1
|
Raudales A, Schager B, Hancock D, Narayana K, Sharma S, Reeson P, Oshanyk A, Cheema M, Körbelin J, Brown CE. Angiogenesis in the mature mouse cortex is governed in a regional- and Notch1-dependent manner. Cell Rep 2024; 43:115029. [PMID: 39612246 DOI: 10.1016/j.celrep.2024.115029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/10/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024] Open
Abstract
Cerebral angiogenesis is well appreciated in development and after injury, but the extent to which it occurs across cortical regions in normal adult mice and the underlying mechanisms are incompletely understood. Using in vivo imaging, we show that angiogenesis in anterior-medial cortical regions (retrosplenial and sensorimotor cortex) was exceptionally rare. By contrast, angiogenesis was significantly elevated in posterior-lateral regions such as visual cortex, primarily within 200 μm of the cortical surface. There was no effect of sex on angiogenesis rates, nor were there regional differences in vessel pruning (for either sex). To understand the mechanisms, we surveyed gene expression and found that Notch-related genes were enriched in ultra-stable retrosplenial cortex. Using endothelial-specific knockdown of Notch1, cerebral angiogenesis was significantly increased along with genes implicated in angiogenesis (Apln, Angpt2, Cdkn1a). Our study shows that angiogenesis is regionally dependent and that manipulations of Notch1 could unlock the angiogenic potential of the mature vasculature.
Collapse
Affiliation(s)
- Alejandra Raudales
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Ben Schager
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Dominique Hancock
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Kamal Narayana
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Sorabh Sharma
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Patrick Reeson
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Adam Oshanyk
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Manjinder Cheema
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Craig E Brown
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
2
|
Turrini L, Ricci P, Sorelli M, de Vito G, Marchetti M, Vanzi F, Pavone FS. Two-photon all-optical neurophysiology for the dissection of larval zebrafish brain functional and effective connectivity. Commun Biol 2024; 7:1261. [PMID: 39367042 PMCID: PMC11452506 DOI: 10.1038/s42003-024-06731-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/13/2024] [Indexed: 10/06/2024] Open
Abstract
One of the most audacious goals of modern neuroscience is unraveling the complex web of causal relations underlying the activity of neuronal populations on a whole-brain scale. This endeavor, which was prohibitive only a couple of decades ago, has recently become within reach owing to the advancements in optical methods and the advent of genetically encoded indicators/actuators. These techniques, applied to the translucent larval zebrafish have enabled recording and manipulation of the activity of extensive neuronal populations spanning the entire vertebrate brain. Here, we present a custom two-photon optical system that couples light-sheet imaging and 3D excitation with acousto-optic deflectors for simultaneous high-speed volumetric recording and optogenetic stimulation. By employing a zebrafish line with pan-neuronal expression of both the calcium reporter GCaMP6s and the red-shifted opsin ReaChR, we implemented a crosstalk-free, noninvasive all-optical approach and applied it to reconstruct the functional and effective connectivity of the left habenula.
Collapse
Affiliation(s)
- Lapo Turrini
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy.
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy.
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy.
| | - Pietro Ricci
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- Department of Applied Physics, University of Barcelona, Barcelona, Spain
| | - Michele Sorelli
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - Giuseppe de Vito
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | | | - Francesco Vanzi
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy.
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy.
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
3
|
Yu J, Joo IL, Bazzigaluppi P, Koletar MM, Cherin E, Stanisz AG, Graham JWC, Demore C, Stefanovic B. Micro-ultrasound based characterization of cerebrovasculature following focal ischemic stroke and upon short-term rehabilitation. J Cereb Blood Flow Metab 2024; 44:461-476. [PMID: 37974304 PMCID: PMC10981404 DOI: 10.1177/0271678x231215004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/21/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
Notwithstanding recanalization treatments in the acute stage of stroke, many survivors suffer long-term impairments. Physical rehabilitation is the only widely available strategy for chronic-stage recovery, but its optimization is hindered by limited understanding of its effects on brain structure and function. Using micro-ultrasound, behavioral testing, and electrophysiology, we investigated the impact of skilled reaching rehabilitation on cerebral hemodynamics, motor function, and neuronal activity in a rat model of focal ischemic stroke. A 50 MHz micro-ultrasound transducer and intracortical electrophysiology were utilized to characterize neurovascular changes three weeks following focal ischemia elicited by endothelin-1 injection into the sensorimotor cortex. Sprague-Dawley rats were rehabilitated through tray reaching, and their fine skilled reaching was assessed via the Montoya staircase. Focal ischemia led to a sustained deficit in forelimb reaching; and increased tortuosity of the penetrating vessels in the perilesional cortex; with no lateralization of spontaneous neuronal activity. Rehabilitation improved skilled reaching; decreased cortical vascularity; was associated with elevated peri- vs. contralesional hypercapnia-induced flow homogenization and increased perilesional spontaneous cortical neuronal activity. Our study demonstrated neurovascular plasticity accompanying rehabilitation-elicited functional recovery in the subacute stage following stroke, and multiple micro-ultrasound-based markers of cerebrovascular structure and function modified in recovery from ischemia and upon rehabilitation.
Collapse
Affiliation(s)
- Johnson Yu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Illsung L Joo
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Paolo Bazzigaluppi
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- MetaCell, Cagliari, Italy
| | - Margaret M Koletar
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Emmanuel Cherin
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Andrew G Stanisz
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - James WC Graham
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Christine Demore
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Bojana Stefanovic
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Sodero A, Conti E, Piccardi B, Sarti C, Palumbo V, Kennedy J, Gori AM, Giusti B, Fainardi E, Nencini P, Allegra Mascaro AL, Pavone FS, Baldereschi M. Acute ischemic STROKE - from laboratory to the Patient's BED (STROKELABED): A translational approach to reperfusion injury. Study Protocol. Transl Neurosci 2024; 15:20220344. [PMID: 39005711 PMCID: PMC11245877 DOI: 10.1515/tnsci-2022-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Cerebral edema (CE) and hemorrhagic transformation (HT) are frequent and unpredictable events in patients with acute ischemic stroke (AIS), even when an effective vessel recanalization has been achieved. These complications, related to blood-brain barrier (BBB) disruption, remain difficult to prevent or treat and may offset the beneficial effect of recanalization, and lead to poor outcomes. The aim of this translational study is to evaluate the association of circulating and imaging biomarkers with subsequent CE and HT in stroke patients with the dual purpose of investigating possible predictors as well as molecular dynamics underpinning those events and functional outcomes. Concurrently, the preclinical study will develop a new mouse model of middle cerebral artery (MCA) occlusion and recanalization to explore BBB alterations and their potentially harmful effects on tissue. The clinical section of the study is based on a single-center observational design enrolling consecutive patients with AIS in the anterior circulation territory, treated with recanalization therapies from October 1, 2015 to May 31, 2020. The study will employ an innovative evaluation of routine CT scans: in fact, we will assess and quantify the presence of CE and HT after stroke in CT scans at 24 h, through the quantification of anatomical distortion (AD), a measure of CE and HT. We will investigate the relationship of AD and several blood biomarkers of inflammation and extracellular matrix, with functional outcomes at 3 months. In parallel, we will employ a newly developed mouse model of stroke and recanalization, to investigate the emergence of BBB changes 24 h after the stroke onset. The close interaction between clinical and preclinical research can enhance our understanding of findings from each branch of research, enabling a deeper interpretation of the underlying mechanisms of reperfusion injury following recanalization treatment for AIS.
