1
|
Tumdam R, Hussein Y, Garin-Shkolnik T, Stern S. NMDA Receptors in Neurodevelopmental Disorders: Pathophysiology and Disease Models. Int J Mol Sci 2024; 25:12366. [PMID: 39596430 PMCID: PMC11594297 DOI: 10.3390/ijms252212366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are critical components of the mammalian central nervous system, involved in synaptic transmission, plasticity, and neurodevelopment. This review focuses on the structural and functional characteristics of NMDARs, with a particular emphasis on the GRIN2 subunits (GluN2A-D). The diversity of GRIN2 subunits, driven by alternative splicing and genetic variants, significantly impacts receptor function, synaptic localization, and disease manifestation. The temporal and spatial expression of these subunits is essential for typical neural development, with each subunit supporting distinct phases of synaptic formation and plasticity. Disruptions in their developmental regulation are linked to neurodevelopmental disorders, underscoring the importance of understanding these dynamics in NDD pathophysiology. We explore the physiological properties and developmental regulation of these subunits, highlighting their roles in the pathophysiology of various NDDs, including ASD, epilepsy, and schizophrenia. By reviewing current knowledge and experimental models, including mouse models and human-induced pluripotent stem cells (hiPSCs), this article aims to elucidate different approaches through which the intricacies of NMDAR dysfunction in NDDs are currently being explored. The comprehensive understanding of NMDAR subunit composition and their mutations provides a foundation for developing targeted therapeutic strategies to address these complex disorders.
Collapse
Affiliation(s)
- Roshan Tumdam
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel
| | - Yara Hussein
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel
| | | | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel
| |
Collapse
|
2
|
Ullman EZ, Perszyk RE, Paladugu S, Fritzemeier RG, Akins NS, Jacobs L, Liotta DC, Traynelis SF. Mechanisms of Action Underlying Conductance-Modifying Positive Allosteric Modulators of the NMDA Receptor. Mol Pharmacol 2024; 106:334-353. [PMID: 39443157 PMCID: PMC11585258 DOI: 10.1124/molpharm.124.001019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ionotropic glutamate receptors that mediate a slow, Ca2+-permeable component of excitatory neurotransmission. Modulation of NMDAR function has the potential for disease modification as NMDAR dysfunction has been implicated in neurodevelopment, neuropsychiatric, neurologic, and neurodegenerative disorders. We recently described the thieno[2,3-day]pyrimidin-4-one (EU1622) class of positive allosteric modulators, including several potent and efficacious analogs. Here we have used electrophysiological recordings from Xenopus oocytes, human embryonic kidney cells, and cultured cerebellar and cortical neurons to determine the mechanisms of action of a representative member of this class of modulator. EU1622-240 enhances current response to saturating agonist (doubling response amplitude at 0.2-0.5 μM), slows the deactivation time course following rapid removal of glutamate, increases open probability, enhances coagonist potency, and reduces single-channel conductance. We also show that EU1622-240 facilitates NMDAR activation when only glutamate or glycine is bound. EU1622-240-bound NMDARs channels activated by a single agonist (glutamate or glycine) open to a unique conductance level with different pore properties and Mg2+ sensitivity, in contrast to channels arising from activation of NMDARs with both coagonists bound. These data demonstrate that previously hypothesized distinct gating steps can be controlled by glutamate and glycine binding and shows that the 1622-series modulators enable glutamate- or glycine-bound NMDARs to generate open conformations with different pore properties. The properties of this class of allosteric modulators present intriguing therapeutic opportunities for the modulation of circuit function. SIGNIFICANCE STATEMENT: NMDA receptors are expressed throughout the central nervous system and are permeable to calcium. EU1622-240 increases open probability and agonist potency while reducing single-channel conductance and prolonging the deactivation time course. EU1622-240 allows NMDA receptor activation by the binding of one coagonist (glycine or glutamate), which produces channels with distinct properties. Evaluation of this modulator provides insight into gating mechanisms and may lead to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Elijah Z Ullman
- Departments of Pharmacology and Chemical Biology, Emory School of Medicine (E.Z.U., R.E.P., S.F.T.) and Chemistry (S.P., R.G.F., N.S.A., L.J., D.C.L.), Emory University, Atlanta, Georgia
| | - Riley E Perszyk
- Departments of Pharmacology and Chemical Biology, Emory School of Medicine (E.Z.U., R.E.P., S.F.T.) and Chemistry (S.P., R.G.F., N.S.A., L.J., D.C.L.), Emory University, Atlanta, Georgia
| | - Srinu Paladugu
- Departments of Pharmacology and Chemical Biology, Emory School of Medicine (E.Z.U., R.E.P., S.F.T.) and Chemistry (S.P., R.G.F., N.S.A., L.J., D.C.L.), Emory University, Atlanta, Georgia
| | - Russell G Fritzemeier
- Departments of Pharmacology and Chemical Biology, Emory School of Medicine (E.Z.U., R.E.P., S.F.T.) and Chemistry (S.P., R.G.F., N.S.A., L.J., D.C.L.), Emory University, Atlanta, Georgia
| | - Nicholas S Akins
- Departments of Pharmacology and Chemical Biology, Emory School of Medicine (E.Z.U., R.E.P., S.F.T.) and Chemistry (S.P., R.G.F., N.S.A., L.J., D.C.L.), Emory University, Atlanta, Georgia
| | - Leon Jacobs
- Departments of Pharmacology and Chemical Biology, Emory School of Medicine (E.Z.U., R.E.P., S.F.T.) and Chemistry (S.P., R.G.F., N.S.A., L.J., D.C.L.), Emory University, Atlanta, Georgia
| | - Dennis C Liotta
- Departments of Pharmacology and Chemical Biology, Emory School of Medicine (E.Z.U., R.E.P., S.F.T.) and Chemistry (S.P., R.G.F., N.S.A., L.J., D.C.L.), Emory University, Atlanta, Georgia
| | - Stephen F Traynelis
- Departments of Pharmacology and Chemical Biology, Emory School of Medicine (E.Z.U., R.E.P., S.F.T.) and Chemistry (S.P., R.G.F., N.S.A., L.J., D.C.L.), Emory University, Atlanta, Georgia
| |
Collapse
|
3
|
Adeyeye A, Mirsadeghi S, Gutierrez M, Hsieh J. Integrating adult neurogenesis and human brain organoid models to advance epilepsy and associated behavioral research. Epilepsy Behav 2024; 159:109982. [PMID: 39181108 DOI: 10.1016/j.yebeh.2024.109982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Epilepsy is a chronic neurological disorder characterized by recurring, unprovoked seizures, asymmetrical electroencephalogram patterns, and other pathological abnormalities. The hippocampus plays a pivotal role in learning, memory consolidation, attentional control, and pattern separation. Impairment of hippocampal network circuitry can induce long-term cognitive and memory dysfunction. In this review, we discuss how aberrant adult neurogenesis and plasticity collectively alter the network balance for information processing within the hippocampal neural network. Subsequently, we explore the potential of human brain organoids integrated into microelectrode array technology as an electrophysiological tool. We also discuss the utilization of a closed-loop platform that connects the brain organoid to a mobile robot in a virtual environment. While in vivo models provide valuable insights into some aspects of epileptogenesis, such as the impact of adult neurogenesis on hippocampal function, brain organoids are indispensable for comprehensively studying epileptogenesis involving genetic mutations that underlie human epilepsy. More importantly, a combinational approach using brain organoids on MEA paves the way for studying impaired plasticity and abnormal information processing within epileptic neural networks. This innovative in vitro approach may provide a new pathway for investigating the behavioral outcomes of aberrant neural networks when integrated with a mobile robot, closing the loop between the neural network in brain organoids and the mobile robot. In this review, we aim to discuss the use of each model to study the behavioral changes in epilepsy and highlight the benefits of both in vivo and in vitro models for understanding the behavioral aspects of epilepsy.
