
Collapse
|
31
|
Razmara AM, Wittenburg LA, Al-Nadaf S, Toedebusch RG, Meyers FJ, Toedebusch CM. Prevalence and Clinicopathologic Features of Canine Metastatic Melanoma Involving the Central Nervous System: A Retrospective Analysis and Comparative Review. Front Oncol 2022; 12:868004. [PMID: 35692802 PMCID: PMC9186031 DOI: 10.3389/fonc.2022.868004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Background Central nervous system (CNS) involvement is the leading cause of death in malignant melanoma. Rodent models, while vital to mechanistic investigation, have had limited success identifying effective therapies for melanoma brain metastases. The companion dog with de novo melanoma is a promising complementary model for developmental therapeutic investigation, as these tumors occur in an immunologically outbred host that has shared environmental exposures with humans. However, relatively little is known regarding the prevalence and clinicopathological features of canine melanoma metastasis to the CNS. To further validate the dog as an appropriate model for human metastatic melanoma, the aims of this study were to determine the rate of CNS metastasis and associated clinicopathologic features in canine malignant melanoma. Methods Medical records of dogs diagnosed with malignant melanoma from 1985-2019 at the University of California Davis Veterinary Medical Teaching Hospital were assessed retrospectively. Clinicopathologic features were compared between dogs with CNS metastasis (CNS+) and dogs without CNS metastasis (CNS-). Site of CNS involvement and associated neurological signs were analyzed via Wilcoxon-Mann-Whitney rank sum and Fisher’s exact tests. Survival data were analyzed via Kaplan-Meier estimates. Results CNS metastasis was identified in 38% of dogs in this study (20/53). The oral cavity was the most common site of primary melanoma in both groups [CNS+: n=12 (60%) vs. CNS-: n=22 (67%); p>0.99]. The total burden of metastatic disease was higher in the CNS+ group (CNS+: 4, 95% CI 3-5 vs. CNS-: 3, 95% CI 1-3; p<0.001). The cerebrum was the most common site of CNS metastasis (n=15, 75%) and seizures were the most observed neurological sign (n=9, 64%). There was no difference in overall survival between CNS+ and CNS- groups. However, the median survival time following onset of neurological signs was 9.5 days (95% CI 1-43), with 5 dogs euthanized within 24 hours of the onset of neurological signs. Conclusions Canine and human MM patients share similar rates of CNS metastasis and clinical presentation. This study will guide clinical management of canines with malignant melanoma and inform future studies using dogs with spontaneously occurring melanoma as a preclinical model for human melanoma brain metastases.
Collapse
Affiliation(s)
- Aryana M. Razmara
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- UCD Comprehensive Cancer Center, Sacramento, CA, United States
| | - Luke A. Wittenburg
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- UCD Comprehensive Cancer Center, Sacramento, CA, United States
| | - Sami Al-Nadaf
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- UCD Comprehensive Cancer Center, Sacramento, CA, United States
| | - Ryan G. Toedebusch
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- UCD Comprehensive Cancer Center, Sacramento, CA, United States
| | - Frederick J. Meyers
- UCD Comprehensive Cancer Center, Sacramento, CA, United States
- Department of Internal Medicine, Division of Hematology and Oncology, Center for Precision Medicine, University of California, Davis School of Medicine, Sacramento, CA, United States
| | - Christine M. Toedebusch
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- UCD Comprehensive Cancer Center, Sacramento, CA, United States
- *Correspondence: Christine M. Toedebusch,
| |
Collapse
|
32
|
Strickland MR, Alvarez-Breckenridge C, Gainor JF, Brastianos PK. Tumor Immune Microenvironment of Brain Metastases: Toward Unlocking Antitumor Immunity. Cancer Discov 2022; 12:1199-1216. [PMID: 35394521 PMCID: PMC11440428 DOI: 10.1158/2159-8290.cd-21-0976] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/19/2021] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
Abstract
Brain metastasis (BrM) is a devastating complication of solid tumors associated with poor outcomes. Immune-checkpoint inhibitors (ICI) have revolutionized the treatment of cancer, but determinants of response are incompletely understood. Given the rising incidence of BrM, improved understanding of immunobiologic principles unique to the central nervous system (CNS) and dissection of those that govern the activity of ICIs are paramount toward unlocking BrM-specific antitumor immunity. In this review, we seek to discuss the current clinical landscape of ICI activity in the CNS and CNS immunobiology, and we focus, in particular, on the role of glial cells in the CNS immune response to BrM. SIGNIFICANCE There is an urgent need to improve patient selection for and clinical activity of ICIs in patients with cancer with concomitant BrM. Increased understanding of the unique immunobiologic principles that govern response to ICIs in the CNS is critical toward identifying targets in the tumor microenvironment that may potentiate antitumor immunity.