Collapse
Affiliation(s)
- Alessandro Sodero
- Neurofarba Department, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Emilia Conti
- Neuroscience Institute, National Research Council, Via G. Moruzzi 1, 56124, Pisa, Italy
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
| | - Benedetta Piccardi
- Stroke Unit, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Cristina Sarti
- Neurofarba Department, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
- Stroke Unit, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Vanessa Palumbo
- Stroke Unit, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - James Kennedy
- Acute Multidisciplinary Imaging & Interventional Centre, John Radcliffe Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Anna Maria Gori
- Atherothrombotic Diseases Center, Department of Experimental and Clinical Medicine, University of Florence - Azienda Ospedaliero Universitaria Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - Betti Giusti
- Atherothrombotic Diseases Center, Department of Experimental and Clinical Medicine, University of Florence - Azienda Ospedaliero Universitaria Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - Enrico Fainardi
- Neuroradiology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio,”, University of Florence, 50121 Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Patrizia Nencini
- Stroke Unit, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Anna Letizia Allegra Mascaro
- Neurofarba Department, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
- Neuroscience Institute, National Research Council, Via G. Moruzzi 1, 56124, Pisa, Italy
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, 50019, Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council, 50019, Sesto Fiorentino, Italy
| | - Marzia Baldereschi
- Neuroscience Institute, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
5
|
Li J, Wu X, Fu Y, Nie H, Tang Z. Two-photon microscopy: application advantages and latest progress for in vivo imaging of neurons and blood vessels after ischemic stroke. Rev Neurosci 2023; 34:559-572. [PMID: 36719181 DOI: 10.1515/revneuro-2022-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/02/2023] [Indexed: 02/01/2023]
Abstract
Two-photon microscopy (TPM) plays an important role in the study of the changes of the two important components of neurovascular units (NVU) - neurons and blood vessels after ischemic stroke (IS). IS refers to sudden neurological dysfunction caused by focal cerebral ischemia, which is one of the leading causes of death and disability worldwide. TPM is a new and rapidly developing high-resolution real-time imaging technique used in vivo that has attracted increasing attention from scientists in the neuroscience field. Neurons and blood vessels are important components of neurovascular units, and they undergo great changes after IS to respond to and compensate for ischemic injury. Here, we introduce the characteristics and pre-imaging preparations of TPM, and review the common methods and latest progress of TPM in the neuronal and vascular research for injury and recovery of IS in recent years. With the review, we clearly recognized that the most important advantage of TPM in the study of ischemic stroke is the ability to perform chronic longitudinal imaging of different tissues at a high resolution in vivo. Finally, we discuss the limitations of TPM and the technological advances in recent years.
Collapse
Affiliation(s)
- Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Yu Fu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Hao Nie
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China
| |
Collapse
|
6
|
Hugues N, Pin-Barre C, Brioche T, Pellegrino C, Berton E, Rivera C, Laurin J. High-intensity training with short and long intervals regulate cortical neurotrophic factors, apoptosis markers and chloride homeostasis in rats with stroke. Physiol Behav 2023; 266:114190. [PMID: 37055005 DOI: 10.1016/j.physbeh.2023.114190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND/PURPOSE The optimal endurance exercise parameters remain to be defined to potentiate long-term functional recovery after stroke. We aim to assess the effects of individualized high-intensity interval training (HIIT) with either long or short intervals on neurotrophic factors and their receptors, apoptosis markers and the two-main cation-chloride cotransporters in the ipsi- and contralesional cerebral cortices in rats with cerebral ischemia. Endurance performance and sensorimotor functions were also assessed METHODS: : Rats with a 2-hour transient middle cerebral artery occlusion (tMCAO) performed work-matched HIIT4 (intervals: 4min) or HIIT1 (intervals: 1min) on treadmill for 2 weeks. Incremental exercises and sensorimotor tests were performed at day 1 (D1), D8, and D15 after tMCAO. Molecular analyses were achieved in both the paretic and non-paretic triceps brachii muscles and the ipsi- and contralesional cortices at D17 RESULTS: : Gains in endurance performance are in a time-dependent manner from the first week of training. This enhancement is supported by the upregulation of metabolic markers in both triceps brachii muscles. Both regimens alter the expression of neurotrophic markers and chloride homeostasis in a specific manner in the ipsi- and contralesional cortices. HIIT acts on apoptosis markers by promoting anti-apoptotic proteins in the ipsilesional cortex CONCLUSION: : HIIT regimens seem to be of clinical relevance in the critical period of stroke rehabilitation by strongly improving aerobic performance. Also, the observed cortical changes suggest an influence of HIIT on neuroplasticity in both ipsi- and contralesional hemispheres. Such neurotrophic markers might be considered as biomarkers of functional recovery in individuals with stroke.
Collapse
Affiliation(s)
- Nicolas Hugues
- Aix Marseille Univ, INSERM, INMED, Marseille, France; Aix Marseille Univ, CNRS, ISM, Marseille, France
| | | | - Thomas Brioche
- Université de Montpellier, INRAE, DMEM, Montpellier, France
| | | | - Eric Berton
- Aix Marseille Univ, CNRS, ISM, Marseille, France
| | | | - Jérôme Laurin
- Aix Marseille Univ, INSERM, INMED, Marseille, France.
| |
Collapse
|
7
|
Cao X, Wang Z, Chen X, Liu Y, Abdoulaye IA, Ju S, Zhang S, Wu S, Wang Y, Guo Y. Changes in Resting-State Neural Activity and Nerve Fibres in Ischaemic Stroke Patients with Hemiplegia. Brain Topogr 2023; 36:255-268. [PMID: 36604349 DOI: 10.1007/s10548-022-00937-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023]
Abstract
Many neuroimaging studies have reported that stroke induces abnormal brain activity. However, little is known about resting-state networks (RSNs) and the corresponding white matter changes in stroke patients with hemiplegia. Here, we utilized functional magnetic resonance imaging (fMRI) to measure neural activity and related fibre tracts in 14 ischaemic stroke patients with hemiplegia and 12 healthy controls. Fractional amplitude of low-frequency fluctuations (fALFF) calculation and correlation analyses were used to assess the relationship between regional neural activity and movement scores. Tractography was performed using diffusion tensor imaging (DTI) data to analyse the fibres passing through the regions of interest. Compared with controls, stroke patients showed abnormal functional connectivity (FC) between some brain regions in the RSNs. The fALFF was increased in the contralesional parietal lobe, with the regional fALFF being correlated with behavioural scores in stroke patients. Additionally, the passage of fibres across regions with reduced FC in the RSNs was increased in stroke patients. This study suggests that structural remodelling of functionally relevant white matter tracts is probably an adaptive response that compensates for injury to the brain.
Collapse
Affiliation(s)
- Xuejin Cao
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Medical School of Southeast University, Nanjing, China
| | - Zan Wang
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Medical School of Southeast University, Nanjing, China
| | - Xiaohui Chen
- Department of Radiology, Affiliated ZhongDa Hospital of Southeast University, Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School of Southeast University, Nanjing, China
| | - Yanli Liu
- Department of Rehabilitation, Affiliated ZhongDa Hospital of Southeast University, Nanjing, China
| | - Idriss Ali Abdoulaye
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Medical School of Southeast University, Nanjing, China
| | - Shenghong Ju
- Department of Radiology, Affiliated ZhongDa Hospital of Southeast University, Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School of Southeast University, Nanjing, China
| | - Shiyao Zhang
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Medical School of Southeast University, Nanjing, China
| | - Shanshan Wu
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Medical School of Southeast University, Nanjing, China
| | - Yuancheng Wang
- Department of Radiology, Affiliated ZhongDa Hospital of Southeast University, Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School of Southeast University, Nanjing, China
| | - Yijing Guo
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Medical School of Southeast University, Nanjing, China. .,Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Medical School of Southeast University, Nanjing, 210009, Jiangsu Province, China.
| |
Collapse
|
8
|
Assessing brain state and anesthesia level with two-photon calcium signals. Sci Rep 2023; 13:3183. [PMID: 36823228 PMCID: PMC9950142 DOI: 10.1038/s41598-023-30224-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Brain states, such as wake, sleep, or different depths of anesthesia are usually assessed using electrophysiological techniques, such as the local field potential (LFP) or the electroencephalogram (EEG), which are ideal signals for detecting activity patterns such as asynchronous or oscillatory activities. However, it is technically challenging to have these types of measures during calcium imaging recordings such as two-photon or wide-field techniques. Here, using simultaneous two-photon and LFP measurements, we demonstrate that despite the slower dynamics of the calcium signal, there is a high correlation between the LFP and two-photon signals taken from the neuropil outside neuronal somata. Moreover, we find the calcium signal to be systematically delayed from the LFP signal, and we use a model to show that the delay between the two signals is due to the physical distance between the recording sites. These results suggest that calcium signals alone can be used to detect activity patterns such as slow oscillations and ultimately assess the brain state and level of anesthesia.