Collapse
Affiliation(s)
- Adebayo Adeyeye
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA; Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Sara Mirsadeghi
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA; Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Maryfer Gutierrez
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA; Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Jenny Hsieh
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA; Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
4
|
Noble AJ, Adams AT, Satsangi J, Boden JM, Osborne AJ. Prenatal cannabis exposure is associated with alterations in offspring DNA methylation at genes involved in neurodevelopment, across the life course. Mol Psychiatry 2024:10.1038/s41380-024-02752-w. [PMID: 39277688 DOI: 10.1038/s41380-024-02752-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Prenatal cannabis exposure (PCE) is of increasing concern globally, due to the potential impact on offspring neurodevelopment, and its association with childhood and adolescent brain development and cognitive function. However, there is currently a lack of research addressing the molecular impact of PCE, that may help to clarify the association between PCE and neurodevelopment. To address this knowledge gap, here we present epigenome-wide association study data across multiple time points, examining the effect of PCE and co-exposure with tobacco using two longitudinal studies, the Avon Longitudinal Study of Parents and Children (ALSPAC) and the Christchurch Health and Development Study (CHDS) at birth (0 y), 7 y and 15-17 y (ALSPAC), and ~27 y (CHDS). Our findings reveal genome-wide significant DNA methylation differences in offspring at 0 y, 7 y, 15-17 y, and 27 y associated with PCE alone, and co-exposure with tobacco. Importantly, we identified significantly differentially methylated CpG sites within the genes LZTS2, NPSR1, NT5E, CRIP2, DOCK8, COQ5, and LRP5 that are shared between different time points throughout development in offspring. Notably, functional pathway analysis showed enrichment for differential DNA methylation in neurodevelopment, neurotransmission, and neuronal structure pathways, and this was consistent across all timepoints in both cohorts. Given the increasing volume of epidemiological evidence that suggests a link between PCE and adverse neurodevelopmental outcomes in exposed offspring, this work highlights the need for further investigation into PCE, particularly in larger cohorts.
Collapse
Affiliation(s)
- Alexandra J Noble
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, UK.
| | - Alex T Adams
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, UK
- Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, UK
- Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Joseph M Boden
- Christchurch Health and Development Study, Department of Psychological Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Amy J Osborne
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
5
|
Wen Y, Fu Z, Li J, Liu M, Wang X, Chen J, Chen Y, Wang H, Wen S, Zhang K, Deng Y. Targeting m 6A mRNA demethylase FTO alleviates manganese-induced cognitive memory deficits in mice. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134969. [PMID: 38908185 DOI: 10.1016/j.jhazmat.2024.134969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Manganese (Mn) induced learning and memory deficits through mechanisms that are not fully understood. In this study, we discovered that the demethylase FTO was significantly downregulated in hippocampal neurons in an experimental a mouse model of Mn exposure. This decreased expression of FTO was associated with Mn-induced learning and memory impairments, as well as the dysfunction in synaptic plasticity and damage to regional neurons. The overexpression of FTO, or its positive modulation with agonists, provides protection against neurological damage and cognitive impairments. Mechanistically, FTO interacts synergistically with the reader YTHDF3 to facilitate the degradation of GRIN1 and GRIN3B through the m6A modification pathway. Additionally, Mn decreases the phosphorylation of SOX2, which specifically impairs the transcriptional regulation of FTO activity. Additionally, we found that the natural compounds artemisinin and apigenin that can bind molecularly with SOX2 and reduce Mn-induced cognitive dysfunction in mice. Our findings suggest that the SOX2-FTO-Grins axis represents a viable target for addressing Mn-induced neurotoxicity and cognitive impairments.
Collapse
Affiliation(s)
- Yi Wen
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, China; Engineering research center of Liaoning Province on environmental health technology and equipment, China Medical University, Shenyang, China
| | - Zhushan Fu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, China; Engineering research center of Liaoning Province on environmental health technology and equipment, China Medical University, Shenyang, China
| | - Jiashuo Li
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, China; Engineering research center of Liaoning Province on environmental health technology and equipment, China Medical University, Shenyang, China; Department of Occupational and Environmental Health, School of Public Health, Shenyang Medical College, Shenyang, China
| | - Mingyue Liu
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China; Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xinmiao Wang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, China; Engineering research center of Liaoning Province on environmental health technology and equipment, China Medical University, Shenyang, China
| | - Jingqi Chen
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, China; Engineering research center of Liaoning Province on environmental health technology and equipment, China Medical University, Shenyang, China
| | - Yue Chen
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, China; Engineering research center of Liaoning Province on environmental health technology and equipment, China Medical University, Shenyang, China
| | - Haocheng Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Sihang Wen
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, China; Engineering research center of Liaoning Province on environmental health technology and equipment, China Medical University, Shenyang, China
| | - Ke Zhang
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China; Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, China; Engineering research center of Liaoning Province on environmental health technology and equipment, China Medical University, Shenyang, China; Institute of Health Professions Education Assessment and Reform, China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Wong YT, Zheng X, Lau SH, Sun KHM, Chen X, Li H, Ng SL, Jiang H, Lau GCY, He J. Artificial fluorescent sensor reveals pre-synaptic NMDA receptors switch cholecystokinin release and LTP in the hippocampus. J Neurochem 2024; 168:2621-2639. [PMID: 38750623 DOI: 10.1111/jnc.16128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 10/04/2024]
Abstract
Cholecystokinin (CCK) has been confirmed to be essential in NMDA-dependent long-term potentiation (LTP) at mouse cortical synapses. This paper has proven that CCK is necessary for LTP induced by high-frequency stimulation of mouse hippocampal synapses projected from the entorhinal cortex. We show that the subunit of the axonal NMDA receptor dominant modulates the activity-induced LTP by triggering pre-synaptic CCK release. A functional pre-synaptic NMDA receptor is required to induce LTP mediated by the axonal Ca2+ elevation and CCK exocytosis at CCK-specific neurons. Genetic depletion of the GluN1 subunit of NMDA receptors on CCK neurons, which projected from the entorhinal cortex largely abolished the axonal Ca2+ elevation and disturbed the secretion of CCK in hippocampus. These results demonstrate that activity-induced LTP at the hippocampal synapse is CCK-dependent, and CCK secretion from the axonal terminal is modulated by pre-synaptic NMDA receptors.
