1
|
Hao M, Chu J, Zhang T, Yin T, Gu Y, Liang W, Ji W, Zhuang J, Liu Y, Gao J, Yin Y. Nanomaterials-mediated lysosomal regulation: a robust protein-clearance approach for the treatment of Alzheimer's disease. Neural Regen Res 2025; 20:424-439. [PMID: 38819046 PMCID: PMC11317947 DOI: 10.4103/nrr.nrr-d-23-01736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 06/01/2024] Open
Abstract
Alzheimer's disease is a debilitating, progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins, including amyloid plaques and intracellular tau tangles, primarily within the brain. Lysosomes, crucial intracellular organelles responsible for protein degradation, play a key role in maintaining cellular homeostasis. Some studies have suggested a link between the dysregulation of the lysosomal system and pathogenesis of neurodegenerative diseases, including Alzheimer's disease. Restoring the normal physiological function of lysosomes hold the potential to reduce the pathological burden and improve the symptoms of Alzheimer's disease. Currently, the efficacy of drugs in treating Alzheimer's disease is limited, with major challenges in drug delivery efficiency and targeting. Recently, nanomaterials have gained widespread use in Alzheimer's disease drug research owing to their favorable physical and chemical properties. This review aims to provide a comprehensive overview of recent advances in using nanomaterials (polymeric nanomaterials, nanoemulsions, and carbon-based nanomaterials) to enhance lysosomal function in treating Alzheimer's disease. This review also explores new concepts and potential therapeutic strategies for Alzheimer's disease through the integration of nanomaterials and modulation of lysosomal function. In conclusion, this review emphasizes the potential of nanomaterials in modulating lysosomal function to improve the pathological features of Alzheimer's disease. The application of nanotechnology to the development of Alzheimer's disease drugs brings new ideas and approaches for future treatment of this disease.
Collapse
Affiliation(s)
- Mengqi Hao
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianjian Chu
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tong Yin
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Yuankai Gu
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Wendanqi Liang
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenbo Ji
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Jianhua Zhuang
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Wang Y, Yang Y, Cai Y, Aobulikasimu A, Wang Y, Hu C, Miao Z, Shao Y, Zhao M, Hu Y, Xu C, Chen X, Li Z, Chen J, Wang L, Chen S. Endo-Lysosomal Network Disorder Reprograms Energy Metabolism in SorL1-Null Rat Hippocampus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407709. [PMID: 39225620 PMCID: PMC11538633 DOI: 10.1002/advs.202407709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Indexed: 09/04/2024]
Abstract
Sortilin-related receptor 1 (SorL1) deficiency is a genetic predisposition to familial Alzheimer's disease (AD), but its pathology is poorly understood. In SorL1-null rats, a disorder of the global endosome-lysosome network (ELN) is found in hippocampal neurons. Deletion of amyloid precursor protein (APP) in SorL1-null rats could not completely rescue the neuronal abnormalities in the ELN of the hippocampus and the impairment of spatial memory in SorL1-null young rats. These in vivo observations indicated that APP is one of the cargoes of SorL1 in the regulation of the ELN, which affects hippocampal-dependent memory. When SorL1 is depleted, the endolysosome takes up more of the lysosome flux and damages lysosomal digestion, leading to pathological lysosomal storage and disturbance of cholesterol and iron homeostasis in the hippocampus. These disturbances disrupt the original homeostasis of the material-energy-subcellular structure and reprogram energy metabolism based on fatty acids in the SorL1-null hippocampus, instead of glucose. Although fatty acid oxidation increases ATP supply, it cannot reduce the levels of the harmful byproduct ROS during oxidative phosphorylation, as it does in glucose catabolism. Therefore, the SorL1-null rats exhibit hippocampal degeneration, and their spatial memory is impaired. Our research sheds light on the pathology of SorL1 deficiency in AD.
Collapse
Affiliation(s)
- Yajie Wang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Yuting Yang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Ying Cai
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Ayikaimaier Aobulikasimu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Yuexin Wang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Chuanwei Hu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Zhikang Miao
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Yue Shao
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Mengna Zhao
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Yue Hu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Chang Xu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Xinjun Chen
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
| | - Zhiqiang Li
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
| | - Jincao Chen
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
| | - Lianrong Wang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
- Department of Respiratory Diseases, Institute of PediatricsShenzhen Children's HospitalShenzhen518026China
| | - Shi Chen
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
- Department of Burn and Plastic SurgeryShenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and ApplicationShenzhen Institute of Translational MedicineMedical Innovation Technology Transformation CenterShenzhen University Medical School, Shenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhen518035China
| |
Collapse
|
3
|
He Y, Fan Y, Ahmadpoor X, Wang Y, Li ZA, Zhu W, Lin H. Targeting lysosomal quality control as a therapeutic strategy against aging and diseases. Med Res Rev 2024; 44:2472-2509. [PMID: 38711187 DOI: 10.1002/med.22047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 05/08/2024]
Abstract
Previously, lysosomes were primarily referred to as the digestive organelles and recycling centers within cells. Recent discoveries have expanded the lysosomal functional scope and revealed their critical roles in nutrient sensing, epigenetic regulation, plasma membrane repair, lipid transport, ion homeostasis, and cellular stress response. Lysosomal dysfunction is also found to be associated with aging and several diseases. Therefore, function of macroautophagy, a lysosome-dependent intracellular degradation system, has been identified as one of the updated twelve hallmarks of aging. In this review, we begin by introducing the concept of lysosomal quality control (LQC), which is a cellular machinery that maintains the number, morphology, and function of lysosomes through different processes such as lysosomal biogenesis, reformation, fission, fusion, turnover, lysophagy, exocytosis, and membrane permeabilization and repair. Next, we summarize the results from studies reporting the association between LQC dysregulation and aging/various disorders. Subsequently, we explore the emerging therapeutic strategies that target distinct aspects of LQC for treating diseases and combatting aging. Lastly, we underscore the existing knowledge gap and propose potential avenues for future research.
Collapse
Affiliation(s)
- Yuchen He
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yishu Fan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xenab Ahmadpoor
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yumin Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, China
| | - Weihong Zhu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Van Acker ZP, Leroy T, Annaert W. Mitochondrial dysfunction, cause or consequence in neurodegenerative diseases? Bioessays 2024:e2400023. [PMID: 39367555 DOI: 10.1002/bies.202400023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/29/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024]
Abstract
Neurodegenerative diseases encompass a spectrum of conditions characterized by the gradual deterioration of neurons in the central and peripheral nervous system. While their origins are multifaceted, emerging data underscore the pivotal role of impaired mitochondrial functions and endolysosomal homeostasis to the onset and progression of pathology. This article explores whether mitochondrial dysfunctions act as causal factors or are intricately linked to the decline in endolysosomal function. As research delves deeper into the genetics of neurodegenerative diseases, an increasing number of risk loci and genes associated with the regulation of endolysosomal and autophagy functions are being identified, arguing for a downstream impact on mitochondrial health. Our hypothesis centers on the notion that disturbances in endolysosomal processes may propagate to other organelles, including mitochondria, through disrupted inter-organellar communication. We discuss these views in the context of major neurodegenerative diseases including Alzheimer's and Parkinson's diseases, and their relevance to potential therapeutic avenues.
Collapse
Affiliation(s)
- Zoë P Van Acker
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Thomas Leroy
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Cao C, Fu G, Xu R, Li N. Coupling of Alzheimer's Disease Genetic Risk Factors with Viral Susceptibility and Inflammation. Aging Dis 2024; 15:2028-2050. [PMID: 37962454 PMCID: PMC11346407 DOI: 10.14336/ad.2023.1017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by persistent cognitive decline. Amyloid plaque deposition and neurofibrillary tangles are the main pathological features of AD brain, though mechanisms leading to the formation of lesions remain to be understood. Genetic efforts through genome-wide association studies (GWAS) have identified dozens of risk genes influencing the pathogenesis and progression of AD, some of which have been revealed in close association with increased viral susceptibilities and abnormal inflammatory responses in AD patients. In the present study, we try to present a list of AD candidate genes that have been shown to affect viral infection and inflammatory responses. Understanding of how AD susceptibility genes interact with the viral life cycle and potential inflammatory pathways would provide possible therapeutic targets for both AD and infectious diseases.
Collapse
Affiliation(s)
| | | | - Ruodan Xu
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ning Li
- Department of Biomedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
6
|
Jensen AMG, Raska J, Fojtik P, Monti G, Lunding M, Bartova S, Pospisilova V, van der Lee SJ, Van Dongen J, Bossaerts L, Van Broeckhoven C, Dols-Icardo O, Lléo A, Bellini S, Ghidoni R, Hulsman M, Petsko GA, Sleegers K, Bohaciakova D, Holstege H, Andersen OM. The SORL1 p.Y1816C variant causes impaired endosomal dimerization and autosomal dominant Alzheimer's disease. Proc Natl Acad Sci U S A 2024; 121:e2408262121. [PMID: 39226352 PMCID: PMC11406263 DOI: 10.1073/pnas.2408262121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
Truncating genetic variants of SORL1, encoding the endosome recycling receptor SORLA, have been accepted as causal of Alzheimer's disease (AD). However, most genetic variants observed in SORL1 are missense variants, for which it is complicated to determine the pathogenicity level because carriers come from pedigrees too small to be informative for penetrance estimations. Here, we describe three unrelated families in which the SORL1 coding missense variant rs772677709, that leads to a p.Y1816C substitution, segregates with Alzheimer's disease. Further, we investigate the effect of SORLA p.Y1816C on receptor maturation, cellular localization, and trafficking in cell-based assays. Under physiological circumstances, SORLA dimerizes within the endosome, allowing retromer-dependent trafficking from the endosome to the cell surface, where the luminal part is shed into the extracellular space (sSORLA). Our results showed that the p.Y1816C mutant impairs SORLA homodimerization in the endosome, leading to decreased trafficking to the cell surface and less sSORLA shedding. These trafficking defects of the mutant receptor can be rescued by the expression of the SORLA 3Fn-minireceptor. Finally, we find that iPSC-derived neurons with the engineered p.Y1816C mutation have enlarged endosomes, a defining cytopathology of AD. Our studies provide genetic as well as functional evidence that the SORL1 p.Y1816C variant is causal for AD. The partial penetrance of the mutation suggests this mutation should be considered in clinical genetic screening of multiplex early-onset AD families.