Collapse
|
9
|
Liu W, He X, Lin H, Yang M, Dai Y, Chen L, Li C, Liang S, Tao J, Chen L. Ischemic stroke rehabilitation through optogenetic modulation of parvalbumin neurons in the contralateral motor cortex. Exp Neurol 2023; 360:114289. [PMID: 36471512 DOI: 10.1016/j.expneurol.2022.114289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/09/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Based on the theory of interhemispheric inhibition and the bimodal balance-recovery model in stroke, we explored the effects of excitation/inhibition (E/I) of parvalbumin (PV) neurons in the contralateral primary motor cortex (cM1) connecting the ipsilateral M1 (iM1) via the corpus callosum (cM1-CC-iM1) of ischemic stroke rats by optogenetic stimulation. METHODS We tested this by injecting anterograde and retrograde virus in rats with middle cerebral artery occlusion (MCAO), and evaluated the neurological scores, motor behavior, volume of cerebral infarction and the E/I balance of the bilateral M1 two weeks after employing optogenetic treatment. RESULTS We found that concentrations of Glu and GABA decreased and increased, respectively, in the iM1 of MCAO rats, and that the former increased in the cM1, suggesting E/I imbalance in bilateral M1 after ischemic stroke. Interestingly, optogenetic stimulation improved M1 E/I imbalance, as illustrated by the increase of Glu in the iM1 and the decrease of GABA in both iM1 and cM1, which were accompanied by an improvement in neurological deficit and motor dysfunction. In addition, we observed a reduced infarct volume, an increase in the expression of the NMDAR and AMPAR, and a decrease in GAD67 in the iM1 after intervention. CONCLUSIONS Optogenetic modulation of PV neurons of the iM1-CC-cM1 improve E/I balance, leading to reduced neurological deficit and improved motor dysfunction following ischemic stroke in rats.
Collapse
Affiliation(s)
- Weilin Liu
- Rehabilitation Industry institute, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Xiaojun He
- Rehabilitation Industry institute, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Huawei Lin
- Rehabilitation Industry institute, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Minguang Yang
- Rehabilitation Industry institute, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yaling Dai
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Lewen Chen
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Chaohui Li
- General surgery, Anxi General Hospital of Traditional Chinese Medicine, Quanzhou, Fujian 362400, China
| | - Shengxiang Liang
- Rehabilitation Industry institute, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Jing Tao
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Lidian Chen
- Rehabilitation Industry institute, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| |
Collapse
|
10
|
Conti E, Carlini N, Piccardi B, Allegra Mascaro AL, Pavone FS. Photothrombotic Middle Cerebral Artery Occlusion in Mice: A Novel Model of Ischemic Stroke. eNeuro 2023; 10:ENEURO.0244-22.2022. [PMID: 36650068 PMCID: PMC9910575 DOI: 10.1523/eneuro.0244-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/25/2022] [Accepted: 11/06/2022] [Indexed: 01/19/2023] Open
Abstract
Stroke is one of the main causes of death and disability worldwide. Over the past decades, several animal models of focal cerebral ischemia have been developed allowing to investigate pathophysiological mechanisms underlying stroke progression. Despite intense preclinical research efforts, the need for noninvasive mouse models of vascular occlusion targeting the middle cerebral artery yet avoiding mechanical intervention is still pressing. Here, by applying the photothrombotic stroke model to the distal branch of the middle cerebral artery, we developed a novel strategy to induce a targeted occlusion of a large blood vessel in mice. This approach induces unilateral damage encompassing most of the dorsal cortex from the motor up to the visual regions 1 week after stroke. Pronounced limb dystonia one day after the damage is partially recovered after one week. Furthermore, we observe the insurgence of blood vessel leakage and edema formation in the peri-infarct area. Finally, this model elicits a notable inflammatory response revealed as a strong increase in astrocyte density and morphologic complexity in the perilesional region of the cortex compared with both other regions of the ipsilesional and contralesional hemispheres, and in sham-operated mice. To conclude, the stroke model we developed induces in mice the light-mediated occlusion of one of the main targets of human ischemic stroke, the middle cerebral artery, free from the limitations of commonly used preclinical models.
Collapse
Affiliation(s)
- Emilia Conti
- Neuroscience Institute, National Research Council, 56124 Pisa, Italy
- European Laboratory for Non-Linear Spectroscopy, 50019 Sesto Fiorentino, Italy
- Translational Research on Stroke (TREES) Working Group, Florence, Italy
| | - Noemi Carlini
- Neuroscience Institute, National Research Council, 56124 Pisa, Italy
- European Laboratory for Non-Linear Spectroscopy, 50019 Sesto Fiorentino, Italy
| | - Benedetta Piccardi
- Neurofarba Department, University of Florence, 50139 Florence, Italy
- Translational Research on Stroke (TREES) Working Group, Florence, Italy
| | - Anna Letizia Allegra Mascaro
- Neuroscience Institute, National Research Council, 56124 Pisa, Italy
- European Laboratory for Non-Linear Spectroscopy, 50019 Sesto Fiorentino, Italy
- Translational Research on Stroke (TREES) Working Group, Florence, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, 50019 Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
11
|
Conti E, Pavone FS, Allegra Mascaro AL. In Vivo Imaging of the Structural Plasticity of Cortical Neurons After Stroke. Methods Mol Biol 2023; 2616:69-81. [PMID: 36715929 DOI: 10.1007/978-1-0716-2926-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The comprehension of the finest mechanisms underlying experience-dependent plasticity requires the investigation of neurons and synaptic terminals in the intact brain over prolonged periods of time. Longitudinal two-photon imaging together with the expression of fluorescent proteins enables high-resolution imaging of dendritic spines and axonal varicosities of cortical neurons in vivo. Importantly, the study of the mechanisms of structural reorganization is relevant for a deeper understanding of the pathophysiological mechanisms of neurological diseases such as stroke and for the development of new therapeutic approaches. This protocol describes the principal steps for in vivo investigation of neuronal plasticity both in healthy conditions and after an ischemic lesion. First, we give a description of the surgery to perform a stable cranial window that allows optical access to the mouse brain cortex. Then we explain how to perform longitudinal two-photon imaging of dendrites, axonal branches, and synaptic terminals in the mouse brain cortex in vivo, in order to investigate the plasticity of synaptic terminals and orientation of neuronal processes. Finally, we describe how to induce an ischemic lesion in a target region of the mouse brain cortex through a cranial window by applying the photothrombotic stroke model.
Collapse
Affiliation(s)
- Emilia Conti
- Neuroscience Institute, National Research Council, Pisa, Italy
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council, Sesto Fiorentino, Italy
| | - Anna Letizia Allegra Mascaro
- Neuroscience Institute, National Research Council, Pisa, Italy.