Collapse
Affiliation(s)
| | | | - Justin F Gainor
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
33
|
Mesenchymal stromal cells equipped by IFNα empower T cells with potent anti-tumor immunity. Oncogene 2022; 41:1866-1881. [PMID: 35145233 PMCID: PMC8956510 DOI: 10.1038/s41388-022-02201-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/22/2021] [Accepted: 01/19/2022] [Indexed: 11/08/2022]
Abstract
Cancer treatments have been revolutionized by the emergence of immune checkpoint blockade therapies. However, only a minority of patients with various tumor types have benefited from such treatments. New strategies focusing on the immune contexture of the tumor tissue microenvironment hold great promises. Here, we created IFNα-overexpressing mesenchymal stromal cells (IFNα-MSCs). Upon direct injection into tumors, we found that these cells are powerful in eliminating several types of tumors. Interestingly, the intra-tumoral injection of IFNα-MSCs could also induce specific anti-tumor effects on distant tumors. These IFNα-MSCs promoted tumor cells to produce CXCL10, which in turn potentiates the infiltration of CD8+ T cells in the tumor site. Furthermore, IFNα-MSCs enhanced the expression of granzyme B (GZMB) in CD8+ T cells and invigorated their cytotoxicity in a Stat3-dependent manner. Genetic ablation of Stat3 in CD8+ T cells impaired the effect of IFNα-MSCs on GZMB expression. Importantly, the combination of IFNα-MSCs and PD-L1 blockade induced an even stronger anti-tumor immunity. Therefore, IFNα-MSCs represent a novel tumor immunotherapy strategy, especially when combined with PD-L1 blockade.
Collapse
|
34
|
Wang W, Li Q, Zhao Z, Liu Y, Wang Y, Xiong H, Mei Z. Paeonol Ameliorates Chronic Itch and Spinal Astrocytic Activation via CXCR3 in an Experimental Dry Skin Model in Mice. Front Pharmacol 2022; 12:805222. [PMID: 35095512 PMCID: PMC8794748 DOI: 10.3389/fphar.2021.805222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2021] [Indexed: 01/13/2023] Open
Abstract
Paeonol is a bioactive phenol presents mainly in Paeonia suffruticosa Andr. (Paeoniaceae), Paeonia lactiflora Pall., and Dioscorea japonica Thunb. (Dioscoreaceae), harboring various pharmacological activities including anti-inflammatory, antioxidant, immune regulatory activity and reverse chemoresistance. Recent reports revealed paeonol exhibited good effects on chronic dermatitis, such as atopic dermatitis (AD) and psoriasis. However, whether paeonol is effective for dry skin disease and its mechanism of action still remain unclear. In this study, we analysed the effects of paeonol on a mouse model of dry skin treated with acetone-ether-water (AEW), which showed impressive activities in reducing scratching behavior and skin inflammation. To elucidate the underlying molecular targets for the anti-pruritic ability of paeonol, we screened the expression of possible chemokine pathways in the spinal cord. The expression of CXCR3 was significantly alleviated by paeonol, which increased greatly in the spinal neurons of AEW mice. In addition, treatment of paeonol significantly inhibited AEW-induced expression of astrocyte activity-dependent genes including Tlr4, Lcn2 and Hspb1 et al. The inhibitory effects of paeonol on scratching behavior and astrocytic activation in the spinal cord induced by AEW were abolished when CXCR3 was antagonized or genetically ablated. Taken together, our results indicated that paeonol can ameliorate AEW-induced inflammatory response and itching behavior, and reduce the expression of spinal astrocyte activity-dependent genes induced by AEW, which are driven by CXCR3.
Collapse
Affiliation(s)
- Wen Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China.,Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, China
| | - Qiaoyun Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China.,Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, China
| | - Zhongqiu Zhao
- Washington University School of Medicine, St. Louis, MO, United States.,Barnes-Jewish Hospital, St. Louis, MO, United States
| | - Yutong Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yi Wang
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hui Xiong
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China.,Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, China
| | - Zhinan Mei
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China.,Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
35
|
Dai J, Cimino PJ, Gouin KH, Grzelak CA, Barrett A, Lim AR, Long A, Weaver S, Saldin LT, Uzamere A, Schulte V, Clegg N, Pisarsky L, Lyden D, Bissell MJ, Knott S, Welm AL, Bielas JH, Hansen KC, Winkler F, Holland EC, Ghajar CM. Astrocytic laminin-211 drives disseminated breast tumor cell dormancy in brain. NATURE CANCER 2022; 3:25-42. [PMID: 35121993 PMCID: PMC9469899 DOI: 10.1038/s43018-021-00297-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/27/2021] [Indexed: 02/08/2023]
Abstract
Although dormancy is thought to play a key role in the metastasis of breast tumor cells to the brain, our knowledge of the molecular mechanisms regulating disseminated tumor cell (DTC) dormancy in this organ is limited. Here using serial intravital imaging of dormant and metastatic triple-negative breast cancer lines, we identify escape from the single-cell or micrometastatic state as the rate-limiting step towards brain metastasis. We show that every DTC occupies a vascular niche, with quiescent DTCs residing on astrocyte endfeet. At these sites, astrocyte-deposited laminin-211 drives DTC quiescence by inducing the dystroglycan receptor to associate with yes-associated protein, thereby sequestering it from the nucleus and preventing its prometastatic functions. These findings identify a brain-specific mechanism of DTC dormancy and highlight the need for a more thorough understanding of tumor dormancy to develop therapeutic approaches that prevent brain metastasis.