Collapse
Grants
- CityU11101521, CityU11103922, CityU11104923 Hong Kong Research Grants Council, General Research Fund
- Ref The College Research Grant under Hong Kong Tung Wah College
- 2023-00-51CRG230204 The College Research Grant under Hong Kong Tung Wah College
- C1043-21G Hong Kong Research Grants Council, Collaborative Research Fund
- T13-605/18-W Hong Kong Research Grants Council, Theme-Based Research Scheme
- SRFS2324-1S02 Hong Kong Research Grants Council, Senior Research Fellow Scheme
- GHP_075_19GD Innovation and Technology Fund of the Hong Kong SAR, China
- 09203656, 08194106 Hong Kong Health Bureau, Health and Medical Research Fund
- Health@InnoHKprogram Innovation Technology Commission of the Hong Kong SAR, China
Collapse
Affiliation(s)
- Yin-Ting Wong
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
- School of Medical and Health Sciences, Tung Wah College, Ho Man Tin, Hong Kong
| | - Xuejiao Zheng
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Siu-Hin Lau
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Ka-Hei Murphy Sun
- Department of Pathology, Princess Margaret Hospital, Hong Kong City, Hong Kong
| | - Xi Chen
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Huangcan Li
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong City, Hong Kong
| | - Siu-Lung Ng
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - HeHai Jiang
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
- Guangzhou Laboratory, Guangzhou, China
| | | | - Jufang He
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
7
|
Li H, Rajani V, Sengar AS, Salter MW. Src dependency of the regulation of LTP by alternative splicing of GRIN1 exon 5. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230236. [PMID: 38853562 PMCID: PMC11343231 DOI: 10.1098/rstb.2023.0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/31/2024] [Accepted: 02/11/2024] [Indexed: 06/11/2024] Open
Abstract
Alternative splicing of Grin1 exon 5 regulates induction of long-term potentiation (LTP) at Schaffer collateral-CA1 synapses: LTP in mice lacking the GluN1 exon 5-encoded N1 cassette (GluN1a mice) is significantly increased compared with that in mice compulsorily expressing this exon (GluN1b mice). The mechanism underlying this difference is unknown. Here, we report that blocking the non-receptor tyrosine kinase Src prevents induction of LTP in GluN1a mice but not in GluN1b. We find that activating Src enhances pharmacologically isolated synaptic N-methyl-d-aspartate receptor (NMDAR) currents in GluN1a mice but not in GluN1b. Moreover, we observe that Src activation increases the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor component of Schaffer collateral-evoked excitatory post-synaptic potentials in GluN1a mice, but this increase is prevented by blocking NMDARs. We conclude that at these synapses, NMDARs in GluN1a mice are subject to upregulation by Src that mediates induction of LTP, whereas NMDARs in GluN1b mice are not regulated by Src, leading to Src-resistance of LTP. Thus, we have uncovered that a key regulatory mechanism for synaptic potentiation is gated by differential splicing of exon 5 of Grin1. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Hongbin Li
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ONM5G 1X8, Canada
| | - Vishaal Rajani
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ONM5G 1X8, Canada
| | - Ameet S. Sengar
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ONM5G 1X8, Canada
| | - Michael W. Salter
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ONM5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, ONM5S 1A8, Canada
| |
Collapse
|
8
|
Cesari E, Farini D, Medici V, Ehrmann I, Guerra M, Testa E, Naro C, Geloso MC, Pagliarini V, La Barbera L, D’Amelio M, Orsini T, Vecchioli SF, Tamagnone L, Fort P, Viscomi MT, Elliott DJ, Sette C. Differential expression of paralog RNA binding proteins establishes a dynamic splicing program required for normal cerebral cortex development. Nucleic Acids Res 2024; 52:4167-4184. [PMID: 38324473 PMCID: PMC11077083 DOI: 10.1093/nar/gkae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
Sam68 and SLM2 are paralog RNA binding proteins (RBPs) expressed in the cerebral cortex and display similar splicing activities. However, their relative functions during cortical development are unknown. We found that these RBPs exhibit an opposite expression pattern during development. Sam68 expression declines postnatally while SLM2 increases after birth, and this developmental pattern is reinforced by hierarchical control of Sam68 expression by SLM2. Analysis of Sam68:Slm2 double knockout (Sam68:Slm2dko) mice revealed hundreds of exons that respond to joint depletion of these proteins. Moreover, parallel analysis of single and double knockout cortices indicated that exons regulated mainly by SLM2 are characterized by a dynamic splicing pattern during development, whereas Sam68-dependent exons are spliced at relatively constant rates. Dynamic splicing of SLM2-sensitive exons is completely suppressed in the Sam68:Slm2dko developing cortex. Sam68:Slm2dko mice die perinatally with defects in neurogenesis and in neuronal differentiation, and develop a hydrocephalus, consistent with splicing alterations in genes related to these biological processes. Thus, our study reveals that developmental control of separate Sam68 and Slm2 paralog genes encoding homologous RBPs enables the orchestration of a dynamic splicing program needed for brain development and viability, while ensuring a robust redundant mechanism that supports proper cortical development.
Collapse
Affiliation(s)
- Eleonora Cesari
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Agostino Gemelli IRCCS, Largo Agostino Gemelli, 00168 Rome, Italy
| | - Donatella Farini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Vanessa Medici
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Ingrid Ehrmann
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Marika Guerra
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Erika Testa
- Department of Life Science and Public Health, Section of Histology and Embryology, Catholic University of the Sacred Heart, Rome
| | - Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Agostino Gemelli IRCCS, Largo Agostino Gemelli, 00168 Rome, Italy
| | - Maria Concetta Geloso
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Agostino Gemelli IRCCS, Largo Agostino Gemelli, 00168 Rome, Italy
| | - Livia La Barbera
- Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Marcello D’Amelio
- Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
- Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Tiziana Orsini
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC/CNR), Monterotondo, 00015 Rome, Italy
| | - Stefano Farioli Vecchioli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC/CNR), Monterotondo, 00015 Rome, Italy
| | - Luca Tamagnone
- Fondazione Policlinico Agostino Gemelli IRCCS, Largo Agostino Gemelli, 00168 Rome, Italy
- Department of Life Science and Public Health, Section of Histology and Embryology, Catholic University of the Sacred Heart, Rome
| | - Philippe Fort
- Centre de Recherche en Biologie Cellulaire de Montpellier, University of Montpellier, CNRS, 1919 Route de Mende, 34293 Montpellier Cedex 05, France
| | - Maria Teresa Viscomi
- Fondazione Policlinico Agostino Gemelli IRCCS, Largo Agostino Gemelli, 00168 Rome, Italy
- Department of Life Science and Public Health, Section of Histology and Embryology, Catholic University of the Sacred Heart, Rome
| | - David J Elliott
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle NE1 3BZ, UK
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Agostino Gemelli IRCCS, Largo Agostino Gemelli, 00168 Rome, Italy
| |
Collapse
|
9
|
Ustaoglu P, McQuarrie DWJ, Rochet A, Dix TC, Haussmann IU, Arnold R, Devaud JM, Soller M. Memory consolidation in honey bees is enhanced by down-regulation of Down syndrome cell adhesion molecule and changes its alternative splicing. Front Mol Neurosci 2024; 16:1322808. [PMID: 38264345 PMCID: PMC10803435 DOI: 10.3389/fnmol.2023.1322808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
Down syndrome cell adhesion molecule (Dscam) gene encodes a cell adhesion molecule required for neuronal wiring. A remarkable feature of arthropod Dscam is massive alternative splicing generating thousands of different isoforms from three variable clusters of alternative exons. Dscam expression and diversity arising from alternative splicing have been studied during development, but whether they exert functions in adult brains has not been determined. Here, using honey bees, we find that Dscam expression is critically linked to memory retention as reducing expression by RNAi enhances memory after reward learning in adult worker honey bees. Moreover, alternative splicing of Dscam is altered in all three variable clusters after learning. Since identical Dscam isoforms engage in homophilic interactions, these results suggest a mechanism to alter inclusion of variable exons during memory consolidation to modify neuronal connections for memory retention.
Collapse
Affiliation(s)
- Pinar Ustaoglu
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, United Kingdom
| | - David W. J. McQuarrie
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, United Kingdom
| | - Anthony Rochet
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, UPS, Toulouse University, Toulouse, France
| | - Thomas C. Dix
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, United Kingdom
| | - Irmgard U. Haussmann
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Life Science, Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, United Kingdom
| | - Roland Arnold
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, United Kingdom
- College of Medical and Dental Sciences, Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jean-Marc Devaud
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, UPS, Toulouse University, Toulouse, France
- Institut Universitaire de France (IUF), Paris, France
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
10
|
Hanson JE, Yuan H, Perszyk RE, Banke TG, Xing H, Tsai MC, Menniti FS, Traynelis SF. Therapeutic potential of N-methyl-D-aspartate receptor modulators in psychiatry. Neuropsychopharmacology 2024; 49:51-66. [PMID: 37369776 PMCID: PMC10700609 DOI: 10.1038/s41386-023-01614-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023]
Abstract
N-methyl-D-aspartate (NMDA) receptors mediate a slow component of excitatory synaptic transmission, are widely distributed throughout the central nervous system, and regulate synaptic plasticity. NMDA receptor modulators have long been considered as potential treatments for psychiatric disorders including depression and schizophrenia, neurodevelopmental disorders such as Rett Syndrome, and neurodegenerative conditions such as Alzheimer's disease. New interest in NMDA receptors as therapeutic targets has been spurred by the findings that certain inhibitors of NMDA receptors produce surprisingly rapid and robust antidepressant activity by a novel mechanism, the induction of changes in the brain that well outlast the presence of drug in the body. These findings are driving research into an entirely new paradigm for using NMDA receptor antagonists in a host of related conditions. At the same time positive allosteric modulators of NMDA receptors are being pursued for enhancing synaptic function in diseases that feature NMDA receptor hypofunction. While there is great promise, developing the therapeutic potential of NMDA receptor modulators must also navigate the potential significant risks posed by the use of such agents. We review here the emerging pharmacology of agents that target different NMDA receptor subtypes, offering new avenues for capturing the therapeutic potential of targeting this important receptor class.