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy.
| |
Collapse
|
12
|
Wang Y, LeDue JM, Murphy TH. Multiscale imaging informs translational mouse modeling of neurological disease. Neuron 2022; 110:3688-3710. [PMID: 36198319 DOI: 10.1016/j.neuron.2022.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/26/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
Abstract
Multiscale neurophysiology reveals that simple motor actions are associated with changes in neuronal firing in virtually every brain region studied. Accordingly, the assessment of focal pathology such as stroke or progressive neurodegenerative diseases must also extend widely across brain areas. To derive mechanistic information through imaging, multiple resolution scales and multimodal factors must be included, such as the structure and function of specific neurons and glial cells and the dynamics of specific neurotransmitters. Emerging multiscale methods in preclinical animal studies that span micro- to macroscale examinations fill this gap, allowing a circuit-based understanding of pathophysiological mechanisms. Combined with high-performance computation and open-source data repositories, these emerging multiscale and large field-of-view techniques include live functional ultrasound, multi- and single-photon wide-scale light microscopy, video-based miniscopes, and tissue-penetrating fiber photometry, as well as variants of post-mortem expansion microscopy. We present these technologies and outline use cases and data pipelines to uncover new knowledge within animal models of stroke, Alzheimer's disease, and movement disorders.
Collapse
Affiliation(s)
- Yundi Wang
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jeffrey M LeDue
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Timothy H Murphy
- University of British Columbia, Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Detwiller Pavilion, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
13
|
Latency correction in sparse neuronal spike trains. J Neurosci Methods 2022; 381:109703. [PMID: 36075286 PMCID: PMC9554712 DOI: 10.1016/j.jneumeth.2022.109703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND In neurophysiological data, latency refers to a global shift of spikes from one spike train to the next, either caused by response onset fluctuations or by finite propagation speed. Such systematic shifts in spike timing lead to a spurious decrease in synchrony which needs to be corrected. NEW METHOD We propose a new algorithm of multivariate latency correction suitable for sparse data for which the relevant information is not primarily in the rate but in the timing of each individual spike. The algorithm is designed to correct systematic delays while maintaining all other kinds of noisy disturbances. It consists of two steps, spike matching and distance minimization between the matched spikes using simulated annealing. RESULTS We show its effectiveness on simulated and real data: cortical propagation patterns recorded via calcium imaging from mice before and after stroke. Using simulations of these data we also establish criteria that can be evaluated beforehand in order to anticipate whether our algorithm is likely to yield a considerable improvement for a given dataset. COMPARISON WITH EXISTING METHOD(S) Existing methods of latency correction rely on adjusting peaks in rate profiles, an approach that is not feasible for spike trains with low firing in which the timing of individual spikes contains essential information. CONCLUSIONS For any given dataset the criterion for applicability of the algorithm can be evaluated quickly and in case of a positive outcome the latency correction can be applied easily since the source codes of the algorithm are publicly available.
Collapse
|
14
|
Bice AR, Xiao Q, Kong J, Yan P, Rosenthal ZP, Kraft AW, Smith KP, Wieloch T, Lee JM, Culver JP, Bauer AQ. Homotopic contralesional excitation suppresses spontaneous circuit repair and global network reconnections following ischemic stroke. eLife 2022; 11:e68852. [PMID: 35723585 PMCID: PMC9333991 DOI: 10.7554/elife.68852] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Understanding circuit-level manipulations that affect the brain's capacity for plasticity will inform the design of targeted interventions that enhance recovery after stroke. Following stroke, increased contralesional activity (e.g. use of the unaffected limb) can negatively influence recovery, but it is unknown which specific neural connections exert this influence, and to what extent increased contralesional activity affects systems- and molecular-level biomarkers of recovery. Here, we combine optogenetic photostimulation with optical intrinsic signal imaging to examine how contralesional excitatory activity affects cortical remodeling after stroke in mice. Following photothrombosis of left primary somatosensory forepaw (S1FP) cortex, mice either recovered spontaneously or received chronic optogenetic excitation of right S1FP over the course of 4 weeks. Contralesional excitation suppressed perilesional S1FP remapping and was associated with abnormal patterns of stimulus-evoked activity in the unaffected limb. This maneuver also prevented the restoration of resting-state functional connectivity (RSFC) within the S1FP network, RSFC in several networks functionally distinct from somatomotor regions, and resulted in persistent limb-use asymmetry. In stimulated mice, perilesional tissue exhibited transcriptional changes in several genes relevant for recovery. Our results suggest that contralesional excitation impedes local and global circuit reconnection through suppression of cortical activity and several neuroplasticity-related genes after stroke, and highlight the importance of site selection for targeted therapeutic interventions after focal ischemia.
Collapse
Affiliation(s)
- Annie R Bice
- Department of Radiology, Washington University in St. LouisSaint LouisUnited States
| | - Qingli Xiao
- Department of Neurology, Washington University in St. LouisSaint LouisUnited States
| | - Justin Kong
- Department of Biology, Washington University in St. LouisSaint LouisUnited States
| | - Ping Yan
- Department of Neurology, Washington University in St. LouisSaint LouisUnited States
| | | | - Andrew W Kraft
- Department of Neurology, Washington University in St. LouisSaint LouisUnited States
| | - Karen P Smith
- Department of Neurology, Washington University in St. LouisSaint LouisUnited States
| | | | - Jin-Moo Lee
- Department of Neurology, Washington University in St. LouisSaint LouisUnited States
| | - Joseph P Culver
- Department of Radiology, Washington University in St. LouisSt. LouisUnited States
| | - Adam Q Bauer
- Department of Radiology, Washington University in St. LouisSaint LouisUnited States
| |
Collapse
|
15
|
Scaglione A, Conti E, Allegra Mascaro AL, Pavone FS. Tracking the Effect of Therapy With Single-Trial Based Classification After Stroke. Front Syst Neurosci 2022; 16:840922. [PMID: 35602972 PMCID: PMC9114305 DOI: 10.3389/fnsys.2022.840922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/28/2022] [Indexed: 11/24/2022] Open
Abstract
Stroke is a debilitating disease that leads, in the 50% of cases, to permanent motor or cognitive impairments. The effectiveness of therapies that promote recovery after stroke depends on indicators of the disease state that can measure the degree of recovery or predict treatment response or both. Here, we propose to use single-trial classification of task dependent neural activity to assess the disease state and track recovery after stroke. We tested this idea on calcium imaging data of the dorsal cortex of healthy, spontaneously recovered and rehabilitated mice while performing a forelimb retraction task. Results show that, at a single-trial level for the three experimental groups, neural activation during the reward pull can be detected with high accuracy with respect to the background activity in all cortical areas of the field of view and this activation is quite stable across trials and subjects of the same group. Moreover, single-trial responses during the reward pull can be used to discriminate between healthy and stroke subjects with areas closer to the injury site displaying higher discrimination capability than areas closer to this site. Finally, a classifier built to discriminate between controls and stroke at the single-trial level can be used to generate an index of the disease state, the therapeutic score, which is validated on the group of rehabilitated mice. In conclusion, task-related neural activity can be used as an indicator of disease state and track recovery without selecting a peculiar feature of the neural responses. This novel method can be used in both the development and assessment of different therapeutic strategies.