Collapse
Affiliation(s)
- Jinxiang Dai
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Patrick J. Cimino
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA (USA)
| | - Kenneth H. Gouin
- Department of Biomedical Sciences; Applied Genomics, Computation and Translational Core, Cedars-Sinai Medical Center, Los Angeles, CA (USA)
| | - Candice A. Grzelak
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA (USA)
| | - Alexander Barrett
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO (USA)
| | - Andrea R. Lim
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA (USA),Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA (USA)
| | - Annalyssa Long
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA (USA)
| | - Stephanie Weaver
- Experimental Histopathology Core, Fred Hutchinson Cancer Research Center, Seattle, WA (USA)
| | - Lindsey T. Saldin
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA (USA)
| | - Aiyedun Uzamere
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA (USA)
| | - Vera Schulte
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA (USA)
| | - Nigel Clegg
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA (USA)
| | - Laura Pisarsky
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA (USA)
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, (USA)
| | - Mina J. Bissell
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA (USA)
| | - Simon Knott
- Department of Biomedical Sciences; Applied Genomics, Computation and Translational Core, Cedars-Sinai Medical Center, Los Angeles, CA (USA)
| | - Alana L. Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT (USA)
| | - Jason H. Bielas
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA (USA),Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA (USA),Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA (USA)
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO (USA)
| | - Frank Winkler
- Neurology Clinic and National Center for Tumour Diseases, University Hospital Heidelberg, DKTK & Clinical Cooperation Unit Neurooncology, German Cancer Research Center, Heidelberg (Germany)
| | - Eric C. Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA (USA)
| | - Cyrus M. Ghajar
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA (USA),Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA (USA),To whom correspondence should be addressed: Cyrus M. Ghajar, PhD, Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., M5-A864, Seattle, WA 98109 (USA), , P. 206.667.7080, F. 206.667.2537, Jinxiang Dai, PhD, Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., M5-A864, Seattle, WA 98109 (USA), , P. 206.667.7082, F. 206.667.2537
| |
Collapse
|
36
|
Karin N. Chemokines in the Landscape of Cancer Immunotherapy: How They and Their Receptors Can Be Used to Turn Cold Tumors into Hot Ones? Cancers (Basel) 2021; 13:6317. [PMID: 34944943 PMCID: PMC8699256 DOI: 10.3390/cancers13246317] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
Over the last decade, monoclonal antibodies to immune checkpoint inhibitors (ICI), also known as immune checkpoint blockers (ICB), have been the most successful approach for cancer therapy. Starting with mAb to cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibitors in metastatic melanoma and continuing with blockers of the interactions between program cell death 1 (PD-1) and its ligand program cell death ligand 1 (PDL-1) or program cell death ligand 2 (PDL-2), that have been approved for about 20 different indications. Yet for many cancers, ICI shows limited success. Several lines of evidence imply that the limited success in cancer immunotherapy is associated with attempts to treat patients with "cold tumors" that either lack effector T cells, or in which these cells are markedly suppressed by regulatory T cells (Tregs). Chemokines are a well-defined group of proteins that were so named due to their chemotactic properties. The current review focuses on key chemokines that not only attract leukocytes but also shape their biological properties. CXCR3 is a chemokine receptor with 3 ligands. We suggest using Ig-based fusion proteins of two of them: CXL9 and CXCL10, to enhance anti-tumor immunity and perhaps transform cold tumors into hot tumors. Potential differences between CXCL9 and CXCL10 regarding ICI are discussed. We also discuss the possibility of targeting the function or deleting a key subset of Tregs that are CCR8+ by monoclonal antibodies to CCR8. These cells are preferentially abundant in several tumors and are likely to be the key drivers in suppressing anti-cancer immune reactivity.
Collapse
Affiliation(s)
- Nathan Karin
- Department of Immunology, Faculty of Medicine, Technion, P.O. Box 9697, Haifa 31096, Israel
| |
Collapse
|
37
|
Abstract
Modeling of metastatic disease in animal models is a critical resource to study the complexity of this multi-step process in a relevant system. Available models of metastatic disease to the brain are still far from ideal but they allow to address specific aspects of the biology or mimic clinically relevant scenarios. We not only review experimental models and their potential improvements but also discuss specific answers that could be obtained from them on unsolved aspects of clinical management.
