1
|
Wang T, Becker D, Twizerimana AP, Luedde T, Gohlke H, Münk C. Cyclophilin A Regulates Tripartite Motif 5 Alpha Restriction of HIV-1. Int J Mol Sci 2025; 26:495. [PMID: 39859212 PMCID: PMC11764967 DOI: 10.3390/ijms26020495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The peptidyl-prolyl isomerase A (PPIA), also known as cyclophilin A (CYPA), is involved in multiple steps of the HIV-1 replication cycle. CYPA regulates the restriction of many host factors by interacting with the CYPA-binding loop on the HIV-1 capsid (CA) surface. TRIM5 (tripartite motif protein 5) in primates is a key species-specific restriction factor defining the HIV-1 pandemic. The incomplete adaptation of HIV-1 to humans is due to the different utilization of CYPA by pandemic and non-pandemic HIV-1. The enzymatic activity of CYPA on the viral core is likely an important reason for regulating the TRIM5 restriction activity. Thus, the HIV-1 capsid and its CYPA interaction may serve as new targets for future anti-AIDS therapeutic agents. This article will describe the species-specificity of the restriction factor TRIM5, understand the role of CYPA in regulating restriction factors in retroviral infection, and discuss important future research issues.
Collapse
Affiliation(s)
- Tingting Wang
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.W.); (A.P.T.); (T.L.)
| | - Daniel Becker
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Augustin Penda Twizerimana
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.W.); (A.P.T.); (T.L.)
| | - Tom Luedde
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.W.); (A.P.T.); (T.L.)
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Carsten Münk
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.W.); (A.P.T.); (T.L.)
| |
Collapse
|
2
|
Jin S, Zhang M, Qiao X. Cyclophilin A: promising target in cancer therapy. Cancer Biol Ther 2024; 25:2425127. [PMID: 39513594 PMCID: PMC11552246 DOI: 10.1080/15384047.2024.2425127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/08/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
Cyclophilin A (CypA), a member of the immunophilin family, stands out as the most prevalent among the cyclophilins found in humans. Beyond serving as the intracellular receptor for the immunosuppressive drug cyclosporine A (CsA), CypA exerts critical functions within the cell via its peptidyl-prolyl cis-trans isomerase (PPIase) activity, which is crucial for processes, such as protein folding, trafficking, assembly, modulation of immune responses, and cell signaling. Increasing evidence indicates that CypA is up-regulated in a variety of human cancers and it may be a novel potential therapeutic target for cancer treatment. Therefore, gaining a thorough understanding of CypA's contribution to cancer could yield fresh perspectives and inform the development of innovative therapeutic approaches. This review delves into the multifaceted roles of CypA in cancer biology and explores the therapeutic potential of targeting CypA.
Collapse
Affiliation(s)
- Shujuan Jin
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, Guangdong, China
| | - Mengjiao Zhang
- Chenxi Women’s and Children’s Hospital, Huaihua, Hunan, China
| | - Xiaoting Qiao
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Hultquist J, Cornish D, Jackson-Jones K, Ling-Hu T, Simons L, Cisneros W, Kuffour E, Agnes F, Lee Y, Bieniasz P, Lorenzo-Redondo R. Disruption of CPSF6 enhances cellular permissivity to HIV-1 infection through alternative polyadenylation. RESEARCH SQUARE 2024:rs.3.rs-5099896. [PMID: 39678349 PMCID: PMC11643316 DOI: 10.21203/rs.3.rs-5099896/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Human immunodeficiency virus (HIV) relies upon a broad array of host factors in order to replicate and evade the host antiviral response1. Cleavage and polyadenylation specificity factor 6 (CPSF6) is one such host factor that is recruited by incoming HIV-1 cores to regulate trafficking2, nuclear import3-5, uncoating6, and integration site selection4,6-11. Despite these well-described roles, the impact of CPSF6 perturbation on HIV-1 infectivity varies considerably by cell type. Here, we report that CPSF6 knock-out in primary CD4+ T cells leads to increased permissivity to HIV-1 infection due to broad transcriptional reprogramming. Knock-out of CPSF6 results in widespread differential gene expression, including downregulation of genes involved in the innate immune response and enhanced expression of the HIV-1 co-receptors. Accordingly, these cells are less responsive to interferon and express lower levels of antiretroviral restriction factors, including TRIM5α. These transcriptional changes are linked to global shortening of mRNA 3' untranslated regions (UTRs) through alternative polyadenylation (APA), which is triggered by disruption of the CPSF6-containing Cleavage Factor Im (CFIm) complex12,13. Furthermore, we find that recruitment of CPSF6 by HIV-1 cores is sufficient to perturb CPSF6 function, leading to 3' UTR shortening and subsequent transcriptional rewiring. These results suggest a novel mechanism by which HIV-1 transcriptionally reprograms CD4+ T cells through recruitment of CPSF6 to circumvent the innate immune response and enhance permissivity to infection.
Collapse
Affiliation(s)
| | | | | | - Ted Ling-Hu
- Northwestern University Feinberg School of Medicine
| | | | | | | | | | - Yujin Lee
- Northwestern University Feinberg School of Medicine
| | | | | |
Collapse
|
4
|
Padron A, Dwivedi R, Chakraborty R, Prakash P, Kim K, Shi J, Ahn J, Pandhare J, Luban J, Aiken C, Balasubramaniam M, Dash C. Cyclophilin A facilitates HIV-1 integration. J Virol 2024; 98:e0094724. [PMID: 39480090 PMCID: PMC11575316 DOI: 10.1128/jvi.00947-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Abstract
Cyclophilin A (CypA) binds to the HIV-1 capsid to facilitate reverse transcription and nuclear entry and counter the antiviral activity of TRIM5α. Interestingly, recent studies suggest that the capsid enters the nucleus of an infected cell and uncoats prior to integration. We have previously reported that the capsid protein regulates HIV-1 integration. Therefore, we probed whether CypA-capsid interaction also regulates this post-nuclear entry step. First, we challenged CypA-expressing (CypA+/+) and CypA-depleted (CypA-/-) cells with HIV-1 and quantified the levels of provirus. CypA-depletion significantly reduced integration, an effect that was independent of CypA's effect on reverse transcription, nuclear entry, and the presence or absence of TRIM5α. In addition, cyclosporin A, an inhibitor that disrupts CypA-capsid binding, inhibited proviral integration in CypA+/+ cells but not in CypA-/- cells. HIV-1 capsid mutants (G89V and P90A) deficient in CypA binding were also blocked at the integration step in CypA+/+ cells but not in CypA-/- cells. Then, to understand the mechanism, we assessed the integration activity of the HIV-1 preintegration complexes (PICs) extracted from acutely infected cells. PICs from CypA-/- cells retained lower integration activity in vitro compared to those from CypA+/+ cells. PICs from cells depleted of both CypA and TRIM5α also had lower activity, suggesting that CypA's effect on PIC was independent of TRIM5α. Finally, CypA protein specifically stimulated PIC activity, as this effect was significantly blocked by CsA. Collectively, these results provide strong evidence that CypA directly promotes HIV-1 integration, a previously unknown role of this host factor in the nucleus of an infected cell. IMPORTANCE Interaction between the HIV-1 capsid and host cellular factors is essential for infection. However, the molecular details and functional consequences of viral-host factor interactions during HIV-1 infection are not fully understood. Over 30 years ago, Cyclophilin A (CypA) was identified as the first host protein to bind to the HIV-1 capsid. Now it is established that CypA-capsid interaction promotes reverse transcription and nuclear entry of HIV-1. In addition, CypA blocks TRIM5α-mediated restriction of HIV-1. In this report, we show that CypA promotes the post-nuclear entry step of HIV-1 integration by binding to the viral capsid. Notably, we show that CypA stimulates the viral DNA integration activity of the HIV-1 preintegration complex. Collectively, our studies identify a novel role of CypA during the early steps of HIV-1 infection. This new knowledge is important because recent reports suggest that an operationally intact HIV-1 capsid enters the nucleus of an infected cell.
Collapse
Affiliation(s)
- Adrian Padron
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
| | - Richa Dwivedi
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Rajasree Chakraborty
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Prem Prakash
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Kyusik Kim
- Program in Molecular Medicine University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jiong Shi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jinwoo Ahn
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jui Pandhare
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
| | - Jeremy Luban
- Program in Molecular Medicine University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Muthukumar Balasubramaniam
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology, and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| | - Chandravanu Dash
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Moezpoor MR, Stevenson M. Help or Hinder: Protein Host Factors That Impact HIV-1 Replication. Viruses 2024; 16:1281. [PMID: 39205255 PMCID: PMC11360189 DOI: 10.3390/v16081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Interactions between human immunodeficiency virus type 1 (HIV-1) and the host factors or restriction factors of its target cells determine the cell's susceptibility to, and outcome of, infection. Factors intrinsic to the cell are involved at every step of the HIV-1 replication cycle, contributing to productive infection and replication, or severely attenuating the chances of success. Furthermore, factors unique to certain cell types contribute to the differences in infection between these cell types. Understanding the involvement of these factors in HIV-1 infection is a key requirement for the development of anti-HIV-1 therapies. As the list of factors grows, and the dynamic interactions between these factors and the virus are elucidated, comprehensive and up-to-date summaries that recount the knowledge gathered after decades of research are beneficial to the field, displaying what is known so that researchers can build off the groundwork of others to investigate what is unknown. Herein, we aim to provide a review focusing on protein host factors, both well-known and relatively new, that impact HIV-1 replication in a positive or negative manner at each stage of the replication cycle, highlighting factors unique to the various HIV-1 target cell types where appropriate.
Collapse
Affiliation(s)
- Michael Rameen Moezpoor
- Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Mario Stevenson
- Raymond F. Schinazi and Family Endowed Chair in Biomedicine; Professor of Medicine; Director, Institute of AIDS and Emerging Infectious Diseases; Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Life Science Technology Park, 1951 NW 7th Avenue, Room 2331B, Suite 200, Miami, FL 33136, USA;
| |
Collapse
|
6
|
Stauffer WT, Goodman AZ, Gallay PA. Cyclophilin inhibition as a strategy for the treatment of human disease. Front Pharmacol 2024; 15:1417945. [PMID: 39045055 PMCID: PMC11264201 DOI: 10.3389/fphar.2024.1417945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/14/2024] [Indexed: 07/25/2024] Open
Abstract
Cyclophilins (Cyps), characterized as peptidyl-prolyl cis-trans isomerases (PPIases), are highly conserved and ubiquitous, playing a crucial role in protein folding and cellular signaling. This review summarizes the biochemical pathways mediated by Cyps, including their involvement in pathological states such as viral replication, inflammation, and cancer progression, to underscore the therapeutic potential of Cyp inhibition. The exploration of Cyp inhibitors (CypI) in this review, particularly non-immunosuppressive cyclosporine A (CsA) derivatives, highlights their significance as therapeutic agents. The structural and functional nuances of CsA derivatives are examined, including their efficacy, mechanism of action, and the balance between therapeutic benefits and off-target effects. The landscape of CypI is evaluated to emphasize the clinical need for targeted approaches to exploit the complex biology of Cyps and to propose future directions for research that may enhance the utility of non-immunosuppressive CsA derivatives in treating diseases where Cyps play a key pathological role.