Collapse
Affiliation(s)
- Alessandro Scaglione
- Department of Physics and Astronomy, University of Florence, Florence, Italy,European Laboratory for Non-Linear Spectroscopy, University of Florence, Florence, Italy,*Correspondence: Alessandro Scaglione,
| | - Emilia Conti
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Florence, Italy,Neuroscience Institute, National Research Council, Pisa, Italy
| | - Anna Letizia Allegra Mascaro
- European Laboratory for Non-Linear Spectroscopy, University of Florence, Florence, Italy,Neuroscience Institute, National Research Council, Pisa, Italy
| | - Francesco Saverio Pavone
- Department of Physics and Astronomy, University of Florence, Florence, Italy,European Laboratory for Non-Linear Spectroscopy, University of Florence, Florence, Italy,National Institute of Optics, National Research Council, Florence, Italy
| |
Collapse
|
16
|
Pasquini M, James ND, Dewany I, Coen FV, Cho N, Lai S, Anil S, Carpaneto J, Barraud Q, Lacour SP, Micera S, Courtine G. Preclinical upper limb neurorobotic platform to assess, rehabilitate, and develop therapies. Sci Robot 2022; 7:eabk2378. [PMID: 35353601 DOI: 10.1126/scirobotics.abk2378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Numerous neurorehabilitative, neuroprosthetic, and repair interventions aim to address the consequences of upper limb impairments after neurological disorders. Although these therapies target widely different mechanisms, they share the common need for a preclinical platform that supports the development, assessment, and understanding of the therapy. Here, we introduce a neurorobotic platform for rats that meets these requirements. A four-degree-of-freedom end effector is interfaced with the rat's wrist, enabling unassisted to fully assisted execution of natural reaching and retrieval movements covering the entire body workspace. Multimodal recording capabilities permit precise quantification of upper limb movement recovery after spinal cord injury (SCI), which allowed us to uncover adaptations in corticospinal tract neuron dynamics underlying this recovery. Personalized movement assistance supported early neurorehabilitation that improved recovery after SCI. Last, the platform provided a well-controlled and practical environment to develop an implantable spinal cord neuroprosthesis that improved upper limb function after SCI.
Collapse
Affiliation(s)
- Maria Pasquini
- Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'anna, Pisa, Italy.,Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nicholas D James
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Switzerland.,Defitech Center for Interventional Neurotherapies (.NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Inssia Dewany
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Switzerland.,Defitech Center for Interventional Neurotherapies (.NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Florent-Valéry Coen
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Center for Neuroprosthetics, Institute of Electrical and MicroEngineering and Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Newton Cho
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Switzerland.,Defitech Center for Interventional Neurotherapies (.NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Stefano Lai
- Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'anna, Pisa, Italy
| | - Selin Anil
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Switzerland.,Defitech Center for Interventional Neurotherapies (.NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Jacopo Carpaneto
- Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'anna, Pisa, Italy
| | - Quentin Barraud
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Switzerland.,Defitech Center for Interventional Neurotherapies (.NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| | - Stéphanie P Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Center for Neuroprosthetics, Institute of Electrical and MicroEngineering and Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Silvestro Micera
- Biorobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'anna, Pisa, Italy.,Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Switzerland.,Defitech Center for Interventional Neurotherapies (.NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
| |
Collapse
|
17
|
Sibbritt D, Hosseini M, Peng W, Bayes J, Adams J. The health care utilisation and out-of-pocket expenditure associated with Australian stroke survivors aged 55 and over. PLoS One 2022; 17:e0265907. [PMID: 35324963 PMCID: PMC8947389 DOI: 10.1371/journal.pone.0265907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/09/2022] [Indexed: 11/19/2022] Open
Abstract
Objective Stroke is a major cause of mortality and disability worldwide. People with stroke have a number of options available to treat post-stroke related symptoms and challenges. The aim of this study was to assess the use of healthcare services, self-care practices and out-of-pocket expenses associated with post-stroke healthcare. Methods We retrospectively analysed data collected between April and October 2017 from a survey of 576 participants aged 55 to 96 from the 45 and Up Study, NSW (Australia), who had earlier reported a clinical diagnosis of stroke. Participants were asked about their use of health care services, including conventional medicine practitioners and medications, complementary medicine practitioners, practices and products and the respective associated out-of-pocket expenditure for each. Results Amongst the total of 576 individuals who participated in the study, 39% consulted a doctor, 18% consulted an allied health practitioner, and 8% consulted a complementary medicine practitioner in the previous year for their stroke. Participants’ average combined out-of-pocket expenditure for post-stroke related healthcare was AU$386.4 per annum. Extrapolated to all Australians with stroke, aged 55 years and over, the total out-of-pocket expenditure for post-stroke related healthcare is estimated to be AU$42 million per annum. Conclusions Post-stroke individuals used a wide range of health services and various self-care practices for stroke rehabilitation. Such healthcare utilisation is associated with significant annual out-of-pocket expenditure. Given the socioeconomic burden of stroke, further research is required to identify the barriers and facilitators of self-care among patients with stroke and explore the cost-effectiveness of the wide range of treatments(s) utilised for post-stroke care.
Collapse
Affiliation(s)
- David Sibbritt
- School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
| | - Mahdie Hosseini
- School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
| | - Wenbo Peng
- School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
| | - Jessica Bayes
- School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
- * E-mail:
| | - Jon Adams
- School of Public Health, Faculty of Health, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
18
|
Conti E, Piccardi B, Sodero A, Tudisco L, Lombardo I, Fainardi E, Nencini P, Sarti C, Allegra Mascaro AL, Baldereschi M. Translational Stroke Research Review: Using the Mouse to Model Human Futile Recanalization and Reperfusion Injury in Ischemic Brain Tissue. Cells 2021; 10:3308. [PMID: 34943816 PMCID: PMC8699609 DOI: 10.3390/cells10123308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
The approach to reperfusion therapies in stroke patients is rapidly evolving, but there is still no explanation why a substantial proportion of patients have a poor clinical prognosis despite successful flow restoration. This issue of futile recanalization is explained here by three clinical cases, which, despite complete recanalization, have very different outcomes. Preclinical research is particularly suited to characterize the highly dynamic changes in acute ischemic stroke and identify potential treatment targets useful for clinical translation. This review surveys the efforts taken so far to achieve mouse models capable of investigating the neurovascular underpinnings of futile recanalization. We highlight the translational potential of targeting tissue reperfusion in fully recanalized mouse models and of investigating the underlying pathophysiological mechanisms from subcellular to tissue scale. We suggest that stroke preclinical research should increasingly drive forward a continuous and circular dialogue with clinical research. When the preclinical and the clinical stroke research are consistent, translational success will follow.
Collapse
Affiliation(s)
- Emilia Conti
- Neuroscience Institute, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (E.C.); (A.L.A.M.)
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Benedetta Piccardi
- Neurofarba Department, University of Florence, Via G. Pieraccini 6, 50139 Florence, Italy; (A.S.); (L.T.); (C.S.)
| | - Alessandro Sodero
- Neurofarba Department, University of Florence, Via G. Pieraccini 6, 50139 Florence, Italy; (A.S.); (L.T.); (C.S.)
| | - Laura Tudisco
- Neurofarba Department, University of Florence, Via G. Pieraccini 6, 50139 Florence, Italy; (A.S.); (L.T.); (C.S.)
| | - Ivano Lombardo
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (I.L.); (E.F.)
| | - Enrico Fainardi
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (I.L.); (E.F.)
| | - Patrizia Nencini
- Stroke Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy;
| | - Cristina Sarti
- Neurofarba Department, University of Florence, Via G. Pieraccini 6, 50139 Florence, Italy; (A.S.); (L.T.); (C.S.)
| | - Anna Letizia Allegra Mascaro
- Neuroscience Institute, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (E.C.); (A.L.A.M.)
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Marzia Baldereschi
- Neuroscience Institute, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
19
|
Neural Stem Cells: Promoting Axonal Regeneration and Spinal Cord Connectivity. Cells 2021; 10:cells10123296. [PMID: 34943804 PMCID: PMC8699545 DOI: 10.3390/cells10123296] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022] Open
Abstract
Spinal cord injury (SCI) leads to irreversible functional impairment caused by neuronal loss and the disruption of neuronal connections across the injury site. While several experimental strategies have been used to minimize tissue damage and to enhance axonal growth and regeneration, the corticospinal projection, which is the most important voluntary motor system in humans, remains largely refractory to regenerative therapeutic interventions. To date, one of the most promising pre-clinical therapeutic strategies has been neural stem cell (NSC) therapy for SCI. Over the last decade we have found that host axons regenerate into spinal NSC grafts placed into sites of SCI. These regenerating axons form synapses with the graft, and the graft in turn extends very large numbers of new axons from the injury site over long distances into the distal spinal cord. Here we discuss the pathophysiology of SCI that makes the spinal cord refractory to spontaneous regeneration, the most recent findings of neural stem cell therapy for SCI, how it has impacted motor systems including the corticospinal tract and the implications for sensory feedback.
