1
|
Cao D, Xi R, Li H, Zhang Z, Shi X, Li S, Jin Y, Liu W, Zhang G, Liu X, Dong S, Feng X, Wang F. Discovery of a Covalent Inhibitor of Pro-Caspase-1 Zymogen Blocking NLRP3 Inflammasome Activation and Pyroptosis. J Med Chem 2024; 67:15873-15891. [PMID: 39159426 DOI: 10.1021/acs.jmedchem.4c01558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Caspase-1 plays a central role in innate immunity, as its activation by inflammasomes induces the production of proinflammatory cytokines and pyroptosis. However, specific inhibition of the enzymatic activity of this protease is not effective in suppressing inflammation, owing to its enzyme-independent function. Herein, we identified a cyclohexenyl isothiocyanate compound (CIB-1476) that potently inhibited caspase-1 activity and suppressed the assembly and activation of the NLRP3 inflammasome and gasdermin-D-mediated pyroptosis. Mechanistically, CIB-1476 directly targeted pro-caspase-1 as an irreversible covalent inhibitor by binding to Cys285 and Cys397, resulting in more durable anti-inflammatory effects in the suppression of enzyme-dependent IL-1β production and enzyme-independent nuclear factor κB activation. Chemoproteomic profiling demonstrated the engagement of CIB-1476 with caspase-1. CIB-1476 showed potent therapeutic effects by suppressing inflammasome activation in mice, which was abolished in Casp1-/- mice. These results warrant further development of CIB-1476 along with its analogues as a novel strategy for caspase-1 inhibitors.
Collapse
Affiliation(s)
- Dongyi Cao
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Department of Pharmacy, Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming 650500, China
| | - Ruiying Xi
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongye Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhonghui Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 511400, China
| | - Xiaoke Shi
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujie Jin
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanli Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Institute for Immunology, Beijing Advanced Innovation Center for Structural Biology, Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing 100084, China
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
2
|
Imam RA, Hassan FE, Ali IH, Alghamdi MA, Aboulhoda BE. Effect of Selenium nanoparticles on Paraquat-induced-neuroinflammation and oligodendocyte modulation: Implication of the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Tissue Cell 2024; 89:102454. [PMID: 38905876 DOI: 10.1016/j.tice.2024.102454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/11/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Paraquat (PQ), is an extensively used herbicide and is a well-established powerful neurotoxin. However, the mechanism underlying its neurotoxicity still needs further investigation. AIM OF WORK The study investigated the pathogenesis of PQ-induced neuroinflammation of the substantia nigra pars compacta (SNPC) and cerebellum and evaluated the potential effect of selenium nanoparticles (SeN) against such neurotoxicity. METHODS Thirty-six mice were randomly divided into three groups; Control group, PQ group: mice received PQ 10 mg/kg (i.p), and PQ + SeN group; mice received PQ in addition to oral SeN 0.1 mg/kg. All regimens were administered for 14 days. The mice's brains were processed for biochemical, molecular, histological, and immune-histochemical assessment. RESULTS SeN increased the SNPC and cerebellum antioxidants (reduced glutathione, glutathione peroxidase, and superoxide dismutase 1) while decreasing malondialdehyde concentration. Also, SeN increased the anti-inflammatory interleukin (IL)-10 and decreased the pro-inflammatory IL-1β and -6 along with improving the angiogenic nitric oxide and reducing caspase-1. Further, western blots of phosphorylated Janus kinase (JAK2)/signal transducer and activator of transcription3 (STAT3) proteins showed a significant decline. Those improving effects of SeN on SNPC, and cerebellum were supported by the significantly preserved dopaminergic and Purkinje neurons, the enhanced myelin fibers on Luxol fast blue staining, and the marked increase in Olig-2, Platelet-derived growth factor-alpha, and tyrosine hydroxylase immunoreactivity. CONCLUSION SeN could mitigate PQ-induced neurotoxicity via its antioxidant, anti-inflammatory, and antiapoptotic properties.
Collapse
Affiliation(s)
- Reda Abdelnasser Imam
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Fatma E Hassan
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Giza 11562, Egypt; General Medicine Practice Program, Department of Physiology, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Isra H Ali
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt; Nanomedicine Laboratory, Faculty of Pharmacy, University of Sadat City, P.O. Box 32897, Sadat City, Egypt
| | - Mansour A Alghamdi
- College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalized Medicine Unit, The Center for Medical and Health Research, King Khalid University, Abha 62529, Saudi Arabia
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
3
|
El Gazzar WB, Bayoumi H, Youssef HS, Ibrahim TA, Abdelfatah RM, Gamil NM, Iskandar MK, Abdel-Kareim AM, Abdelrahman SM, Gebba MA, Mohamed MA, Mokhtar MM, Kharboush TG, Bayoumy NM, Alomar HA, Farag AA. Role of IRE1α/XBP1/CHOP/NLRP3 Signalling Pathway in Neonicotinoid Imidacloprid-Induced Pancreatic Dysfunction in Rats and Antagonism of Lycopene: In Vivo and Molecular Docking Simulation Approaches. TOXICS 2024; 12:445. [PMID: 39058097 PMCID: PMC11281275 DOI: 10.3390/toxics12070445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024]
Abstract
Imidacloprid (IMI) is a commonly used new-generation pesticide that has numerous harmful effects on non-targeted organisms, including animals. This study analysed both the adverse effects on the pancreas following oral consumption of imidacloprid neonicotinoids (45 mg/kg daily for 30 days) and the potential protective effects of lycopene (LYC) administration (10 mg/kg/day for 30 days) with IMI exposure in male Sprague-Dawley rats. The apoptotic, pyroptotic, inflammatory, oxidative stress, and endoplasmic reticulum stress biomarkers were evaluated, along with the histopathological alterations. Upon IMI administration, noticeable changes were observed in pancreatic histopathology. Additionally, elevated oxidative/endoplasmic reticulum-associated stress biomarkers, inflammatory, pyroptotic, and apoptotic biomarkers were also observed following IMI administration. LYC effectively reversed these alterations by reducing oxidative stress markers (e.g., MDA) and enhancing antioxidant enzymes (SOD, CAT). It downregulated ER stress markers (IRE1α, XBP1, CHOP), decreased pro-inflammatory cytokines (TNF-α, IL-1β), and suppressed pyroptotic (NLRP3, caspase-1) along with apoptotic markers (Bax, cleaved caspase-3). It also improved the histopathological and ultrastructure alterations brought on by IMI toxicity.