Collapse
Affiliation(s)
| | - Jan Raska
- Department of Histology and Embryology, Faculty of Medicine, Brno 62500, Czech Republic
- International Clinical Research Center, St. Anne's Faculty Hospital Brno 60200, Brno, Czech Republic
| | - Petr Fojtik
- Department of Biomedicine, Aarhus University, Aarhus C DK8000, Denmark
- Department of Histology and Embryology, Faculty of Medicine, Brno 62500, Czech Republic
- International Clinical Research Center, St. Anne's Faculty Hospital Brno 60200, Brno, Czech Republic
| | - Giulia Monti
- Department of Biomedicine, Aarhus University, Aarhus C DK8000, Denmark
| | - Melanie Lunding
- Department of Biomedicine, Aarhus University, Aarhus C DK8000, Denmark
| | - Simona Bartova
- Department of Histology and Embryology, Faculty of Medicine, Brno 62500, Czech Republic
| | - Veronika Pospisilova
- Department of Histology and Embryology, Faculty of Medicine, Brno 62500, Czech Republic
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center 1081 HV, Amsterdam, The Netherlands
| | - Jasper Van Dongen
- Complex Genetics of Alzheimer's Disease Group, Vlaams Instituut voor Biotechnologie (VIB) Center for Molecular Neurology, VIB 2000, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp 2000, Antwerp, Belgium
| | - Liene Bossaerts
- Department of Biomedical Sciences, University of Antwerp 2000, Antwerp, Belgium
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, VIB 2000, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Department of Biomedical Sciences, University of Antwerp 2000, Antwerp, Belgium
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, VIB 2000, Antwerp, Belgium
| | - Oriol Dols-Icardo
- Institut d'Investigacions Biomèdiques Sant Pau-Hospital de Sant Pau, Universitat Autònoma de Barcelona 08041, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED 28029, Madrid, Spain
| | - Alberto Lléo
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED 28029, Madrid, Spain
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau-Hospital de Sant Pau, Universitat Autònoma de Barcelona 08025, Barcelona, Spain
| | - Sonia Bellini
- Molecular Markers Laboratory, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli 25125, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli 25125, Brescia, Italy
| | - Marc Hulsman
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center 1081 HV, Amsterdam, The Netherlands
| | - Gregory A Petsko
- Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, Vlaams Instituut voor Biotechnologie (VIB) Center for Molecular Neurology, VIB 2000, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp 2000, Antwerp, Belgium
| | - Dasa Bohaciakova
- Department of Histology and Embryology, Faculty of Medicine, Brno 62500, Czech Republic
- International Clinical Research Center, St. Anne's Faculty Hospital Brno 60200, Brno, Czech Republic
| | - Henne Holstege
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center 1081 HV, Amsterdam, The Netherlands
| | - Olav M Andersen
- Department of Biomedicine, Aarhus University, Aarhus C DK8000, Denmark
| |
Collapse
|
7
|
Hung C, Fertan E, Livesey FJ, Klenerman D, Patani R. APP antisense oligonucleotides reduce amyloid-β aggregation and rescue endolysosomal dysfunction in Alzheimer's disease. Brain 2024; 147:2325-2333. [PMID: 38527856 PMCID: PMC11224613 DOI: 10.1093/brain/awae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/23/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
APP gene dosage is strongly associated with Alzheimer's disease (AD) pathogenesis. Genomic duplication of the APP locus leads to autosomal dominant early-onset AD. Individuals with Down syndrome (trisomy of chromosome 21) harbour three copies of the APP gene and invariably develop progressive AD with highly characteristic neuropathological features. Restoring expression of APP to the equivalent of that of two gene copies, or lower, is a rational therapeutic strategy, as it would restore physiological levels of neuronal APP protein without the potentially deleterious consequences of inadvertently inducing loss of APP function. Here we find that antisense oligonucleotides (ASOs) targeting APP are an effective approach to reduce APP protein levels and rescue endolysosome and autophagy dysfunction in APP duplication and Trisomy 21 human induced pluripotent stem cell (hiPSC)-derived cortical neurons. Importantly, using ultrasensitive single-aggregate imaging techniques, we show that APP targeting ASOs significantly reduce both intracellular and extracellular amyloid-β-containing aggregates. Our results highlight the potential of APP ASOs as a therapeutic approach for forms of AD caused by duplication of the APP gene, including monogenic AD and AD related to Down syndrome.
Collapse
Affiliation(s)
- Christy Hung
- Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, London WC1N 1DZ, UK
| | - Emre Fertan
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Frederick J Livesey
- Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, London WC1N 1DZ, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge CB2 0XY, UK
| | - Rickie Patani
- Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
8
|
Adeoye T, Shah SI, Ullah G. Systematic Analysis of Biological Processes Reveals Gene Co-expression Modules Driving Pathway Dysregulation in Alzheimer's Disease. Aging Dis 2024:AD.2024.0429. [PMID: 38913039 DOI: 10.14336/ad.2024.0429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024] Open
Abstract
Alzheimer's disease (AD) manifests as a complex systems pathology with intricate interplay among various genes and biological processes. Traditional differential gene expression (DEG) analysis, while commonly employed to characterize AD-driven perturbations, does not sufficiently capture the full spectrum of underlying biological processes. Utilizing single-nucleus RNA-sequencing data from postmortem brain samples across key regions-middle temporal gyrus, superior frontal gyrus, and entorhinal cortex-we provide a comprehensive systematic analysis of disrupted processes in AD. We go beyond the DEG-centric analysis by integrating pathway activity analysis with weighted gene co-expression patterns to comprehensively map gene interconnectivity, identifying region- and cell-type-specific drivers of biological processes associated with AD. Our analysis reveals profound modular heterogeneity in neurons and glia as well as extensive AD-related functional disruptions. Co-expression networks highlighted the extended involvement of astrocytes and microglia in biological processes beyond neuroinflammation, such as calcium homeostasis, glutamate regulation, lipid metabolism, vesicle-mediated transport, and TOR signaling. We find limited representation of DEGs within dysregulated pathways across neurons and glial cells, suggesting that differential gene expression alone may not adequately represent the disease complexity. Further dissection of inferred gene modules revealed distinct dynamics of hub DEGs in neurons versus glia, suggesting that DEGs exert more impact on neurons compared to glial cells in driving modular dysregulations underlying perturbed biological processes. Interestingly, we observe an overall downregulation of astrocyte and microglia modules across all brain regions in AD, indicating a prevailing trend of functional repression in glial cells across these regions. Notable genes from the CALM and HSP90 families emerged as hub genes across neuronal modules in all brain regions, suggesting conserved roles as drivers of synaptic dysfunction in AD. Our findings demonstrate the importance of an integrated, systems-oriented approach combining pathway and network analysis to comprehensively understand the cell-type-specific roles of genes in AD-related biological processes.
Collapse
|
9
|
Bretou M, Sannerud R, Escamilla-Ayala A, Leroy T, Vrancx C, Van Acker ZP, Perdok A, Vermeire W, Vorsters I, Van Keymolen S, Maxson M, Pavie B, Wierda K, Eskelinen EL, Annaert W. Accumulation of APP C-terminal fragments causes endolysosomal dysfunction through the dysregulation of late endosome to lysosome-ER contact sites. Dev Cell 2024; 59:1571-1592.e9. [PMID: 38626765 DOI: 10.1016/j.devcel.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/02/2023] [Accepted: 03/20/2024] [Indexed: 04/18/2024]
Abstract
Neuronal endosomal and lysosomal abnormalities are among the early changes observed in Alzheimer's disease (AD) before plaques appear. However, it is unclear whether distinct endolysosomal defects are temporally organized and how altered γ-secretase function or amyloid precursor protein (APP) metabolism contribute to these changes. Inhibiting γ-secretase chronically, in mouse embryonic fibroblast and hippocampal neurons, led to a gradual endolysosomal collapse initiated by decreased lysosomal calcium and increased cholesterol, causing downstream defects in endosomal recycling and maturation. This endolysosomal demise is γ-secretase dependent, requires membrane-tethered APP cytoplasmic domains, and is rescued by APP depletion. APP C-terminal fragments (CTFs) localized to late endosome/lysosome-endoplasmic reticulum contacts; an excess of APP-CTFs herein reduced lysosomal Ca2+ refilling from the endoplasmic reticulum, promoting cholesterol accretion. Tonic regulation by APP-CTFs provides a mechanistic explanation for their cellular toxicity: failure to timely degrade APP-CTFs sustains downstream signaling, instigating lysosomal dyshomeostasis, as observed in prodromal AD. This is the opposite of substrates such as Notch, which require intramembrane proteolysis to initiate signaling.