Collapse
Affiliation(s)
| | | | - Philippe A. Gallay
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
7
|
Padron A, Dwivedi R, Chakraborty R, Prakash P, Kim K, Shi J, Ahn J, Pandhare J, Luban J, Aiken C, Balasubramaniam M, Dash C. Cyclophilin A Facilitates HIV-1 DNA Integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.15.599180. [PMID: 38948800 PMCID: PMC11212919 DOI: 10.1101/2024.06.15.599180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Cyclophilin A (CypA) promotes HIV-1 infection by facilitating reverse transcription, nuclear entry and by countering the antiviral activity of TRIM5α. These multifunctional roles of CypA are driven by its binding to the viral capsid. Interestingly, recent studies suggest that the HIV-1 capsid lattice enters the nucleus of an infected cell and uncoats just before integration. Therefore, we tested whether CypA-capsid interaction regulates post-nuclear entry steps of infection, particularly integration. First, we challenged CypA-expressing (CypA +/+ ) and CypA-depleted (CypA -/- ) cells with HIV-1 particles and quantified the resulting levels of provirus. Surprisingly, CypA-depletion significantly reduced integration, an effect that was independent of CypA's effect on reverse transcription, nuclear entry, and the presence or absence of TRIM5α. Additionally, cyclosporin A, an inhibitor that disrupts CypA-capsid binding, inhibited HIV-1 integration in CypA +/+ cells but not in CypA -/- cells. Accordingly, HIV-1 capsid mutants (G89V and P90A) deficient in CypA binding were also blocked at integration in CypA +/+ cells but not in CypA -/- cells. Then, to understand the mechanism, we assessed the integration activity of HIV-1 preintegration complexes (PICs) extracted from infected cells. The PICs from CypA -/- cells had lower activity in vitro compared to those from CypA +/+ cells. PICs from cells depleted for CypA and TRIM5α also had lower activity, suggesting that CypA's effect on PIC activity is independent of TRIM5α. Finally, addition of CypA protein significantly stimulated the integration activity of PICs extracted from both CypA +/+ and CypA -/- cells. Collectively, these results suggest that CypA promotes HIV-1 integration, a previously unknown role of this host factor. Importance HIV-1 capsid interaction with host cellular factors is essential for establishing a productive infection. However, the molecular details of such virus-host interactions are not fully understood. Cyclophilin A (CypA) is the first host protein identified to specifically bind to the HIV-1 capsid. Now it is established that CypA promotes reverse transcription and nuclear entry steps of HIV-1 infection. In this report, we show that CypA promotes HIV-1 integration by binding to the viral capsid. Specifically, our results demonstrate that CypA promotes HIV-1 integration by stimulating the activity of the viral preintegration complex and identifies a novel role of CypA during HIV-1 infection. This new knowledge is important because recent reports suggest that an operationally intact HIV-1 capsid enters the nucleus of an infected cell.
Collapse
|
8
|
Jaafari H, Bueno C, Schafer NP, Martin J, Morcos F, Wolynes PG. The physical and evolutionary energy landscapes of devolved protein sequences corresponding to pseudogenes. Proc Natl Acad Sci U S A 2024; 121:e2322428121. [PMID: 38739795 PMCID: PMC11127006 DOI: 10.1073/pnas.2322428121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
Protein evolution is guided by structural, functional, and dynamical constraints ensuring organismal viability. Pseudogenes are genomic sequences identified in many eukaryotes that lack translational activity due to sequence degradation and thus over time have undergone "devolution." Previously pseudogenized genes sometimes regain their protein-coding function, suggesting they may still encode robust folding energy landscapes despite multiple mutations. We study both the physical folding landscapes of protein sequences corresponding to human pseudogenes using the Associative Memory, Water Mediated, Structure and Energy Model, and the evolutionary energy landscapes obtained using direct coupling analysis (DCA) on their parent protein families. We found that generally mutations that have occurred in pseudogene sequences have disrupted their native global network of stabilizing residue interactions, making it harder for them to fold if they were translated. In some cases, however, energetic frustration has apparently decreased when the functional constraints were removed. We analyzed this unexpected situation for Cyclophilin A, Profilin-1, and Small Ubiquitin-like Modifier 2 Protein. Our analysis reveals that when such mutations in the pseudogene ultimately stabilize folding, at the same time, they likely alter the pseudogenes' former biological activity, as estimated by DCA. We localize most of these stabilizing mutations generally to normally frustrated regions required for binding to other partners.
Collapse
Affiliation(s)
- Hana Jaafari
- Center for Theoretical Biophysics, Rice University, Houston, TX77005
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, TX77005
- Department of Chemistry, Rice University, Houston, TX77005
| | - Carlos Bueno
- Center for Theoretical Biophysics, Rice University, Houston, TX77005
| | | | - Jonathan Martin
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Faruck Morcos
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX75080
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX75080
- Center for Systems Biology, University of Texas at Dallas, Richardson, TX75080
| | - Peter G. Wolynes
- Center for Theoretical Biophysics, Rice University, Houston, TX77005
- Department of Chemistry, Rice University, Houston, TX77005
- Department of Physics and Astronomy, Rice University, Houston, TX77005
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX77005
| |
Collapse
|
9
|
Tenthorey JL, del Banco S, Ramzan I, Klingenberg H, Liu C, Emerman M, Malik HS. Indels allow antiviral proteins to evolve functional novelty inaccessible by missense mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592993. [PMID: 38765965 PMCID: PMC11100679 DOI: 10.1101/2024.05.07.592993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Antiviral proteins often evolve rapidly at virus-binding interfaces to defend against new viruses. We investigated whether antiviral adaptation via missense mutations might face limits, which insertion or deletion mutations (indels) could overcome. We report one such case of a nearly insurmountable evolutionary challenge: the human anti-retroviral protein TRIM5α requires more than five missense mutations in its specificity-determining v1 loop to restrict a divergent simian immunodeficiency virus (SIV). However, duplicating just one amino acid in v1 enables human TRIM5α to potently restrict SIV in a single evolutionary step. Moreover, natural primate TRIM5α v1 loops have evolved indels that confer novel antiviral specificities. Thus, indels enable antiviral proteins to overcome viral challenges inaccessible by missense mutations, revealing the potential of these often-overlooked mutations in driving protein innovation.
Collapse
Affiliation(s)
- Jeannette L. Tenthorey
- Cellular and Molecular Pharmacology Department, University of California, San Francisco; San Francisco, 94158, USA
| | - Serena del Banco
- Division of Basic Sciences, Fred Hutchinson Cancer Center; Seattle, USA
| | - Ishrak Ramzan
- Cellular and Molecular Pharmacology Department, University of California, San Francisco; San Francisco, 94158, USA
| | - Hayley Klingenberg
- Cellular and Molecular Pharmacology Department, University of California, San Francisco; San Francisco, 94158, USA
| | - Chang Liu
- Cellular and Molecular Pharmacology Department, University of California, San Francisco; San Francisco, 94158, USA
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer Center; Seattle, USA
- Division of Human Biology, Fred Hutchinson Cancer Center; Seattle, USA
| | - Harmit S. Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Center; Seattle, USA
- Howard Hughes Medical Investigator, Fred Hutchinson Cancer Center; Seattle, USA
| |
Collapse
|
10
|
Twentyman J, Emerman M, Ohainle M. Capsid-dependent lentiviral restrictions. J Virol 2024; 98:e0030824. [PMID: 38497663 PMCID: PMC11019884 DOI: 10.1128/jvi.00308-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Host antiviral proteins inhibit primate lentiviruses and other retroviruses by targeting many features of the viral life cycle. The lentiviral capsid protein and the assembled viral core are known to be inhibited through multiple, directly acting antiviral proteins. Several phenotypes, including those known as Lv1 through Lv5, have been described as cell type-specific blocks to infection against some but not all primate lentiviruses. Here we review important features of known capsid-targeting blocks to infection together with several blocks to infection for which the genes responsible for the inhibition still remain to be identified. We outline the features of these blocks as well as how current methodologies are now well suited to find these antiviral genes and solve these long-standing mysteries in the HIV and retrovirology fields.
Collapse
Affiliation(s)
- Joy Twentyman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Michael Emerman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Molly Ohainle
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
11
|
Ingram Z, Kline C, Hughson AK, Singh PK, Fischer HL, Sowd GA, Watkins SC, Kane M, Engelman AN, Ambrose Z. Spatiotemporal binding of cyclophilin A and CPSF6 to capsid regulates HIV-1 nuclear entry and integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588584. [PMID: 38645162 PMCID: PMC11030324 DOI: 10.1101/2024.04.08.588584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Human immunodeficiency virus type 1 (HIV-1) capsid, which is the target of the antiviral lenacapavir, protects the viral genome and binds multiple host proteins to influence intracellular trafficking, nuclear import, and integration. Previously, we showed that capsid binding to cleavage and polyadenylation specificity factor 6 (CPSF6) in the cytoplasm is competitively inhibited by cyclophilin A (CypA) binding and regulates capsid trafficking, nuclear import, and infection. Here we determined that a capsid mutant with increased CypA binding affinity had significantly reduced nuclear entry and mislocalized integration. However, disruption of CypA binding to the mutant capsid restored nuclear entry, integration, and infection in a CPSF6-dependent manner. Furthermore, relocalization of CypA expression from the cell cytoplasm to the nucleus failed to restore mutant HIV-1 infection. Our results clarify that sequential binding of CypA and CPSF6 to HIV-1 capsid is required for optimal nuclear entry and integration targeting, informing antiretroviral therapies that contain lenacapavir.
Collapse
Affiliation(s)
- Zachary Ingram
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Christopher Kline
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Alexandra K. Hughson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA
| | - Parmit K. Singh
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Hannah L. Fischer
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Gregory A. Sowd
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Simon C. Watkins
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Melissa Kane
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Alan N. Engelman
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Zandrea Ambrose
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA
| |
Collapse
|
12
|
Schreurs RRCE, Koulis A, Booiman T, Boeser-Nunnink B, Cloherty APM, Rader AG, Patel KS, Kootstra NA, Ribeiro CMS. Autophagy-enhancing ATG16L1 polymorphism is associated with improved clinical outcome and T-cell immunity in chronic HIV-1 infection. Nat Commun 2024; 15:2465. [PMID: 38548722 PMCID: PMC10979031 DOI: 10.1038/s41467-024-46606-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/04/2024] [Indexed: 04/01/2024] Open
Abstract
Chronic HIV-1 infection is characterized by T-cell dysregulation that is partly restored by antiretroviral therapy. Autophagy is a critical regulator of T-cell function. Here, we demonstrate a protective role for autophagy in HIV-1 disease pathogenesis. Targeted analysis of genetic variation in core autophagy gene ATG16L1 reveals the previously unidentified rs6861 polymorphism, which correlates functionally with enhanced autophagy and clinically with improved survival of untreated HIV-1-infected individuals. T-cells carrying ATG16L1 rs6861(TT) genotype display improved antiviral immunity, evidenced by increased proliferation, revamped immune responsiveness, and suppressed exhaustion/immunosenescence features. In-depth flow-cytometric and transcriptional profiling reveal T-helper-cell-signatures unique to rs6861(TT) individuals with enriched regulation of pro-inflammatory networks and skewing towards immunoregulatory phenotype. Therapeutic enhancement of autophagy recapitulates the rs6861(TT)-associated T-cell traits in non-carriers. These data underscore the in vivo relevance of autophagy for longer-lasting T-cell-mediated HIV-1 control, with implications towards development of host-directed antivirals targeting autophagy to restore immune function in chronic HIV-1 infection.
Collapse
Affiliation(s)
- Renée R C E Schreurs
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Athanasios Koulis
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Thijs Booiman
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Brigitte Boeser-Nunnink
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Alexandra P M Cloherty
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Anusca G Rader
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Kharishma S Patel
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Neeltje A Kootstra
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands
| | - Carla M S Ribeiro
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam institute for Immunology & Infectious Diseases, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Layish B, Goli R, Flick H, Huang SW, Zhang RZ, Kvaratskhelia M, Kane M. Virus specificity and nucleoporin requirements for MX2 activity are affected by GTPase function and capsid-CypA interactions. PLoS Pathog 2024; 20:e1011830. [PMID: 38512975 PMCID: PMC10986937 DOI: 10.1371/journal.ppat.1011830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/02/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Human myxovirus resistance 2 (MX2/MXB) is an interferon-induced GTPase that inhibits human immunodeficiency virus-1 (HIV-1) infection by preventing nuclear import of the viral preintegration complex. The HIV-1 capsid (CA) is the major viral determinant for sensitivity to MX2, and complex interactions between MX2, CA, nucleoporins (Nups), cyclophilin A (CypA), and other cellular proteins influence the outcome of viral infection. To explore the interactions between MX2, the viral CA, and CypA, we utilized a CRISPR-Cas9/AAV approach to generate CypA knock-out cell lines as well as cells that express CypA from its endogenous locus, but with specific point mutations that would abrogate CA binding but should not affect enzymatic activity or cellular function. We found that infection of CypA knock-out and point mutant cell lines with wild-type HIV-1 and CA mutants recapitulated the phenotypes observed upon cyclosporine A (CsA) addition, indicating that effects of CsA treatment are the direct result of blocking CA-CypA interactions and are therefore independent from potential interactions between CypA and MX2 or other cellular proteins. Notably, abrogation of GTP hydrolysis by MX2 conferred enhanced antiviral activity when CA-CypA interactions were abolished, and this effect was not mediated by the CA-binding residues in the GTPase domain, or by phosphorylation of MX2 at position T151. We additionally found that elimination of GTPase activity also altered the Nup requirements for MX2 activity. Our data demonstrate that the antiviral activity of MX2 is affected by CypA-CA interactions in a virus-specific and GTPase activity-dependent manner. These findings further highlight the importance of the GTPase domain of MX2 in regulation of substrate specificity and interaction with nucleocytoplasmic trafficking pathways.