Collapse
Affiliation(s)
- Walaa Bayoumie El Gazzar
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Heba Bayoumi
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt; (H.B.); (M.A.M.)
| | - Heba S. Youssef
- Department of Physiology, Faculty of Medicine, Benha University, Benha 13518, Egypt; (H.S.Y.); (T.A.I.)
| | - Tayseer A. Ibrahim
- Department of Physiology, Faculty of Medicine, Benha University, Benha 13518, Egypt; (H.S.Y.); (T.A.I.)
| | - Reham M. Abdelfatah
- Department of Pesticides, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Noha M. Gamil
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12573, Egypt;
| | - Mervat K. Iskandar
- Department of Zoology, Faculty of Science, Benha University, Benha 13518, Egypt; (M.K.I.); (A.M.A.-K.)
| | - Amal M. Abdel-Kareim
- Department of Zoology, Faculty of Science, Benha University, Benha 13518, Egypt; (M.K.I.); (A.M.A.-K.)
| | - Shaymaa M. Abdelrahman
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Mohammed A. Gebba
- Department of Anatomy& Embryology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Mona Atya Mohamed
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt; (H.B.); (M.A.M.)
| | - Maha M. Mokhtar
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Tayseir G. Kharboush
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Nervana M. Bayoumy
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia;
| | - Hatun A. Alomar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Amina A. Farag
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| |
Collapse
|
4
|
Thapa HB, Kohl P, Zingl FG, Fleischhacker D, Wolinski H, Kufer TA, Schild S. Characterization of the Inflammatory Response Evoked by Bacterial Membrane Vesicles in Intestinal Cells Reveals an RIPK2-Dependent Activation by Enterotoxigenic Escherichia coli Vesicles. Microbiol Spectr 2023; 11:e0111523. [PMID: 37306596 PMCID: PMC10433812 DOI: 10.1128/spectrum.01115-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
Although the immunomodulatory potency of bacterial membrane vesicles (MVs) is widely acknowledged, their interactions with host cells and the underlying signaling pathways have not been well studied. Herein, we provide a comparative analysis of the proinflammatory cytokine profile secreted by human intestinal epithelial cells exposed to MVs derived from 32 gut bacteria. In general, outer membrane vesicles (OMVs) from Gram-negative bacteria induced a stronger proinflammatory response than MVs from Gram-positive bacteria. However, the quality and quantity of cytokine induction varied between MVs from different species, highlighting their unique immunomodulatory properties. OMVs from enterotoxigenic Escherichia coli (ETEC) were among those showing the strongest proinflammatory potency. In depth analyses revealed that the immunomodulatory activity of ETEC OMVs relies on a so far unprecedented two-step mechanism, including their internalization into host cells followed by intracellular recognition. First, OMVs are efficiently taken up by intestinal epithelial cells, which mainly depends on caveolin-mediated endocytosis as well as the presence of the outer membrane porins OmpA and OmpF on the MVs. Second, lipopolysaccharide (LPS) delivered by OMVs is intracellularly recognized by novel caspase- and RIPK2-dependent pathways. This recognition likely occurs via detection of the lipid A moiety as ETEC OMVs with underacylated LPS exhibited reduced proinflammatory potency but similar uptake dynamics compared to OMVs derived from wild-type (WT) ETEC. Intracellular recognition of ETEC OMVs in intestinal epithelial cells is pivotal for the proinflammatory response as inhibition of OMV uptake also abolished cytokine induction. The study signifies the importance of OMV internalization by host cells to exercise their immunomodulatory activities. IMPORTANCE The release of membrane vesicles from the bacterial cell surface is highly conserved among most bacterial species, including outer membrane vesicles (OMVs) from Gram-negative bacteria as well as vesicles liberated from the cytoplasmic membrane of Gram-positive bacteria. It is becoming increasingly evident that these multifactorial spheres, carrying membranous, periplasmic, and even cytosolic content, contribute to intra- and interspecies communication. In particular, gut microbiota and the host engage in a myriad of immunogenic and metabolic interactions. This study highlights the individual immunomodulatory activities of bacterial membrane vesicles from different enteric species and provides new mechanistic insights into the recognition of ETEC OMVs by human intestinal epithelial cells.
Collapse
Affiliation(s)
- Himadri B. Thapa
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Paul Kohl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Franz G. Zingl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence Biohealth, University of Graz, Graz, Austria
| | - Thomas A. Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Stefan Schild
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence Biohealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
5
|
Wei D, Tian X, Zhai X, Sun C. Adipose Tissue Macrophage-Mediated Inflammation in Obesity: A Link to Posttranslational Modification. Immunol Invest 2023:1-25. [PMID: 37129471 DOI: 10.1080/08820139.2023.2205883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Adipose tissue macrophages (ATM) are an essential type of immune cells in adipose tissue. Obesity induces the inflammation of adipose tissues, as expressed by ATM accumulation, that is more likely to become a source of systemic metabolic diseases, including insulin resistance. The process is characterized by the transcriptional regulation of inflammatory pathways by virtue of signaling molecules such as cytokines and free fatty acids. Notably, posttranslational modification (PTM) is a key link for these signaling molecules to trigger the proinflammatory or anti-inflammatory phenotype of ATMs. This review focuses on summarizing the functions and molecular mechanisms of ATMs regulating inflammation in obese adipose tissue. Furthermore, the role of PTM is elaborated, hoping to identify new horizons of treatment and prevention for obesity-mediated metabolic disease.