Collapse
Affiliation(s)
- Marine Bretou
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Ragna Sannerud
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Tom Leroy
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Céline Vrancx
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Zoë P Van Acker
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Anika Perdok
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Wendy Vermeire
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Inge Vorsters
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Sophie Van Keymolen
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Michelle Maxson
- Cell Biology Program, The Hospital for Sick Children, Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Benjamin Pavie
- VIB-BioImaging Core, VIB-Center for Brain and Disease Research, Leuven, Belgium
| | - Keimpe Wierda
- Electrophysiology Expertise Unit, VIB-Center for Brain and Disease Research, Leuven, Belgium
| | | | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium; Department of Neurosciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
10
|
Ahmed H, Wang Y, Griffiths WJ, Levey AI, Pikuleva I, Liang SH, Haider A. Brain cholesterol and Alzheimer's disease: challenges and opportunities in probe and drug development. Brain 2024; 147:1622-1635. [PMID: 38301270 PMCID: PMC11068113 DOI: 10.1093/brain/awae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 12/20/2023] [Accepted: 01/13/2024] [Indexed: 02/03/2024] Open
Abstract
Cholesterol homeostasis is impaired in Alzheimer's disease; however, attempts to modulate brain cholesterol biology have not translated into tangible clinical benefits for patients to date. Several recent milestone developments have substantially improved our understanding of how excess neuronal cholesterol contributes to the pathophysiology of Alzheimer's disease. Indeed, neuronal cholesterol was linked to the formation of amyloid-β and neurofibrillary tangles through molecular pathways that were recently delineated in mechanistic studies. Furthermore, remarkable advances in translational molecular imaging have now made it possible to probe cholesterol metabolism in the living human brain with PET, which is an important prerequisite for future clinical trials that target the brain cholesterol machinery in Alzheimer's disease patients-with the ultimate aim being to develop disease-modifying treatments. This work summarizes current concepts of how the biosynthesis, transport and clearance of brain cholesterol are affected in Alzheimer's disease. Further, current strategies to reverse these alterations by pharmacotherapy are critically discussed in the wake of emerging translational research tools that support the assessment of brain cholesterol biology not only in animal models but also in patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Hazem Ahmed
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, 8093 Zurich, Switzerland
| | - Yuqin Wang
- Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, UK
| | - William J Griffiths
- Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, UK
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Irina Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ahmed Haider
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
11
|
Mishra S, Jayadev S, Young JE. Differential effects of SORL1 deficiency on the endo-lysosomal network in human neurons and microglia. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220389. [PMID: 38368935 PMCID: PMC10874699 DOI: 10.1098/rstb.2022.0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/27/2023] [Indexed: 02/20/2024] Open
Abstract
The endosomal gene SORL1 is a strong Alzheimer's disease (AD) risk gene that harbours loss-of-function variants causative for developing AD. The SORL1 protein SORL1/SORLA is an endosomal receptor that interacts with the multi-protein sorting complex retromer to traffic various cargo through the endo-lysosomal network (ELN). Impairments in endo-lysosomal trafficking are an early cellular symptom in AD and a novel therapeutic target. However, the cell types of the central nervous system are diverse and use the ELN differently. If this pathway is to be effectively therapeutically targeted, understanding how key molecules in the ELN function in various cell types and how manipulating them affects cell-type specific responses relative to AD is essential. Here, we discuss an example where deficiency of SORL1 expression in a human model leads to stress on early endosomes and recycling endosomes in neurons, but preferentially leads to stress on lysosomes in microglia. The differences observed in these organelles could relate to the unique roles of these cells in the brain as neurons are professional secretory cells and microglia are professional phagocytic cells. Experiments to untangle these differences are fundamental to advancing the understanding of cell biology in AD and elucidating important pathways for therapeutic development. Human-induced pluripotent stem cell models are a valuable platform for such experiments. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
- Swati Mishra
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Suman Jayadev
- Deparment of Neurology, University of Washington, Seattle, WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Jessica E. Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
12
|
Fazeli E, Fazeli E, Fojtík P, Holstege H, Andersen OM. Functional characterization of SORL1 variants in cell-based assays to investigate variant pathogenicity. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220377. [PMID: 38368933 PMCID: PMC10874698 DOI: 10.1098/rstb.2022.0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 12/11/2023] [Indexed: 02/20/2024] Open
Abstract
SORLA, the protein encoded by the SORL1 gene, has an important role in recycling cargo proteins to the cell surface. While SORLA loss-of-function variants occur almost exclusively in Alzheimer's disease cases, the majority of SORL1 variants are missense variants that are individually rare and can have individual mechanisms how they impair SORLA function as well as have individual effect size on disease risk. However, since carriers mostly come from small pedigrees, it is challenging to determine variant penetrance, leaving clinical significance associated with most missense variants unclear. In this article, we present functional approaches to evaluate the pathogenicity of a SORL1 variant, p.D1105H. First, we generated our mutant receptor by inserting the D1105H variant into the full-length SORLA-WT receptor. Then using western blot analysis we quantified the effect of the mutation on maturation and shedding of the receptor for transfected cells, and finally applied a flow cytometry approach to quantify SORLA expression at the cell surface. The results showed decreased maturation, decreased shedding, and decreased cell surface expression of D1105H compared with wild-type SORLA. We propose how these approaches can be used to functionally assess the pathogenicity of SORL1 variants in the future. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
- Elnaz Fazeli
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus 8000, Denmark
| | - Elham Fazeli
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus 8000, Denmark
| | - Petr Fojtík
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus 8000, Denmark
| | - Henne Holstege
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam Neurosocience, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Olav M. Andersen
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
13
|
Maninger JK, Nowak K, Goberdhan S, O'Donoghue R, Connor-Robson N. Cell type-specific functions of Alzheimer's disease endocytic risk genes. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220378. [PMID: 38368934 PMCID: PMC10874703 DOI: 10.1098/rstb.2022.0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/12/2023] [Indexed: 02/20/2024] Open
Abstract
Endocytosis is a key cellular pathway required for the internalization of cellular nutrients, lipids and receptor-bound cargoes. It is also critical for the recycling of cellular components, cellular trafficking and membrane dynamics. The endocytic pathway has been consistently implicated in Alzheimer's disease (AD) through repeated genome-wide association studies and the existence of rare coding mutations in endocytic genes. BIN1 and PICALM are two of the most significant late-onset AD risk genes after APOE and are both key to clathrin-mediated endocytic biology. Pathological studies also demonstrate that endocytic dysfunction is an early characteristic of late-onset AD, being seen in the prodromal phase of the disease. Different cell types of the brain have specific requirements of the endocytic pathway. Neurons require efficient recycling of synaptic vesicles and microglia use the specialized form of endocytosis-phagocytosis-for their normal function. Therefore, disease-associated changes in endocytic genes will have varied impacts across different cell types, which remains to be fully explored. Given the genetic and pathological evidence for endocytic dysfunction in AD, understanding how such changes and the related cell type-specific vulnerabilities impact normal cellular function and contribute to disease is vital and could present novel therapeutic opportunities. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
| | - Karolina Nowak
- Cardiff University, Dementia Research Institute, Cardiff University¸ Cardiff, CF24 4HQ, UK
| | - Srilakshmi Goberdhan
- Cardiff University, Dementia Research Institute, Cardiff University¸ Cardiff, CF24 4HQ, UK
| | - Rachel O'Donoghue
- Cardiff University, Dementia Research Institute, Cardiff University¸ Cardiff, CF24 4HQ, UK
| | - Natalie Connor-Robson
- Cardiff University, Dementia Research Institute, Cardiff University¸ Cardiff, CF24 4HQ, UK
| |
Collapse
|
14
|
McDiarmid AH, Gospodinova KO, Elliott RJR, Dawson JC, Graham RE, El-Daher MT, Anderson SM, Glen SC, Glerup S, Carragher NO, Evans KL. Morphological profiling in human neural progenitor cells classifies hits in a pilot drug screen for Alzheimer's disease. Brain Commun 2024; 6:fcae101. [PMID: 38576795 PMCID: PMC10994270 DOI: 10.1093/braincomms/fcae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/15/2023] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
Alzheimer's disease accounts for 60-70% of dementia cases. Current treatments are inadequate and there is a need to develop new approaches to drug discovery. Recently, in cancer, morphological profiling has been used in combination with high-throughput screening of small-molecule libraries in human cells in vitro. To test feasibility of this approach for Alzheimer's disease, we developed a cell morphology-based drug screen centred on the risk gene, SORL1 (which encodes the protein SORLA). Increased Alzheimer's disease risk has been repeatedly linked to variants in SORL1, particularly those conferring loss or decreased expression of SORLA, and lower SORL1 levels are observed in post-mortem brain samples from individuals with Alzheimer's disease. Consistent with its role in the endolysosomal pathway, SORL1 deletion is associated with enlarged endosomes in neural progenitor cells and neurons. We, therefore, hypothesized that multi-parametric, image-based cell phenotyping would identify features characteristic of SORL1 deletion. An automated morphological profiling method (Cell Painting) was adapted to neural progenitor cells and used to determine the phenotypic response of SORL1-/- neural progenitor cells to treatment with compounds from a small internationally approved drug library (TargetMol, 330 compounds). We detected distinct phenotypic signatures for SORL1-/- neural progenitor cells compared to isogenic wild-type controls. Furthermore, we identified 16 compounds (representing 14 drugs) that reversed the mutant morphological signatures in neural progenitor cells derived from three SORL1-/- induced pluripotent stem cell sub-clones. Network pharmacology analysis revealed the 16 compounds belonged to five mechanistic groups: 20S proteasome, aldehyde dehydrogenase, topoisomerase I and II, and DNA synthesis inhibitors. Enrichment analysis identified DNA synthesis/damage/repair, proteases/proteasome and metabolism as key pathways/biological processes. Prediction of novel targets revealed enrichment in pathways associated with neural cell function and Alzheimer's disease. Overall, this work suggests that (i) a quantitative phenotypic metric can distinguish induced pluripotent stem cell-derived SORL1-/- neural progenitor cells from isogenic wild-type controls and (ii) phenotypic screening combined with multi-parametric high-content image analysis is a viable option for drug repurposing and discovery in this human neural cell model of Alzheimer's disease.