Collapse
Affiliation(s)
- Bailey Layish
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Ram Goli
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Haley Flick
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Szu-Wei Huang
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Robert Z. Zhang
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Melissa Kane
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
14
|
Abstract
The HIV-1 capsid, composed of approximately 1,200 copies of the capsid protein, encases genomic RNA alongside viral nucleocapsid, reverse transcriptase, and integrase proteins. After cell entry, the capsid interacts with a myriad of host factors to traverse the cell cytoplasm, pass through the nuclear pore complex (NPC), and then traffic to chromosomal sites for viral DNA integration. Integration may very well require the dissolution of the capsid, but where and when this uncoating event occurs remains hotly debated. Based on size constraints, a long-prevailing view was that uncoating preceded nuclear transport, but recent research has indicated that the capsid may remain largely intact during nuclear import, with perhaps some structural remodeling required for NPC traversal. Completion of reverse transcription in the nucleus may further aid capsid uncoating. One canonical type of host factor, typified by CPSF6, leverages a Phe-Gly (FG) motif to bind capsid. Recent research has shown these peptides reside amid prion-like domains (PrLDs), which are stretches of protein sequence devoid of charged residues. Intermolecular PrLD interactions along the exterior of the capsid shell impart avid host factor binding for productive HIV-1 infection. Herein we overview capsid-host interactions implicated in HIV-1 ingress and discuss important research questions moving forward. Highlighting clinical relevance, the long-acting ultrapotent inhibitor lenacapavir, which engages the same capsid binding pocket as FG host factors, was recently approved to treat people living with HIV.
Collapse
Affiliation(s)
- Sooin Jang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Padron A, Prakash P, Pandhare J, Luban J, Aiken C, Balasubramaniam M, Dash C. Emerging role of cyclophilin A in HIV-1 infection: from producer cell to the target cell nucleus. J Virol 2023; 97:e0073223. [PMID: 37843371 PMCID: PMC10688351 DOI: 10.1128/jvi.00732-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
The HIV-1 genome encodes a small number of proteins with structural, enzymatic, regulatory, and accessory functions. These viral proteins interact with a number of host factors to promote the early and late stages of HIV-1 infection. During the early stages of infection, interactions between the viral proteins and host factors enable HIV-1 to enter the target cell, traverse the cytosol, dock at the nuclear pore, gain access to the nucleus, and integrate into the host genome. Similarly, the viral proteins recruit another set of host factors during the late stages of infection to orchestrate HIV-1 transcription, translation, assembly, and release of progeny virions. Among the host factors implicated in HIV-1 infection, Cyclophilin A (CypA) was identified as the first host factor to be packaged within HIV-1 particles. It is now well established that CypA promotes HIV-1 infection by directly binding to the viral capsid. Mechanistic models to pinpoint CypA's role have spanned from an effect in the producer cell to the early steps of infection in the target cell. In this review, we will describe our understanding of the role(s) of CypA in HIV-1 infection, highlight the current knowledge gaps, and discuss the potential role of this host factor in the post-nuclear entry steps of HIV-1 infection.
Collapse
Affiliation(s)
- Adrian Padron
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
| | - Prem Prakash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| | - Jui Pandhare
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
| | - Jeremy Luban
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Chris Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Muthukumar Balasubramaniam
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| | - Chandravanu Dash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
16
|
Twizerimana AP, Becker D, Zhu S, Luedde T, Gohlke H, Münk C. The cyclophilin A-binding loop of the capsid regulates the human TRIM5α sensitivity of nonpandemic HIV-1. Proc Natl Acad Sci U S A 2023; 120:e2306374120. [PMID: 37983491 PMCID: PMC10691330 DOI: 10.1073/pnas.2306374120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/26/2023] [Indexed: 11/22/2023] Open
Abstract
The rather few cases of humans infected by HIV-1 N, O, or P raise the question of their incomplete adaptation to humans. We hypothesized that early postentry restrictions may be relevant for the impaired spread of these HIVs. One of the best-characterized species-specific restriction factors is TRIM5α. HIV-1 M can escape human (hu) TRIM5α restriction by binding cyclophilin A (CYPA, also known as PPIA, peptidylprolyl isomerase A) to the so-called CYPA-binding loop of its capsid protein. How non-M HIV-1s interact with huTRIM5α is ill-defined. By testing full-length reporter viruses (Δ env) of HIV-1 N, O, P, and SIVgor (simian IV of gorillas), we found that in contrast to HIV-1 M, the nonpandemic HIVs and SIVgor showed restriction by huTRIM5α. Work to identify capsid residues that mediate susceptibility to huTRIM5α revealed that residue 88 in the capsid CYPA-binding loop was important for such differences. There, HIV-1 M uses alanine to resist, while non-M HIV-1s have either valine or methionine, which avail them for huTRIM5α. Capsid residue 88 determines the sensitivity to TRIM5α in an unknown way. Molecular simulations indicated that capsid residue 88 can affect trans-to-cis isomerization patterns on the capsids of the viruses we tested. These differential CYPA usages by pandemic and nonpandemic HIV-1 suggest that the enzymatic activity of CYPA on the viral core might be important for its protective function against huTRIM5α.
Collapse
Affiliation(s)
- Augustin P. Twizerimana
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Daniel Becker
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Shenglin Zhu
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Tom Luedde
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich52425, Germany
| | - Carsten Münk
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| |
Collapse
|
17
|
Layish B, Goli R, Flick H, Huang SW, Zhang RZ, Kvaratskhelia M, Kane M. Virus specificity and nucleoporin requirements for MX2 activity are affected by GTPase function and capsid-CypA interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567336. [PMID: 38014352 PMCID: PMC10680775 DOI: 10.1101/2023.11.16.567336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Human myxovirus resistance 2 (MX2/MXB) is an interferon-induced GTPase that inhibits human immunodeficiency virus-1 (HIV-1) infection by preventing nuclear import of the viral preintegration complex. The HIV-1 capsid (CA) is the major viral determinant for sensitivity to MX2, and complex interactions between MX2, CA, nucleoporins (Nups), cyclophilin A (CypA), and other cellular proteins influence the outcome of viral infection. To explore the interactions between MX2, the viral CA, and CypA, we utilized a CRISPR-Cas9/AAV approach to generate CypA knock-out cell lines as well as cells that express CypA from its endogenous locus, but with specific point mutations that would abrogate CA binding but should not affect enzymatic activity or cellular function. We found that infection of CypA knock-out and point mutant cell lines with wild-type HIV-1 and CA mutants recapitulated the phenotypes observed upon cyclosporine A (CsA) addition, indicating that effects of CsA treatment are the direct result of blocking CA-CypA interactions and are therefore independent from potential interactions between CypA and MX2 or other cellular proteins. Notably, abrogation of GTP hydrolysis by MX2 conferred enhanced antiviral activity when CA-CypA interactions were abolished, and this effect was not mediated by the CA-binding residues in the GTPase domain, or by phosphorylation of MX2 at position T151. We additionally found that elimination of GTPase activity also altered the Nup requirements for MX2 activity. Our data demonstrate that the antiviral activity of MX2 is affected by CypA-CA interactions in a virus-specific and GTPase activity-dependent manner. These findings further highlight the importance of the GTPase domain of MX2 in regulation of substrate specificity and interaction with nucleocytoplasmic trafficking pathways.
Collapse
Affiliation(s)
- Bailey Layish
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Ram Goli
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Haley Flick
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Szu-Wei Huang
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert Z Zhang
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Melissa Kane
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| |
Collapse
|
18
|
Twentyman J, Khalifeh A, Felton AL, Emerman M, Ohainle M. Primate TRIM34 is a broadly-acting, TRIM5-dependent lentiviral restriction factor. Retrovirology 2023; 20:15. [PMID: 37608289 PMCID: PMC10464172 DOI: 10.1186/s12977-023-00629-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
Human immunodeficiency virus (HIV) and other lentiviruses adapt to new hosts by evolving to evade host-specific innate immune proteins that differ in sequence and often viral recognition between host species. Understanding how these host antiviral proteins, called restriction factors, constrain lentivirus replication and transmission is key to understanding the emergence of pandemic viruses like HIV-1. Human TRIM34, a paralogue of the well-characterized lentiviral restriction factor TRIM5α, was previously identified by our lab via CRISPR-Cas9 screening as a restriction factor of certain HIV and SIV capsids. Here, we show that diverse primate TRIM34 orthologues from non-human primates can restrict a range of Simian Immunodeficiency Virus (SIV) capsids including SIVAGM-SAB, SIVAGM-TAN and SIVMAC capsids, which infect sabaeus monkeys, tantalus monkeys, and rhesus macaques, respectively. All primate TRIM34 orthologues tested, regardless of species of origin, were able to restrict this same subset of viral capsids. However, in all cases, this restriction also required the presence of TRIM5α. We demonstrate that TRIM5α is necessary, but not sufficient, for restriction of these capsids, and that human TRIM5α functionally interacts with TRIM34 from different species. Finally, we find that both the TRIM5α SPRY v1 loop and the TRIM34 SPRY domain are essential for TRIM34-mediated restriction. These data support a model in which TRIM34 is a broadly-conserved primate lentiviral restriction factor that acts in tandem with TRIM5α, such that together, these proteins can restrict capsids that neither can restrict alone.
Collapse
Affiliation(s)
- Joy Twentyman
- Department of Global Health, University of Washington, Seattle, WA, USA
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Anthony Khalifeh
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California -Berkeley, Berkeley, CA, USA
| | - Abby L Felton
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Michael Emerman
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Molly Ohainle
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Department of Molecular and Cell Biology, Division of Immunology and Molecular Medicine, University of California -Berkeley, Berkeley, CA, USA.
| |
Collapse
|
19
|
Zhao Y, Lu Y, Richardson S, Sreekumar M, Albarnaz JD, Smith GL. TRIM5α restricts poxviruses and is antagonized by CypA and the viral protein C6. Nature 2023; 620:873-880. [PMID: 37558876 PMCID: PMC10447239 DOI: 10.1038/s41586-023-06401-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/04/2023] [Indexed: 08/11/2023]
Abstract
Human tripartite motif protein 5α (TRIM5α) is a well-characterized restriction factor for some RNA viruses, including HIV1-5; however, reports are limited for DNA viruses6,7. Here we demonstrate that TRIM5α also restricts orthopoxviruses and, via its SPRY domain, binds to the orthopoxvirus capsid protein L3 to diminish virus replication and activate innate immunity. In response, several orthopoxviruses, including vaccinia, rabbitpox, cowpox, monkeypox, camelpox and variola viruses, deploy countermeasures. First, the protein C6 binds to TRIM5 via the RING domain to induce its proteasome-dependent degradation. Second, cyclophilin A (CypA) is recruited via interaction with the capsid protein L3 to virus factories and virions to antagonize TRIM5α; this interaction is prevented by cyclosporine A (CsA) and the non-immunosuppressive derivatives alisporivir and NIM811. Both the proviral effect of CypA and the antiviral effect of CsA are dependent on TRIM5α. CsA, alisporivir and NIM811 have antiviral activity against orthopoxviruses, and because these drugs target a cellular protein, CypA, the emergence of viral drug resistance is difficult. These results warrant testing of CsA derivatives against orthopoxviruses, including monkeypox and variola.