Collapse
|
20
|
Conti E, Scaglione A, de Vito G, Calugi F, Pasquini M, Pizzorusso T, Micera S, Allegra Mascaro AL, Pavone FS. Combining Optogenetic Stimulation and Motor Training Improves Functional Recovery and Perilesional Cortical Activity. Neurorehabil Neural Repair 2021; 36:107-118. [PMID: 34761714 DOI: 10.1177/15459683211056656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background. An ischemic stroke is followed by the remapping of motor representation and extensive changes in cortical excitability involving both hemispheres. Although stimulation of the ipsilesional motor cortex, especially when paired with motor training, facilitates plasticity and functional restoration, the remapping of motor representation of the single and combined treatments is largely unexplored. Objective. We investigated if spatio-temporal features of motor-related cortical activity and the new motor representations are related to the rehabilitative treatment or if they can be specifically associated to functional recovery. Methods. We designed a novel rehabilitative treatment that combines neuro-plasticizing intervention with motor training. In detail, optogenetic stimulation of peri-infarct excitatory neurons expressing Channelrhodopsin 2 was associated with daily motor training on a robotic device. The effectiveness of the combined therapy was compared with spontaneous recovery and with the single treatments (ie optogenetic stimulation or motor training). Results. We found that the extension and localization of the new motor representations are specific to the treatment, where most treatments promote segregation of the motor representation to the peri-infarct region. Interestingly, only the combined therapy promotes both the recovery of forelimb functionality and the rescue of spatio-temporal features of motor-related activity. Functional recovery results from a new excitatory/inhibitory balance between hemispheres as revealed by the augmented motor response flanked by the increased expression of parvalbumin positive neurons in the peri-infarct area. Conclusions. Our findings highlight that functional recovery and restoration of motor-related neuronal activity are not necessarily coupled during post-stroke recovery. Indeed the reestablishment of cortical activation features of calcium transient is distinctive of the most effective therapeutic approach, the combined therapy.
Collapse
Affiliation(s)
- Emilia Conti
- Neuroscience Institute, 9327National Research Council, Pisa, Italy.,226476European Laboratory for Non-linear Spectroscopy University of Florence, Florence, Italy.,Department of Physics and Astronomy, 9300University of Florence, Florence, Italy
| | - Alessandro Scaglione
- 226476European Laboratory for Non-linear Spectroscopy University of Florence, Florence, Italy.,Department of Physics and Astronomy, 9300University of Florence, Florence, Italy
| | - Giuseppe de Vito
- 226476European Laboratory for Non-linear Spectroscopy University of Florence, Florence, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health, 9300University of Florence, Florence, Italy
| | - Francesco Calugi
- Neuroscience Institute, 9327National Research Council, Pisa, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health, 9300University of Florence, Florence, Italy
| | - Maria Pasquini
- The BioRobotics Institute and Department of Excellence in Robotics and AI, 19005Scuola Superiore Sant'Anna, Pisa, Italy.,Center for Neuroprosthetics and Institute of Bioengineering, 454629Bertarelli Foundation Chair in Translational NeuroEngineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tommaso Pizzorusso
- Neuroscience Institute, 9327National Research Council, Pisa, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health, 9300University of Florence, Florence, Italy
| | - Silvestro Micera
- The BioRobotics Institute and Department of Excellence in Robotics and AI, 19005Scuola Superiore Sant'Anna, Pisa, Italy.,Center for Neuroprosthetics and Institute of Bioengineering, 454629Bertarelli Foundation Chair in Translational NeuroEngineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anna Letizia Allegra Mascaro
- Neuroscience Institute, 9327National Research Council, Pisa, Italy.,226476European Laboratory for Non-linear Spectroscopy University of Florence, Florence, Italy
| | - Francesco Saverio Pavone
- 226476European Laboratory for Non-linear Spectroscopy University of Florence, Florence, Italy.,Department of Physics and Astronomy, 9300University of Florence, Florence, Italy.,National Institute of Optics, 9327National Research Council, Florence, Italy
| |
Collapse
|
21
|
Alia C, Cangi D, Massa V, Salluzzo M, Vignozzi L, Caleo M, Spalletti C. Cell-to-Cell Interactions Mediating Functional Recovery after Stroke. Cells 2021; 10:3050. [PMID: 34831273 PMCID: PMC8623942 DOI: 10.3390/cells10113050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
Ischemic damage in brain tissue triggers a cascade of molecular and structural plastic changes, thus influencing a wide range of cell-to-cell interactions. Understanding and manipulating this scenario of intercellular connections is the Holy Grail for post-stroke neurorehabilitation. Here, we discuss the main findings in the literature related to post-stroke alterations in cell-to-cell interactions, which may be either detrimental or supportive for functional recovery. We consider both neural and non-neural cells, starting from astrocytes and reactive astrogliosis and moving to the roles of the oligodendrocytes in the support of vulnerable neurons and sprouting inhibition. We discuss the controversial role of microglia in neural inflammation after injury and we conclude with the description of post-stroke alterations in pyramidal and GABAergic cells interactions. For all of these sections, we review not only the spontaneous evolution in cellular interactions after ischemic injury, but also the experimental strategies which have targeted these interactions and that are inspiring novel therapeutic strategies for clinical application.
Collapse
Affiliation(s)
- Claudia Alia
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
| | - Daniele Cangi
- Department of Neurosciences, Psychology, Drugs and Child Health Area, School of Psychology, University of Florence, 50121 Florence, Italy;
| | - Verediana Massa
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
| | - Marco Salluzzo
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
- Department of Neurosciences, Psychology, Drugs and Child Health Area, School of Psychology, University of Florence, 50121 Florence, Italy;
| | - Livia Vignozzi
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy;
| | - Matteo Caleo
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy;
| | - Cristina Spalletti
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
| |
Collapse
|
22
|
Longitudinal functional imaging of VIP interneurons reveals sup-population specific effects of stroke that are rescued with chemogenetic therapy. Nat Commun 2021; 12:6112. [PMID: 34671051 PMCID: PMC8528851 DOI: 10.1038/s41467-021-26405-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/04/2021] [Indexed: 01/20/2023] Open
Abstract
Stroke profoundly disrupts cortical excitability which impedes recovery, but how it affects the function of specific inhibitory interneurons, or subpopulations therein, is poorly understood. Interneurons expressing vasoactive intestinal peptide (VIP) represent an intriguing stroke target because they can regulate cortical excitability through disinhibition. Here we chemogenetically augmented VIP interneuron excitability in a murine model of photothrombotic stroke and show that it enhances somatosensory responses and improves recovery of paw function. Using longitudinal calcium imaging, we discovered that stroke primarily disrupts the fidelity (fraction of responsive trials) and predictability of sensory responses within a subset of highly active VIP neurons. Partial recovery of responses occurred largely within these active neurons and was not accompanied by the recruitment of minimally active neurons. Importantly, chemogenetic stimulation preserved sensory response fidelity and predictability in highly active neurons. These findings provide a new depth of understanding into how stroke and prospective therapies (chemogenetics), can influence subpopulations of inhibitory interneurons.