Collapse
Affiliation(s)
- Amina H McDiarmid
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Katerina O Gospodinova
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Richard J R Elliott
- Cancer Research UK Scotland Centre, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - John C Dawson
- Cancer Research UK Scotland Centre, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Rebecca E Graham
- Cancer Research UK Scotland Centre, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Marie-Therese El-Daher
- Medical Research Council Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Susan M Anderson
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Sophie C Glen
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Neil O Carragher
- Cancer Research UK Scotland Centre, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Kathryn L Evans
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| |
Collapse
|
15
|
Adeoye T, Shah SI, Ullah G. Systematic Analysis of Biological Processes Reveals Gene Co-expression Modules Driving Pathway Dysregulation in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585267. [PMID: 38559218 PMCID: PMC10980062 DOI: 10.1101/2024.03.15.585267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Alzheimer's disease (AD) manifests as a complex systems pathology with intricate interplay among various genes and biological processes. Traditional differential gene expression (DEG) analysis, while commonly employed to characterize AD-driven perturbations, does not sufficiently capture the full spectrum of underlying biological processes. Utilizing single-nucleus RNA-sequencing data from postmortem brain samples across key regions-middle temporal gyrus, superior frontal gyrus, and entorhinal cortex-we provide a comprehensive systematic analysis of disrupted processes in AD. We go beyond the DEG-centric analysis by integrating pathway activity analysis with weighted gene co-expression patterns to comprehensively map gene interconnectivity, identifying region- and cell-type-specific drivers of biological processes associated with AD. Our analysis reveals profound modular heterogeneity in neurons and glia as well as extensive AD-related functional disruptions. Co-expression networks highlighted the extended involvement of astrocytes and microglia in biological processes beyond neuroinflammation, such as calcium homeostasis, glutamate regulation, lipid metabolism, vesicle-mediated transport, and TOR signaling. We find limited representation of DEGs within dysregulated pathways across neurons and glial cells, indicating that differential gene expression alone may not adequately represent the disease complexity. Further dissection of inferred gene modules revealed distinct dynamics of hub DEGs in neurons versus glia, highlighting the differential impact of DEGs on neurons compared to glial cells in driving modular dysregulations underlying perturbed biological processes. Interestingly, we note an overall downregulation of both astrocyte and microglia modules in AD across all brain regions, suggesting a prevailing trend of functional repression in glial cells across these regions. Notable genes, including those of the CALM and HSP90 family genes emerged as hub genes across neuronal modules in all brain regions, indicating conserved roles as drivers of synaptic dysfunction in AD. Our findings demonstrate the importance of an integrated, systems-oriented approach combining pathway and network analysis for a comprehensive understanding of the cell-type-specific roles of genes in AD-related biological processes.
Collapse
Affiliation(s)
- Temitope Adeoye
- Department of Physics, University of South Florida, Tampa, FL 33620
| | - Syed I Shah
- Department of Physics, University of South Florida, Tampa, FL 33620
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, FL 33620
| |
Collapse
|
16
|
Rybnicek J, Chen Y, Milic M, Tio ES, McLaurin J, Hohman TJ, De Jager PL, Schneider JA, Wang Y, Bennett DA, Tripathy S, Felsky D, Lambe EK. CHRNA5 links chandelier cells to severity of amyloid pathology in aging and Alzheimer's disease. Transl Psychiatry 2024; 14:83. [PMID: 38331937 PMCID: PMC10853183 DOI: 10.1038/s41398-024-02785-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
Changes in high-affinity nicotinic acetylcholine receptors are intricately connected to neuropathology in Alzheimer's Disease (AD). Protective and cognitive-enhancing roles for the nicotinic α5 subunit have been identified, but this gene has not been closely examined in the context of human aging and dementia. Therefore, we investigate the nicotinic α5 gene CHRNA5 and the impact of relevant single nucleotide polymorphisms (SNPs) in prefrontal cortex from 922 individuals with matched genotypic and post-mortem RNA sequencing in the Religious Orders Study and Memory and Aging Project (ROS/MAP). We find that a genotype robustly linked to increased expression of CHRNA5 (rs1979905A2) predicts significantly reduced cortical β-amyloid load. Intriguingly, co-expression analysis suggests CHRNA5 has a distinct cellular expression profile compared to other nicotinic receptor genes. Consistent with this prediction, single nucleus RNA sequencing from 22 individuals reveals CHRNA5 expression is disproportionately elevated in chandelier neurons, a distinct subtype of inhibitory neuron known for its role in excitatory/inhibitory (E/I) balance. We show that chandelier neurons are enriched in amyloid-binding proteins compared to basket cells, the other major subtype of PVALB-positive interneurons. Consistent with the hypothesis that nicotinic receptors in chandelier cells normally protect against β-amyloid, cell-type proportion analysis from 549 individuals reveals these neurons show amyloid-associated vulnerability only in individuals with impaired function/trafficking of nicotinic α5-containing receptors due to homozygosity of the missense CHRNA5 SNP (rs16969968A2). Taken together, these findings suggest that CHRNA5 and its nicotinic α5 subunit exert a neuroprotective role in aging and Alzheimer's disease centered on chandelier interneurons.
Collapse
Affiliation(s)
- Jonas Rybnicek
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Yuxiao Chen
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Milos Milic
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Earvin S Tio
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - JoAnne McLaurin
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Timothy J Hohman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Julie A Schneider
- Department of Pathology, Rush University, Chicago, IL, USA
- Department of Neurological Sciences, Rush University, Chicago, IL, USA
| | - Yanling Wang
- Department of Neurological Sciences, Rush University, Chicago, IL, USA
| | - David A Bennett
- Department of Neurological Sciences, Rush University, Chicago, IL, USA
| | - Shreejoy Tripathy
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Daniel Felsky
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Evelyn K Lambe
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Department of OBGYN, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
17
|
Fazeli E, Child DD, Bucks SA, Stovarsky M, Edwards G, Rose SE, Yu CE, Latimer C, Kitago Y, Bird T, Jayadev S, Andersen OM, Young JE. A familial missense variant in the Alzheimer's disease gene SORL1 impairs its maturation and endosomal sorting. Acta Neuropathol 2024; 147:20. [PMID: 38244079 PMCID: PMC10799806 DOI: 10.1007/s00401-023-02670-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/11/2023] [Accepted: 12/16/2023] [Indexed: 01/22/2024]
Abstract
The SORL1 gene has recently emerged as a strong Alzheimer's Disease (AD) risk gene. Over 500 different variants have been identified in the gene and the contribution of individual variants to AD development and progression is still largely unknown. Here, we describe a family consisting of 2 parents and 5 offspring. Both parents were affected with dementia and one had confirmed AD pathology with an age of onset > 75 years. All offspring were affected with AD with ages at onset ranging from 53 years to 74 years. DNA was available from the parent with confirmed AD and 5 offspring. We identified a coding variant, p.(Arg953Cys), in SORL1 in 5 of 6 individuals affected by AD. Notably, variant carriers had severe AD pathology, and the SORL1 variant segregated with TDP-43 pathology (LATE-NC). We further characterized this variant and show that this Arginine substitution occurs at a critical position in the YWTD-domain of the SORL1 translation product, SORL1. Functional studies further show that the p.R953C variant leads to retention of the SORL1 protein in the endoplasmic reticulum which leads to decreased maturation and shedding of the receptor and prevents its normal endosomal trafficking. Together, our analysis suggests that p.R953C is a pathogenic variant of SORL1 and sheds light on mechanisms of how missense SORL1 variants may lead to AD.
Collapse
Affiliation(s)
- Elnaz Fazeli
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Daniel D Child
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98109, USA
| | - Stephanie A Bucks
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
| | - Miki Stovarsky
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, 98195, USA
| | - Gabrielle Edwards
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
| | - Shannon E Rose
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98109, USA
| | - Chang-En Yu
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, 98195, USA
- Geriatric Research Education and Clinical Center (GRECC), Veterans Administration Health Care System, Seattle, WA, 98108, USA
| | - Caitlin Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98109, USA
| | - Yu Kitago
- Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Thomas Bird
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, 98195, USA
- Geriatric Research Education and Clinical Center (GRECC), Veterans Administration Health Care System, Seattle, WA, 98108, USA
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA.
| | - Olav M Andersen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark.
| | - Jessica E Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
18
|
Mishra S, Knupp A, Kinoshita C, Williams CA, Rose SE, Martinez R, Theofilas P, Young JE. Pharmacologic enhancement of retromer rescues endosomal pathology induced by defects in the Alzheimer's gene SORL1. Stem Cell Reports 2023; 18:2434-2450. [PMID: 37949073 PMCID: PMC10724056 DOI: 10.1016/j.stemcr.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
The SORL1 gene (SORLA) is strongly associated with risk of developing Alzheimer's disease (AD). SORLA is a regulator of endosomal trafficking in neurons and interacts with retromer, a complex that is a "master conductor" of endosomal trafficking. Small molecules can increase retromer expression in vitro, enhancing its function. We treated hiPSC-derived cortical neurons that are either fully deficient, haploinsufficient, or that harbor one copy of SORL1 variants linked to AD with TPT-260, a retromer-enhancing molecule. We show significant increases in retromer subunit VPS26B expression. We tested whether endosomal, amyloid, and TAU pathologies were corrected. We observed that the degree of rescue by TPT-260 treatment depended on the number of copies of functional SORL1 and which SORL1 variant was expressed. Using a disease-relevant preclinical model, our work illuminates how the SORL1-retromer pathway can be therapeutically harnessed.
Collapse
Affiliation(s)
- Swati Mishra
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Allison Knupp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Chizuru Kinoshita
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - C Andrew Williams
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Shannon E Rose
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Refugio Martinez
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Panos Theofilas
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jessica E Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
19
|
LeVine SM. Examining the Role of a Functional Deficiency of Iron in Lysosomal Storage Disorders with Translational Relevance to Alzheimer's Disease. Cells 2023; 12:2641. [PMID: 37998376 PMCID: PMC10670892 DOI: 10.3390/cells12222641] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
The recently presented Azalea Hypothesis for Alzheimer's disease asserts that iron becomes sequestered, leading to a functional iron deficiency that contributes to neurodegeneration. Iron sequestration can occur by iron being bound to protein aggregates, such as amyloid β and tau, iron-rich structures not undergoing recycling (e.g., due to disrupted ferritinophagy and impaired mitophagy), and diminished delivery of iron from the lysosome to the cytosol. Reduced iron availability for biochemical reactions causes cells to respond to acquire additional iron, resulting in an elevation in the total iron level within affected brain regions. As the amount of unavailable iron increases, the level of available iron decreases until eventually it is unable to meet cellular demands, which leads to a functional iron deficiency. Normally, the lysosome plays an integral role in cellular iron homeostasis by facilitating both the delivery of iron to the cytosol (e.g., after endocytosis of the iron-transferrin-transferrin receptor complex) and the cellular recycling of iron. During a lysosomal storage disorder, an enzyme deficiency causes undigested substrates to accumulate, causing a sequelae of pathogenic events that may include cellular iron dyshomeostasis. Thus, a functional deficiency of iron may be a pathogenic mechanism occurring within several lysosomal storage diseases and Alzheimer's disease.