Collapse
Affiliation(s)
- Yiqi Zhao
- Department of Pathology, University of Cambridge, Cambridge, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Yongxu Lu
- Department of Pathology, University of Cambridge, Cambridge, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | | | - Jonas D Albarnaz
- Department of Pathology, University of Cambridge, Cambridge, UK.
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge, UK.
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
- The Pirbright Institute, Surrey, UK.
- Chinese Academy of Medical Sciences-Oxford Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
20
|
Itell HL, Humes D, Overbaugh J. Several cell-intrinsic effectors drive type I interferon-mediated restriction of HIV-1 in primary CD4 + T cells. Cell Rep 2023; 42:112556. [PMID: 37227817 PMCID: PMC10592456 DOI: 10.1016/j.celrep.2023.112556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/30/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Type I interferon (IFN) upregulates proteins that inhibit HIV within infected cells. Prior studies have identified IFN-stimulated genes (ISGs) that impede lab-adapted HIV in cell lines, yet the ISG(s) that mediate IFN restriction in HIV target cells, primary CD4+ T cells, are unknown. Here, we interrogate ISG restriction of primary HIV in CD4+ T cells by performing CRISPR-knockout screens with a custom library that specifically targets ISGs expressed in CD4+ T cells. Our investigation identifies previously undescribed HIV-restricting ISGs (HM13, IGFBP2, LAP3) and finds that two factors characterized in other HIV infection models (IFI16 and UBE2L6) mediate IFN restriction in T cells. Inactivation of these five ISGs in combination further diminishes IFN's protective effect against diverse HIV strains. This work demonstrates that IFN restriction of HIV is multifaceted, resulting from several effectors functioning collectively, and establishes a primary cell ISG screening model to identify both single and combinations of HIV-restricting ISGs.
Collapse
Affiliation(s)
- Hannah L Itell
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA 98195, USA; Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Daryl Humes
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
21
|
Xue G, Yu HJ, Buffone C, Huang SW, Lee K, Goh SL, Gres AT, Guney MH, Sarafianos SG, Luban J, Diaz-Griffero F, KewalRamani VN. The HIV-1 capsid core is an opportunistic nuclear import receptor. Nat Commun 2023; 14:3782. [PMID: 37355754 PMCID: PMC10290713 DOI: 10.1038/s41467-023-39146-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/01/2023] [Indexed: 06/26/2023] Open
Abstract
The movement of viruses and other large macromolecular cargo through nuclear pore complexes (NPCs) is poorly understood. The human immunodeficiency virus type 1 (HIV-1) provides an attractive model to interrogate this process. HIV-1 capsid (CA), the chief structural component of the viral core, is a critical determinant in nuclear transport of the virus. HIV-1 interactions with NPCs are dependent on CA, which makes direct contact with nucleoporins (Nups). Here we identify Nup35, Nup153, and POM121 to coordinately support HIV-1 nuclear entry. For Nup35 and POM121, this dependence was dependent cyclophilin A (CypA) interaction with CA. Mutation of CA or removal of soluble host factors changed the interaction with the NPC. Nup35 and POM121 make direct interactions with HIV-1 CA via regions containing phenylalanine glycine motifs (FG-motifs). Collectively, these findings provide additional evidence that the HIV-1 CA core functions as a macromolecular nuclear transport receptor (NTR) that exploits soluble host factors to modulate NPC requirements during nuclear invasion.
Collapse
Affiliation(s)
- Guangai Xue
- Model Development Section, Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Hyun Jae Yu
- Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD, 21702, USA
| | - Cindy Buffone
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Szu-Wei Huang
- Model Development Section, Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - KyeongEun Lee
- Model Development Section, Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Shih Lin Goh
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Anna T Gres
- Bond Life Sciences Center, Chemistry, University of Missouri, Columbia, MO, 65201, USA
| | - Mehmet Hakan Guney
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Stefan G Sarafianos
- Bond Life Sciences Center, Chemistry, University of Missouri, Columbia, MO, 65201, USA
- Bond Life Sciences Center, MMI, Biochemistry, University of Missouri, Columbia, MO, 65201, USA
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Vineet N KewalRamani
- Model Development Section, Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
22
|
Schatz M, Marty L, Ounadjela C, Tong PBV, Cardace I, Mettling C, Milhiet PE, Costa L, Godefroy C, Pugnière M, Guichou JF, Mesnard JM, Blaise M, Beaumelle B. A Tripartite Complex HIV-1 Tat-Cyclophilin A-Capsid Protein Enables Tat Encapsidation That Is Required for HIV-1 Infectivity. J Virol 2023; 97:e0027823. [PMID: 37129415 PMCID: PMC10134889 DOI: 10.1128/jvi.00278-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023] Open
Abstract
HIV-1 Tat is a key viral protein that stimulates several steps of viral gene expression. Tat is especially required for the transcription of viral genes. Nevertheless, it is still not clear if and how Tat is incorporated into HIV-1 virions. Cyclophilin A (CypA) is a prolyl isomerase that binds to HIV-1 capsid protein (CA) and is thereby encapsidated at the level of 200 to 250 copies of CypA/virion. Here, we found that a Tat-CypA-CA tripartite complex assembles in HIV-1-infected cells and allows Tat encapsidation into HIV virions (1 Tat/1 CypA). Biochemical and biophysical studies showed that high-affinity interactions drive the assembly of the Tat-CypA-CA complex that could be purified by size exclusion chromatography. We prepared different types of viruses devoid of transcriptionally active Tat. They showed a 5- to 10 fold decrease in HIV infectivity, and conversely, encapsidating Tat into ΔTat viruses greatly enhanced infectivity. The absence of encapsidated Tat decreased the efficiency of reverse transcription by ~50% and transcription by more than 90%. We thus identified a Tat-CypA-CA complex that enables Tat encapsidation and showed that encapsidated Tat is required to initiate robust viral transcription and thus viral production at the beginning of cell infection, before neosynthesized Tat becomes available. IMPORTANCE The viral transactivating protein Tat has been shown to stimulate several steps of HIV gene expression. It was found to facilitate reverse transcription. Moreover, Tat is strictly required for the transcription of viral genes. Although the presence of Tat within HIV virions would undoubtedly favor these steps and therefore enable the incoming virus to boost initial viral production, whether and how Tat is present within virions has been a matter a debate. We here described and characterized a tripartite complex between Tat, HIV capsid protein, and the cellular chaperone cyclophilin A that enables efficient and specific Tat encapsidation within HIV virions. We further showed that Tat encapsidation is required for the virus to efficiently initiate infection and viral production. This effect is mainly due to the transcriptional activity of Tat.
Collapse
Affiliation(s)
- Malvina Schatz
- Institut de Recherche en Infectiologie de Montpellier, UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - Laetitia Marty
- Institut de Recherche en Infectiologie de Montpellier, UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - Camille Ounadjela
- Institut de Recherche en Infectiologie de Montpellier, UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - Phuoc Bao Viet Tong
- Institut de Recherche en Infectiologie de Montpellier, UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - Ilaria Cardace
- Institut de Recherche en Infectiologie de Montpellier, UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - Clément Mettling
- Institut de Génétique Humaine, UPR 1142 CNRS, Montpellier, France
| | - Pierre-Emmanuel Milhiet
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Luca Costa
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Cédric Godefroy
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Martine Pugnière
- Institut de Recherche en Cancérologie de Montpellier, INSERM U 1194, Montpellier, France
| | - Jean-François Guichou
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Jean-Michel Mesnard
- Institut de Recherche en Infectiologie de Montpellier, UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - Mickaël Blaise
- Institut de Recherche en Infectiologie de Montpellier, UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| | - Bruno Beaumelle
- Institut de Recherche en Infectiologie de Montpellier, UMR 9004 CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
23
|
Kuznetsova AI, Munchak IM, Lebedev AV, Tumanov AS, Kim KV, Antonova AA, Ozhmegova EN, Pronin AY, Drobyshevskaya EV, Kazennova EV, Bobkova MR. [Genetic diversity of capsid protein (p24) in human immunodeficiency virus type-1 (HIV-1) variants circulating in the Russian Federation]. Vopr Virusol 2023; 68:66-78. [PMID: 36961237 DOI: 10.36233/0507-4088-161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Indexed: 04/22/2023]
Abstract
INTRODUCTION The human immunodeficiency virus (HIV) protein p24 plays an important role in the life cycle of the virus, and also is a target for diagnostic tests and for new antiretroviral drugs and therapeutic vaccines. The most studied variant of HIV-1 in the world is subtype B. In Russia, the most common variant is A6, the spread of recombinant forms (CRF63_02A6, CRF03_A6B) is observed as well as circulation of G and CRF02_AG variants. However, a detailed study of the p24 protein in these variants has not yet been conducted. The aim was to study the features of the p24 protein in HIV-1 variants circulating in Russia and estimate the frequency of occurrence of pre-existing mutations associated with resistance to lenacapavir, the first antiretroviral drug in the class of capsid inhibitors. MATERIALS AND METHODS The objects of the study were the nucleotide sequences obtained from the Los Alamos international database and clinical samples from HIV infected patients. RESULTS AND DISCUSSION The features of HIV-1 variants circulating in Russia have been determined. V86A, H87Q, I91F are characteristic substitutions in A6 genome. It is shown that the presence of preexisting mutations associated with resistance to lenacapavir is unlikely. CONCLUSION Features of the p24 protein in HIV-1 variants circulating in Russia allow them to be distinguished from others variants and among themselves. The prognosis for the use of lenacapavir in Russia is generally favorable. The results obtained could be taken into account in developing and using antiretroviral drugs and therapeutic vaccines.
Collapse
Affiliation(s)
- A I Kuznetsova
- D.I. Ivanovsky Institute of Virology of FSBI "National Reseach Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya"
| | - I M Munchak
- D.I. Ivanovsky Institute of Virology of FSBI "National Reseach Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya"
| | - A V Lebedev
- D.I. Ivanovsky Institute of Virology of FSBI "National Reseach Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya"
| | - A S Tumanov
- D.I. Ivanovsky Institute of Virology of FSBI "National Reseach Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya"
| | - K V Kim
- D.I. Ivanovsky Institute of Virology of FSBI "National Reseach Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya"
| | - A A Antonova
- D.I. Ivanovsky Institute of Virology of FSBI "National Reseach Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya"
| | - E N Ozhmegova
- D.I. Ivanovsky Institute of Virology of FSBI "National Reseach Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya"
| | - A Y Pronin
- Moscow Regional Center for the Prevention and Control of AIDS and Infectious Diseases
| | - E V Drobyshevskaya
- Moscow Regional Center for the Prevention and Control of AIDS and Infectious Diseases
| | - E V Kazennova
- D.I. Ivanovsky Institute of Virology of FSBI "National Reseach Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya"
| | - M R Bobkova
- D.I. Ivanovsky Institute of Virology of FSBI "National Reseach Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya"
| |
Collapse
|
24
|
Itell HL, Humes D, Overbaugh J. Several cell-intrinsic effectors drive type I interferon-mediated restriction of HIV-1 in primary CD4 + T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527545. [PMID: 36798236 PMCID: PMC9934674 DOI: 10.1101/2023.02.07.527545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Type I interferon (IFN) upregulates proteins that inhibit HIV within infected cells. Prior studies have identified IFN-stimulated genes (ISGs) that impede lab-adapted HIV in cell lines, yet the ISG(s) that mediate IFN restriction in HIV target cells, primary CD4 + T cells, are unknown. Here, we interrogate ISG restriction of primary HIV in CD4 + T cells. We performed CRISPR-knockout screens using a custom library that specifically targets ISGs expressed in CD4 + T cells and validated top hits. Our investigation identified new HIV-restricting ISGs (HM13, IGFBP2, LAP3) and found that two previously studied factors (IFI16, UBE2L6) are IFN effectors in T cells. Inactivation of these five ISGs in combination further diminished IFN’s protective effect against six diverse HIV strains. This work demonstrates that IFN restriction of HIV is multifaceted, resulting from several effectors functioning collectively, and establishes a primary cell ISG screening model to identify both single and combinations of HIV-restricting ISGs.