Collapse
Affiliation(s)
- Dongqin Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| | - Xin Tian
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| | - Xiangyun Zhai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shanxi, China
| |
Collapse
|
6
|
Lin Z, Liao HH, Zhou ZY, Zhang N, Li WJ, Tang QZ. RIP2 inhibition alleviates lipopolysaccharide-induced septic cardiomyopathy via regulating TAK1 signaling. Eur J Pharmacol 2023; 947:175679. [PMID: 36967078 DOI: 10.1016/j.ejphar.2023.175679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE RIP2 is a member of the receptor-interacting protein family that has been associated with various pathophysiological processes, including immunity, apoptosis, and autophagy. However, no studies have hitherto reported the role of RIP2 in lipopolysaccharide (LPS)-induced septic cardiomyopathy (SCM). This study was designed to illustrate the role of RIP2 in LPS-induced SCM. METHODS C57 and RIP2 knockout mice received intraperitoneal injections of LPS to establish models of SCM. Echocardiography was used to assess the cardiac function of the mice. Real-time-PCR, cytometric bead array and immunohistochemical staining were used to detect the inflammatory response. Immunoblotting was used to determine the protein expression of relevant signaling pathways. Our findings were validated by treatment with a RIP2 inhibitor. Neonatal rats cardiomyocytes (NRCMs) and cardiac fibroblasts (CFs) were transfected with Ad-RIP2 to further explore the role of RIP2 in vitro. RESULTS RIP2 expression was upregulated in our mice models of septic cardiomyopathy and LPS-stimulated cardiomyocytes and fibroblasts. RIP2 knockout or RIP2 inhibitors attenuated LPS-induced cardiac dysfunction and reduced the inflammatory response in mice. Overexpression of RIP2 in vitro enhanced the inflammatory response, and TAK1 inhibitors attenuated the inflammatory response caused by overexpression of RIP2. CONCLUSION Our findings substantiate that RIP2 induces an inflammatory response by regulating the TAK1/IκBα/NF-κB signaling pathway. RIP2 inhibition by genetic or pharmacological approaches has huge prospects for application as a potential treatment strategy for inhibiting inflammation, alleviating cardiac dysfunction, and improving survival.
Collapse
|
7
|
Ruan D, Yang J, Luo Q, Shi Y, Ding L, Wang Z, Wang R, Yang L. The Protective Effects of Goitrin on LPS-Induced Septic Shock in C57BL/6J Mice via Caspase-11 Non-Canonical Inflammasome Inhibition. Molecules 2023; 28:molecules28072883. [PMID: 37049646 PMCID: PMC10096381 DOI: 10.3390/molecules28072883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Septic shock is defined as a subset of sepsis, which is associated with a considerably high mortality risk. The caspase-11 non-canonical inflammasome is sensed and activated by intracellular lipopolysaccharide (LPS) leading to pyroptosis, it plays a critical role in septic shock. However, there are few known drugs that can control caspase-11 non-canonical inflammasome activation. We report here that goitrin, an alkaloid from Radix Isatidis, shows protective effects in LPS-induced septic shock and significant inhibitory effect in caspase-11 non-canonical inflammasome pathway. Male C57BL/6J were injected intraperitoneally with LPS (20 mg/kg) to induce experimental septic shock. The results demonstrated that the survival rates of mice pretreated with goitrin or Toll-like receptor 4 (TLR4) inhibitor TKA-242 increased, and LPS-induced hypothermia and lung damage improved by inhibiting inflammatory response. Elucidating the detailed mechanism, we surprisingly found goitrin is really different from TAK-242, it independent of the TLR4 signal activation, but significantly inhibited the activation of caspase-11 non-canonical inflammasome, including cleaved caspase-11 and N-terminal fragment of gasdermin D (GSDMD-NT). Furthermore, with a nonlethal dose of the TLR3 agonist poly(I:C)-primed and subsequently challenged with LPS to induce caspase-11-mediated lethal septic shock, the efficacy of goitrin had been verified. Those results revealed the effect of goitrin in protective against LPS-induced septic shock via inhibiting caspase-11 non-canonical inflammasome, which provided a new therapeutic strategy for clinical treatment of septic shock.
Collapse
Affiliation(s)
- Deqing Ruan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Compound Chinese Medicines and The Ministry of Education (MOE) Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Molecular Pharmacology, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Jingyi Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Compound Chinese Medicines and The Ministry of Education (MOE) Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qianfei Luo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanhong Shi
- Shanghai Key Laboratory of Compound Chinese Medicines and The Ministry of Education (MOE) Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Ding
- Shanghai Key Laboratory of Compound Chinese Medicines and The Ministry of Education (MOE) Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Compound Chinese Medicines and The Ministry of Education (MOE) Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- Shanghai Key Laboratory of Compound Chinese Medicines and The Ministry of Education (MOE) Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
8
|
Su L, Chen Y, Huang C, Wu S, Wang X, Zhao X, Xu Q, Sun R, Kong X, Jiang X, Qiu X, Huang X, Wang M, Wong PP. Targeting Src reactivates pyroptosis to reverse chemoresistance in lung and pancreatic cancer models. Sci Transl Med 2023; 15:eabl7895. [PMID: 36630483 DOI: 10.1126/scitranslmed.abl7895] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pancreatic and lung cancers frequently develop resistance to chemotherapy-induced cell apoptosis during the treatment, indicating that targeting nonapoptotic-related pathways, such as pyroptosis, can be an alternative cancer treatment strategy. Pyroptosis is a gasdermin-driven lytic programmed cell death triggered by inflammatory caspases when initiated by canonical or noncanonical pathways that has been recently seen as a potential therapeutic target in cancer treatment. However, overcoming chemoresistance in cancers by modulating pyroptosis has not been explored. Here, we demonstrate that β5-integrin represses chemotherapy-induced canonical pyroptosis to confer cancer chemoresistance through ASAH2-driven sphingolipid metabolic reprogramming. Clinically, high β5-integrin expression associates with poor patient prognosis and chemotherapeutic responses in cancers. In addition, chemoresistant cells in vitro fail to undergo chemotherapy-induced pyroptosis, which is controlled by β5-integrin. Mechanistically, proteomic and lipidomic analyses indicate that β5-integrin up-regulates sphingolipid metabolic enzyme ceramidase (ASAH2) expression through Src-signal transducer and activator of transcription 3 (STAT3) signaling, which then reduces the metabolite ceramide concentration and subsequent ROS production to prohibit chemotherapy-induced canonical pyroptosis. Using cancer cell lines, patient-derived tumor organoids, and orthotopic lung and pancreatic animal models, we show that administration of a Src or ceramidase inhibitor rescues the response of chemoresistant pancreatic and lung cancer cells to chemotherapy by reactivating pyroptosis in vitro and in vivo. Overall, our results suggest that pyroptosis-based therapy is a means to improve cancer treatment and warrants further investigation.