Collapse
Affiliation(s)
- Jesse E Hanson
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Riley E Perszyk
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Tue G Banke
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Hao Xing
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ming-Chi Tsai
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Frank S Menniti
- MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
11
|
Wang Z, Qiao D, Chen H, Zhang S, Zhang B, Zhang J, Hu X, Wang C, Cui H, Wang X, Li S. Effects of Fmr1 Gene Mutations on Sex Differences in Autism-Like Behavior and Dendritic Spine Development in Mice and Transcriptomic Studies. Neuroscience 2023; 534:16-28. [PMID: 37852411 DOI: 10.1016/j.neuroscience.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
Fragile X syndrome (FXS) is the most common single gene disorder contributing to autism spectrum disorder (ASD). Although significant sex differences are observed in FXS, few studies have focused on the phenotypic characteristics as well as the differences in brain pathological changes and gene expression in FXS by sex. Therefore, we analyzed sex differences in autism-like behavior and dendritic spine development in two-month-old male and female Fmr1 KO and C57 mice and evaluated the mechanisms at transcriptome level. Results suggest that Fmr1 KO mice display sex differences in autism-like behavior and dendritic spine density. Compared to females, male had more severe effects on anxiety, repetitive stereotype-like behaviors, and socializing, with higher dendritic spine density. Furthermore, two male-biased and five female-biased expressed genes were screened based on KEGG pathway enrichment and protein-protein interaction (PPI) analyses. In conclusion, our findings show mutations in the Fmr1 gene lead to aberrant expression of related genes and affect the sex-differentiated behavioral phenotypes of Fmr1 KO mice by affecting brain development and functional architecture, and suggest future studies should focus on including female subjects to comprehensively reflect the differentiation of FXS in both sexes and develop more precise and effective therapeutic strategies.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Dan Qiao
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Huan Chen
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Shihua Zhang
- Grade 2018, Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Bohan Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Jingbao Zhang
- Grade 2020, Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiangting Hu
- Grade 2020, Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Chang Wang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Xia Wang
- Child Health (Psychological Behavior) Department, Children's Hospital of Hebei Province, Shijiazhuang, China.
| | - Sha Li
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
12
|
Stevenson ME, Bieri G, Kaletsky R, St Ange J, Remesal L, Pratt KJB, Zhou S, Weng Y, Murphy CT, Villeda SA. Neuronal activation of G αq EGL-30/GNAQ late in life rejuvenates cognition across species. Cell Rep 2023; 42:113151. [PMID: 37713310 PMCID: PMC10627507 DOI: 10.1016/j.celrep.2023.113151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/10/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023] Open
Abstract
Loss of cognitive function with age is devastating. EGL-30/GNAQ and Gαq signaling pathways are highly conserved between C. elegans and mammals, and murine Gnaq is enriched in hippocampal neurons and declines with age. We found that activation of EGL-30 in aged worms triples memory span, and GNAQ gain of function significantly improved memory in aged mice: GNAQ(gf) in hippocampal neurons of 24-month-old mice (equivalent to 70- to 80-year-old humans) rescued age-related impairments in well-being and memory. Single-nucleus RNA sequencing revealed increased expression of genes regulating synaptic function, axon guidance, and memory in GNAQ-treated mice, and worm orthologs of these genes were required for long-term memory extension in worms. These experiments demonstrate that C. elegans is a powerful model to identify mammalian regulators of memory, leading to the identification of a pathway that improves memory in extremely old mice. To our knowledge, this is the oldest age at which an intervention has improved age-related cognitive decline.
Collapse
Affiliation(s)
- Morgan E Stevenson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Gregor Bieri
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Bakar Aging Research Institute, San Francisco, CA 94143, USA
| | - Rachel Kaletsky
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jonathan St Ange
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - L Remesal
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Bakar Aging Research Institute, San Francisco, CA 94143, USA
| | - Karishma J B Pratt
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Bakar Aging Research Institute, San Francisco, CA 94143, USA
| | - Shiyi Zhou
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yifei Weng
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Coleen T Murphy
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Saul A Villeda
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Bakar Aging Research Institute, San Francisco, CA 94143, USA.
| |
Collapse
|
13
|
Ahmed I, Kumar A, Bheri M, Srivastava AK, Pandey GK. Glutamate receptor like channels: Emerging players in calcium mediated signaling in plants. Int J Biol Macromol 2023; 234:123522. [PMID: 36758765 DOI: 10.1016/j.ijbiomac.2023.123522] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
Glutamate receptors like channels (GLRs) are ligand gated non-selective cation channels and are multigenic in nature. They are homologs of mammalian ionic glutamate receptors (iGLRs) that play an important role in neurotransmission. It has been more than 25 years of discovery of plant GLRs, since then, significant progress has been made to unravel their structure and function in plants. Recently, the first crystal structure of plant GLR has been resolved that suggests that, though, plant GLRs contain the conserved signature domains of iGLRs, their unique features enable agonist/antagonist-dependent change in their activity. GLRs exhibit diverse subcellular localization and undergo dynamic expression variation in response to developmental and environmental stress conditions in plants. The combined use of genetic, electrophysiology and calcium imaging using different genetically encoded calcium indicators has revealed that GLRs are involved in generating calcium (Ca2+) influx across the plasma membrane and are involved in shaping the Ca2+ signature in response to different developmental and environmental stimuli. These findings indicate that GLRs influence cytosolic Ca2+ dynamics, thus, highlighting "GLR-Ca2+-crosstalk (GCC)" in developmental and stress-responsive signaling pathways. With this background, the present review summarises the recent developments pertaining to GLR function, in the broader context of regulation of stress tolerance in plants.
Collapse
Affiliation(s)
- Israr Ahmed
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Amit Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Ashish K Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| |
Collapse
|
14
|
Prenatal Exposure to Δ9-Tetrahydrocannabinol Affects Hippocampus-Related Cognitive Functions in the Adolescent Rat Offspring: Focus on Specific Markers of Neuroplasticity. Pharmaceutics 2023; 15:pharmaceutics15020692. [PMID: 36840014 PMCID: PMC9963541 DOI: 10.3390/pharmaceutics15020692] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Previous evidence suggests that prenatal exposure to THC (pTHC) derails the neurodevelopmental trajectories towards a vulnerable phenotype for impaired emotional regulation and limbic memory. Here we aimed to investigate pTHC effect on hippocampus-related cognitive functions and markers of neuroplasticity in adolescent male offspring. Wistar rats were exposed to THC (2 mg/kg) from gestational day 5 to 20 and tested for spatial memory, object recognition memory and reversal learning in the reinforce-motivated Can test and in the aversion-driven Barnes maze test; locomotor activity and exploration, anxiety-like behaviour, and response to natural reward were assessed in the open field, elevated plus maze, and sucrose preference tests, respectively. The gene expression levels of NMDA NR1-2A subunits, mGluR5, and their respective scaffold proteins PSD95 and Homer1, as well as CB1R and the neuromodulatory protein HINT1, were measured in the hippocampus. pTHC offspring exhibited deficits in spatial and object recognition memory and reversal learning, increased locomotor activity, increased NR1-, decreased NR2A- and PSD95-, increased mGluR5- and Homer1-, and augmented CB1R- and HINT1-hippocampal mRNA levels. Our data shows that pTHC is associated with specific impairment in spatial cognitive processing and effectors of hippocampal neuroplasticity and suggests novel targets for future pharmacological challenges.