Collapse
Affiliation(s)
- Steven M LeVine
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
20
|
Fazeli E, Child DD, Bucks SA, Stovarsky M, Edwards G, Rose SE, Yu CE, Latimer C, Kitago Y, Bird T, Jayadev S, Andersen OM, Young JE. A familial missense variant in the Alzheimer's Disease gene SORL1 impairs its maturation and endosomal sorting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.01.547348. [PMID: 37461597 PMCID: PMC10349966 DOI: 10.1101/2023.07.01.547348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
The SORL1 gene has recently emerged as a strong Alzheimer's Disease (AD) risk gene. Over 500 different variants have been identified in the gene and the contribution of individual variants to AD development and progression is still largely unknown. Here, we describe a family consisting of 2 parents and 5 offspring. Both parents were affected with dementia and one had confirmed AD pathology with an age of onset >75 years. All offspring were affected with AD with ages at onset ranging from 53yrs-74yrs. DNA was available from the parent with confirmed AD and 5 offspring. We identified a coding variant, p.(Arg953Cys), in SORL1 in 5 of 6 individuals affected by AD. Notably, variant carriers had severe AD pathology, and the SORL1 variant segregated with TDP-43 pathology (LATE-NC). We further characterized this variant and show that this Arginine substitution occurs at a critical position in the YWTD-domain of the SORL1 translation product, SORL1. Functional studies further show that the p.R953C variant leads to retention of the SORL1 protein in the endoplasmic reticulum which leads to decreased maturation and shedding of the receptor and prevents its normal endosomal trafficking. Together, our analysis suggests that p.R953C is a pathogenic variant of SORL1 and sheds light on mechanisms of how missense SORL1 variants may lead to AD.
Collapse
Affiliation(s)
- Elnaz Fazeli
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK8000 AarhusC, Denmark
| | - Daniel D. Child
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle Washington USA
| | - Stephanie A. Bucks
- Department of Neurology, University of Washington, Seattle Washington USA
| | - Miki Stovarsky
- Department of Medicine, Division of Medical Genetics University of Washington, Seattle Washington USA
| | - Gabrielle Edwards
- Department of Neurology, University of Washington, Seattle Washington USA
| | - Shannon E. Rose
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle Washington USA
| | - Chang-En Yu
- Department of Medicine, Division of Medical Genetics University of Washington, Seattle Washington USA
- Geriatric Research Education and Clinical Center (GRECC), Veterans Administration Health Care System
| | - Caitlin Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle Washington USA
| | - Yu Kitago
- Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115
| | - Thomas Bird
- Department of Neurology, University of Washington, Seattle Washington USA
- Department of Medicine, Division of Medical Genetics University of Washington, Seattle Washington USA
- Geriatric Research Education and Clinical Center (GRECC), Veterans Administration Health Care System
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle Washington USA
| | - Olav M. Andersen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK8000 AarhusC, Denmark
| | - Jessica E. Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle Washington USA
| |
Collapse
|
21
|
Lee WP, Wang H, Dombroski B, Cheng PL, Tucci A, Si YQ, Farrell J, Tzeng JY, Leung YY, Malamon J, Wang LS, Vardarajan B, Farrer L, Schellenberg G. Structural Variation Detection and Association Analysis of Whole-Genome-Sequence Data from 16,905 Alzheimer's Diseases Sequencing Project Subjects. RESEARCH SQUARE 2023:rs.3.rs-3353179. [PMID: 37886469 PMCID: PMC10602095 DOI: 10.21203/rs.3.rs-3353179/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Structural variations (SVs) are important contributors to the genetics of human diseases. However, their role in Alzheimer's disease (AD) remains largely unstudied due to challenges in accurately detecting SVs. We analyzed whole-genome sequencing data from the Alzheimer's Disease Sequencing Project (N = 16,905) and identified 400,234 (168,223 high-quality) SVs. Laboratory validation yielded a sensitivity of 82% (85% for high-quality). We found a significant burden of deletions and duplications in AD cases, particularly for singletons and homozygous events. On AD genes, we observed the ultra-rare SVs associated with the disease, including protein-altering SVs in ABCA7, APP, PLCG2, and SORL1. Twenty-one SVs are in linkage disequilibrium (LD) with known AD-risk variants, exemplified by a 5k deletion in complete LD with rs143080277 in NCK2. We also identified 16 SVs associated with AD and 13 SVs linked to AD-related pathological/cognitive endophenotypes. This study highlights the pivotal role of SVs in shaping our understanding of AD genetics.
Collapse
|
22
|
Klein M, Failla AV, Hermey G. Internally tagged Vps10p-domain receptors reveal uptake of the neurotrophin BDNF. J Biol Chem 2023; 299:105216. [PMID: 37660918 PMCID: PMC10540051 DOI: 10.1016/j.jbc.2023.105216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
The Vps10p-domain (Vps10p-D) receptor family consists of Sortilin, SorLA, SorCS1, SorCS2, and SorCS3. They mediate internalization and intracellular sorting of specific cargo in various cell types, but underlying molecular determinants are incompletely understood. Deciphering the dynamic intracellular itineraries of Vps10p-D receptors is crucial for understanding their role in physiological and cytopathological processes. However, studying their spatial and temporal dynamics by live imaging has been challenging so far, as terminal tagging with fluorophores presumably impedes several of their protein interactions and thus functions. Here, we addressed the lack of appropriate tools and developed functional versions of all family members internally tagged in their ectodomains. We predict folding of the newly designed receptors by bioinformatics and show their exit from the endoplasmic reticulum. We examined their subcellular localization in immortalized cells and primary cultured neurons by immunocytochemistry and live imaging. This was, as far as known, identical to that of wt counterparts. We observed homodimerization of fluorophore-tagged SorCS2 by coimmunoprecipitation and fluorescence lifetime imaging, suggesting functional leucine-rich domains. Through ligand uptake experiments, live imaging and fluorescence lifetime imaging, we show for the first time that all Vps10p-D receptors interact with the neurotrophin brain-derived neurotrophic factor and mediate its uptake, indicating functionality of the Vps10p-Ds. In summary, we developed versions of all Vps10p-D receptors, with internal fluorophore tags that preserve several functions of the cytoplasmic and extracellular domains. These newly developed fluorophore-tagged receptors are likely to serve as powerful functional tools for accurate live studies of the individual cellular functions of Vps10p-D receptors.
Collapse
Affiliation(s)
- Marcel Klein
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | - Guido Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
23
|
Wang H, Dombroski BA, Cheng PL, Tucci A, Si YQ, Farrell JJ, Tzeng JY, Leung YY, Malamon JS, Wang LS, Vardarajan BN, Farrer LA, Schellenberg GD, Lee WP. Structural Variation Detection and Association Analysis of Whole-Genome-Sequence Data from 16,905 Alzheimer's Diseases Sequencing Project Subjects. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.13.23295505. [PMID: 37745545 PMCID: PMC10516060 DOI: 10.1101/2023.09.13.23295505] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Structural variations (SVs) are important contributors to the genetics of numerous human diseases. However, their role in Alzheimer's disease (AD) remains largely unstudied due to challenges in accurately detecting SVs. Here, we analyzed whole-genome sequencing data from the Alzheimer's Disease Sequencing Project (ADSP, N=16,905 subjects) and identified 400,234 (168,223 high-quality) SVs. We found a significant burden of deletions and duplications in AD cases (OR=1.05, P=0.03), particularly for singletons (OR=1.12, P=0.0002) and homozygous events (OR=1.10, P<0.0004). On AD genes, the ultra-rare SVs, including protein-altering SVs in ABCA7, APP, PLCG2, and SORL1, were associated with AD (SKAT-O P=0.004). Twenty-one SVs are in linkage disequilibrium (LD) with known AD-risk variants, e.g., a deletion (chr2:105731359-105736864) in complete LD (R2=0.99) with rs143080277 (chr2:105749599) in NCK2. We also identified 16 SVs associated with AD and 13 SVs associated with AD-related pathological/cognitive endophenotypes. Our findings demonstrate the broad impact of SVs on AD genetics.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Beth A Dombroski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Po-Liang Cheng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Albert Tucci
- Bioinformatics Research Center, North Carolina State University, NC 27695, USA
| | - Ya-Qin Si
- Bioinformatics Research Center, North Carolina State University, NC 27695, USA
| | - John J Farrell
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, MA 02118, USA
| | - Jung-Ying Tzeng
- Bioinformatics Research Center, North Carolina State University, NC 27695, USA
| | - Yuk Yee Leung
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - John S Malamon
- Department of Surgery, Scholl of Medicine, University of Colorado, CO 80045, USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Badri N Vardarajan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, NY 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, NY 10032, USA
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, MA 02118, USA
- Department of Neurology, Boston University School of Medicine, MA 02118, USA
- Department of Ophthalmology, Boston University School of Medicine, MA 02118, USA
- Department of Biostatistics, Boston University School of Public Health, MA 02118, USA
- Department of Epidemiology, Boston University School of Public Health, MA 02118, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| |
Collapse
|
24
|
Lee H, Aylward AJ, Pearse RV, Lish AM, Hsieh YC, Augur ZM, Benoit CR, Chou V, Knupp A, Pan C, Goberdhan S, Duong DM, Seyfried NT, Bennett DA, Taga MF, Huynh K, Arnold M, Meikle PJ, De Jager PL, Menon V, Young JE, Young-Pearse TL. Cell-type-specific regulation of APOE and CLU levels in human neurons by the Alzheimer's disease risk gene SORL1. Cell Rep 2023; 42:112994. [PMID: 37611586 PMCID: PMC10568487 DOI: 10.1016/j.celrep.2023.112994] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/04/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
SORL1 is implicated in the pathogenesis of Alzheimer's disease (AD) through genetic studies. To interrogate the roles of SORL1 in human brain cells, SORL1-null induced pluripotent stem cells (iPSCs) were differentiated to neuron, astrocyte, microglial, and endothelial cell fates. Loss of SORL1 leads to alterations in both overlapping and distinct pathways across cell types, with the greatest effects in neurons and astrocytes. SORL1 loss induces a neuron-specific reduction in apolipoprotein E (APOE) and clusterin (CLU) and altered lipid profiles. Analyses of iPSCs derived from a large cohort reveal a neuron-specific association between SORL1, APOE, and CLU levels, a finding validated in postmortem brain. Enhancement of retromer-mediated trafficking rescues tau phenotypes observed in SORL1-null neurons but does not rescue APOE levels. Pathway analyses implicate transforming growth factor β (TGF-β)/SMAD signaling in SORL1 function, and modulating SMAD signaling in neurons alters APOE RNA levels in a SORL1-dependent manner. Taken together, these data provide a mechanistic link between strong genetic risk factors for AD.