Collapse
Affiliation(s)
- Liangping Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yitian Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Cheng Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Sangqing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Department of Otolaryngology, Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - XiaoJuan Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xinbao Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China 510120
| | - Qiuping Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ruipu Sun
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiangzhan Kong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xue Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaoyi Qiu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaoming Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Department of Otolaryngology, Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Minghui Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.,Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| |
Collapse
|
9
|
Liu L, Fu Q, Ding H, Jiang H, Zhan Z, Lai Y. Combination of machine learning-based bulk and single-cell genomics reveals necroptosis-related molecular subtypes and immunological features in autism spectrum disorder. Front Immunol 2023; 14:1139420. [PMID: 37168851 PMCID: PMC10165081 DOI: 10.3389/fimmu.2023.1139420] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/05/2023] [Indexed: 05/13/2023] Open
Abstract
Background Necroptosis is a novel form of controlled cell death that contributes to the progression of various illnesses. Nonetheless, the function and significance of necroptosis in autism spectrum disorders (ASD) remain unknown and require further investigation. Methods We utilized single-nucleus RNA sequencing (snRNA-seq) data to assess the expression patterns of necroptosis in children with autism spectrum disorder (ASD) based on 159 necroptosis-related genes. We identified differentially expressed NRGs and used an unsupervised clustering approach to divide ASD children into distinct molecular subgroups. We also evaluated immunological infiltrations and immune checkpoints using the CIBERSORT algorithm. Characteristic NRGs, identified by the LASSO, RF, and SVM-RFE algorithms, were utilized to construct a risk model. Moreover, functional enrichment, immune infiltration, and CMap analysis were further explored. Additionally, external validation was performed using RT-PCR analysis. Results Both snRNA-seq and bulk transcriptome data demonstrated a greater necroptosis score in ASD children. Among these cell subtypes, excitatory neurons, inhibitory neurons, and endothelials displayed the highest activity of necroptosis. Children with ASD were categorized into two subtypes of necroptosis, and subtype2 exhibited higher immune activity. Four characteristic NRGs (TICAM1, CASP1, CAPN1, and CHMP4A) identified using three machine learning algorithms could predict the onset of ASD. Nomograms, calibration curves, and decision curve analysis (DCA) based on 3-NRG have been shown to have clinical benefit in children with ASD. Furthermore, necroptosis-based riskScore was found to be positively associated with immune activation. Finally, RT-PCR demonstrated differentially expressed of these four NRGs in human peripheral blood samples. Conclusion A comprehensive identification of necroptosis may shed light on the underlying pathogenic process driving ASD onset. The classification of necroptosis subtypes and construction of a necroptosis-related risk model may yield significant insights for the individualized treatment of children with ASD.
Collapse
Affiliation(s)
- Lichun Liu
- Department of Pharmacy, Fujian Children’s Hospital, Fuzhou, China
- *Correspondence: Lichun Liu, ; Yongxing Lai,
| | - Qingxian Fu
- Department of Pediatric Endocrinology, Fujian Children’s Hospital, Fuzhou, China
| | - Huaili Ding
- Department of Rehabilitation Medicine, Fujian Children’s Hospital, Fuzhou, China
| | - Hua Jiang
- Department of Pharmacy, Fujian Children’s Hospital, Fuzhou, China
| | - Zhidong Zhan
- Department of Pediatric Intensive Care Unit, Fujian Children’s Hospital, Fuzhou, China
| | - Yongxing Lai
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- *Correspondence: Lichun Liu, ; Yongxing Lai,
| |
Collapse
|
10
|
Szego EM, Malz L, Bernhardt N, Rösen-Wolff A, Falkenburger BH, Luksch H. Constitutively active STING causes neuroinflammation and degeneration of dopaminergic neurons in mice. eLife 2022; 11:81943. [PMID: 36314770 PMCID: PMC9767458 DOI: 10.7554/elife.81943] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/31/2022] [Indexed: 12/30/2022] Open
Abstract
Stimulator of interferon genes (STING) is activated after detection of cytoplasmic dsDNA by cGAS (cyclic GMP-AMP synthase) as part of the innate immunity defence against viral pathogens. STING binds TANK-binding kinase 1 (TBK1). TBK1 mutations are associated with familial amyotrophic lateral sclerosis, and the STING pathway has been implicated in the pathogenesis of further neurodegenerative diseases. To test whether STING activation is sufficient to induce neurodegeneration, we analysed a mouse model that expresses the constitutively active STING variant N153S. In this model, we focused on dopaminergic neurons, which are particularly sensitive to stress and represent a circumscribed population that can be precisely quantified. In adult mice expressing N153S STING, the number of dopaminergic neurons was smaller than in controls, as was the density of dopaminergic axon terminals and the concentration of dopamine in the striatum. We also observed alpha-synuclein pathology and a lower density of synaptic puncta. Neuroinflammation was quantified by staining astroglia and microglia, by measuring mRNAs, proteins and nuclear translocation of transcription factors. These neuroinflammatory markers were already elevated in juvenile mice although at this age the number of dopaminergic neurons was still unaffected, thus preceding the degeneration of dopaminergic neurons. More neuroinflammatory markers were blunted in mice deficient for inflammasomes than in mice deficient for signalling by type I interferons. Neurodegeneration, however, was blunted in both mice. Collectively, these findings demonstrate that chronic activation of the STING pathway is sufficient to cause degeneration of dopaminergic neurons. Targeting the STING pathway could therefore be beneficial in Parkinson's disease and further neurodegenerative diseases.
Collapse
Affiliation(s)
- Eva M Szego
- Department of Neurology, TU Dresden, Dresden, Germany
| | - Laura Malz
- Departments of Neurology & Pediatrics, TU Dresden, Dresden, Germany
| | | | | | - Björn H Falkenburger
- Department of Neurology, TU Dresden, Dresden, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen, Dresden, Germany
| | - Hella Luksch
- Department of Pediatrics, TU Dresden, Dresden, Germany
| |
Collapse
|
11
|
Ma H, Murphy C, Loscher CE, O’Kennedy R. Autoantibodies - enemies, and/or potential allies? Front Immunol 2022; 13:953726. [PMID: 36341384 PMCID: PMC9627499 DOI: 10.3389/fimmu.2022.953726] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/24/2022] [Indexed: 08/13/2023] Open
Abstract
Autoantibodies are well known as potentially highly harmful antibodies which attack the host via binding to self-antigens, thus causing severe associated diseases and symptoms (e.g. autoimmune diseases). However, detection of autoantibodies to a range of disease-associated antigens has enabled their successful usage as important tools in disease diagnosis, prognosis and treatment. There are several advantages of using such autoantibodies. These include the capacity to measure their presence very early in disease development, their stability, which is often much better than their related antigen, and the capacity to use an array of such autoantibodies for enhanced diagnostics and to better predict prognosis. They may also possess capacity for utilization in therapy, in vivo. In this review both the positive and negative aspects of autoantibodies are critically assessed, including their role in autoimmune diseases, cancers and the global pandemic caused by COVID-19. Important issues related to their detection are also highlighted.