Collapse
|
15
|
Lipina T, Men X, Blundell M, Salahpour A, Ramsey AJ. Abnormal sensory perception masks behavioral performance of Grin1 knockdown mice. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12825. [PMID: 35705513 PMCID: PMC9744498 DOI: 10.1111/gbb.12825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/28/2022]
Abstract
The development and function of sensory systems require intact glutamatergic neurotransmission. Changes in touch sensation and vision are common symptoms in autism spectrum disorders, where altered glutamatergic neurotransmission is strongly implicated. Further, cortical visual impairment is a frequent symptom of GRIN disorder, a rare genetic neurodevelopmental disorder caused by pathogenic variants of GRIN genes that encode NMDA receptors. We asked if Grin1 knockdown mice (Grin1KD), as a model of GRIN disorder, had visual impairments resulting from NMDA receptor deficiency. We discovered that Grin1KD mice had deficient visual depth perception in the visual cliff test. Since Grin1KD mice are known to display robust changes in measures of learning, memory, and emotionality, we asked whether deficits in these higher-level processes could be partly explained by their visual impairment. By changing the experimental conditions to improve visual signals, we observed significant improvements in the performance of Grin1KD mice in tests that measure spatial memory, executive function, and anxiety. We went further and found destabilization of the outer segment of retina together with the deficient number and size of Meissner corpuscles (mechanical sensor) in the hind paw of Grin1KD mice. Overall, our findings suggest that abnormal sensory perception can mask the expression of emotional, motivational and cognitive behavior of Grin1KD mice. This study demonstrates new methods to adapt routine behavioral paradigms to reveal the contribution of vision and other sensory modalities in cognitive performance.
Collapse
Affiliation(s)
- Tatiana Lipina
- Department of Pharmacology & ToxicologyUniversity of TorontoTorontoOntarioCanada
| | - Xiaoyu Men
- Department of Pharmacology & ToxicologyUniversity of TorontoTorontoOntarioCanada
| | - Matisse Blundell
- Department of PhysiologyUniversity of TorontoTorontoOntarioCanada
| | - Ali Salahpour
- Department of Pharmacology & ToxicologyUniversity of TorontoTorontoOntarioCanada
| | - Amy J. Ramsey
- Department of Pharmacology & ToxicologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
16
|
Zhang W, Ross PJ, Ellis J, Salter MW. Targeting NMDA receptors in neuropsychiatric disorders by drug screening on human neurons derived from pluripotent stem cells. Transl Psychiatry 2022; 12:243. [PMID: 35680847 PMCID: PMC9184461 DOI: 10.1038/s41398-022-02010-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 01/04/2023] Open
Abstract
NMDA receptors (NMDARs), a prominent subtype of glutamatergic receptors, are implicated in the pathogenesis and development of neuropsychiatric disorders such as epilepsy, intellectual disability, autism spectrum disorder, and schizophrenia, and are therefore a potential therapeutic target in treating these disorders. Neurons derived from induced pluripotent stem cells (iPSCs) have provided the opportunity to investigate human NMDARs in their native environment. In this review, we describe the expression, function, and regulation of NMDARs in human iPSC-derived neurons and discuss approaches for utilizing human neurons for identifying potential drugs that target NMDARs in the treatment of neuropsychiatric disorders. A challenge in studying NMDARs in human iPSC-derived neurons is a predominance of those receptors containing the GluN2B subunit and low synaptic expression, suggesting a relatively immature phenotype of these neurons and delayed development of functional NMDARs. We outline potential approaches for improving neuronal maturation of human iPSC-derived neurons and accelerating the functional expression of NMDARs. Acceleration of functional expression of NMDARs in human iPSC-derived neurons will improve the modeling of neuropsychiatric disorders and facilitate the discovery and development of novel therapeutics targeting NMDARs for the treatment of these disorders.
Collapse
Affiliation(s)
- Wenbo Zhang
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - P Joel Ross
- Biology Department, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - James Ellis
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada
| | - Michael W Salter
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
17
|
Nishanth MJ, Jha S. Global Exploration of RNA-Binding Proteins in Exercise-Induced Adult Hippocampal Neurogenesis: A Transcriptome Meta-analysis and Computational Study. Biochem Genet 2022; 60:2471-2488. [PMID: 35546218 DOI: 10.1007/s10528-022-10230-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/18/2022] [Indexed: 11/02/2022]
Abstract
Voluntary physical exercise is a robust enhancer of adult hippocampal neurogenesis (AHN). A complete understanding of the molecular regulation of AHN is important in order to exploit the benefits of the process toward therapeutic approaches. Several factors such as epigenetic modifiers, non-coding RNAs, and transcription factors have been reported to regulate AHN. However, there is a limited understanding of the impact of RNA-binding proteins (RBPs) on exercise-mediated AHN, in spite of their well-documented significance in embryonic neurogenesis. The present study is the first global analysis to catalog the potential RBPs influencing exercise-mediated AHN. Here, a transcriptome meta-analysis was conducted to study exercise-mediated gene expression modulation in hippocampi of adult mice. Next, potential RBPs influencing transcriptome-wide expression changes via untranslated regions (UTRs) were identified. Among other RBPs, MATR3, Musashi, TIA1, and FXR2 (known critical modulators of neurogenesis) were found to potentially regulate gene expression patterns. Subsequently, binding sites of known neurogenesis-regulating RBPs were identified in the UTRs of AHN-associated genes modulated by exercise. Finally, a number of RBPs including RBFOX1, RBFOX3, and QKI (known regulators of neurogenesis) were found to be highly expressed in mouse hippocampal formation and also potentially interact with other RBPs, suggesting their combinatorial functioning in exercise-induced AHN. Thus, the present meta-analysis-based computational study identified several RBPs potentially important in exercise-induced AHN, which could form a foundation for further experiments to unravel RBP-mediated regulation of AHN.
Collapse
Affiliation(s)
- M J Nishanth
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, India
| | - Shanker Jha
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, India.