Collapse
Affiliation(s)
- Lauritz Miarka
- Brain Metastasis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Manuel Valiente
- Brain Metastasis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
38
|
Battaglia L, Scomparin A, Dianzani C, Milla P, Muntoni E, Arpicco S, Cavalli R. Nanotechnology Addressing Cutaneous Melanoma: The Italian Landscape. Pharmaceutics 2021; 13:1617. [PMID: 34683910 PMCID: PMC8540596 DOI: 10.3390/pharmaceutics13101617] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022] Open
Abstract
Cutaneous melanoma is one of the most aggressive solid tumors, with a low survival for the metastatic stage. Currently, clinical melanoma treatments include surgery, chemotherapy, targeted therapy, immunotherapy and radiotherapy. Of note, innovative therapeutic regimens concern the administration of multitarget drugs in tandem, in order to improve therapeutic efficacy. However, also, if this drug combination is clinically relevant, the patient's response is not yet optimal. In this scenario, nanotechnology-based delivery systems can play a crucial role in the clinical treatment of advanced melanoma. In fact, their nano-features enable targeted drug delivery at a cellular level by overcoming biological barriers. Various nanomedicines have been proposed for the treatment of cutaneous melanoma, and a relevant number of them are undergoing clinical trials. In Italy, researchers are focusing on the pharmaceutical development of nanoformulations for malignant melanoma therapy. The present review reports an overview of the main melanoma-addressed nanomedicines currently under study in Italy, alongside the state of the art of melanoma therapy. Moreover, the latest Italian advances concerning the pre-clinical evaluation of nanomedicines for melanoma are described.
Collapse
Affiliation(s)
- Luigi Battaglia
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Anna Scomparin
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
- . Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chiara Dianzani
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Paola Milla
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Elisabetta Muntoni
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Silvia Arpicco
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| | - Roberta Cavalli
- . Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy; (L.B.); (A.S.); (C.D.); (P.M.); (E.M.); (S.A.)
| |
Collapse
|
39
|
Roesler R, Dini SA, Isolan GR. Neuroinflammation and immunoregulation in glioblastoma and brain metastases: Recent developments in imaging approaches. Clin Exp Immunol 2021; 206:314-324. [PMID: 34591980 DOI: 10.1111/cei.13668] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/12/2023] Open
Abstract
Brain tumors and brain metastases induce changes in brain tissue remodeling that lead to immunosuppression and trigger an inflammatory response within the tumor microenvironment. These immune and inflammatory changes can influence invasion and metastasis. Other neuroinflammatory and necrotic lesions may occur in patients with brain cancer or brain metastases as sequelae from treatment with radiotherapy. Glioblastoma (GBM) is the most aggressive primary malignant brain cancer in adults. Imaging methods such as positron emission tomography (PET) and different magnetic resonance imaging (MRI) techniques are highly valuable for the diagnosis and therapeutic evaluation of GBM and other malignant brain tumors. However, differentiating between tumor tissue and inflamed brain tissue with imaging protocols remains a challenge. Here, we review recent advances in imaging methods that have helped to improve the specificity of primary tumor diagnosis versus evaluation of inflamed and necrotic brain lesions. We also comment on advances in differentiating metastasis from neuroinflammation processes. Recent advances include the radiosynthesis of 18 F-FIMP, an L-type amino acid transporter 1 (LAT1)-specific PET probe that allows clearer differentiation between tumor tissue and inflammation compared to previous probes, and the combination of different advanced imaging protocols with the inclusion of radiomics and machine learning algorithms.
Collapse
Affiliation(s)
- Rafael Roesler
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.,Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Simone Afonso Dini
- The Center for Advanced Neurology and Neurosurgery (CEANNE)-Brazil, Porto Alegre, RS, Brazil
| | - Gustavo R Isolan
- The Center for Advanced Neurology and Neurosurgery (CEANNE)-Brazil, Porto Alegre, RS, Brazil.,Mackenzie Evangelical University of Paraná (FEMPAR), Curitiba, PR, Brazil
| |
Collapse
|
40
|
Contribution of CXCR3-mediated signaling in the metastatic cascade of solid malignancies. Biochim Biophys Acta Rev Cancer 2021; 1876:188628. [PMID: 34560199 DOI: 10.1016/j.bbcan.2021.188628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 12/20/2022]
Abstract
Metastasis is a significant cause of the mortality resulting from solid malignancies. The process of metastasis is complex and is regulated by numerous cancer cell-intrinsic and -extrinsic factors. CXCR3 is a chemokine receptor that is frequently expressed by cancer cells, endothelial cells and immune cells. CXCR3A signaling in cancer cells tends to promote the invasive and migratory phenotype of cancer cells. Indirectly, CXCR3 modulates the anti-tumor immune response resulting in variable effects that can permit or inhibit metastatic progression. Finally, the activity of CXCR3B in endothelial cells is generally angiostatic, which limits the access of cancer cells to key conduits to secondary sites. However, the interaction of these activities within a tumor and the presence of opposing CXCR3 splice variants clouds the picture of the role of CXCR3 in metastasis. Consequently, thorough analysis of the contributions of CXCR3 to cancer metastasis is necessary. This review is an in-depth examination of the involvement of CXCR3 in the metastatic process of solid malignancies.