Collapse
Affiliation(s)
- Hui Ma
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Caroline Murphy
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | | | - Richard O’Kennedy
- School of Biotechnology, Dublin City University, Dublin, Ireland
- Research, Development and Innovation, Qatar Foundation, Doha, Qatar
- Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
12
|
Microglial NLRP3 inflammasome activates neurotoxic astrocytes in depression-like mice. Cell Rep 2022; 41:111532. [DOI: 10.1016/j.celrep.2022.111532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/22/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
|
13
|
Wu J, Lan Y, Shi X, Huang W, Li S, Zhang J, Wang H, Wang F, Meng X. Sennoside A is a novel inhibitor targeting caspase-1. Food Funct 2022; 13:9782-9795. [PMID: 36097956 DOI: 10.1039/d2fo01730j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The assembly of inflammasomes drives caspase-1 activation, which further promotes proinflammatory cytokine secretion and downstream pyroptosis. The discovery of novel caspase-1 inhibitors is pivotal to developing new therapeutic means for inflammasome-involved diseases. In our present study, sennoside A (Sen A), a popular ingredient in multiple weight-loss medicines and dietary supplements, is found to potently inhibit the enzymatic activity of caspase-1 in vitro. Sen A considerably decreased IL-1β production in macrophages stimulated by LPS plus ATP, nigericin or MSU as well as poly(dA:dT) transfection, and remedied ROS-involved pyroptosis via caspase-1 inhibition. Mechanistically, Sen A not only suppressed the assembly of both NLRP3 and AIM2 inflammasome but also affected the priming process of NLRP3 inflammasome by blocking NF-κB signaling. Sen A significantly ameliorated the pathophysiological effect in LPS-, MSU- and carrageenan-challenged rodent models by suppressing inflammasome activation. Furthermore, P2X7 was indispensable for Sen A inhibiting NLRP3 inflammasome since it failed to further decrease IL-1β and IL-18 production in LPS plus ATP-stimulated BMDMs that were transfected with P2X7 siRNA. Sen A also restrained the large pore-forming functionalities of the P2X7R as verified by the YO-PRO-1 uptake assay. Taken together, Sen A inactivates caspase-1 to inhibit NLRP3 and AIM2 inflammasome-involved inflammation in a P2X7-dependent manner, making it an attractive candidate as a caspase-1 small-molecular inhibitor.
Collapse
Affiliation(s)
- Jiasi Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China. .,Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuejia Lan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| | - Xiaoke Shi
- Key Laboratory of Natural Medicine and Clinical Translation, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Wenge Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| | - Sheng Li
- Key Laboratory of Natural Medicine and Clinical Translation, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Jizhou Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huan Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| | - Fei Wang
- Key Laboratory of Natural Medicine and Clinical Translation, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, China.
| |
Collapse
|
14
|
Kurabi A, Lee J, Pak K, Leichtle A, Ryan AF. Essential Role of the Innate Immune Adaptor RIP2 in the Response to Otitis Media. Front Genet 2022; 13:893085. [PMID: 35903351 PMCID: PMC9315102 DOI: 10.3389/fgene.2022.893085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/17/2022] [Indexed: 11/25/2022] Open
Abstract
Intracellular nucleotide binding and oligomerization domain (NOD) and Toll-like (TLR) receptors have emerged as pivotal sensors of infection. Both Nod1 and Nod2 contain a caspase activation and recruitment domain (CARD) that interacts with the adaptor protein RIP2 (receptor-interaction protein-2). This leads to ubiquitination of RIP2 and in turn to the activation of NFκB and MAPK transcription factors, to command the host defensive response against pathogenic infections. RIP2 is also activated by TLRs 2 and 4, although the mechanism of this activation is less. The role of RIP2 in otitis media (OM) pathogenesis has yet to be examined. Herein, we used in vivo animal models including C57BL/6 wild-type (WT) and RIP2-/- knockout mice inoculated in the middle ear (ME) with non-typeable Haemophilus influenzae (NTHi), a common human OM pathogen, to evaluate the expression of RIP2 and its signaling genes at the cellular level to determine the role of RIP2 in OM pathogenesis and recovery. The Nod1, Nod2, and Ripk2 genes are minimally expressed in the normal ME. However, they are strongly upregulated during acute OM, as are many genes related to RIP2 signaling. However, while signaling genes were expressed by various ME cell types, only mucosal epithelial and stromal cells expressed the NODs, RIP2, and signaling genes required for the activation of the host defensive response. Whereas WT mice clear ME bacteria and recover from OM within 5 days after infection, RIP2-deficient mice show persistent ME bacterial carriage and inflammation to at least 15 days. This includes significantly prolonged mucosal hyperplasia and ME leukocytic infiltration. Recruitment of macrophages is also delayed in comparison to WT mice. Thus, RIP2 is required to elicit a robust innate immune response that promotes bacterial clearance and increases host innate resistance. The results also identify the structural cells of the ME mucosa, as opposed to leukocytes, as the primary sites of NOD/RIP2 activity in the infected ME.
Collapse
Affiliation(s)
- Arwa Kurabi
- Department of Surgery, Division of Otolaryngology, University of California, San Diego, San Diego, CA, United States
| | - Jasmine Lee
- Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
| | - Kwang Pak
- Department of Surgery, Division of Otolaryngology, University of California, San Diego, San Diego, CA, United States
| | - Anke Leichtle
- Department of Otolaryngology, University of Lübeck, Lübeck, Germany
| | - Allen F Ryan
- Department of Surgery, Division of Otolaryngology, University of California, San Diego, San Diego, CA, United States
- San Diego Veterans Administration Healthcare System, La Jolla, CA, United States
| |
Collapse
|
15
|
Sun H, Yang Y, Cao Y, Li H, Qu L, Lamont SJ. Gene expression profiling of RIP2-knockdown in HD11 macrophages - elucidation of potential pathways (gene network) when challenged with avian pathogenic E.coli (APEC). BMC Genomics 2022; 23:341. [PMID: 35501708 PMCID: PMC9063279 DOI: 10.1186/s12864-022-08595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Receptor interacting serine/threonine kinase 2 (RIP2), ubiquitous in many tissue/cell types, is the key regulator of immune and inflammatory responses for many diseases, including avian pathogenic E. coli (APEC), which causes a wide variety of localized or systemic infections. However, the molecular mechanisms by which RIP2 drives its transcriptional program to affect immune and inflammatory response upon APEC infection remains poorly understood. RESULTS In this study, RNA-seq and bioinformatics analyses were used to detect gene expression and new direct/indirect RIP2 targets in the treatments of wild type HD11 cells (WT), RIP2 knockdown cells (shRIP2), APEC stimulation cells (APEC), and RIP2 knockdown cells combined with APEC infection (shRIP2 + APEC). The results revealed that a total of 4691 and 2605 differentially expressed genes (DEGs) were screened in shRIP2 + APEC vs. APEC and shRIP2 vs. WT, respectively. Functional annotation analysis showed that apoptosis, MAPK, p53, Toll-like receptor, and Nod-like receptor signaling pathways were involved in APEC-induced RIP2 knockdown HD11 cells. By analyzing the enriched pathway and gene networks, we identified that several DEGs, including HSP90AB1, BID, and CASP9 were targeted by RIP2 upon APEC infection. CONCLUSION As a whole, this study can not only provide data support for constructing gene networks of RIP2 knockdown with APEC challenge but also provide new ideas for improving the immune and inflammatory response.