Collapse
Affiliation(s)
- Hyo Lee
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Aimee J Aylward
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Richard V Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alexandra M Lish
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yi-Chen Hsieh
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Zachary M Augur
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Courtney R Benoit
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Vicky Chou
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Allison Knupp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Cheryl Pan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Srilakshmi Goberdhan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Duc M Duong
- Department of Biochemistry, Emory School of Medicine, Atlanta, GA, USA
| | | | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Mariko F Taga
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Matthias Arnold
- Institute of Computational Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Vilas Menon
- Center for Translational and Computational Neuroimmunology, Department of Neurology and the Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Jessica E Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Quan M, Cao S, Wang Q, Wang S, Jia J. Genetic Phenotypes of Alzheimer's Disease: Mechanisms and Potential Therapy. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:333-349. [PMID: 37589021 PMCID: PMC10425323 DOI: 10.1007/s43657-023-00098-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 08/18/2023]
Abstract
Years of intensive research has brought us extensive knowledge on the genetic and molecular factors involved in Alzheimer's disease (AD). In addition to the mutations in the three main causative genes of familial AD (FAD) including presenilins and amyloid precursor protein genes, studies have identified several genes as the most plausible genes for the onset and progression of FAD, such as triggering receptor expressed on myeloid cells 2, sortilin-related receptor 1, and adenosine triphosphate-binding cassette transporter subfamily A member 7. The apolipoprotein E ε4 allele is reported to be the strongest genetic risk factor for sporadic AD (SAD), and it also plays an important role in FAD. Here, we reviewed recent developments in genetic and molecular studies that contributed to the understanding of the genetic phenotypes of FAD and compared them with SAD. We further reviewed the advancements in AD gene therapy and discussed the future perspectives based on the genetic phenotypes.
Collapse
Affiliation(s)
- Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, 100053 China
| | - Shuman Cao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, 100053 China
| | - Shiyuan Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, 100053 China
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, 100053 China
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, 100053 China
- Center of Alzheimer’s Disease, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, 100053 China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053 China
| |
Collapse
|
26
|
Klein M, Hermey G. Converging links between adult-onset neurodegenerative Alzheimer's disease and early life neurodegenerative neuronal ceroid lipofuscinosis? Neural Regen Res 2023; 18:1463-1471. [PMID: 36571343 PMCID: PMC10075119 DOI: 10.4103/1673-5374.361544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Evidence from genetics and from analyzing cellular and animal models have converged to suggest links between neurodegenerative disorders of early and late life. Here, we summarize emerging links between the most common late life neurodegenerative disease, Alzheimer's disease, and the most common early life neurodegenerative diseases, neuronal ceroid lipofuscinoses. Genetic studies reported an overlap of clinically diagnosed Alzheimer's disease and mutations in genes known to cause neuronal ceroid lipofuscinoses. Accumulating data strongly suggest dysfunction of intracellular trafficking mechanisms and the autophagy-endolysosome system in both types of neurodegenerative disorders. This suggests shared cytopathological processes underlying these different types of neurodegenerative diseases. A better understanding of the common mechanisms underlying the different diseases is important as this might lead to the identification of novel targets for therapeutic concepts, the transfer of therapeutic strategies from one disease to the other and therapeutic approaches tailored to patients with specific mutations. Here, we review dysfunctions of the endolysosomal autophagy pathway in Alzheimer's disease and neuronal ceroid lipofuscinoses and summarize emerging etiologic and genetic overlaps.
Collapse
Affiliation(s)
- Marcel Klein
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
27
|
Young-Pearse TL, Lee H, Hsieh YC, Chou V, Selkoe DJ. Moving beyond amyloid and tau to capture the biological heterogeneity of Alzheimer's disease. Trends Neurosci 2023; 46:426-444. [PMID: 37019812 PMCID: PMC10192069 DOI: 10.1016/j.tins.2023.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 04/05/2023]
Abstract
Alzheimer's disease (AD) manifests along a spectrum of cognitive deficits and levels of neuropathology. Genetic studies support a heterogeneous disease mechanism, with around 70 associated loci to date, implicating several biological processes that mediate risk for AD. Despite this heterogeneity, most experimental systems for testing new therapeutics are not designed to capture the genetically complex drivers of AD risk. In this review, we first provide an overview of those aspects of AD that are largely stereotyped and those that are heterogeneous, and we review the evidence supporting the concept that different subtypes of AD are important to consider in the design of agents for the prevention and treatment of the disease. We then dive into the multifaceted biological domains implicated to date in AD risk, highlighting studies of the diverse genetic drivers of disease. Finally, we explore recent efforts to identify biological subtypes of AD, with an emphasis on the experimental systems and data sets available to support progress in this area.
Collapse
Affiliation(s)
- Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Hyo Lee
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yi-Chen Hsieh
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Vicky Chou
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Van Acker ZP, Perdok A, Hellemans R, North K, Vorsters I, Cappel C, Dehairs J, Swinnen JV, Sannerud R, Bretou M, Damme M, Annaert W. Phospholipase D3 degrades mitochondrial DNA to regulate nucleotide signaling and APP metabolism. Nat Commun 2023; 14:2847. [PMID: 37225734 DOI: 10.1038/s41467-023-38501-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
Phospholipase D3 (PLD3) polymorphisms are linked to late-onset Alzheimer's disease (LOAD). Being a lysosomal 5'-3' exonuclease, its neuronal substrates remained unknown as well as how a defective lysosomal nucleotide catabolism connects to AD-proteinopathy. We identified mitochondrial DNA (mtDNA) as a major physiological substrate and show its manifest build-up in lysosomes of PLD3-defective cells. mtDNA accretion creates a degradative (proteolytic) bottleneck that presents at the ultrastructural level as a marked abundance of multilamellar bodies, often containing mitochondrial remnants, which correlates with increased PINK1-dependent mitophagy. Lysosomal leakage of mtDNA to the cytosol activates cGAS-STING signaling that upregulates autophagy and induces amyloid precursor C-terminal fragment (APP-CTF) and cholesterol accumulation. STING inhibition largely normalizes APP-CTF levels, whereas an APP knockout in PLD3-deficient backgrounds lowers STING activation and normalizes cholesterol biosynthesis. Collectively, we demonstrate molecular cross-talks through feedforward loops between lysosomal nucleotide turnover, cGAS-STING and APP metabolism that, when dysregulated, result in neuronal endolysosomal demise as observed in LOAD.
Collapse
Affiliation(s)
- Zoë P Van Acker
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Anika Perdok
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Ruben Hellemans
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Katherine North
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Inge Vorsters
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Cedric Cappel
- Laboratory for Molecular Cell Biology and Transgenic Research, Institute of Biochemistry, Christian-Albrechts-University Kiel, Otto-Hahn-Platz 9, Kiel, Germany
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism & Cancer, Department of Oncology, KU Leuven, B-3000, Leuven, Belgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism & Cancer, Department of Oncology, KU Leuven, B-3000, Leuven, Belgium
| | - Ragna Sannerud
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Marine Bretou
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Markus Damme
- Laboratory for Molecular Cell Biology and Transgenic Research, Institute of Biochemistry, Christian-Albrechts-University Kiel, Otto-Hahn-Platz 9, Kiel, Germany
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium.
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium.
| |
Collapse
|
29
|
Besin V, Martriano Humardani F, Thalia Mulyanata L. Neurogenomics of Alzheimer's Disease (AD): An Asian Population Review. Clin Chim Acta 2023; 546:117389. [PMID: 37211175 DOI: 10.1016/j.cca.2023.117389] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023]
Abstract
Alzheimer's disease (AD) is on the rise worldwide. Generally, AD is considered neurodegenerative when the production and clearance of amyloid-β (Aβ) are imbalanced. Recent research on genome-wide association studies (GWAS) has been explosive; GWAS indicates a relationship between single nucleotide polymorphism (SNP) and AD. GWAS also reveals ethnic differences between Caucasians and Asians. This indicates that pathogenesis between ethnic groups is distinct. According to current scientific knowledge, AD is a disease with a complex pathogenesis that includes impaired neuronal cholesterol regulation, immunity regulation, neurotransmitters regulation, Aβ clearance, Aβ production, and vascular regulation. Here, we demonstrate the pathogenesis of AD in an Asian population and the SNP risk of AD for future AD screening before onset. According to our knowledge, this is the first review of Alzheimer's disease to demonstrate the pathogenesis of AD based on SNP in an Asian population.
Collapse
Affiliation(s)
- Valentinus Besin
- Faculty of Medicine, University of Surabaya, Surabaya 60292, Indonesia.
| | - Farizky Martriano Humardani
- Faculty of Medicine, University of Surabaya, Surabaya 60292, Indonesia; Magister in Biomedical Science Program, Faculty of Medicine Universitas Brawijaya, Malang 65112, Indonesia
| | | |
Collapse
|
30
|
Lee H, Aylward AJ, Pearse RV, Hsieh YC, Augur ZM, Benoit CR, Chou V, Knupp A, Pan C, Goberdhan S, Duong DM, Seyfried NT, Bennett DA, Klein HU, De Jager PL, Menon V, Young JE, Young-Pearse TL. Cell-type-specific regulation of APOE levels in human neurons by the Alzheimer's disease risk gene SORL1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.530017. [PMID: 36865313 PMCID: PMC9980168 DOI: 10.1101/2023.02.25.530017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
SORL1 is strongly implicated in the pathogenesis of Alzheimer's disease (AD) through human genetic studies that point to an association of reduced SORL1 levels with higher risk for AD. To interrogate the role(s) of SORL1 in human brain cells, SORL1 null iPSCs were generated, followed by differentiation to neuron, astrocyte, microglia, and endothelial cell fates. Loss of SORL1 led to alterations in both overlapping and distinct pathways across cell types, with the greatest effects in neurons and astrocytes. Intriguingly, SORL1 loss led to a dramatic neuron-specific reduction in APOE levels. Further, analyses of iPSCs derived from a human aging cohort revealed a neuron-specific linear correlation between SORL1 and APOE RNA and protein levels, a finding validated in human post-mortem brain. Pathway analysis implicated intracellular transport pathways and TGF- β/SMAD signaling in the function of SORL1 in neurons. In accord, enhancement of retromer-mediated trafficking and autophagy rescued elevated phospho-tau observed in SORL1 null neurons but did not rescue APOE levels, suggesting that these phenotypes are separable. Stimulation and inhibition of SMAD signaling modulated APOE RNA levels in a SORL1-dependent manner. These studies provide a mechanistic link between two of the strongest genetic risk factors for AD.