Collapse
Affiliation(s)
- Hannah L. Itell
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA, 98109, USA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Daryl Humes
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Present address: Tr1X Inc, La Jolla, CA, 92037, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| |
Collapse
|
25
|
Temereanca A, Ruta S. Strategies to overcome HIV drug resistance-current and future perspectives. Front Microbiol 2023; 14:1133407. [PMID: 36876064 PMCID: PMC9978142 DOI: 10.3389/fmicb.2023.1133407] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
The availability of combined antiretroviral therapy (cART) has revolutionized the course of HIV infection, suppressing HIV viremia, restoring the immune system, and improving the quality of life of HIV infected patients. However, the emergence of drug resistant and multidrug resistant strains remains an important contributor to cART failure, associated with a higher risk of HIV-disease progression and mortality. According to the latest WHO HIV Drug Resistance Report, the prevalence of acquired and transmitted HIV drug resistance in ART naive individuals has exponentially increased in the recent years, being an important obstacle in ending HIV-1 epidemic as a public health threat by 2030. The prevalence of three and four-class resistance is estimated to range from 5 to 10% in Europe and less than 3% in North America. The new drug development strategies are focused on improved safety and resistance profile within the existing antiretroviral classes, discovery of drugs with novel mechanisms of action (e.g., attachment/post-attachment inhibitors, capsid inhibitors, maturation inhibitors, nucleoside reverse transcriptase translocation inhibitors), combination therapies with improved adherence, and treatment simplification with infrequent dosing. This review highlight the current progress in the management of salvage therapy for patients with multidrug-resistant HIV-1 infection, discussing the recently approved and under development antiretroviral agents, as well as the new drug targets that are providing a new avenue for the development of therapeutic interventions in HIV infection.
Collapse
Affiliation(s)
- Aura Temereanca
- Virology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Viral Emerging Diseases Department, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Simona Ruta
- Virology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Viral Emerging Diseases Department, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| |
Collapse
|
26
|
Ding D, Xu S, Zhang X, Jiang X, Cocklin S, Dick A, Zhan P, Liu X. The discovery and design of novel HIV-1 capsid modulators and future perspectives. Expert Opin Drug Discov 2023; 18:5-12. [PMID: 36480372 DOI: 10.1080/17460441.2023.2157401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Although combination antiretroviral therapy (cART) has achieved significant success in treating HIV, the emergence of multidrug-resistant viruses and cumulative medication toxicity make it necessary to find new classes of antiretroviral agents with novel mechanisms of action. With high sequence conservation, the HIV-1 capsid (CA) protein has attracted attention as a prospective therapeutic target due to its crucial structural and regulatory functions in the HIV-1 replication cycle. AREA COVERED Herein, the authors provide a cutting-edge overview of current advances in the design and discovery of CA modulators, PF74, GS-6207 and their derivativeswhich targets a therapeutically attractive NTD-CTD interprotomer pocket within the hexameric configuration of HIV-1 CA. The discovery and development of these compounds, and derivatives thereof, have provided valuable information for the design of second-generation CA-targeting antivirals. EXPERT OPINION Despite some successes in designing and discovering HIV-1 CA modulators, more studies are required to decipher which chemical groups confer specific desirable properties. The future of CA-modulating compounds may lie in covalent inhibition and the creation of proteolysis-targeting chimeras (PROTACs). Moreover, biological interrogation of the process of CA uncoating, virus-host interactions, and studies on the lattice-binding restriction factors may improve our knowledge of HIV-1 CA and support the design of new antiviral agents.
Collapse
Affiliation(s)
- Dang Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Simon Cocklin
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Alexej Dick
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
27
|
Fernandez-de Céspedes MV, Hoffman HK, Carter H, Simons LM, Naing L, Ablan SD, Scheiblin DA, Hultquist JF, van Engelenburg SB, Freed EO. Rab11-FIP1C Is Dispensable for HIV-1 Replication in Primary CD4 + T Cells, but Its Role Is Cell Type Dependent in Immortalized Human T-Cell Lines. J Virol 2022; 96:e0087622. [PMID: 36354340 PMCID: PMC9749476 DOI: 10.1128/jvi.00876-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/11/2022] [Indexed: 11/12/2022] Open
Abstract
The HIV-1 envelope glycoprotein (Env) contains a long cytoplasmic tail harboring highly conserved motifs that direct Env trafficking and incorporation into virions and promote efficient virus spread. The cellular trafficking factor Rab11a family interacting protein 1C (FIP1C) has been implicated in the directed trafficking of Env to sites of viral assembly. In this study, we confirm that small interfering RNA (siRNA)-mediated depletion of FIP1C in HeLa cells modestly reduces Env incorporation into virions. To determine whether FIP1C is required for Env incorporation and HIV-1 replication in physiologically relevant cells, CRISPR-Cas9 technology was used to knock out the expression of this protein in several human T-cell lines-Jurkat E6.1, SupT1, and H9-and in primary human CD4+ T cells. FIP1C knockout caused modest reductions in Env incorporation in SupT1 cells but did not inhibit virus replication in SupT1 or Jurkat E6.1 T cells. In H9 cells, FIP1C knockout caused a cell density-dependent defect in virus replication. In primary CD4+ T cells, FIP1C knockout had no effect on HIV-1 replication. Furthermore, human T-cell leukemia virus type 1 (HTLV-1)-transformed cell lines that are permissive for HIV-1 replication do not express FIP1C. Mutation of an aromatic motif in the Env cytoplasmic tail (Y795W) implicated in FIP1C-mediated Env incorporation impaired virus replication independently of FIP1C expression in SupT1, Jurkat E6.1, H9, and primary T cells. Together, these results indicate that while FIP1C may contribute to HIV-1 Env incorporation in some contexts, additional and potentially redundant host factors are likely required for Env incorporation and virus dissemination in T cells. IMPORTANCE The incorporation of the HIV-1 envelope (Env) glycoproteins, gp120 and gp41, into virus particles is critical for virus infectivity. gp41 contains a long cytoplasmic tail that has been proposed to interact with host cell factors, including the trafficking factor Rab11a family interacting protein 1C (FIP1C). To investigate the role of FIP1C in relevant cell types-human T-cell lines and primary CD4+ T cells-we used CRISPR-Cas9 to knock out FIP1C expression and examined the effect on HIV-1 Env incorporation and virus replication. We observed that in two of the T-cell lines examined (Jurkat E6.1 and SupT1) and in primary CD4+ T cells, FIP1C knockout did not disrupt HIV-1 replication, whereas FIP1C knockout reduced Env expression and delayed replication in H9 cells. The results indicate that while FIP1C may contribute to Env incorporation in some cell lines, it is not an essential factor for efficient HIV-1 replication in primary CD4+ T cells.
Collapse
Affiliation(s)
| | | | - Hannah Carter
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Lacy M. Simons
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lwar Naing
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Sherimay D. Ablan
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - David A. Scheiblin
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Eric O. Freed
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
28
|
Tough Way In, Tough Way Out: The Complex Interplay of Host and Viral Factors in Nucleocytoplasmic Trafficking during HIV-1 Infection. Viruses 2022; 14:v14112503. [PMID: 36423112 PMCID: PMC9696704 DOI: 10.3390/v14112503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) is a retrovirus that integrates its reverse-transcribed genome as proviral DNA into the host genome to establish a successful infection. The viral genome integration requires safeguarding the subviral complexes, reverse transcription complex (RTC) and preintegration complex (PIC), in the cytosol from degradation, presumably effectively secured by the capsid surrounding these complexes. An intact capsid, however, is a large structure, which raises concerns about its translocation from cytoplasm to nucleus crossing the nuclear membrane, guarded by complex nuclear pore structures, which do not allow non-specific transport of large molecules. In addition, the generation of new virions requires the export of incompletely processed viral RNA from the nucleus to the cytoplasm, an event conventionally not permitted through mammalian nuclear membranes. HIV-1 has evolved multiple mechanisms involving redundant host pathways by liaison with the cell's nucleocytoplasmic trafficking system, failure of which would lead to the collapse of the infection cycle. This review aims to assemble the current developments in temporal and spatial events governing nucleocytoplasmic transport of HIV-1 factors. Discoveries are anticipated to serve as the foundation for devising host-directed therapies involving selective abolishment of the critical interactomes between viral proteins and their host equivalents.
Collapse
|
29
|
Cisneros WJ, Cornish D, Hultquist JF. Application of CRISPR-Cas9 Gene Editing for HIV Host Factor Discovery and Validation. Pathogens 2022; 11:891. [PMID: 36015010 PMCID: PMC9415735 DOI: 10.3390/pathogens11080891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 12/04/2022] Open
Abstract
Human Immunodeficiency Virus (HIV) interacts with a wide array of host factors at each stage of its lifecycle to facilitate replication and circumvent the immune response. Identification and characterization of these host factors is critical for elucidating the mechanism of viral replication and for developing next-generation HIV-1 therapeutic and curative strategies. Recent advances in CRISPR-Cas9-based genome engineering approaches have provided researchers with an assortment of new, valuable tools for host factor discovery and interrogation. Genome-wide screening in a variety of in vitro cell models has helped define the critical host factors that play a role in various cellular and biological contexts. Targeted manipulation of specific host factors by CRISPR-Cas9-mediated gene knock-out, overexpression, and/or directed repair have furthermore allowed for target validation in primary cell models and mechanistic inquiry through hypothesis-based testing. In this review, we summarize several CRISPR-based screening strategies for the identification of HIV-1 host factors and highlight how CRISPR-Cas9 approaches have been used to elucidate the molecular mechanisms of viral replication and host response. Finally, we examine promising new technologies in the CRISPR field and how these may be applied to address critical questions in HIV-1 biology going forward.
Collapse
Affiliation(s)
- William J. Cisneros
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Daphne Cornish
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| |
Collapse
|
30
|
Obubeid FO, Eltigani MM, Mukhtar RM, Ibrahim RA, Alzain MA, Elbadawi FA, Ghaboosh H, Alzain AA. Dual targeting inhibitors for HIV-1 capsid and cyclophilin A: molecular docking, molecular dynamics, and quantum mechanics. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2097673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Fauad O. Obubeid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Maha M. Eltigani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Rua M. Mukhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Reham A. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Muna A. Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Fatima A. Elbadawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Hiba Ghaboosh
- Department of Pharmaceutics, University of Gezira, Wad Madani, Sudan
| | - Abdulrahim A. Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| |
Collapse
|
31
|
Abstract
The last few years have seen a resurgence of activity in the hepatitis B drug pipeline, with many compounds in various stages of development. This review aims to provide a comprehensive overview of the latest advances in therapeutics for chronic hepatitis B (CHB). We will discuss the broad spectrum of direct-acting antivirals in clinical development, including capsids inhibitors, siRNA, HBsAg and polymerase inhibitors. In addition, host-targeted therapies (HTT) will be extensively reviewed, focusing on the latest progress in immunotherapeutics such as toll-like receptors and RIG-1 agonists, therapeutic vaccines and immune checkpoints modulators. A growing number of HTT in pre-clinical development directly target the key to HBV persistence, namely the covalently closed circular DNA (cccDNA) and hold great promise for HBV cure. This exciting area of HBV research will be highlighted, and molecules such as cyclophilins inhibitors, APOBEC3 deaminases and epigenetic modifiers will be discussed.