Collapse
Affiliation(s)
- Hongyan Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Yexin Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yuxuan Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Huan Li
- School of Biological and Chemical Engineering, Yangzhou Polytechnic College, Yangzhou, 225009, China.
| | - Lujiang Qu
- College of Animal Science and Technology, China Agricultural University, Beijing, 100091, China
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, Iowa, 50011, USA
| |
Collapse
|
16
|
Yao Y, Li C, Qian F, Zhao Y, Shi X, Hong D, Ai Q, Zhong L. Ginsenoside Rg1 Inhibits Microglia Pyroptosis Induced by Lipopolysaccharide Through Regulating STAT3 Signaling. J Inflamm Res 2021; 14:6619-6632. [PMID: 34908862 PMCID: PMC8665869 DOI: 10.2147/jir.s326888] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/02/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Neuroinflammation runs through the whole process of nervous system diseases and brain injury. Inflammasomes are thought to be especially relevant to immune homeostasis, and their dysregulation contributes to pyroptosis. The natural compound Ginsenoside Rg1 has been shown to possess anti-inflammatory effects; however, its underlying mechanisms are not entirely clear. Therefore, this study was undertaken to investigate the role and mechanisms of Rg1 in regulating the production of inflammasomes and pyroptosis of microglia in vivo and in vitro. Methods BV-2 microglial cells were pretreated with Rg1, stattic and interleukin-6 (IL-6), and then stimulated with lipopolysaccharide (LPS) (2μg/mL). Hoechst staining and Annexin V-FITC/PI assay were then carried out. The expression levels of cleaved-caspase-1, pro-caspase-1, interleukin-1β (IL-1β), mature-IL-1β, gasdermin D (GSDMD), activated NH(2)-terminal fragment of GSDMD (GSDMD-N), NOD-, LRR- and pyrin domain-containing 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), absent in melanoma 2 (AIM2), signal transducer and activator of transcription 3 (STAT3) and phosphorylated STAT3 in BV-2 were detected by Western blotting. Additionally, immunofluorescence staining was used to determine the expression of NLRP3 and p-STAT3 in postnatal rat brain and BV-2 microglia subjected to LPS stimulation and Rg1 pretreatment. The targets of transcription factor STAT3 were predicted by hTFtarget and chromatin immunoprecipitation (ChIP) was used to confirm the interaction between STAT3 and AIM2. Results We showed here that Rg1 effectively inhibited the expression of inflammasomes and microglia pyroptosis induced by LPS. The targets predicted data of Rg1 from Swiss target prediction database showed STAT3 had the highest thresholds of probability score. Rg1 can regulate the phosphorylation of STAT3, which binds to the promoter region of inflammasome AIM2. Conclusion It is suggested that STAT3 signaling can initiate the transcription activity of AIM2. Rg1 regulates microglia pyroptosis in neuroinflammation induced by LPS through targeting STAT3 signaling.
Collapse
Affiliation(s)
- Yueyi Yao
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Changyan Li
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Fusheng Qian
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Yu Zhao
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Xiaoyi Shi
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Dan Hong
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Qinglong Ai
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Lianmei Zhong
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| |
Collapse
|
17
|
Pan D, Lyu Y, Zhang N, Wang X, Lei T, Liang Z. RIP2 knockdown inhibits cartilage degradation and oxidative stress in IL-1β-treated chondrocytes via regulating TRAF3 and inhibiting p38 MAPK pathway. Clin Immunol 2021; 232:108868. [PMID: 34587513 DOI: 10.1016/j.clim.2021.108868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 01/04/2023]
Abstract
Receptor-interacting protein 2 (RIP2) is a key mediator implicated in multiple cellular processes, and its dysregulation has been recently reported in colitis, asthma and other inflammatory diseases. However, the effects of RIP2 on osteoarthritis (OA) and the underlying mechanisms remain unclear. In this study, we found that RIP2 expression was upregulated in human articular cartilage tissues with OA and interleukin-1β (IL-1β)-treated chondrocytes. Knockdown of RIP2 inhibited IL-1β-induced extracellular matrix (ECM) and oxidative stress. Moreover, knockdown of TRAF3 reversed the effects of RIP2 silencing on cartilage degradation and oxidative stress in IL-1β-induced chondrocytes. In addition, p38 mitogen-activated protein kinase (MAPK) activator dehydrocorydalmine chloride (Dc) also reversed the effects of RIP2 silencing on IL-1β-induced chondrocytes. Taken together, our data reveal that RIP2 knockdown inhibits cartilage degradation and oxidative stress in IL-1β-treated chondrocytes by regulating TRAF3 expression and p38 MAPK pathway activation.
Collapse
Affiliation(s)
- DongSheng Pan
- Department of Orthopaedics, Xijing Hospital, Air Force Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yanhong Lyu
- Department of Gynecology and Obstetrics, Xijing Hospital, Air Force Military Medical University, Xi'an 710032, Shaanxi, China
| | - Na Zhang
- Department of Orthopaedics, Xijing Hospital, Air Force Military Medical University, Xi'an 710032, Shaanxi, China
| | - Xuankang Wang
- Department of Orthopaedics, Xijing Hospital, Air Force Military Medical University, Xi'an 710032, Shaanxi, China
| | - Tao Lei
- School of Biomedical Engineering, Air Force Military Medical University, Xi'an 710032, Shaanxi, China.
| | - Zhuowen Liang
- Department of Orthopaedics, Xijing Hospital, Air Force Military Medical University, Xi'an 710032, Shaanxi, China.