Collapse
|
31
|
Mehta RI, Mehta RI. The Vascular-Immune Hypothesis of Alzheimer's Disease. Biomedicines 2023; 11:408. [PMID: 36830944 PMCID: PMC9953491 DOI: 10.3390/biomedicines11020408] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating and irreversible neurodegenerative disorder with unknown etiology. While its cause is unclear, a number of theories have been proposed to explain the pathogenesis of AD. In large part, these have centered around potential causes for intracerebral accumulation of beta-amyloid (βA) and tau aggregates. Yet, persons with AD dementia often exhibit autopsy evidence of mixed brain pathologies including a myriad of vascular changes, vascular brain injuries, complex brain inflammation, and mixed protein inclusions in addition to hallmark neuropathologic lesions of AD, namely insoluble βA plaques and neurofibrillary tangles (NFTs). Epidemiological data demonstrate that overlapping lesions diminish the βA plaque and NFT threshold necessary to precipitate clinical dementia. Moreover, a subset of persons who exhibit AD pathology remain resilient to disease while other persons with clinically-defined AD dementia do not exhibit AD-defining neuropathologic lesions. It is increasingly recognized that AD is a pathologically heterogeneous and biologically multifactorial disease with uncharacterized biologic phenomena involved in its genesis and progression. Here, we review the literature with regard to neuropathologic criteria and incipient AD changes, and discuss converging concepts regarding vascular and immune factors in AD.
Collapse
Affiliation(s)
- Rashi I. Mehta
- Department of Neuroradiology, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Rupal I. Mehta
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
32
|
Romero-Molina C, Garretti F, Andrews SJ, Marcora E, Goate AM. Microglial efferocytosis: Diving into the Alzheimer's disease gene pool. Neuron 2022; 110:3513-3533. [PMID: 36327897 DOI: 10.1016/j.neuron.2022.10.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
Abstract
Genome-wide association studies and functional genomics studies have linked specific cell types, genes, and pathways to Alzheimer's disease (AD) risk. In particular, AD risk alleles primarily affect the abundance or structure, and thus the activity, of genes expressed in macrophages, strongly implicating microglia (the brain-resident macrophages) in the etiology of AD. These genes converge on pathways (endocytosis/phagocytosis, cholesterol metabolism, and immune response) with critical roles in core macrophage functions such as efferocytosis. Here, we review these pathways, highlighting relevant genes identified in the latest AD genetics and genomics studies, and describe how they may contribute to AD pathogenesis. Investigating the functional impact of AD-associated variants and genes in microglia is essential for elucidating disease risk mechanisms and developing effective therapeutic approaches.
Collapse
Affiliation(s)
- Carmen Romero-Molina
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesca Garretti
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shea J Andrews
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Edoardo Marcora
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, 1 Gustave L. Levy Place, New York, NY 10029-6574, USA; Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
33
|
Kawabata S. Signaling abnormality leading to excessive/aberrant synaptic plasticity in Alzheimer's disease. Front Aging Neurosci 2022; 14:1062519. [DOI: 10.3389/fnagi.2022.1062519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
|
34
|
Filippone A, Esposito E, Mannino D, Lyssenko N, Praticò D. The contribution of altered neuronal autophagy to neurodegeneration. Pharmacol Ther 2022; 238:108178. [PMID: 35351465 PMCID: PMC9510148 DOI: 10.1016/j.pharmthera.2022.108178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/21/2022]
Abstract
Defects in cellular functions related to altered protein homeostasis and associated progressive accumulation of pathological intracellular material is a critical process involved in the pathogenesis of many neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. Autophagy is an essential mechanism that ensures neuronal health by removing long-lived proteins or defective organelles and by doing so prevents cell toxicity and death within the central nervous system. Abundant evidence has shown that neuronal autophagy pathways are altered in Alzheimer's disease, Parkinson's disease and traumas of the central nervous system including Spinal Cord Injury and Traumatic Brain Injury. In this review, we aimed to summarize the latest studies on the role that altered neuronal autophagy plays in brain health and these pathological conditions, and how this knowledge can be leveraged for the development of novel therapeutics against them.
Collapse
Affiliation(s)
- Alessia Filippone
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D' Alcontres 31. 98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D' Alcontres 31. 98166 Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D' Alcontres 31. 98166 Messina, Italy
| | - Nicholas Lyssenko
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Domenico Praticò
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
35
|
A genetically modified minipig model for Alzheimer’s disease with SORL1 haploinsufficiency. Cell Rep Med 2022; 3:100740. [PMID: 36099918 PMCID: PMC9512670 DOI: 10.1016/j.xcrm.2022.100740] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/20/2022] [Accepted: 08/19/2022] [Indexed: 11/21/2022]
Abstract
The established causal genes in Alzheimer’s disease (AD), APP, PSEN1, and PSEN2, are functionally characterized using biomarkers, capturing an in vivo profile reflecting the disease’s initial preclinical phase. Mutations in SORL1, encoding the endosome recycling receptor SORLA, are found in 2%–3% of individuals with early-onset AD, and SORL1 haploinsufficiency appears to be causal for AD. To test whether SORL1 can function as an AD causal gene, we use CRISPR-Cas9-based gene editing to develop a model of SORL1 haploinsufficiency in Göttingen minipigs, taking advantage of porcine models for biomarker investigations. SORL1 haploinsufficiency in young adult minipigs is found to phenocopy the preclinical in vivo profile of AD observed with APP, PSEN1, and PSEN2, resulting in elevated levels of β-amyloid (Aβ) and tau preceding amyloid plaque formation and neurodegeneration, as observed in humans. Our study provides functional support for the theory that SORL1 haploinsufficiency leads to endosome cytopathology with biofluid hallmarks of autosomal dominant AD. Minipig model of Alzheimer’s disease by CRISPR knockout of the causal gene SORL1 Young SORL1 het minipigs phenocopy a preclinical CSF biomarker profile of individuals with AD SORL1 haploinsufficiency causes enlarged endosomes similar to neuronal AD pathology A minipig model bridging the translational gap between AD mouse models and affected individuals
Collapse
|
36
|
Sen T, Thummer RP. CRISPR and iPSCs: Recent Developments and Future Perspectives in Neurodegenerative Disease Modelling, Research, and Therapeutics. Neurotox Res 2022; 40:1597-1623. [PMID: 36044181 PMCID: PMC9428373 DOI: 10.1007/s12640-022-00564-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/17/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022]
Abstract
Neurodegenerative diseases are prominent causes of pain, suffering, and death worldwide. Traditional approaches modelling neurodegenerative diseases are deficient, and therefore, improved strategies that effectively recapitulate the pathophysiological conditions of neurodegenerative diseases are the need of the hour. The generation of human-induced pluripotent stem cells (iPSCs) has transformed our ability to model neurodegenerative diseases in vitro and provide an unlimited source of cells (including desired neuronal cell types) for cell replacement therapy. Recently, CRISPR/Cas9-based genome editing has also been gaining popularity because of the flexibility they provide to generate and ablate disease phenotypes. In addition, the recent advancements in CRISPR/Cas9 technology enables researchers to seamlessly target and introduce precise modifications in the genomic DNA of different human cell lines, including iPSCs. CRISPR-iPSC-based disease modelling, therefore, allows scientists to recapitulate the pathological aspects of most neurodegenerative processes and investigate the role of pathological gene variants in healthy non-patient cell lines. This review outlines how iPSCs, CRISPR/Cas9, and CRISPR-iPSC-based approaches accelerate research on neurodegenerative diseases and take us closer to a cure for neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Amyotrophic Lateral Sclerosis, and so forth.