Collapse
Affiliation(s)
- Sandra Phillips
- Institute of Hepatology Foundation for Liver Research London UK, School of Immunology and Microbial Sciences King's College London, UK
| | - Ravi Jagatia
- Institute of Hepatology Foundation for Liver Research London UK, School of Immunology and Microbial Sciences King's College London, UK
| | - Shilpa Chokshi
- Institute of Hepatology Foundation for Liver Research London UK, School of Immunology and Microbial Sciences King's College London, UK
| |
Collapse
|
32
|
Han J, Kyu Lee M, Jang Y, Cho WJ, Kim M. Repurposing of cyclophilin A inhibitors as broad-spectrum antiviral agents. Drug Discov Today 2022; 27:1895-1912. [PMID: 35609743 PMCID: PMC9123807 DOI: 10.1016/j.drudis.2022.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/30/2022] [Accepted: 05/18/2022] [Indexed: 12/28/2022]
Abstract
Cyclophilin A (CypA) is linked to diverse human diseases including viral infections. With the worldwide emergence of severe acute respiratory coronavirus 2 (SARS-CoV-2), drug repurposing has been highlighted as a strategy with the potential to speed up antiviral development. Because CypA acts as a proviral component in hepatitis C virus, coronavirus and HIV, its inhibitors have been suggested as potential treatments for these infections. Here, we review the structure of cyclosporin A and sanglifehrin A analogs as well as synthetic micromolecules inhibiting CypA; and we discuss their broad-spectrum antiviral efficacy in the context of the virus lifecycle.
Collapse
Affiliation(s)
- Jinhe Han
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Myoung Kyu Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Yejin Jang
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Meeheyin Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
33
|
Saha B, Salemi M, Williams GL, Oh S, Paffett ML, Phinney B, Mandell MA. Interactomic analysis reveals a homeostatic role for the HIV restriction factor TRIM5α in mitophagy. Cell Rep 2022; 39:110797. [PMID: 35545034 PMCID: PMC9136943 DOI: 10.1016/j.celrep.2022.110797] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/16/2022] [Accepted: 04/15/2022] [Indexed: 12/13/2022] Open
Abstract
The protein TRIM5α has multiple roles in antiretroviral defense, but the mechanisms underlying TRIM5α action are unclear. Here, we employ APEX2-based proteomics to identify TRIM5α-interacting partners. Our proteomics results connect TRIM5 to other proteins with actions in antiviral defense. Additionally, they link TRIM5 to mitophagy, an autophagy-based mode of mitochondrial quality control that is compromised in several human diseases. We find that TRIM5 is required for Parkin-dependent and -independent mitophagy pathways where TRIM5 recruits upstream autophagy regulators to damaged mitochondria. Expression of a TRIM5 mutant lacking ubiquitin ligase activity is unable to rescue mitophagy in TRIM5 knockout cells. Cells lacking TRIM5 show reduced mitochondrial function under basal conditions and are more susceptible to immune activation and death in response to mitochondrial damage than are wild-type cells. Taken together, our studies identify a homeostatic role for a protein previously recognized exclusively for its antiviral actions. The protein TRIM5α is well known for its roles in antiretroviral defense. Saha et al. show that TRIM5α also has key homeostatic functions. They report that TRIM5α helps to maintain mitochondrial quality control by enabling the autophagy-dependent removal of damaged mitochondria (mitophagy).
Collapse
Affiliation(s)
- Bhaskar Saha
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Michelle Salemi
- UC Davis Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Geneva L Williams
- Biomedical Sciences Graduate Program, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Seeun Oh
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Michael L Paffett
- Fluorescence Microscopy and Cell Imaging Shared Resource, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Brett Phinney
- UC Davis Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Michael A Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
34
|
Troyano-Hernáez P, Reinosa R, Holguín Á. HIV Capsid Protein Genetic Diversity Across HIV-1 Variants and Impact on New Capsid-Inhibitor Lenacapavir. Front Microbiol 2022; 13:854974. [PMID: 35495642 PMCID: PMC9039614 DOI: 10.3389/fmicb.2022.854974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/09/2022] [Indexed: 12/17/2022] Open
Abstract
The HIV p24 capsid protein has an essential, structural, and functional role in the viral replication cycle, being an interesting target for vaccine design, diagnostic tests, and new antiretroviral drugs (ARVs). The HIV-1 variability poses a challenge for the accuracy and efficiency of diagnostic and treatment tools. This study analyzes p24 diversity among HIV-1 variants and within its secondary structure in HIV-1 M, O, P, and N groups. All available HIV-1 p24 nucleotide sequences were downloaded from the Los Alamos HIV Sequence Database, selecting 23,671 sequences belonging to groups O, N, P, and M (9 subtypes, 7 sub-sub types, and 109 circulating recombinant forms or CRFs). Using a bioinformatics tool developed in our laboratory (EpiMolBio program), we analyzed the amino acid conservation compared to the HXB2 subtype B reference sequence and the V-markers, or amino acid changes that were specific for each variant with at least 10 available sequences. We inferred the p24 consensus sequence for HIV-1 and for each group to analyze the overall conservation in p24 main structural regions, reporting the percentage of substitutions per variant affecting the capsid assembly and molecule-binding, including those associated with resistance to the new capsid-inhibitor lenacapavir, and the key residues involved in lenacapavir-p24 interaction, according to the bibliography. Although the overall structure of p24 was highly conserved, the conservation in the secondary structure varied between HIV-1 variants and the type of secondary structure. All HIV-1 variants presented >80% amino acid conservation vs. HXB2 reference sequence, except for group M sub-subtype F1 (69.27%). Mutants affecting the capsid assembly or lenacapavir capsid-binding were found in <1% of the p24 consensus sequence. Our study reports the HIV-1 variants carrying 14 unique single V-markers in 9/38 group M variants and the level of p24 conservation in each secondary structure region among the 4 HIV-1 groups and group M variants, revealing no natural resistance to lenacapavir in any HIV-1 variant. We present a thorough analysis of p24 variability among all HIV-1 variants circulating to date. Since p24 genetic variability can impact the viral replication cycle and the efficacy of new p24-based diagnostic, therapeutic, and vaccine strategies, conservation studies must consider all HIV-1 variants circulating worldwide.
Collapse
Affiliation(s)
- Paloma Troyano-Hernáez
- HIV-1 Molecular Epidemiology Laboratory, Department of Microbiology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Red en Investigación Translacional en Infecciones Pediátricas (RITIP), Madrid, Spain
| | - Roberto Reinosa
- HIV-1 Molecular Epidemiology Laboratory, Department of Microbiology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Red en Investigación Translacional en Infecciones Pediátricas (RITIP), Madrid, Spain
| | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Department of Microbiology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Red en Investigación Translacional en Infecciones Pediátricas (RITIP), Madrid, Spain
| |
Collapse
|
35
|
Balasubramaniam M, Davids BO, Bryer A, Xu C, Thapa S, Shi J, Aiken C, Pandhare J, Perilla JR, Dash C. HIV-1 mutants that escape the cytotoxic T-lymphocytes are defective in viral DNA integration. PNAS NEXUS 2022; 1:pgac064. [PMID: 35719891 PMCID: PMC9198661 DOI: 10.1093/pnasnexus/pgac064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/17/2022] [Indexed: 12/02/2022]
Abstract
HIV-1 replication is durably controlled without antiretroviral therapy (ART) in certain infected individuals called elite controllers (ECs). These individuals express specific human leukocyte antigens (HLA) that tag HIV-infected cells for elimination by presenting viral epitopes to CD8+ cytotoxic T-lymphocytes (CTL). In HIV-infected individuals expressing HLA-B27, CTLs primarily target the viral capsid protein (CA)-derived KK10 epitope. While selection of CA mutation R264K helps HIV-1 escape this potent CTL response, the accompanying fitness cost severely diminishes virus infectivity. Interestingly, selection of a compensatory CA mutation S173A restores HIV-1 replication. However, the molecular mechanism(s) underlying HIV-1 escape from this ART-free virus control by CTLs is not fully understood. Here, we report that the R264K mutation-associated infectivity defect arises primarily from impaired HIV-1 DNA integration, which is restored by the S173A mutation. Unexpectedly, the integration defect of the R264K variant was also restored upon depletion of the host cyclophilin A. These findings reveal a nuclear crosstalk between CA and HIV-1 integration as well as identify a previously unknown role of cyclophilin A in viral DNA integration. Finally, our study identifies a novel immune escape mechanism of an HIV-1 variant escaping a CA-directed CTL response.
Collapse
Affiliation(s)
| | - Benem-Orom Davids
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN - 37208, USA
| | - Alex Bryer
- Department of Chemistry, University of Delaware, Newark, DE - 19716, USA
| | - Chaoyi Xu
- Department of Chemistry, University of Delaware, Newark, DE - 19716, USA
| | - Santosh Thapa
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN - 37208, USA
| | - Jiong Shi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN - 37232, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN - 37232, USA
| | - Jui Pandhare
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN - 37208, USA
| | - Juan R Perilla
- Department of Chemistry, University of Delaware, Newark, DE - 19716, USA
| | - Chandravanu Dash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN - 37208, USA
| |
Collapse
|
36
|
A functional map of HIV-host interactions in primary human T cells. Nat Commun 2022; 13:1752. [PMID: 35365639 PMCID: PMC8976027 DOI: 10.1038/s41467-022-29346-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/08/2022] [Indexed: 02/07/2023] Open
Abstract
Human Immunodeficiency Virus (HIV) relies on host molecular machinery for replication. Systematic attempts to genetically or biochemically define these host factors have yielded hundreds of candidates, but few have been functionally validated in primary cells. Here, we target 426 genes previously implicated in the HIV lifecycle through protein interaction studies for CRISPR-Cas9-mediated knock-out in primary human CD4+ T cells in order to systematically assess their functional roles in HIV replication. We achieve efficient knockout (>50% of alleles) in 364 of the targeted genes and identify 86 candidate host factors that alter HIV infection. 47 of these factors validate by multiplex gene editing in independent donors, including 23 factors with restrictive activity. Both gene editing efficiencies and HIV-1 phenotypes are highly concordant among independent donors. Importantly, over half of these factors have not been previously described to play a functional role in HIV replication, providing numerous novel avenues for understanding HIV biology. These data further suggest that host-pathogen protein-protein interaction datasets offer an enriched source of candidates for functional host factor discovery and provide an improved understanding of the mechanics of HIV replication in primary T cells.
Collapse
|
37
|
Pagani I, Demela P, Ghezzi S, Vicenzi E, Pizzato M, Poli G. Host Restriction Factors Modulating HIV Latency and Replication in Macrophages. Int J Mol Sci 2022; 23:ijms23063021. [PMID: 35328442 PMCID: PMC8951319 DOI: 10.3390/ijms23063021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
In addition to CD4+ T lymphocytes, myeloid cells and, particularly, differentiated macrophages are targets of human immunodeficiency virus type-1 (HIV-1) infection via the interaction of gp120Env with CD4 and CCR5 or CXCR4. Both T cells and macrophages support virus replication, although with substantial differences. In contrast to activated CD4+ T lymphocytes, HIV-1 replication in macrophages occurs in nondividing cells and it is characterized by the virtual absence of cytopathicity both in vitro and in vivo. These general features should be considered in evaluating the role of cell-associated restriction factors aiming at preventing or curtailing virus replication in macrophages and T cells, particularly in the context of designing strategies to tackle the viral reservoir in infected individuals receiving combination antiretroviral therapy. In this regard, we will here also discuss a model of reversible HIV-1 latency in primary human macrophages and the role of host factors determining the restriction or reactivation of virus replication in these cells.
Collapse
Affiliation(s)
- Isabel Pagani
- Viral Pathogenesis and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina n. 58, 20132 Milano, Italy; (I.P.); (S.G.); (E.V.)
| | - Pietro Demela
- Human Immuno-Virology Unit, San Raffaele Scientific Institute, Via Olgettina n. 58, 20132 Milano, Italy;
| | - Silvia Ghezzi
- Viral Pathogenesis and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina n. 58, 20132 Milano, Italy; (I.P.); (S.G.); (E.V.)