Collapse
|
41
|
Schulz M, Sevenich L. TAMs in Brain Metastasis: Molecular Signatures in Mouse and Man. Front Immunol 2021; 12:716504. [PMID: 34539650 PMCID: PMC8447936 DOI: 10.3389/fimmu.2021.716504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/13/2021] [Indexed: 12/29/2022] Open
Abstract
Macrophages not only represent an integral part of innate immunity but also critically contribute to tissue and organ homeostasis. Moreover, disease progression is accompanied by macrophage accumulation in many cancer types and is often associated with poor prognosis and therapy resistance. Given their critical role in modulating tumor immunity in primary and metastatic brain cancers, macrophages are emerging as promising therapeutic targets. Different types of macrophages infiltrate brain cancers, including (i) CNS resident macrophages that comprise microglia (TAM-MG) as well as border-associated macrophages and (ii) monocyte-derived macrophages (TAM-MDM) that are recruited from the periphery. Controversy remained about their disease-associated functions since classical approaches did not reliably distinguish between macrophage subpopulations. Recent conceptual and technological advances, such as large-scale omic approaches, provided new insight into molecular profiles of TAMs based on their cellular origin. In this review, we summarize insight from recent studies highlighting similarities and differences of TAM-MG and TAM-MDM at the molecular level. We will focus on data obtained from RNA sequencing and mass cytometry approaches. Together, this knowledge significantly contributes to our understanding of transcriptional and translational programs that define disease-associated TAM functions. Cross-species meta-analyses will further help to evaluate the translational significance of preclinical findings as part of the effort to identify candidates for macrophage-targeted therapy against brain metastasis.
Collapse
Affiliation(s)
- Michael Schulz
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany.,Biological Sciences, Faculty 15, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lisa Sevenich
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
42
|
Zeng W, Fu L, Xu H. MicroRNA-206 relieves irradiation-induced neuroinflammation by regulating connexin 43. Exp Ther Med 2021; 22:1186. [PMID: 34475976 PMCID: PMC8406811 DOI: 10.3892/etm.2021.10620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/26/2021] [Indexed: 01/17/2023] Open
Abstract
Radiation therapy has been widely used for the treatment of various types of cancer; however, it may cause neuroinflammation during the pathological process of the disease. Astrocytes, the most abundant cell type in the central nervous system, have been confirmed to play vital roles in various diseases. Connexin (Cx)43, the main Cx type in astrocytes, which has been identified as a direct target gene of microRNA (miR)-206, was found to be involved in diseases pathologies in regions with astrocytes. The aim of the present study was to investigate the mechanism through which γ-radiation may cause astrocyte neuroinflammation and determine the specific mechanism underlying the effects of miR-206 in irradiation-induced HA-1800 cells. A dual-luciferase reporter system was used to predict and verify the target binding site between Cx43 and miR-206. HA-1800 cell viability and apoptosis were determined using a MTT assay and flow cytometry, respectively. In addition, the HA-1800 cells were induced by γ-radiation, then the protein and mRNA expression levels of Cx43, miR-206 and cleaved-caspase-3 were determined using western blot and reverse transcription-quantitative PCR analyses, respectively. ELISA was also performed to evaluate the concentrations of different inflammatory cytokines (TNF-α, IL-β, IL-6 and IFN-γ). The dual-luciferase reporter system indicated that Cx43 was a direct target of miR-206. miR-206 mimics increased the expression level of miR-206 in the astrocytes. Irradiation suppressed cell proliferation, increased apoptotic cells and enhanced cleaved-caspase-3 expression and inflammatory cytokines secretion in astrocytes. Furthermore, miR-206 was found to be downregulated and its expression was inversely associated with that of Cx43 in γ-radiation-induced astrocytes. Overexpression of miR-206 enhanced miR-206 and suppressed Cx43 expression, while Cx43 was upregulated in HA-1800 cells transfected with miR-206 mimic + Cx43-plasmid. However, the expression level of miR-206 was not significantly different in the Cx43-plasmid transfected group. In addition, it was found that miR-206 mimics relieved irradiation-induced neuroinflammation, which was confirmed by increased cell viability, and reduced cell apoptosis and cleaved caspase-3 protein expression, as well as decreased inflammatory cytokine secretion. Furthermore, all the effects of miR-206 mimics on γ-radiation-induced astrocytes were reversed by Cx43-plasmid. In summary, the results of the present study indicated that miR-206 may relieve irradiation-induced neural damage by regulating Cx43, which may provide a novel research direction and a potential therapeutic target for the clinical treatment of inflammation-associated neuronal injury following irradiation.