| |
Collapse
|
18
|
Sun W, Li J, Li X, Chen X, Mei Y, Yang Y, An L. Aluminium oxide nanoparticles compromise spatial memory performance and proBDNF-mediated neuronal function in the hippocampus of rats. Part Fibre Toxicol 2022; 19:34. [PMID: 35538555 PMCID: PMC9087928 DOI: 10.1186/s12989-022-00477-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022] Open
Abstract
Background Alumina nanoparticles (aluminaNPs), which are widely used in a range of daily and medical fields, have been shown to penetrate blood-brain barrier, and distribute and accumulate in different brain areas. Although oral treatment of aluminaNPs induces hippocampus-dependent learning and memory impairments, characteristic effects and exact mechanisms have not been fully elucidated. Here, male adult rats received a single bilateral infusion of aluminaNPs (10 or 20 µg/kg of body weight) into the hippocampal region, and their behavioral performance and neural function were assessed. Results The results indicated that the intra-hippocampus infusions at both doses of aluminaNPs did not cause spatial learning inability but memory deficit in the water maze task. This impairment was attributed to the effects of aluminaNP on memory consolidation phase through activation of proBDNF/RhoA pathway. Inhibition of the increased proBDNF by hippocampal infusions of p75NTR antagonist could effectively rescue the memory impairment. Incubation of aluminaNPs exaggerated GluN2B-dependent LTD induction with no effects on LTD expression in hippocampal slices. AluminaNP could also depress the amplitude of NMDA-GluN2B EPSCs. Meanwhile, increased reactive oxygen specie production was reduced by blocking proBDNF-p75NTR pathway in the hippocampal homogenates. Furthermore, the neuronal correlate of memory behavior was drastically weakened in the aluminaNP-infused groups. The dysfunction of synaptic and neuronal could be obviously mitigated by blocking proBDNF receptor p75NTR, implying the involvement of proBDNF signaling in aluminaNP-impaired memory process. Conclusions Taken together, our findings provide the first evidence that the accumulation of aluminaNPs in the hippocampus exaggeratedly activates proBDNF signaling, which leads to neural and memory impairments.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China.,Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| | - Jia Li
- College of Acupuncture and Orthopedics, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, 250013, China
| | - Xiao Chen
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China.,Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China.,Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, 250013, China
| | - Yazi Mei
- Graduate School of Guangzhou, University of Chinese Medicine, Guangzhou, 510006, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| | - Lei An
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China. .,Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China. .,Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, 250013, China. .,Graduate School of Guangzhou, University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Forastieri C, Italia M, Toffolo E, Romito E, Bonasoni MP, Ranzani V, Bodega B, Rusconi F, Battaglioli E. Evolution Increases Primates Brain Complexity Extending RbFOX1 Splicing Activity to LSD1 Modulation. J Neurosci 2022; 42:3689-3703. [PMID: 35351830 PMCID: PMC9087731 DOI: 10.1523/jneurosci.1782-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022] Open
Abstract
Recent branching (100 MYA) of the mammalian evolutionary tree has enhanced brain complexity and functions at the putative cost of increased emotional circuitry vulnerability. Thus, to better understand psychopathology, a burden for the modern society, novel approaches should exploit evolutionary aspects of psychiatric-relevant molecular pathways. A handful of genes is nowadays tightly associated to psychiatric disorders. Among them, neuronal-enriched RbFOX1 modifies the activity of synaptic regulators in response to neuronal activity, keeping excitability within healthy domains. We here dissect a higher primates-restricted interaction between RbFOX1 and the transcriptional corepressor Lysine Specific Demethylase 1 (LSD1/KDM1A). A single nucleotide variation (AA to AG) in LSD1 gene appeared in higher primates and humans, endowing RbFOX1 with the ability to promote the alternative usage of a novel 3' AG splice site, which extends LSD1 exon E9 in the upstream intron (E9-long). Exon E9-long regulates LSD1 levels by Nonsense-Mediated mRNA Decay. As reintroduction of the archaic LSD1 variant (AA) abolishes E9-long splicing, the novel 3' AG splice site is necessary for RbFOX1 to control LSD1 levels. LSD1 is a homeostatic immediate early genes (IEGs) regulator playing a relevant part in environmental stress-response. In primates and humans, inclusion of LSD1 as RbFOX1 target provides RbFOX1 with the additional ability to regulate the IEGs. These data, together with extensive RbFOX1 involvement in psychiatric disorders and its stress-dependent regulation in male mice, suggest the RbFOX1-LSD1-IEGs axis as an evolutionary recent psychiatric-relevant pathway. Notably, outside the nervous system, RbFOX2-dependent LSD1 modulation could be a candidate deregulated mechanism in cancer.SIGNIFICANCE STATEMENT To be better understood, anxiety and depression need large human genetics studies aimed at further resolving the often ambiguous, aberrant neuronal pathomechanisms that impact corticolimbic circuitry physiology. Several genetic associations of the alternative splicing regulator RbFOX1 with psychiatric conditions suggest homeostatic unbalance as a neuronal signature of psychopathology. Here we move a step forward, characterizing a disease-relevant higher primates-specific pathway by which RbFOX1 acquires the ability to regulate neuronal levels of Lysine Specific Demethylase 1, an epigenetic modulator of environmental stress response. Thus, two brain-enriched enzymes, independently shown to homeostatically protect neurons with a clear readout in terms of emotional behavior in lower mammals, establish in higher primates and humans a new functional cooperation enhancing the complexity of environmental adaptation and stress vulnerability.
Collapse
Affiliation(s)
- Chiara Forastieri
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, 20090, Italy
| | - Maria Italia
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, 20090, Italy
| | - Emanuela Toffolo
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, 20090, Italy
| | - Elena Romito
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, 20090, Italy
| | | | - Valeria Ranzani
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi," Milano, 20122, Italy
| | - Beatrice Bodega
- Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi," Milano, 20122, Italy
- Department of Biosciences, Università degli Studi di Milano, Milano, 20133, Italy
| | - Francesco Rusconi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, 20090, Italy
| | - Elena Battaglioli
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, 20090, Italy
| |
Collapse
|
20
|
Shipton OA, Tang CS, Paulsen O, Vargas-Caballero M. Differential vulnerability of hippocampal CA3-CA1 synapses to Aβ. Acta Neuropathol Commun 2022; 10:45. [PMID: 35379353 PMCID: PMC8981624 DOI: 10.1186/s40478-022-01350-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/18/2022] [Indexed: 11/25/2022] Open
Abstract
Amyloid-beta (Aβ) and tau protein are both involved in the pathogenesis of Alzheimer’s disease. Aβ produces synaptic deficits in wild-type mice that are not seen in Mapt−/− mice, suggesting that tau protein is required for these effects of Aβ. However, whether some synapses are more selectively affected and what factors may determine synaptic vulnerability to Aβ are poorly understood. Here we first observed that burst timing-dependent long-term potentiation (b-LTP) in hippocampal CA3-CA1 synapses, which requires GluN2B subunit-containing NMDA receptors (NMDARs), was inhibited by human Aβ1–42 (hAβ) in wild-type (WT) mice, but not in tau-knockout (Mapt−/−) mice. We then tested whether NMDAR currents were affected by hAβ; we found that hAβ reduced the postsynaptic NMDAR current in WT mice but not in Mapt−/− mice, while the NMDAR current was reduced to a similar extent by the GluN2B-selective NMDAR antagonist Ro 25–6981. To further investigate a possible difference in GluN2B-containing NMDARs in Mapt−/− mice, we used optogenetics to compare NMDAR/AMPAR ratio of EPSCs in CA1 synapses with input from left vs right CA3. It was previously reported in WT mice that hippocampal synapses in CA1 that receive input from the left CA3 display a higher NMDAR charge transfer and a higher Ro-sensitivity than synapses in CA1 that receive input from the right CA3. Here we observed the same pattern in Mapt−/− mice, thus differential NMDAR subunit expression does not explain the difference in hAβ effect on LTP. Finally, we asked whether synapses with left vs right CA3 input are differentially affected by hAβ in WT mice. We found that NMDAR current in synapses with input from the left CA3 were reduced while synapses with input from the right CA3 were unaffected by acute hAβ exposure. These results suggest that hippocampal CA3-CA1 synapses with presynaptic axon originating in the left CA3 are selectively vulnerable to Aβ and that a genetic knock out of tau protein protects them from Aβ synaptotoxicity.
Collapse
|
21
|
Benegas G, Fischer J, Song YS. Robust and annotation-free analysis of alternative splicing across diverse cell types in mice. eLife 2022; 11:73520. [PMID: 35229721 PMCID: PMC8975553 DOI: 10.7554/elife.73520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/27/2022] [Indexed: 11/13/2022] Open
Abstract
Although alternative splicing is a fundamental and pervasive aspect of gene expression in higher eukaryotes, it is often omitted from single-cell studies due to quantification challenges inherent to commonly used short-read sequencing technologies. Here, we undertake the analysis of alternative splicing across numerous diverse murine cell types from two large-scale single-cell datasets-the Tabula Muris and BRAIN Initiative Cell Census Network-while accounting for understudied technical artifacts and unannotated events. We find strong and general cell-type-specific alternative splicing, complementary to total gene expression but of similar discriminatory value, and identify a large volume of novel splicing events. We specifically highlight splicing variation across different cell types in primary motor cortex neurons, bone marrow B cells, and various epithelial cells, and we show that the implicated transcripts include many genes which do not display total expression differences. To elucidate the regulation of alternative splicing, we build a custom predictive model based on splicing factor activity, recovering several known interactions while generating new hypotheses, including potential regulatory roles for novel alternative splicing events in critical genes like Khdrbs3 and Rbfox1. We make our results available using public interactive browsers to spur further exploration by the community.