Collapse
|
23
|
Cell Proliferation in the Piriform Cortex of Rats with Motor Cortex Ablation Treated with Growth Hormone and Rehabilitation. Int J Mol Sci 2021; 22:ijms22115440. [PMID: 34064044 PMCID: PMC8196768 DOI: 10.3390/ijms22115440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury represents one of the main health problems in developed countries. Growth hormone (GH) and rehabilitation have been claimed to significantly contribute to the recovery of lost motor function after acquired brain injury, but the mechanisms by which this occurs are not well understood. In this work, we have investigated cell proliferation in the piriform cortex (PC) of adult rats with ablation of the frontal motor cortex treated with GH and rehabilitation, in order to evaluate if this region of the brain, related to the sense of smell, could be involved in benefits of GH treatment. Male rats were either ablated the frontal motor cortex in the dominant hemisphere or sham-operated and treated with GH or vehicle at 35 days post-injury (dpi) for five days. At 36 dpi, all rats received daily injections of bromodeoxyuridine (BrdU) for four days. We assessed motor function through the paw-reaching-for-food task. GH treatment and rehabilitation at 35 dpi significantly improved the motor deficit caused by the injury and promoted an increase of cell proliferation in the PC ipsilateral to the injury, which could be involved in the improvement observed. Cortical ablation promoted a greater number of BrdU+ cells in the piriform cortex that was maintained long-term, which could be involved in the compensatory mechanisms of the brain after injury.
Collapse
|
24
|
Cecchini G, Scaglione A, Allegra Mascaro AL, Checcucci C, Conti E, Adam I, Fanelli D, Livi R, Pavone FS, Kreuz T. Cortical propagation tracks functional recovery after stroke. PLoS Comput Biol 2021; 17:e1008963. [PMID: 33999967 PMCID: PMC8159272 DOI: 10.1371/journal.pcbi.1008963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/27/2021] [Accepted: 04/13/2021] [Indexed: 12/04/2022] Open
Abstract
Stroke is a debilitating condition affecting millions of people worldwide. The development of improved rehabilitation therapies rests on finding biomarkers suitable for tracking functional damage and recovery. To achieve this goal, we perform a spatiotemporal analysis of cortical activity obtained by wide-field calcium images in mice before and after stroke. We compare spontaneous recovery with three different post-stroke rehabilitation paradigms, motor training alone, pharmacological contralesional inactivation and both combined. We identify three novel indicators that are able to track how movement-evoked global activation patterns are impaired by stroke and evolve during rehabilitation: the duration, the smoothness, and the angle of individual propagation events. Results show that, compared to pre-stroke conditions, propagation of cortical activity in the subacute phase right after stroke is slowed down and more irregular. When comparing rehabilitation paradigms, we find that mice treated with both motor training and pharmacological intervention, the only group associated with generalized recovery, manifest new propagation patterns, that are even faster and smoother than before the stroke. In conclusion, our new spatiotemporal propagation indicators could represent promising biomarkers that are able to uncover neural correlates not only of motor deficits caused by stroke but also of functional recovery during rehabilitation. In turn, these insights could pave the way towards more targeted post-stroke therapies. Millions of people worldwide suffer from long-lasting motor deficits caused by stroke. Very recently, the two basic therapeutic approaches, motor training and pharmacological intervention, have been combined in order to achieve a more efficient functional recovery. In this study, we analyze the neurophysiological activity in the brain of mice observed with in vivo calcium imaging before and after the induction of a stroke. We use a newly developed universal approach based on the temporal sequence of local activation in different brain regions to quantify three properties of global propagation patterns: duration, smoothness and angle. These innovative spatiotemporal propagation indicators allow us to track damage and functional recovery following stroke and to quantify the relative success of motor training, pharmacological inactivation, and a combination of both, compared to spontaneous recovery. We show that all three treatments reverse the alterations observed during the subacute phase right after stroke. We also find that combining motor training and pharmacological intervention does not restore pre-stroke features but rather leads to the emergence of new propagation patterns that, surprisingly, are even faster and smoother than the pre-stroke patterns.
Collapse
Affiliation(s)
- Gloria Cecchini
- Department of Mathematics and Computer Science, University of Barcelona, Barcelona, Spain
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- CSDC, University of Florence, Sesto Fiorentino, Italy
- * E-mail:
| | - Alessandro Scaglione
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy
| | - Anna Letizia Allegra Mascaro
- European Laboratory for Non-linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy
- Neuroscience Institute, National Research Council, Pisa, Italy
| | - Curzio Checcucci
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy
| | - Emilia Conti
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy
- Neuroscience Institute, National Research Council, Pisa, Italy
| | - Ihusan Adam
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- CSDC, University of Florence, Sesto Fiorentino, Italy
- Department of Information Engineering, University of Florence, Sesto Fiorentino, Italy
| | - Duccio Fanelli
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- CSDC, University of Florence, Sesto Fiorentino, Italy
- INFN, Florence Section, Sesto Fiorentino, Italy
| | - Roberto Livi
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- CSDC, University of Florence, Sesto Fiorentino, Italy
- INFN, Florence Section, Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy
- National Institute of Optics (INO), National Research Council (CNR), Sesto Fiorentino, Italy
| | - Thomas Kreuz
- Institute for Complex Systems (ISC), National Research Council (CNR), Sesto Fiorentino, Italy
| |
Collapse
|
25
|
Conti S, Spalletti C, Pasquini M, Giordano N, Barsotti N, Mainardi M, Lai S, Giorgi A, Pasqualetti M, Micera S, Caleo M. Combining robotics with enhanced serotonin-driven cortical plasticity improves post-stroke motor recovery. Prog Neurobiol 2021; 203:102073. [PMID: 33984455 DOI: 10.1016/j.pneurobio.2021.102073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/22/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Despite recent progresses in robotic rehabilitation technologies, their efficacy for post-stroke motor recovery is still limited. Such limitations might stem from the insufficient enhancement of plasticity mechanisms, crucial for functional recovery. Here, we designed a clinically relevant strategy that combines robotic rehabilitation with chemogenetic stimulation of serotonin release to boost plasticity. These two approaches acted synergistically to enhance post-stroke motor performance. Indeed, mice treated with our combined therapy showed substantial functional gains that persisted beyond the treatment period and generalized to non-trained tasks. Motor recovery was associated with a reduction in electrophysiological and neuroanatomical markers of GABAergic neurotransmission, suggesting disinhibition in perilesional areas. To unveil the translational potentialities of our approach, we specifically targeted the serotonin 1A receptor by delivering Buspirone, a clinically approved drug, in stroke mice undergoing robotic rehabilitation. Administration of Buspirone restored motor impairments similarly to what observed with chemogenetic stimulation, showing the immediate translational potential of this combined approach to significantly improve motor recovery after stroke.
Collapse
Affiliation(s)
- S Conti
- Translational Neural Engineering Area, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - C Spalletti
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - M Pasquini
- Translational Neural Engineering Area, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - N Giordano
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - N Barsotti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Italy
| | - M Mainardi
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - S Lai
- Translational Neural Engineering Area, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - A Giorgi
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Italy
| | - M Pasqualetti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Italy; Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - S Micera
- Translational Neural Engineering Area, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; Bertarelli Foundation Chair in Translational NeuroEngineering Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Centre for Neuroprosthetics and Institute of Bioengineering, Lausanne, Switzerland.
| | - M Caleo
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy; Department of Biomedical Sciences, University of Padova, Italy.
| |
Collapse
|
26
|
Williamson MR, Fuertes CJA, Dunn AK, Drew MR, Jones TA. Reactive astrocytes facilitate vascular repair and remodeling after stroke. Cell Rep 2021; 35:109048. [PMID: 33910014 PMCID: PMC8142687 DOI: 10.1016/j.celrep.2021.109048] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/30/2021] [Accepted: 04/07/2021] [Indexed: 12/18/2022] Open
Abstract
Brain injury causes astrocytes to assume a reactive state that is essential for early tissue protection, but how reactive astrocytes affect later reparative processes is incompletely understood. In this study, we show that reactive astrocytes are crucial for vascular repair and remodeling after ischemic stroke in mice. Analysis of astrocytic gene expression data reveals substantial activation of transcriptional programs related to vascular remodeling after stroke. In vivo two-photon imaging provides evidence of astrocytes contacting newly formed vessels in cortex surrounding photothrombotic infarcts. Chemogenetic ablation of a subset of reactive astrocytes after stroke dramatically impairs vascular and extracellular matrix remodeling. This disruption of vascular repair is accompanied by prolonged blood flow deficits, exacerbated vascular permeability, ongoing cell death, and worsened motor recovery. In contrast, vascular structure in the non-ischemic brain is unaffected by focal astrocyte ablation. These findings position reactive astrocytes as critical cellular mediators of functionally important vascular remodeling during neural repair.