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina n. 58, 20132 Milano, Italy; (I.P.); (S.G.); (E.V.)
| | - Massimo Pizzato
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy;
| | - Guido Poli
- Human Immuno-Virology Unit, San Raffaele Scientific Institute, Via Olgettina n. 58, 20132 Milano, Italy;
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina n. 58, 20132 Milano, Italy
- Correspondence: ; Tel.: +39-02-2643-4909
| |
Collapse
|
38
|
TRIM5α Restriction of HIV-1-N74D Viruses in Lymphocytes Is Caused by a Loss of Cyclophilin A Protection. Viruses 2022; 14:v14020363. [PMID: 35215956 PMCID: PMC8879423 DOI: 10.3390/v14020363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/23/2023] Open
Abstract
The core of HIV-1 viruses bearing the capsid change N74D (HIV-1-N74D) do not bind the human protein CPSF6. In primary human CD4+ T cells, HIV-1-N74D viruses exhibit an infectivity defect when compared to wild-type. We first investigated whether loss of CPSF6 binding accounts for the loss of infectivity. Depletion of CPSF6 in human CD4+ T cells did not affect the early stages of wild-type HIV-1 replication, suggesting that defective infectivity in the case of HIV-1-N74D viruses is not due to the loss of CPSF6 binding. Based on our previous result that cyclophilin A (Cyp A) protected HIV-1 from human tripartite motif-containing protein 5α (TRIM5αhu) restriction in CD4+ T cells, we found that depletion of TRIM5αhu in CD4+ T cells rescued the infectivity of HIV-1-N74D, suggesting that HIV-1-N74D cores interacted with TRIM5αhu. Accordingly, TRIM5αhu binding to HIV-1-N74D cores was increased compared with that of wild-type cores, and consistently, HIV-1-N74D cores lost their ability to bind Cyp A. In agreement with the notion that N74D capsids are defective in their ability to bind Cyp A, we found that HIV-1-N74D viruses were 20-fold less sensitive to TRIMCyp restriction when compared to wild-type viruses in OMK cells. Structural analysis revealed that N74D hexameric capsid protein in complex with PF74 is different from wild-type hexameric capsid protein in complex with PF74, which explains the defect of N74D capsids to interact with Cyp A. In conclusion, we showed that the decreased infectivity of HIV-1-N74D in CD4+ T cells is due to a loss of Cyp A protection from TRIM5αhu restriction activity.
Collapse
|
39
|
Fernandes AP, Águeda-Pinto A, Pinheiro A, Rebelo H, Esteves PJ. Evolution of TRIM5 and TRIM22 in Bats Reveals a Complex Duplication Process. Viruses 2022; 14:v14020345. [PMID: 35215944 PMCID: PMC8879501 DOI: 10.3390/v14020345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 12/29/2022] Open
Abstract
The innate immunological response in mammals involves a diverse and complex network of many proteins. Over the last years, the tripartite motif-containing protein 5 (TRIM5) and 22 (TRIM22) have shown promise as restriction factors of a plethora of viruses that infect primates. Although there have been studies describing the evolution of these proteins in a wide range of mammals, no prior studies of the TRIM6/34/5/22 gene cluster have been performed in the Chiroptera order. Here, we provide a detailed analysis of the evolution of this gene cluster in several bat genomes. Examination of different yangochiroptera and yinpterochiroptera bat species revealed a dynamic history of gene expansion occurring in TRIM5 and TRIM22 genes. Multiple copies of TRIM5 were found in the genomes of several bats, demonstrating a very low degree of conservation in the synteny of this gene among species of the Chiroptera order. Our findings also reveal that TRIM22 is often found duplicated in yangochiroptera bat species, an evolutionary phenomenon not yet observed in any other lineages of mammals. In total, we identified 31 TRIM5 and 19 TRIM22 amino acids to be evolving under positive selection, with most of the residues being placed in the PRYSPRY domain, known to be responsible for binding to the viral capsid during restriction in the primate orthologous TRIM proteins. Altogether, our results help to shed light on the distinctive role of bats in nature as reservoirs of viruses, many of which have become threatening zoonotic diseases through virus spillover in the last decades.
Collapse
Affiliation(s)
- Alexandre P. Fernandes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vila do Conde, Portugal; (A.P.F.); (A.Á.-P.); (A.P.); (H.R.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vila do Conde, Portugal
| | - Ana Águeda-Pinto
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vila do Conde, Portugal; (A.P.F.); (A.Á.-P.); (A.P.); (H.R.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vila do Conde, Portugal
| | - Ana Pinheiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vila do Conde, Portugal; (A.P.F.); (A.Á.-P.); (A.P.); (H.R.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vila do Conde, Portugal
| | - Hugo Rebelo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vila do Conde, Portugal; (A.P.F.); (A.Á.-P.); (A.P.); (H.R.)
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vila do Conde, Portugal
- CIBIO/InBIO, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Pedro J. Esteves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vila do Conde, Portugal; (A.P.F.); (A.Á.-P.); (A.P.); (H.R.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vila do Conde, Portugal
- CITS—Centro de Investigac¸ão em Tecnologias da Saúde, Instituto Politécnico de Saúde do Norte (IPSN), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), 4585-116 Gandra, Portugal
- Correspondence:
| |
Collapse
|
40
|
Selyutina A, Hu P, Miller S, Simons LM, Yu HJ, Hultquist JF, Lee K, KewalRamani VN, Diaz-Griffero F. GS-CA1 and lenacapavir stabilize the HIV-1 core and modulate the core interaction with cellular factors. iScience 2022; 25:103593. [PMID: 35005542 PMCID: PMC8718827 DOI: 10.1016/j.isci.2021.103593] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/11/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
The HIV-1 capsid is the target for the antiviral drugs GS-CA1 and Lenacapavir (GS-6207). We investigated the mechanism by which GS-CA1 and GS-6207 inhibit HIV-1 infection. HIV-1 inhibition by GS-CA1 did not require CPSF6 in CD4+ T cells. Contrary to PF74 that accelerates uncoating of HIV-1, GS-CA1 and GS-6207 stabilized the core. GS-CA1, unlike PF74, allowed the core to enter the nucleus, which agrees with the fact that GS-CA1 inhibits infection after reverse transcription. Unlike PF74, GS-CA1 did not disaggregate preformed CPSF6 complexes in nuclear speckles, suggesting that PF74 and GS-CA1 have different mechanisms of action. GS-CA1 stabilized the HIV-1 core, possibly by inducing a conformational shift in the core; in agreement, HIV-1 cores bearing N74D regained their ability to bind CPSF6 in the presence of GS-CA1. We showed that GS-CA1 binds to the HIV-1 core, changes its conformation, stabilizes the core, and thereby prevents viral uncoating and infection. GS-CA1 and Lenacapavir (GS-6207) stabilizes the HIV-1 core during infection GS-CA1/GS-6207 inhibit the interaction of the HIV-1 core with host factors GS-CA1/GS-6207 do not disaggregate preformed CPSF6 complexes in nuclear speckles GS-CA1/GS-6207 affects the dynamic surface of the HIV-1 core
Collapse
Affiliation(s)
- Anastasia Selyutina
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park - Price Center 501, Bronx, NY 10461, USA
| | - Pan Hu
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park - Price Center 501, Bronx, NY 10461, USA
| | - Sorin Miller
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Lacy M Simons
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hyun Jae Yu
- Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Judd F Hultquist
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - KyeongEun Lee
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Vineet N KewalRamani
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park - Price Center 501, Bronx, NY 10461, USA
| |
Collapse
|
41
|
McFadden WM, Snyder AA, Kirby KA, Tedbury PR, Raj M, Wang Z, Sarafianos SG. Rotten to the core: antivirals targeting the HIV-1 capsid core. Retrovirology 2021; 18:41. [PMID: 34937567 PMCID: PMC8693499 DOI: 10.1186/s12977-021-00583-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
The capsid core of HIV-1 is a large macromolecular assembly that surrounds the viral genome and is an essential component of the infectious virus. In addition to its multiple roles throughout the viral life cycle, the capsid interacts with multiple host factors. Owing to its indispensable nature, the HIV-1 capsid has been the target of numerous antiretrovirals, though most capsid-targeting molecules have not had clinical success until recently. Lenacapavir, a long-acting drug that targets the HIV-1 capsid, is currently undergoing phase 2/3 clinical trials, making it the most successful capsid inhibitor to-date. In this review, we detail the role of the HIV-1 capsid protein in the virus life cycle, categorize antiviral compounds based on their targeting of five sites within the HIV-1 capsid, and discuss their molecular interactions and mechanisms of action. The diverse range of inhibition mechanisms provides insight into possible new strategies for designing novel HIV-1 drugs and furthers our understanding of HIV-1 biology. ![]()
Collapse
Affiliation(s)
- William M McFadden
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Alexa A Snyder
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Karen A Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Philip R Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Monika Raj
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Zhengqiang Wang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.
| |
Collapse
|
42
|
Long M, Toesca J, Guillon C. Review and Perspectives on the Structure-Function Relationships of the Gag Subunits of Feline Immunodeficiency Virus. Pathogens 2021; 10:pathogens10111502. [PMID: 34832657 PMCID: PMC8621984 DOI: 10.3390/pathogens10111502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
The Gag polyprotein is implied in the budding as well as the establishment of the supramolecular architecture of infectious retroviral particles. It is also involved in the early phases of the replication of retroviruses by protecting and transporting the viral genome towards the nucleus of the infected cell until its integration in the host genome. Therefore, understanding the structure-function relationships of the Gag subunits is crucial as each of them can represent a therapeutic target. Though the field has been explored for some time in the area of Human Immunodeficiency Virus (HIV), it is only in the last decade that structural data on Feline Immunodeficiency Virus (FIV) Gag subunits have emerged. As FIV is an important veterinary issue, both in domestic cats and endangered feline species, such data are of prime importance for the development of anti-FIV molecules targeting Gag. This review will focus on the recent advances and perspectives on the structure-function relationships of each subunit of the FIV Gag polyprotein.
Collapse
Affiliation(s)
- Mathieu Long
- Retroviruses and Structural Biochemistry, Molecular Microbiology and Structural Biochemistry, CNRS, Univ Lyon, UMR5086, 69007 Lyon, France; (M.L.); (J.T.)
- Center for Molecular Protein Science, Department of Chemistry, Lund University, Lund, 221 00 Scania, Sweden
| | - Johan Toesca
- Retroviruses and Structural Biochemistry, Molecular Microbiology and Structural Biochemistry, CNRS, Univ Lyon, UMR5086, 69007 Lyon, France; (M.L.); (J.T.)
- Enveloped Viruses, Vectors and Immunotherapy, CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, UMR5308, ENS Lyon, 69007 Lyon, France
| | - Christophe Guillon
- Retroviruses and Structural Biochemistry, Molecular Microbiology and Structural Biochemistry, CNRS, Univ Lyon, UMR5086, 69007 Lyon, France; (M.L.); (J.T.)
- Correspondence:
| |
Collapse
|
43
|
Ingram Z, Fischer DK, Ambrose Z. Disassembling the Nature of Capsid: Biochemical, Genetic, and Imaging Approaches to Assess HIV-1 Capsid Functions. Viruses 2021; 13:v13112237. [PMID: 34835043 PMCID: PMC8618418 DOI: 10.3390/v13112237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) capsid and its disassembly, or capsid uncoating, has remained an active area of study over the past several decades. Our understanding of the HIV-1 capsid as solely a protective shell has since shifted with discoveries linking it to other complex replication events. The interplay of the HIV-1 capsid with reverse transcription, nuclear import, and integration has led to an expansion of knowledge of capsid functionality. Coincident with advances in microscopy, cell, and biochemistry assays, several models of capsid disassembly have been proposed, in which it occurs in either the cytoplasmic, nuclear envelope, or nuclear regions of the cell. Here, we discuss how the understanding of the HIV-1 capsid has evolved and the key methods that made these discoveries possible.
Collapse
Affiliation(s)
- Zachary Ingram
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; (Z.I.); (D.K.F.)
- Pittsburgh Center for HIV Protein Interactions, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Douglas K. Fischer
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; (Z.I.); (D.K.F.)
- Pittsburgh Center for HIV Protein Interactions, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Zandrea Ambrose
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; (Z.I.); (D.K.F.)