Collapse
Affiliation(s)
- Gonzalo Benegas
- Graduate Group in Computational Biology, University of California, Berkeley, Berkeley, United States
| | - Jonathan Fischer
- Department of Biostatistics, University of Florida, Gainesville, United States
| | - Yun S Song
- Computer Science Division, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
22
|
Deutsch SI, Luyo ZNM, Burket JA. Targeted NMDA Receptor Interventions for Autism: Developmentally Determined Expression of GluN2B and GluN2A-Containing Receptors and Balanced Allosteric Modulatory Approaches. Biomolecules 2022; 12:biom12020181. [PMID: 35204682 PMCID: PMC8961601 DOI: 10.3390/biom12020181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/27/2022] Open
Abstract
Various ASD risk alleles have been associated with impairment of NMDA receptor activation (i.e., NMDA Receptor Hypofunction) and/or disturbance of the careful balance between activation mediated by GluN2B-subtype and GluN2A-subtype-containing NMDA receptors. Importantly, although these various risk alleles affect NMDA receptor activation through different mechanisms, they share the pathogenic consequences of causing disturbance of highly regulated NMDA receptor activation. Disturbances of NMDA receptor activation due to sequence variants, protein termination variants and copy number variants are often cell-specific and regionally selective. Thus, translational therapeutic NMDA receptor agonist interventions, which may require chronic administration, must have specificity, selectivity and facilitate NMDA receptor activation in a manner that is physiologic (i.e., mimicking that of endogenously released glutamate and glycine/D-serine released in response to salient and relevant socio-cognitive provocations within discrete neural circuits). Importantly, knockout mice with absent expression and mice with haploinsufficient expression of the deleterious genes often serve as good models to test the potential efficacy of promising pharmacotherapeutic strategies. The Review considers diverse examples of “illness” genes, their pathogenic effects on NMDA receptor activation and, when available, results of studies of impaired sociability in mouse models, including “proof of principle/proof of concept” experiments exploring NMDA receptor agonist interventions and the development of promising positive allosteric modulators (PAMs), which serve as support and models for developing an inventory of PAMs and negative allosteric modulators (NAMs) for translational therapeutic intervention. Conceivably, selective PAMs and NAMs either alone or in combination will be administered to patients guided by their genotype in order to potentiate and/or restore disrupted balance between activation mediated by GluN2B-subtype and GluN2A-subtype containing NMDA receptors.
Collapse
Affiliation(s)
- Stephen I. Deutsch
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, 825 Fairfax Avenue, Suite 710, Norfolk, VA 23507, USA;
| | - Zachary N. M. Luyo
- Program in Neuroscience, Christopher Newport University, Newport News, VA 23606, USA;
| | - Jessica A. Burket
- Program in Neuroscience, Christopher Newport University, Newport News, VA 23606, USA;
- Department of Molecular Biology & Chemistry, Christopher Newport University, Newport News, VA 23606, USA
- Correspondence: ; Tel.: +1-757-594-8743
| |
Collapse
|
23
|
Wang B, Zou L, Zhou L. Lipid bilayers regulate allosteric signal of NMDA receptor GluN1 C-terminal domain. Biochem Biophys Res Commun 2021; 585:15-21. [PMID: 34781056 DOI: 10.1016/j.bbrc.2021.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
NMDAR (N-methyl-d-aspartate receptor) consisted of GluN1 and GluN2, and/or GluN3 subunits. As the obligatory subunit of NMDAR, GluN1 contains variant N-terminal domain (NTD) and C-terminal domain (CTD). The CTD contains allosteric signal and mediates the metabotropic function of NMDAR, which has been confirmed by previous studies. However, the allosteric signaling mechanism of GluN1 CTD has not been studied. In our study, we found that GluN1 CTD could bind to the lipid bilayers and affect the antigen epitope of GluN1 C-terminal antibody, suggesting that membrane binding may determine the allosteric signal of GluN1 CTD. In addition, we discovered that the membrane binding of GluN1 CTD could be regulated by the phosphorylation of GluN1 CTD C1 region.
Collapse
Affiliation(s)
- Busong Wang
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Lu Zou
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Liang Zhou
- College of Pharmaceutical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
24
|
Ustaoglu P, Gill JK, Doubovetzky N, Haussmann IU, Dix TC, Arnold R, Devaud JM, Soller M. Dynamically expressed single ELAV/Hu orthologue elavl2 of bees is required for learning and memory. Commun Biol 2021; 4:1234. [PMID: 34711922 PMCID: PMC8553928 DOI: 10.1038/s42003-021-02763-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
Changes in gene expression are a hallmark of learning and memory consolidation. Little is known about how alternative mRNA processing, particularly abundant in neuron-specific genes, contributes to these processes. Prototype RNA binding proteins of the neuronally expressed ELAV/Hu family are candidates for roles in learning and memory, but their capacity to cross-regulate and take over each other's functions complicate substantiation of such links. Honey bees Apis mellifera have only one elav/Hu family gene elavl2, that has functionally diversified by increasing alternative splicing including an evolutionary conserved microexon. RNAi knockdown demonstrates that ELAVL2 is required for learning and memory in bees. ELAVL2 is dynamically expressed with altered alternative splicing and subcellular localization in mushroom bodies, but not in other brain regions. Expression and alternative splicing of elavl2 change during memory consolidation illustrating an alternative mRNA processing program as part of a local gene expression response underlying memory consolidation.
Collapse
Affiliation(s)
- Pinar Ustaoglu
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jatinder Kaur Gill
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Nicolas Doubovetzky
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, 31062, France
| | - Irmgard U Haussmann
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Life Science, Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, B15 3TN, UK
| | - Thomas C Dix
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Roland Arnold
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Institute of Cancer and Genomics Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jean-Marc Devaud
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse, 31062, France
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Institute of Cancer and Genomics Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
25
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 284] [Impact Index Per Article: 94.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
26
|
Zhang P, Perez OC, Southey BR, Sweedler JV, Pradhan AA, Rodriguez-Zas SL. Alternative Splicing Mechanisms Underlying Opioid-Induced Hyperalgesia. Genes (Basel) 2021; 12:1570. [PMID: 34680965 PMCID: PMC8535871 DOI: 10.3390/genes12101570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/19/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Prolonged use of opioids can cause opioid-induced hyperalgesia (OIH). The impact of alternative splicing on OIH remains partially characterized. A study of the absolute and relative modes of action of alternative splicing further the understanding of the molecular mechanisms underlying OIH. Differential absolute and relative isoform profiles were detected in the trigeminal ganglia and nucleus accumbens of mice presenting OIH behaviors elicited by chronic morphine administration relative to control mice. Genes that participate in glutamatergic synapse (e.g., Grip1, Grin1, Wnk3), myelin protein processes (e.g., Mbp, Mpz), and axon guidance presented absolute and relative splicing associated with OIH. Splicing of genes in the gonadotropin-releasing hormone receptor pathway was detected in the nucleus accumbens while splicing in the vascular endothelial growth factor, endogenous cannabinoid signaling, circadian clock system, and metabotropic glutamate receptor pathways was detected in the trigeminal ganglia. A notable finding was the prevalence of alternatively spliced transcription factors and regulators (e.g., Ciart, Ablim2, Pbx1, Arntl2) in the trigeminal ganglia. Insights into the nociceptive and antinociceptive modulatory action of Hnrnpk were gained. The results from our study highlight the impact of alternative splicing and transcriptional regulators on OIH and expose the need for isoform-level research to advance the understanding of morphine-associated hyperalgesia.
Collapse
Affiliation(s)
- Pan Zhang
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Olivia C. Perez
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (O.C.P.); (B.R.S.)
| | - Bruce R. Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (O.C.P.); (B.R.S.)
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Amynah A. Pradhan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Sandra L. Rodriguez-Zas
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (O.C.P.); (B.R.S.)