| |
Collapse
|
18
|
Diebner HH, Reinke S, Rösen-Wolff A, Winkler S. A Kinetic Response Model for Standardized Regression Analyses of Inflammation-Triggered Hypothermic Body Temperature-Time Courses in Mice. Front Physiol 2021; 12:634510. [PMID: 34504434 PMCID: PMC8421519 DOI: 10.3389/fphys.2021.634510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
LPS is frequently used to induce experimental endotoxic shock, representing a standard model of acute inflammation in mice. The resulting inflammatory response leads to hypothermia of the experimental animals, which in turn can be used as surrogate for the severity of systemic inflammation. Although increasingly applied as a humane endpoint in murine studies, differences between obtained temperature-time curves are typically evaluated at a single time point with t-tests or ANOVA analyses. We hypothesized that analyses of the entire temperature-time curves using a kinetic response model could fit the data, which show a temperature decrease followed by a tendency to return to normal temperature, and could increase the statistical power. Using temperature-time curves obtained from LPS stimulated mice, we derived a biologically motivated kinetic response model based on a differential equation. The kinetic model includes four parameters: (i) normal body temperature (T n ), (ii) a coefficient related to the force of temperature autoregulation (r), (iii) damage strength (p 0), and (iv) clearance rate (k). Kinetic modeling of temperature-time curves obtained from LPS stimulated mice is feasible and leads to a high goodness-of-fit. Here, modifying key enzymes of inflammatory cascades induced a dominant impact of genotypes on the damage strength and a weak impact on the clearance rate. Using a likelihood-ratio test to compare modeled curves of different experimental groups yields strongly enhanced statistical power compared to pairwise t-tests of single temperature time points. Taken together, the kinetic model presented in this study has several advantages compared to simple analysis of individual time points and therefore may be used as a standard method for assessing inflammation-triggered hypothermic response curves in mice.
Collapse
Affiliation(s)
- Hans H Diebner
- Department of Medical Informatics, Biometry and Epidemiology, Ruhr-Universität Bochum, Bochum, Germany
| | - Sören Reinke
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Angela Rösen-Wolff
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stefan Winkler
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
19
|
Wang QL, Xing W, Yu C, Gao M, Deng LT. ROCK1 regulates sepsis-induced acute kidney injury via TLR2-mediated endoplasmic reticulum stress/pyroptosis axis. Mol Immunol 2021; 138:99-109. [PMID: 34365196 DOI: 10.1016/j.molimm.2021.07.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND It has been reported that ROCK1 participates in the progression of multiple diseases, including septic intestinal barrier, cardiac dysfunction and acute lung injury. However, its regulatory role and specific mechanism in sepsis-induced acute kidney injury (AKI) remain unclear. METHODS Cecal ligation puncture (CLP) was conducted to establish sepsis mouse model, and in vitro model was achieved by lipopolysaccharide (LPS) stimulation. Genes expression was evaluated by qRT-PCR, western blot or ELISA was conducted to assess the levels of proteins. Hoechst staining was performed to evaluate cell pyroptosis. LDH activity assay was detected to assess cytotoxicity. Immunohistochemistry was conducted to detect Ly-6G expression and neutrophils distribution in kidney tissues of mice. H&E and TUNEL staining were carried to evaluate kidney injury of mice. RESULTS Our findings illuminated that ROCK1 was highly expressed in sepsis-induced AKI, and ROCK1 knockdown inhibited NLRP3-mediated cell pyroptosis in LPS-induced HK-2 cells. Moreover, ROCK1 modulated HK-2 cell pyroptosis by regulating endoplasmic reticulum stress (ERS). TLR2 inhibitor could suppress ERS mediated cell pyroptosis under LPS treatment. Further, TLR2 activator partially reversed the effects of ROCK1 inhibition on ERS mediated pyroptosis in LPS-treated HK-2 cells and CLP mice. CONCLUSION In conclusion, ROCK1 may regulate sepsis-induced AKI via TLR2-mediated ERS/pyroptosis axis. Our data demonstrated the role and underlying mechanism of ROCK1 in septic AKI, providing theoretical basis for sepsis-induced AKI treatment.
Collapse
Affiliation(s)
- Qian-Lu Wang
- Department of Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, People's Republic of China
| | - Wei Xing
- Department of Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, People's Republic of China
| | - Can Yu
- Department of Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, People's Republic of China
| | - Min Gao
- Department of Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, People's Republic of China
| | - Long-Tian Deng
- Department of Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, People's Republic of China.
| |
Collapse
|
20
|
Martínez-Beamonte R, Sánchez-Marco J, Felices MJ, Barranquero C, Gascón S, Arnal C, Burillo JC, Lasheras R, Busto R, Lasunción MA, Rodríguez-Yoldi MJ, Osada J. Dietary squalene modifies plasma lipoproteins and hepatic cholesterol metabolism in rabbits. Food Funct 2021; 12:8141-8153. [PMID: 34291245 DOI: 10.1039/d0fo01836h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To evaluate the effects of squalene, the main unsaponifiable component of virgin olive oil, on lipid metabolism, two groups of male New Zealand rabbits were fed a 1% sunflower oil-enriched regular diet or the same diet containing 0.5% squalene for 4 weeks. Plasma triglycerides, total- and HDL-cholesterol and their lipoproteins were assayed. Analyses of hepatic lipid droplets, triglycerides, total- and non-esterified cholesterol, squalene, protein and gene expression, and cholesterol precursors were carried out. In the jejunum, the squalene content and mRNA and protein APOB expressions were measured. Finally, we studied the effect of cholesterol precursors in AML12 cells. Squalene administration significantly increased plasma total cholesterol, mainly carried as non-esterified cholesterol in IDL and large LDL, and corresponded to an increased number of APOB100-containing particles without accumulation of triglycerides and decreased reactive oxygen species. Despite no significant changes in the APOB content in the jejunum, the latter displayed increased APOB mRNA and squalene levels. Increases in the amounts of non-esterified cholesterol, squalene, lanosterol, dihydrolanosterol, lathosterol, cholestanol, zymostenol, desmosterol and caspase 1 were also observed in the liver. Incubation of AML12 cells in the presence of lanosterol increased caspase 1. In conclusion, squalene administration in rabbits increases the number of modified APOB-containing lipoproteins, and hepatic cholesterol biosynthesis is linked to caspase 1 probably through lanosterol.