- Pittsburgh Center for HIV Protein Interactions, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Correspondence:
| |
Collapse
|
44
|
Saito A, Yamashita M. HIV-1 capsid variability: viral exploitation and evasion of capsid-binding molecules. Retrovirology 2021; 18:32. [PMID: 34702294 PMCID: PMC8549334 DOI: 10.1186/s12977-021-00577-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
The HIV-1 capsid, a conical shell encasing viral nucleoprotein complexes, is involved in multiple post-entry processes during viral replication. Many host factors can directly bind to the HIV-1 capsid protein (CA) and either promote or prevent HIV-1 infection. The viral capsid is currently being explored as a novel target for therapeutic interventions. In the past few decades, significant progress has been made in our understanding of the capsid–host interactions and mechanisms of action of capsid-targeting antivirals. At the same time, a large number of different viral capsids, which derive from many HIV-1 mutants, naturally occurring variants, or diverse lentiviruses, have been characterized for their interactions with capsid-binding molecules in great detail utilizing various experimental techniques. This review provides an overview of how sequence variation in CA influences phenotypic properties of HIV-1. We will focus on sequence differences that alter capsid–host interactions and give a brief account of drug resistant mutations in CA and their mutational effects on viral phenotypes. Increased knowledge of the sequence-function relationship of CA helps us deepen our understanding of the adaptive potential of the viral capsid.
Collapse
Affiliation(s)
- Akatsuki Saito
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Miyazaki, Japan.,Center for Animal Disease Control, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Masahiro Yamashita
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
45
|
Benn JA, Mukadam AS, McEwan WA. Targeted protein degradation using intracellular antibodies and its application to neurodegenerative disease. Semin Cell Dev Biol 2021; 126:138-149. [PMID: 34654628 DOI: 10.1016/j.semcdb.2021.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 01/10/2023]
Abstract
Antibodies mediate the majority of their effects in the extracellular domain, or in intracellular compartments isolated from the cytosol. Under a growing list of circumstances, however, antibodies are found to gain access to the cytoplasm. Cytosolic immune complexes are bound by the atypical antibody receptor TRIM21, which mediates the rapid degradation of the immune complexes at the proteasome. These discoveries have informed the development of TRIM-Away, a technique to selectively deplete proteins using delivery of antibodies into cells. A range of related approaches that elicit selective protein degradation using intracellular constructs linking antibody fragments to degradative effector functions have also been developed. These methods hold promise for inducing the degradation of proteins as both research tools and as a novel therapeutic approach. Protein aggregates are a pathophysiological feature of neurodegenerative diseases and are considered to have a causal role in pathology. Immunotherapy is emerging as a promising route towards their selective targeting, and a role of antibodies in the cytosol has been demonstrated in cell-based assays. This review will explore the mechanisms by which therapeutic antibodies engage and eliminate intracellularly aggregated proteins. We will discuss how future developments in intracellular antibody technology may enhance the therapeutic potential of such antibody-derived therapies.
Collapse
Affiliation(s)
- Jonathan A Benn
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Cambridge, UK
| | - Aamir S Mukadam
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Cambridge, UK
| | - William A McEwan
- UK Dementia Research Institute at the University of Cambridge, Department of Clinical Neurosciences, Cambridge, UK.
| |
Collapse
|
46
|
Selyutina A, Persaud M, Lee K, KewalRamani V, Diaz-Griffero F. Nuclear Import of the HIV-1 Core Precedes Reverse Transcription and Uncoating. Cell Rep 2021; 32:108201. [PMID: 32997983 PMCID: PMC7871456 DOI: 10.1016/j.celrep.2020.108201] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/15/2020] [Accepted: 09/03/2020] [Indexed: 12/25/2022] Open
Abstract
HIV-1 reverse transcription (RT) occurs before or during uncoating, but the cellular compartment where RT and uncoating occurs is unknown. Using imaging and biochemical assays to track HIV-1 capsids in the nucleus during infection, we demonstrated that higher-order capsid complexes and/or complete cores containing the viral genome are imported into the nucleus. Inhibition of RT does not prevent capsid nuclear import; thus, RT may occur in nuclear compartments. Cytosolic and nuclear fractions of infected cells reveal that most RT intermediates are enriched in nuclear fractions, suggesting that HIV-1 RT occurs in the nucleus alongside uncoating. In agreement, we find that capsid in the nucleus induces recruitment of cleavage and polyadenylation specific factor 6 (CPSF6) to SC35 nuclear speckles, which are highly active transcription sites, suggesting that CPSF6 through capsid is recruiting viral complexes to SC35 speckles for the occurrence of RT. Thus, nuclear import precedes RT and uncoating, which fundamentally changes our understanding of HIV-1 infection. Selyutina et al. show that HIV-1 cores containing the viral genome are imported into the nucleus for reverse transcription and uncoating. HIV-1 cores in the nucleus are recruited by CPSF6 to SC35 highly active transcription domains for viral reverse transcription, integration, and/or expression.
Collapse
Affiliation(s)
| | - Mirjana Persaud
- Department of Microbiology and Immunology, Einstein, Bronx, NY 10461, USA
| | - Kyeongeun Lee
- Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA
| | - Vineet KewalRamani
- Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA
| | | |
Collapse
|
47
|
Guedán A, Caroe ER, Barr GCR, Bishop KN. The Role of Capsid in HIV-1 Nuclear Entry. Viruses 2021; 13:1425. [PMID: 34452291 PMCID: PMC8402913 DOI: 10.3390/v13081425] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 12/19/2022] Open
Abstract
HIV-1 can infect non-dividing cells. The nuclear envelope therefore represents a barrier that HIV-1 must traverse in order to gain access to the host cell chromatin for integration. Hence, nuclear entry is a critical step in the early stages of HIV-1 replication. Following membrane fusion, the viral capsid (CA) lattice, which forms the outer face of the retroviral core, makes numerous interactions with cellular proteins that orchestrate the progress of HIV-1 through the replication cycle. The ability of CA to interact with nuclear pore proteins and other host factors around the nuclear pore determines whether nuclear entry occurs. Uncoating, the process by which the CA lattice opens and/or disassembles, is another critical step that must occur prior to integration. Both early and delayed uncoating have detrimental effects on viral infectivity. How uncoating relates to nuclear entry is currently hotly debated. Recent technological advances have led to intense discussions about the timing, location, and requirements for uncoating and have prompted the field to consider alternative uncoating scenarios that presently focus on uncoating at the nuclear pore and within the nuclear compartment. This review describes recent advances in the study of HIV-1 nuclear entry, outlines the interactions of the retroviral CA protein, and discusses the challenges of investigating HIV-1 uncoating.
Collapse
Affiliation(s)
| | | | | | - Kate N. Bishop
- Retroviral Replication Laboratory, The Francis Crick Institute, London NW1 1AT, UK; (A.G.); (E.R.C.); (G.C.R.B.)
| |
Collapse
|
48
|
Species-Specific Valid Ternary Interactions of HIV-1 Env-gp120, CD4, and CCR5 as Revealed by an Adaptive Single-Amino Acid Substitution at the V3 Loop Tip. J Virol 2021; 95:e0217720. [PMID: 33883222 DOI: 10.1128/jvi.02177-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Molecular interactions of the variable envelope gp120 subunit of HIV-1 with two cellular receptors are the first step of viral infection, thereby playing pivotal roles in determining viral infectivity and cell tropism. However, the underlying regulatory mechanisms for interactions under gp120 spontaneous variations largely remain unknown. Here, we show an allosteric mechanism in which a single gp120 mutation remotely controls the ternary interactions between gp120 and its receptors for the switch of viral cell tropism. Virological analyses showed that a G310R substitution at the tip of the gp120 V3 loop selectively abolished the viral replication ability in human cells, despite evoking enhancement of viral replication in macaque cells. Molecular dynamics (MD) simulations predicted that the G310R substitution at a site away from the CD4 interaction site selectively impeded the binding ability of gp120 to human CD4. Consistently, virions with the G310R substitution exhibited a reduced binding ability to human lymphocyte cells. Furthermore, the G310R substitution influenced the gp120-CCR5 interaction in a CCR5-type dependent manner as assessed by MD simulations and an infectivity assay using exogenously expressed CCR5s. Interestingly, an I198M mutation in human CCR5 restored the infectivity of the G310R virus in human cells. Finally, MD simulation predicted amino acid interplays that physically connect the V3 loop and gp120 elements for the CD4 and CCR5 interactions. Collectively, these results suggest that the V3 loop tip is a cis-allosteric regulator that remotely controls intra- and intermolecular interactions of HIV-1 gp120 for balancing ternary interactions with CD4 and CCR5. IMPORTANCE Understanding the molecular bases for viral entry into cells will lead to the elucidation of one of the major viral survival strategies, and thus to the development of new effective antiviral measures. As shown recently, HIV-1 is highly mutable and adaptable in growth-restrictive cells, such as those of macaque origin. HIV-1 initiates its infection by sequential interactions of Env-gp120 with two cell surface receptors, CD4 and CCR5. A recent epoch-making structural study has disclosed that CD4-induced conformation of gp120 is stabilized upon binding of CCR5 to the CD4-gp120 complex, whereas the biological significance of this remains totally unknown. Here, from a series of mutations found in our extensive studies, we identified a single-amino acid adaptive mutation at the V3 loop tip of Env-gp120 critical for its interaction with both CD4 and CCR5 in a host cell species-specific way. This remarkable finding could certainly provoke and accelerate studies to precisely clarify the HIV-1 entry mechanism.
Collapse
|
49
|
Toccafondi E, Lener D, Negroni M. HIV-1 Capsid Core: A Bullet to the Heart of the Target Cell. Front Microbiol 2021; 12:652486. [PMID: 33868211 PMCID: PMC8046902 DOI: 10.3389/fmicb.2021.652486] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
The first step of the intracellular phase of retroviral infection is the release of the viral capsid core in the cytoplasm. This structure contains the viral genetic material that will be reverse transcribed and integrated into the genome of infected cells. Up to recent times, the role of the capsid core was considered essentially to protect this genetic material during the earlier phases of this process. However, increasing evidence demonstrates that the permanence inside the cell of the capsid as an intact, or almost intact, structure is longer than thought. This suggests its involvement in more aspects of the infectious cycle than previously foreseen, particularly in the steps of viral genomic material translocation into the nucleus and in the phases preceding integration. During the trip across the infected cell, many host factors are brought to interact with the capsid, some possessing antiviral properties, others, serving as viral cofactors. All these interactions rely on the properties of the unique component of the capsid core, the capsid protein CA. Likely, the drawback of ensuring these multiple functions is the extreme genetic fragility that has been shown to characterize this protein. Here, we recapitulate the busy agenda of an HIV-1 capsid in the infectious process, in particular in the light of the most recent findings.
Collapse
Affiliation(s)
| | - Daniela Lener
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, Strasbourg, France
| | - Matteo Negroni
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
50
|
Marti JLG, Wells A, Brufsky AM. Dysregulation of the mevalonate pathway during SARS-CoV-2 infection: An in silico study. J Med Virol 2021; 93:2396-2405. [PMID: 33331649 PMCID: PMC9553089 DOI: 10.1002/jmv.26743] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
SARS-CoV-2 triggers a dysregulated innate immune system activation. As the mevalonate pathway (MVP) prevents the activation of inflammasomes and cytokine release and regulates endosomal transport, compromised signaling could be associated with the pathobiology of COVID-19. Prior transcriptomic studies of host cells in response to SARS-CoV-2 infection have not reported to date the effects of SARS-CoV-2 on the MVP. In this study, we accessed public data sets to report in silico investigations into gene expression. In addition, we proposed candidate genes that are thought to have a direct association with the pathogenesis of COVID-19, and which may be dependent on signals derived from the MVP. Our results revealed dysregulation of genes involved in the MVP. These results were not found when investigating the gene expression data from host cells infected with H3N2 influenza virus, H1N1 influenza virus, or respiratory syncytial virus. Our manually curated gene set showed significant gene expression variability in A549 cells infected with SARS-CoV-2, as per Blanco-Melo et al. data set (GSE147507). In light of the present findings, SARS-CoV-2 could hijack the MVP, leading to hyperinflammatory responses. Prompt reconstitution of this pathway with available agents should be considered in future studies.
Collapse
Affiliation(s)
- Juan Luis Gomez Marti
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh VA Health System, Pittsburgh, Pennsylvania, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh VA Health System, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Adam M. Brufsky
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|