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
27
|
Alternative splicing of GluN1 gates glycine site-dependent nonionotropic signaling by NMDAR receptors. Proc Natl Acad Sci U S A 2021; 118:2026411118. [PMID: 34187890 PMCID: PMC8271567 DOI: 10.1073/pnas.2026411118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs), which are critical in the brain, are increasingly being shown to signal without ion flux (i.e., “metabotropically”). What controls the metabotropic function of NMDARs is unknown. We discovered that a form of metabotropic signaling—glycine priming—is controlled by alternative splicing of the mRNA encoding one NMDAR subunit, GluN1. Our discovery was surprising because the spliced exon encodes a peptide cassette in the extracellular region of GluN1 far from the plasma membrane, and yet, metabotropic function requires signaling across the neuronal membrane. Moreover, we found that this metabotropic function of NMDARs is neuron cell–type specific: excitatory neurons show glycine priming, whereas inhibitory neurons do not. These findings have widespread implications for NMDARs in health and disease. N-methyl-D-aspartate (NMDA) receptors (NMDARs), a principal subtype of excitatory neurotransmitter receptor, are composed as tetrameric assemblies of two glycine-binding GluN1 subunits and two glutamate-binding GluN2 subunits. NMDARs can signal nonionotropically through binding of glycine alone to its cognate site on GluN1. A consequence of this signaling by glycine is that NMDARs are primed such that subsequent gating, produced by glycine and glutamate, drives receptor internalization. The GluN1 subunit contains eight alternatively spliced isoforms produced by including or excluding the N1 and the C1, C2, or C2’ polypeptide cassettes. Whether GluN1 alternative splicing affects nonionotropic signaling by NMDARs is a major outstanding question. Here, we discovered that glycine priming of recombinant NMDARs critically depends on GluN1 isoforms lacking the N1 cassette; glycine priming is blocked in splice variants containing N1. On the other hand, the C-terminal cassettes—C1, C2, or C2’—each permit glycine signaling. In wild-type mice, we found glycine-induced nonionotropic signaling at synaptic NMDARs in CA1 hippocampal pyramidal neurons. This nonionotropic signaling by glycine to synaptic NMDARs was prevented in mice we engineered, such that GluN1 obligatorily contained N1. We discovered in wild-type mice that, in contrast to pyramidal neurons, synaptic NMDARs in CA1 inhibitory interneurons were resistant to glycine priming. But we recapitulated glycine priming in inhibitory interneurons in mice engineered such that GluN1 obligatorily lacked the N1 cassette. Our findings reveal a previously unsuspected molecular function for alternative splicing of GluN1 in controlling nonionotropic signaling of NMDARs by activating the glycine site.
Collapse
|
28
|
Herbrechter R, Hube N, Buchholz R, Reiner A. Splicing and editing of ionotropic glutamate receptors: a comprehensive analysis based on human RNA-Seq data. Cell Mol Life Sci 2021; 78:5605-5630. [PMID: 34100982 PMCID: PMC8257547 DOI: 10.1007/s00018-021-03865-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/12/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) play key roles for signaling in the central nervous system. Alternative splicing and RNA editing are well-known mechanisms to increase iGluR diversity and to provide context-dependent regulation. Earlier work on isoform identification has focused on the analysis of cloned transcripts, mostly from rodents. We here set out to obtain a systematic overview of iGluR splicing and editing in human brain based on RNA-Seq data. Using data from two large-scale transcriptome studies, we established a workflow for the de novo identification and quantification of alternative splice and editing events. We detected all canonical iGluR splice junctions, assessed the abundance of alternative events described in the literature, and identified new splice events in AMPA, kainate, delta, and NMDA receptor subunits. Notable events include an abundant transcript encoding the GluA4 amino-terminal domain, GluA4-ATD, a novel C-terminal GluD1 (delta receptor 1) isoform, GluD1-b, and potentially new GluK4 and GluN2C isoforms. C-terminal GluN1 splicing may be controlled by inclusion of a cassette exon, which shows preference for one of the two acceptor sites in the last exon. Moreover, we identified alternative untranslated regions (UTRs) and species-specific differences in splicing. In contrast, editing in exonic iGluR regions appears to be mostly limited to ten previously described sites, two of which result in silent amino acid changes. Coupling of proximal editing/editing and editing/splice events occurs to variable degree. Overall, this analysis provides the first inventory of alternative splicing and editing in human brain iGluRs and provides the impetus for further transcriptome-based and functional investigations.
Collapse
Affiliation(s)
- Robin Herbrechter
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Nadine Hube
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Raoul Buchholz
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Andreas Reiner
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany.
| |
Collapse
|
29
|
Brito DVC, Gulmez Karaca K, Kupke J, Frank L, Oliveira AMM. MeCP2 gates spatial learning-induced alternative splicing events in the mouse hippocampus. Mol Brain 2020; 13:156. [PMID: 33203444 PMCID: PMC7672966 DOI: 10.1186/s13041-020-00695-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/06/2020] [Indexed: 12/31/2022] Open
Abstract
Long-term memory formation is supported by functional and structural changes of neuronal networks, which rely on de novo gene transcription and protein synthesis. The modulation of the neuronal transcriptome in response to learning depends on transcriptional and post-transcriptional mechanisms. DNA methylation writers and readers regulate the activity-dependent genomic program required for memory consolidation. The most abundant DNA methylation reader, the Methyl CpG binding domain protein 2 (MeCP2), has been shown to regulate alternative splicing, but whether it establishes splicing events important for memory consolidation has not been investigated. In this study, we identified the alternative splicing profile of the mouse hippocampus in basal conditions and after a spatial learning experience, and investigated the requirement of MeCP2 for these processes. We observed that spatial learning triggers a wide-range of alternative splicing events in transcripts associated with structural and functional remodeling and that virus-mediated knockdown of MeCP2 impairs learning-dependent post-transcriptional responses of mature hippocampal neurons. Furthermore, we found that MeCP2 preferentially affected the splicing modalities intron retention and exon skipping and guided the alternative splicing of distinct set of genes in baseline conditions and after learning. Lastly, comparative analysis of the MeCP2-regulated transcriptome with the alternatively spliced mRNA pool, revealed that MeCP2 disruption alters the relative abundance of alternatively spliced isoforms without affecting the overall mRNA levels. Taken together, our findings reveal that adult hippocampal MeCP2 is required to finetune alternative splicing events in basal conditions, as well as in response to spatial learning. This study provides new insight into how MeCP2 regulates brain function, particularly cognitive abilities, and sheds light onto the pathophysiological mechanisms of Rett syndrome, that is characterized by intellectual disability and caused by mutations in the Mecp2 gene.
Collapse
Affiliation(s)
- David V C Brito
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Kubra Gulmez Karaca
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.,Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN, Nijmegen, The Netherlands
| | - Janina Kupke
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Lukas Frank
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant (Heidelberg University), Heidelberg, Germany
| | - Ana M M Oliveira
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
30
|
Taylor CP, Harris EW. Analgesia with Gabapentin and Pregabalin May Involve N-Methyl-d-Aspartate Receptors, Neurexins, and Thrombospondins. J Pharmacol Exp Ther 2020; 374:161-174. [DOI: 10.1124/jpet.120.266056] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/17/2020] [Indexed: 11/22/2022] Open
|
31
|
Rajani V, Sengar AS, Salter MW. Tripartite signalling by NMDA receptors. Mol Brain 2020; 13:23. [PMID: 32070387 PMCID: PMC7029596 DOI: 10.1186/s13041-020-0563-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/03/2020] [Indexed: 12/31/2022] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are excitatory glutamatergic receptors that are fundamental for many neuronal processes, including synaptic plasticity. NMDARs are comprised of four subunits derived from heterogeneous subunit families, yielding a complex diversity in NMDAR form and function. The quadruply-liganded state of binding of two glutamate and two glycine molecules to the receptor drives channel gating, allowing for monovalent cation flux, Ca2+ entry and the initiation of Ca2+-dependent signalling. In addition to this ionotropic function, non-ionotropic signalling can be initiated through the exclusive binding of glycine or of glutamate to the NMDAR. This binding may trigger a transmembrane conformational change of the receptor, inducing intracellular protein-protein signalling between the cytoplasmic domain and secondary messengers. In this review, we outline signalling cascades that can be activated by NMDARs and propose that the receptor transduces signalling through three parallel streams: (i) signalling via both glycine and glutamate binding, (ii) signalling via glycine binding, and (iii) signalling via glutamate binding. This variety in signal transduction mechanisms and downstream signalling cascades complements the widespread prevalence and rich diversity of NMDAR activity throughout the central nervous system and in disease pathology.
Collapse
Affiliation(s)
- Vishaal Rajani
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Ameet S Sengar
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Michael W Salter
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada. .,Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|