Collapse
Affiliation(s)
- Wei Zeng
- Department of Radiology, Affiliated Hospital of Jianghan University, The Sixth Hospital of Wuhan City, Wuhan, Hubei 430019, P.R. China
| | - Li Fu
- Department of Radiology, Affiliated Hospital of Jianghan University, The Sixth Hospital of Wuhan City, Wuhan, Hubei 430019, P.R. China
| | - Hongfang Xu
- Department of Radiology, Affiliated Hospital of Jianghan University, The Sixth Hospital of Wuhan City, Wuhan, Hubei 430019, P.R. China
| |
Collapse
|
43
|
De Zutter A, Van Damme J, Struyf S. The Role of Post-Translational Modifications of Chemokines by CD26 in Cancer. Cancers (Basel) 2021; 13:cancers13174247. [PMID: 34503058 PMCID: PMC8428238 DOI: 10.3390/cancers13174247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Chemokines are a large family of small chemotactic cytokines that fulfill a central function in cancer. Both tumor-promoting and -impeding roles have been ascribed to chemokines, which they exert in a direct or indirect manner. An important post-translational modification that regulates chemokine activity is the NH2-terminal truncation by peptidases. CD26 is a dipeptidyl peptidase (DPPIV), which typically clips a NH2-terminal dipeptide from the chemokine. With a certain degree of selectivity in terms of chemokine substrate, CD26 only recognizes chemokines with a penultimate proline or alanine. Chemokines can be protected against CD26 recognition by specific amino acid residues within the chemokine structure, by oligomerization or by binding to cellular glycosaminoglycans (GAGs). Upon truncation, the binding affinity for receptors and GAGs is altered, which influences chemokine function. The consequences of CD26-mediated clipping vary, as unchanged, enhanced, and reduced activities are reported. In tumors, CD26 most likely has the most profound effect on CXCL12 and the interferon (IFN)-inducible CXCR3 ligands, which are converted into receptor antagonists upon truncation. Depending on the tumor type, expression of CD26 is upregulated or downregulated and often results in the preferential generation of the chemokine isoform most favorable for tumor progression. Considering the tight relationship between chemokine sequence and chemokine binding specificity, molecules with the appropriate characteristics can be chemically engineered to provide innovative therapeutic strategies in a cancer setting.
Collapse
|
44
|
Life after Cell Death-Survival and Survivorship Following Chemotherapy. Cancers (Basel) 2021; 13:cancers13122942. [PMID: 34208331 PMCID: PMC8231100 DOI: 10.3390/cancers13122942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Treatment of aggressive cancers often relies on chemotherapy. This treatment has improved survival rates, but while effective at killing cancer cells, inevitably it also kills or alters the function of others. While many of the known effects are transient and resolve after treatment, as survival rates increase, so does our understanding of the long-term health costs that accompany cancer survivors. Here we provide an overview of common long-term morbidities known to be caused by conventional chemotherapy, including the risk of relapse, but more importantly, the cost of quality of life experienced, especially by those who have cancer in early life. We aim to highlight the importance of the development of targeted therapies to replace the use of conventional chemotherapy, but also that of treating the patients along with the disease to enable not only longer but also healthier life after cancer. Abstract To prevent cancer cells replacing and outnumbering their functional somatic counterparts, the most effective solution is their removal. Classical treatments rely on surgical excision, chemical or physical damage to the cancer cells by conventional interventions such as chemo- and radiotherapy, to eliminate or reduce tumour burden. Cancer treatment has in the last two decades seen the advent of increasingly sophisticated therapeutic regimens aimed at selectively targeting cancer cells whilst sparing the remaining cells from severe loss of viability or function. These include small molecule inhibitors, monoclonal antibodies and a myriad of compounds that affect metabolism, angiogenesis or immunotherapy. Our increased knowledge of specific cancer types, stratified diagnoses, genetic and molecular profiling, and more refined treatment practices have improved overall survival in a significant number of patients. Increased survival, however, has also increased the incidence of associated challenges of chemotherapy-induced morbidity, with some pathologies developing several years after termination of treatment. Long-term care of cancer survivors must therefore become a focus in itself, such that along with prolonging life expectancy, treatments allow for improved quality of life.