Collapse
Affiliation(s)
- Michael R Williamson
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA.
| | | | - Andrew K Dunn
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Michael R Drew
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Center for Learning and Memory, University of Texas at Austin, Austin, TX 78712, USA; Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | - Theresa A Jones
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
27
|
A randomized controlled trial on the effects induced by robot-assisted and usual-care rehabilitation on upper limb muscle synergies in post-stroke subjects. Sci Rep 2021; 11:5323. [PMID: 33674675 PMCID: PMC7935882 DOI: 10.1038/s41598-021-84536-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/04/2021] [Indexed: 12/28/2022] Open
Abstract
Muscle synergies are hypothesized to reflect connections among motoneurons in the spinal cord activated by central commands and sensory feedback. Robotic rehabilitation of upper limb in post-stroke subjects has shown promising results in terms of improvement of arm function and motor control achieved by reassembling muscle synergies into a set more similar to that of healthy people. However, in stroke survivors the potentially neurophysiological changes induced by robot-mediated learning versus usual care have not yet been investigated. We quantified upper limb motor deficits and the changes induced by rehabilitation in 32 post-stroke subjects through the movement analysis of two virtual untrained tasks of object placing and pronation. The sample analyzed in this study is part of a larger bi-center study and included all subjects who underwent kinematic analysis and were randomized into robot and usual care groups. Post-stroke subjects who followed robotic rehabilitation showed larger improvements in axial-to-proximal muscle synergies with respect to those who underwent usual care. This was associated to a significant improvement of the proximal kinematics. Both treatments had negative effects in muscle synergies controlling the distal district. This study supports the definition of new rehabilitative treatments for improving the neurophysiological recovery after stroke.
Collapse
|
28
|
Delayed Exercise-induced Upregulation of Angiogenic Proteins and Recovery of Motor Function after Photothrombotic Stroke in Mice. Neuroscience 2021; 461:57-71. [PMID: 33667592 DOI: 10.1016/j.neuroscience.2021.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/02/2023]
Abstract
Treatments promoting post-stroke functional recovery continue to be an unmet therapeutic problem with physical rehabilitation being the most reproduced intervention in preclinical and clinical studies. Unfortunately, physiotherapy is typically effective at high intensity and early after stroke - requirements that are hardly attainable by stroke survivors. The aim of this study was to directly evaluate and compare the dose-dependent effect of delayed physical rehabilitation (daily 5 h or overnight voluntary wheel running; initiated on post-stroke day 7 and continuing through day 21) on recovery of motor function in the mouse photothrombotic model of ischemic stroke and correlate it with angiogenic potential of the brain. Our observations indicate that overnight but not 5 h access to running wheels facilitates recovery of motor function in mice in grid-walking test. Western blotting and immunofluorescence microscopy experiments evaluating the expression of angiogenesis-associated proteins VEGFR2, doppel and PDGFRβ in the peri-infarct and corresponding contralateral motor cortices indicate substantial upregulation of these proteins (≥2-fold) in the infarct core and surrounding cerebral cortex in the overnight running mice on post-stroke day 21. These findings indicate that there is a dose-dependent relationship between the extent of voluntary exercise, motor recovery and expression of angiogenesis-associated proteins in this expert-recommended mouse ischemic stroke model. Notably, our observations also point out to enhanced angiogenesis and presence of pericytes within the infarct core region during the chronic phase of stroke, suggesting a potential contribution of this tissue area in the mechanisms governing post-stroke functional recovery.
Collapse
|
29
|
Allegra Mascaro AL, Falotico E, Petkoski S, Pasquini M, Vannucci L, Tort-Colet N, Conti E, Resta F, Spalletti C, Ramalingasetty ST, von Arnim A, Formento E, Angelidis E, Blixhavn CH, Leergaard TB, Caleo M, Destexhe A, Ijspeert A, Micera S, Laschi C, Jirsa V, Gewaltig MO, Pavone FS. Experimental and Computational Study on Motor Control and Recovery After Stroke: Toward a Constructive Loop Between Experimental and Virtual Embodied Neuroscience. Front Syst Neurosci 2020; 14:31. [PMID: 32733210 PMCID: PMC7359878 DOI: 10.3389/fnsys.2020.00031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 05/08/2020] [Indexed: 01/22/2023] Open
Abstract
Being able to replicate real experiments with computational simulations is a unique opportunity to refine and validate models with experimental data and redesign the experiments based on simulations. However, since it is technically demanding to model all components of an experiment, traditional approaches to modeling reduce the experimental setups as much as possible. In this study, our goal is to replicate all the relevant features of an experiment on motor control and motor rehabilitation after stroke. To this aim, we propose an approach that allows continuous integration of new experimental data into a computational modeling framework. First, results show that we could reproduce experimental object displacement with high accuracy via the simulated embodiment in the virtual world by feeding a spinal cord model with experimental registration of the cortical activity. Second, by using computational models of multiple granularities, our preliminary results show the possibility of simulating several features of the brain after stroke, from the local alteration in neuronal activity to long-range connectivity remodeling. Finally, strategies are proposed to merge the two pipelines. We further suggest that additional models could be integrated into the framework thanks to the versatility of the proposed approach, thus allowing many researchers to achieve continuously improved experimental design.
Collapse
Affiliation(s)
- Anna Letizia Allegra Mascaro
- Neuroscience Institute, National Research Council, Pisa, Italy.,European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy
| | - Egidio Falotico
- Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Spase Petkoski
- Aix-Marseille Université, Inserm, INS UMR_S 1106, Marseille, France
| | - Maria Pasquini
- Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Lorenzo Vannucci
- Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Núria Tort-Colet
- Paris-Saclay University, Institute of Neuroscience, CNRS, Gif-sur-Yvette, France
| | - Emilia Conti
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy.,Department of Physics and Astronomy, University of Florence, Florence, Italy
| | - Francesco Resta
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy.,Department of Physics and Astronomy, University of Florence, Florence, Italy
| | | | | | | | - Emanuele Formento
- Bertarelli Foundation Chair in Translational NeuroEngineering, Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Emmanouil Angelidis
- Fortiss GmbH, Munich, Germany.,Chair of Robotics, Artificial Intelligence and Embedded Systems, Department of Informatics, Technical University of Munich, Munich, Germany
| | | | | | - Matteo Caleo
- Neuroscience Institute, National Research Council, Pisa, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Alain Destexhe
- Paris-Saclay University, Institute of Neuroscience, CNRS, Gif-sur-Yvette, France
| | - Auke Ijspeert
- Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Silvestro Micera
- Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy.,Bertarelli Foundation Chair in Translational NeuroEngineering, Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Cecilia Laschi
- Department of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Viktor Jirsa
- Aix-Marseille Université, Inserm, INS UMR_S 1106, Marseille, France
| | - Marc-Oliver Gewaltig
- Blue Brain Project (BBP), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Francesco S Pavone
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy.,Department of Physics and Astronomy, University of Florence, Florence, Italy
| |
Collapse
|
30
|
Tantillo E, Vannini E, Cerri C, Spalletti C, Colistra A, Mazzanti CM, Costa M, Caleo M. Differential roles of pyramidal and fast-spiking, GABAergic neurons in the control of glioma cell proliferation. Neurobiol Dis 2020; 141:104942. [DOI: 10.1016/j.nbd.2020.104942] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/15/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
|