Collapse
Affiliation(s)
- Roberto Martínez-Beamonte
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Liu J, Zhao M, Feng X, Zeng Y, Lin D. Expression and prognosis analyses of CASP1 in acute myeloid leukemia. Aging (Albany NY) 2021; 13:14088-14108. [PMID: 33999861 PMCID: PMC8202835 DOI: 10.18632/aging.203028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/25/2021] [Indexed: 11/25/2022]
Abstract
Caspase1 (CASP1) is a gene that encodes multiple proteins related to cell death. Nevertheless, the function of CASP1 in the pathogenesis of AML is still unclear. In the present study, a detailed analysis of cancer versus normal samples was performed to explore the relationship between CASP1 and leukemia. We used sequencing data from multiple cancer gene databases to analyze the gene expression and regulatory network of CASP1 in leukemia. We discovered that mRNA expression levels of CASP1 are increased in leukemia cell lines, especially in acute myelocytic leukemia (AML). Then, we verified the mRNA expression of CASP1 in AML clinical samples and observed significantly higher expression of CASP1 in relapsed AML patients. High CASP1 expression was associated with poor prognosis and CASP1 inhibition could impair the proliferation of AML cells. Related functional network identification suggests that CASP1 regulates apoptosis, immune and inflammatory response via pathways involving LYN, LCK, and the E2F family. These findings suggest that CASP1 probably contributes to the pathogenesis, and identify CASP1 as a factor for predicting the prognosis and as a therapeutic target of AML patients.
Collapse
Affiliation(s)
- Jing Liu
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, Guangdong, People's Republic of China
| | - Minyi Zhao
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, Guangdong, People's Republic of China
| | - Xiaohui Feng
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, Guangdong, People's Republic of China
| | - Yunxin Zeng
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, Guangdong, People's Republic of China
| | - Dongjun Lin
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, Guangdong, People's Republic of China
| |
Collapse
|
22
|
Rand D, Cooper I. Caspase-1: an important player and possible target for repair of the blood-brain barrier underlying neurodegeneration. Neural Regen Res 2021; 16:2390-2392. [PMID: 33907012 PMCID: PMC8374582 DOI: 10.4103/1673-5374.313031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Daniel Rand
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan; Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan; School of Psychology, Interdisciplinary Center (IDC), Herzliya; The Nehemia Rubin Excellence in Biomedical Research - The TELEM Program, Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
23
|
Hofmann SR, Girschick L, Stein R, Schulze F. Immune modulating effects of receptor interacting protein 2 (RIP2) in autoinflammation and immunity. Clin Immunol 2020; 223:108648. [PMID: 33310070 DOI: 10.1016/j.clim.2020.108648] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 09/29/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023]
Abstract
Receptor-interacting protein 2 (RIP2) is a kinase that is involved in downstream signaling of nuclear oligomerization domain (NOD)-like receptors NOD1 and 2 sensing bacterial peptidoglycans. RIP2-deficiency or targeting of RIP2 by pharmaceutical inhibitors partially ameliorates inflammatory diseases by reducing pro-inflammatory signaling in response to peptidoglycans. However, RIP2 is widely expressed and interacts with several other proteins suggesting additional functions outside the NOD-signaling pathway. In this review, we discuss the immunological functions of RIP2 and its possible role in autoinflammation and immunity.
Collapse
Affiliation(s)
- Sigrun Ruth Hofmann
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Leonie Girschick
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Robert Stein
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Felix Schulze
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
24
|
Inflammasome-Mediated Immunogenicity of Clinical and Experimental Vaccine Adjuvants. Vaccines (Basel) 2020; 8:vaccines8030554. [PMID: 32971761 PMCID: PMC7565252 DOI: 10.3390/vaccines8030554] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
In modern vaccines, adjuvants can be sophisticated immunological tools to promote robust and long-lasting protection against prevalent diseases. However, there is an urgent need to improve immunogenicity of vaccines in order to protect mankind from life-threatening diseases such as AIDS, malaria or, most recently, COVID-19. Therefore, it is important to understand the cellular and molecular mechanisms of action of vaccine adjuvants, which generally trigger the innate immune system to enhance signal transition to adaptive immunity, resulting in pathogen-specific protection. Thus, improved understanding of vaccine adjuvant mechanisms may aid in the design of “intelligent” vaccines to provide robust protection from pathogens. Various commonly used clinical adjuvants, such as aluminium salts, saponins or emulsions, have been identified as activators of inflammasomes - multiprotein signalling platforms that drive activation of inflammatory caspases, resulting in secretion of pro-inflammatory cytokines of the IL-1 family. Importantly, these cytokines affect the cellular and humoral arms of adaptive immunity, which indicates that inflammasomes represent a valuable target of vaccine adjuvants. In this review, we highlight the impact of different inflammasomes on vaccine adjuvant-induced immune responses regarding their mechanisms and immunogenicity. In this context, we focus on clinically relevant adjuvants that have been shown to activate the NLRP3 inflammasome and also present various experimental adjuvants that activate the NLRP3-, NLRC4-, AIM2-, pyrin-, or non-canonical inflammasomes and could have the potential to improve future vaccines. Together, we provide a comprehensive overview on vaccine adjuvants that are known, or suggested, to promote immunogenicity through inflammasome-mediated signalling.
Collapse
|
25
|
Chauhan D, Vande Walle L, Lamkanfi M. Therapeutic modulation of inflammasome pathways. Immunol Rev 2020; 297:123-138. [PMID: 32770571 PMCID: PMC7497261 DOI: 10.1111/imr.12908] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/23/2022]
Abstract
Inflammasomes are macromolecular complexes formed in response to pathogen‐associated molecular patterns (PAMPs) and danger‐associated molecular patterns (DAMPs) that drive maturation of the pro‐inflammatory cytokines interleukin (IL)‐1β and IL‐18, and cleave gasdermin D (GSDMD) for induction of pyroptosis. Inflammasomes are highly important in protecting the host from various microbial pathogens and sterile insults. Inflammasome pathways are strictly regulated at both transcriptional and post‐translational checkpoints. When these checkpoints are not properly imposed, undue inflammasome activation may promote inflammatory, metabolic and oncogenic processes that give rise to autoinflammatory, autoimmune, metabolic and malignant diseases. In addition to clinically approved IL‐1‐targeted biologics, upstream targeting of inflammasome pathways recently gained interest as a novel pharmacological strategy for selectively modulating inflammasome activation in pathological conditions.
Collapse
Affiliation(s)
- Dhruv Chauhan
- Janssen Immunosciences, World Without Disease Accelerator, Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium
| | - Lieselotte Vande Walle
- Laboratory of Medical Innate Immunity, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Mohamed Lamkanfi
- Laboratory of Medical Innate Immunity, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|