Collapse
|
45
|
Martens S, Bridelance J, Roelandt R, Vandenabeele P, Takahashi N. MLKL in cancer: more than a necroptosis regulator. Cell Death Differ 2021; 28:1757-1772. [PMID: 33953348 PMCID: PMC8184805 DOI: 10.1038/s41418-021-00785-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023] Open
Abstract
Mixed lineage kinase domain-like protein (MLKL) emerged as executioner of necroptosis, a RIPK3-dependent form of regulated necrosis. Cell death evasion is one of the hallmarks of cancer. Besides apoptosis, some cancers suppress necroptosis-associated mechanisms by for example epigenetic silencing of RIPK3 expression. Conversely, necroptosis-elicited inflammation by cancer cells can fuel tumor growth. Recently, necroptosis-independent functions of MLKL were unraveled in receptor internalization, ligand-receptor degradation, endosomal trafficking, extracellular vesicle formation, autophagy, nuclear functions, axon repair, neutrophil extracellular trap (NET) formation, and inflammasome regulation. Little is known about the precise role of MLKL in cancer and whether some of these functions are involved in cancer development and metastasis. Here, we discuss current knowledge and controversies on MLKL, its structure, necroptosis-independent functions, expression, mutations, and its potential role as a pro- or anti-cancerous factor. Analysis of MLKL expression patterns reveals that MLKL is upregulated by type I/II interferon, conditions of inflammation, and tissue injury. Overall, MLKL may affect cancer development and metastasis through necroptosis-dependent and -independent functions.
Collapse
Affiliation(s)
- Sofie Martens
- Cell Death and Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Bridelance
- Cell Death and Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ria Roelandt
- Cell Death and Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium
| | - Peter Vandenabeele
- Cell Death and Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Nozomi Takahashi
- Cell Death and Inflammation Lab, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
46
|
Saxena S, Singh RK. Chemokines orchestrate tumor cells and the microenvironment to achieve metastatic heterogeneity. Cancer Metastasis Rev 2021; 40:447-476. [PMID: 33959849 PMCID: PMC9863248 DOI: 10.1007/s10555-021-09970-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/22/2021] [Indexed: 01/26/2023]
Abstract
Chemokines, a subfamily of the cell cytokines, are low molecular weight proteins known to induce chemotaxis in leukocytes in response to inflammatory and pathogenic signals. A plethora of literature demonstrates that chemokines and their receptors regulate tumor progression and metastasis. With these diverse functionalities, chemokines act as a fundamental link between the tumor cells and their microenvironment. Recent studies demonstrate that the biology of chemokines and their receptor in metastasis is complex as numerous chemokines are involved in regulating site-specific tumor growth and metastasis. Successful treatment of disseminated cancer is a significant challenge. The most crucial problem for treating metastatic cancer is developing therapy regimes capable of overcoming heterogeneity problems within primary tumors and among metastases and within metastases (intralesional). This heterogeneity of malignant tumor cells can be related to metastatic potential, response to chemotherapy or specific immunotherapy, and many other factors. In this review, we have emphasized the role of chemokines in the process of metastasis and metastatic heterogeneity. Individual chemokines may not express the full potential to address metastatic heterogeneity, but chemokine networks need exploration. Understanding the interplay between chemokine-chemokine receptor networks between the tumor cells and their microenvironment is a novel approach to overcome the problem of metastatic heterogeneity. Recent advances in the understanding of chemokine networks pave the way for developing a potential targeted therapeutic strategy to treat metastatic cancer.
Collapse
Affiliation(s)
- Sugandha Saxena
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | - Rakesh K Singh
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA.
| |
Collapse
|
47
|
Clark AM, Heusey HL, Griffith LG, Lauffenburger DA, Wells A. IP-10 (CXCL10) Can Trigger Emergence of Dormant Breast Cancer Cells in a Metastatic Liver Microenvironment. Front Oncol 2021; 11:676135. [PMID: 34123844 PMCID: PMC8190328 DOI: 10.3389/fonc.2021.676135] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Metastatic breast cancer remains a largely incurable and fatal disease with liver involvement bearing the worst prognosis. The danger is compounded by a subset of disseminated tumor cells that may lie dormant for years to decades before re-emerging as clinically detectable metastases. Pathophysiological signals can drive these tumor cells to emerge. Prior studies indicated CXCR3 ligands as being the predominant signals synergistically and significantly unregulated during inflammation in the gut-liver axis. Of the CXCR3 ligands, IP-10 (CXCL10) was the most abundant, correlated significantly with shortened survival of human breast cancer patients with metastatic disease and was highest in those with triple negative (TNBC) disease. Using a complex ex vivo all-human liver microphysiological (MPS) model of dormant-emergent metastatic progression, CXCR3 ligands were found to be elevated in actively growing populations of metastatic TNBC breast cancer cells whereas they remained similar to the tumor-free hepatic niche in those with dormant breast cancer cells. Subsequent stimulation of dormant breast cancer cells in the ex vivo metastatic liver MPS model with IP-10 triggered their emergence in a dose-dependent manner. Emergence was indicated to occur indirectly possibly via activation of the resident liver cells in the surrounding metastatic microenvironment, as stimulation of breast cancer cells with exogenous IP-10 did not significantly change their migratory, invasive or proliferative behavior. The findings reveal that IP-10 is capable of triggering the emergence of dormant breast cancer cells within the liver metastatic niche and identifies the IP-10/CXCR3 as a candidate targetable pathway for rational approaches aimed at maintaining dormancy.
Collapse
Affiliation(s)
- Amanda M. Clark
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh VA Medical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Haley L. Heusey
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh VA Medical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Linda G. Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Douglas. A. Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh VA Medical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
48
|
Wilkes JG, Patel A, McClure E, Pina Y, Zager JS. Developments in therapy for brain metastases in melanoma patients. Expert Opin Pharmacother 2021; 22:1443-1453. [PMID: 33688795 DOI: 10.1080/14656566.2021.1900117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Cutaneous melanoma brain metastases (MBM) are a major cause of morbidity and mortality. While cytotoxic agents, interferon, or interleukin-2, have been used with some success in extracranial disease, limited efficacy is demonstrated in MBM. The rare patient with long-term survival presented with limited intracranial disease amenable to surgery or radiation therapy. However, the development of targeted therapy and immunotherapy over the last decade has significantly improved overall survival in this formerly devastating presentation of metastatic melanoma.Areas covered: This article reviews the mechanism of brain metastasis, challenges with treating the central nervous system, historical treatment of MBM, and outcomes in clinical trials with targeted therapy and immunotherapy.Expert opinion: The MBM patient population now, more than ever, requires a multidisciplinary approach with surgery, radiation therapy, and the use of newer systemic therapies such as immunotherapy agents and targeted therapy agents. MBM has traditionally been excluded from clinical trials for systemic therapy due to poor survival. However, recent data show overall survival rates have significantly improved, supporting the need for inclusion of MBM patients in systemic therapy clinical trials. Understanding the mechanisms of therapeutic activity in the brain, resistance mechanisms, and the appropriate multi-modality treatment approach requires further investigation. Nevertheless, these therapies continue to give some hope to patients with historically poor survival.
Collapse
Affiliation(s)
- Justin G Wilkes
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA.,University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Ayushi Patel
- University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Erin McClure
- University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Yolanda Pina
- Department of Neuro-Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jonathan S Zager
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA.,University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
49
|
Masmudi-Martín M, Zhu L, Sanchez-Navarro M, Priego N, Casanova-Acebes M, Ruiz-Rodado V, Giralt E, Valiente M. Brain metastasis models: What should we aim to achieve better treatments? Adv Drug Deliv Rev 2021; 169:79-99. [PMID: 33321154 DOI: 10.1016/j.addr.2020.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/16/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Brain metastasis is emerging as a unique entity in oncology based on its particular biology and, consequently, the pharmacological approaches that should be considered. We discuss the current state of modelling this specific progression of cancer and how these experimental models have been used to test multiple pharmacologic strategies over the years. In spite of pre-clinical evidences demonstrating brain metastasis vulnerabilities, many clinical trials have excluded patients with brain metastasis. Fortunately, this trend is getting to an end given the increasing importance of secondary brain tumors in the clinic and a better knowledge of the underlying biology. We discuss emerging trends and unsolved issues that will shape how we will study experimental brain metastasis in the years to come.
Collapse
|
50
|
Fares J, Cordero A, Kanojia D, Lesniak MS. The Network of Cytokines in Brain Metastases. Cancers (Basel) 2021; 13:E142. [PMID: 33466236 PMCID: PMC7795138 DOI: 10.3390/cancers13010142] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022] Open
Abstract
Brain metastases are the most common of all intracranial tumors and a major cause of death in patients with cancer. Cytokines, including chemokines, interferons, interleukins, lymphokines, and tumor necrosis factors are key regulators in the formation of brain metastases. They regulate the infiltration of different cellular subsets into the tumor microenvironment and affect the therapeutic outcomes in patients. Elucidating the cancer cell-cytokine interactions in the setting of brain metastases is crucial for the development of more accurate diagnostics and efficacious therapies. In this review, we focus on cytokines that are found in the tumor microenvironment of brain metastases and elaborate on their trends of expression, regulation, and roles in cellular recruitment and tumorigenesis. We also explore how cytokines can alter the anti-tumor response in the context of brain metastases and discuss ways through which cytokine networks can be manipulated for diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | - Maciej S. Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (J.F.); (A.C.); (D.K.)
| |
Collapse
|