Collapse
Affiliation(s)
- Tirthankar Sen
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| |
Collapse
|
37
|
Chen CY, Lin YS, Lee WJ, Liao YC, Kuo YS, Yang AC, Fuh JL. Endophenotypic effects of the SORL1 variant rs2298813 on regional brain volume in patients with late-onset Alzheimer’s disease. Front Aging Neurosci 2022; 14:885090. [PMID: 35992588 PMCID: PMC9389408 DOI: 10.3389/fnagi.2022.885090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/12/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction: Two common variants of sortilin-related receptor 1 gene (SORL1), rs2298813 and rs1784933, have been associated with late-onset Alzheimer’s disease (AD) in the Han Chinese population in Taiwan. However, neuroimaging correlates of these two SORL1 variants remain unknown. We aimed to determine whether the two SORL1 polymorphisms were associated with any volumetric differences in brain regions in late-onset AD patients. Methods: We recruited 200 patients with late-onset AD from Taipei Veterans General Hospital. All patients received a structural magnetic resonance (MR) imaging brain scan and completed a battery of neurocognitive tests at enrollment. We followed up to assess changes in Mini-Mental State Examination (MMSE) scores in 155 patients (77.5%) at an interval of 2 years. Volumetric measures and cortical thickness of various brain regions were performed using FreeSurfer. Regression analysis controlled for apolipoprotein E status. Multiple comparisons were corrected for using the false discovery rate. Results: The homozygous major allele of rs2298813 was associated with larger volumes in the right putamen (p = 0.0442) and right pallidum (p = 0.0346). There was no link between the rs1784933 genotypes with any regional volume or thickness of the brain. In the rs2298813 homozygous major allele carriers, the right putaminal volume was associated with verbal fluency (p = 0.008), and both the right putaminal and pallidal volumes were predictive of clinical progression at follow-up (p = 0.020). In the minor allele carriers, neither of the nuclei was related to cognitive test performance or clinical progression. Conclusion: The major and minor alleles of rs2298813 had differential effects on the right lentiform nucleus volume and distinctively modulated the association between the regional volume and cognitive function in patients with AD.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Department of Medicine, Taipei Veterans General Hospital Yuli Branch, Hualien, Taiwan
- Division of General Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yung-Shuan Lin
- Division of General Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Ju Lee
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Dementia Center and Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Chu Liao
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Division of Peripheral Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Shan Kuo
- Division of General Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Albert C. Yang
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jong-Ling Fuh
- Division of General Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- *Correspondence: Jong-Ling Fuh
| |
Collapse
|
38
|
Blanchette CR, Scalera AL, Harris KP, Zhao Z, Dresselhaus EC, Koles K, Yeh A, Apiki JK, Stewart BA, Rodal AA. Local regulation of extracellular vesicle traffic by the synaptic endocytic machinery. J Cell Biol 2022; 221:e202112094. [PMID: 35320349 PMCID: PMC8952828 DOI: 10.1083/jcb.202112094] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 02/01/2023] Open
Abstract
Neuronal extracellular vesicles (EVs) are locally released from presynaptic terminals, carrying cargoes critical for intercellular signaling and disease. EVs are derived from endosomes, but it is unknown how these cargoes are directed to the EV pathway rather than for conventional endolysosomal degradation. Here, we find that endocytic machinery plays an unexpected role in maintaining a release-competent pool of EV cargoes at synapses. Endocytic mutants, including nervous wreck (nwk), shibire/dynamin, and AP-2, unexpectedly exhibit local presynaptic depletion specifically of EV cargoes. Accordingly, nwk mutants phenocopy synaptic plasticity defects associated with loss of the EV cargo synaptotagmin-4 (Syt4) and suppress lethality upon overexpression of the EV cargo amyloid precursor protein (APP). These EV defects are genetically separable from canonical endocytic functions in synaptic vesicle recycling and synaptic growth. Endocytic machinery opposes the endosomal retromer complex to regulate EV cargo levels and acts upstream of synaptic cargo removal by retrograde axonal transport. Our data suggest a novel molecular mechanism that locally promotes cargo loading into synaptic EVs.
Collapse
Affiliation(s)
| | | | - Kathryn P. Harris
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Zechuan Zhao
- Department of Biology, Brandeis University, Waltham, MA
| | | | - Kate Koles
- Department of Biology, Brandeis University, Waltham, MA
| | - Anna Yeh
- Department of Biology, Brandeis University, Waltham, MA
| | | | - Bryan A. Stewart
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | | |
Collapse
|
39
|
Ramadesikan S, Lee J, Aguilar RC. The Future of Genetic Disease Studies: Assembling an Updated Multidisciplinary Toolbox. Front Cell Dev Biol 2022; 10:886448. [PMID: 35573700 PMCID: PMC9096115 DOI: 10.3389/fcell.2022.886448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
|
40
|
Fleming A, Bourdenx M, Fujimaki M, Karabiyik C, Krause GJ, Lopez A, Martín-Segura A, Puri C, Scrivo A, Skidmore J, Son SM, Stamatakou E, Wrobel L, Zhu Y, Cuervo AM, Rubinsztein DC. The different autophagy degradation pathways and neurodegeneration. Neuron 2022; 110:935-966. [PMID: 35134347 PMCID: PMC8930707 DOI: 10.1016/j.neuron.2022.01.017] [Citation(s) in RCA: 186] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
The term autophagy encompasses different pathways that route cytoplasmic material to lysosomes for degradation and includes macroautophagy, chaperone-mediated autophagy, and microautophagy. Since these pathways are crucial for degradation of aggregate-prone proteins and dysfunctional organelles such as mitochondria, they help to maintain cellular homeostasis. As post-mitotic neurons cannot dilute unwanted protein and organelle accumulation by cell division, the nervous system is particularly dependent on autophagic pathways. This dependence may be a vulnerability as people age and these processes become less effective in the brain. Here, we will review how the different autophagic pathways may protect against neurodegeneration, giving examples of both polygenic and monogenic diseases. We have considered how autophagy may have roles in normal CNS functions and the relationships between these degradative pathways and different types of programmed cell death. Finally, we will provide an overview of recently described strategies for upregulating autophagic pathways for therapeutic purposes.
Collapse
Affiliation(s)
- Angeleen Fleming
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Mathieu Bourdenx
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Motoki Fujimaki
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Cansu Karabiyik
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Gregory J Krause
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ana Lopez
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Adrián Martín-Segura
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Claudia Puri
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Aurora Scrivo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John Skidmore
- The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, UK
| | - Sung Min Son
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Eleanna Stamatakou
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Lidia Wrobel
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Ye Zhu
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - David C Rubinsztein
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
41
|
Udayar V, Chen Y, Sidransky E, Jagasia R. Lysosomal dysfunction in neurodegeneration: emerging concepts and methods. Trends Neurosci 2022; 45:184-199. [PMID: 35034773 PMCID: PMC8854344 DOI: 10.1016/j.tins.2021.12.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/23/2021] [Accepted: 12/12/2021] [Indexed: 02/06/2023]
Abstract
The understanding of lysosomes has come a long way since the initial discovery of their role in degrading cellular waste. The lysosome is now recognized as a highly dynamic organelle positioned at the crossroads of cell signaling, transcription, and metabolism. Underscoring its importance is the observation that, in addition to rare monogenic lysosomal storage disorders, genes regulating lysosomal function are implicated in common sporadic neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Developing therapies for these disorders is particularly challenging, largely due to gaps in knowledge of the underlying molecular and cellular processes. In this review, we discuss technological advances that have propelled deeper understanding of the lysosome in neurodegeneration, from elucidating the functions of lysosome-related disease risk variants at the level of the organelle, cell, and tissue, to the development of disease-specific biological models that recapitulate disease manifestations. Finally, we identify key questions to be addressed to successfully bridge the gap to the clinic.
Collapse
Affiliation(s)
- Vinod Udayar
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Yu Chen
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Ravi Jagasia
- Roche Pharmaceutical Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| |
Collapse
|
42
|
Impairment of the autophagy-lysosomal pathway in Alzheimer's diseases: Pathogenic mechanisms and therapeutic potential. Acta Pharm Sin B 2022; 12:1019-1040. [PMID: 35530153 PMCID: PMC9069408 DOI: 10.1016/j.apsb.2022.01.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder, is characterized by memory loss and cognitive dysfunction. The accumulation of misfolded protein aggregates including amyloid beta (Aβ) peptides and microtubule associated protein tau (MAPT/tau) in neuronal cells are hallmarks of AD. So far, the exact underlying mechanisms for the aetiologies of AD have not been fully understood and the effective treatment for AD is limited. Autophagy is an evolutionarily conserved cellular catabolic process by which damaged cellular organelles and protein aggregates are degraded via lysosomes. Recently, there is accumulating evidence linking the impairment of the autophagy–lysosomal pathway with AD pathogenesis. Interestingly, the enhancement of autophagy to remove protein aggregates has been proposed as a promising therapeutic strategy for AD. Here, we first summarize the recent genetic, pathological and experimental studies regarding the impairment of the autophagy–lysosomal pathway in AD. We then describe the interplay between the autophagy–lysosomal pathway and two pathological proteins, Aβ and MAPT/tau, in AD. Finally, we discuss potential therapeutic strategies and small molecules that target the autophagy–lysosomal pathway for AD treatment both in animal models and in clinical trials. Overall, this article highlights the pivotal functions of the autophagy–lysosomal pathway in AD pathogenesis and potential druggable targets in the autophagy–lysosomal pathway for AD treatment.
Collapse
|
43
|
Mishra S, Knupp A, Szabo MP, Williams CA, Kinoshita C, Hailey DW, Wang Y, Andersen OM, Young JE. The Alzheimer's gene SORL1 is a regulator of endosomal traffic and recycling in human neurons. Cell Mol Life Sci 2022; 79:162. [PMID: 35226190 PMCID: PMC8885486 DOI: 10.1007/s00018-022-04182-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Loss of the Sortilin-related receptor 1 (SORL1) gene seems to act as a causal event for Alzheimer's disease (AD). Recent studies have established that loss of SORL1, as well as mutations in autosomal dominant AD genes APP and PSEN1/2, pathogenically converge by swelling early endosomes, AD's cytopathological hallmark. Acting together with the retromer trafficking complex, SORL1 has been shown to regulate the recycling of the amyloid precursor protein (APP) out of the endosome, contributing to endosomal swelling and to APP misprocessing. We hypothesized that SORL1 plays a broader role in neuronal endosomal recycling and used human induced pluripotent stem cell-derived neurons (hiPSC-Ns) to test this hypothesis. We examined endosomal recycling of three transmembrane proteins linked to AD pathophysiology: APP, the BDNF receptor Tropomyosin-related kinase B (TRKB), and the glutamate receptor subunit AMPA1 (GLUA1). METHODS We used isogenic hiPSCs engineered to have SORL1 depleted or to have enhanced SORL1 expression. We differentiated neurons from these cell lines and mapped the trafficking of APP, TRKB and GLUA1 within the endosomal network using confocal microscopy. We also performed cell surface recycling and lysosomal degradation assays to assess the functionality of the endosomal network in both SORL1-depleted and -overexpressing neurons. The functional impact of GLUA1 recycling was determined by measuring synaptic activity. Finally, we analyzed alterations in gene expression in SORL1-depleted neurons using RNA sequencing. RESULTS We find that as with APP, endosomal trafficking of GLUA1 and TRKB is impaired by loss of SORL1. We show that trafficking of all three cargoes to late endosomes and lysosomes is affected by manipulating SORL1 expression. We also show that depletion of SORL1 significantly impacts the endosomal recycling pathway for APP and GLUA1 at the level of the recycling endosome and trafficking to the cell surface. This has a functional effect on neuronal activity as shown by multi-electrode array (MEA). Conversely, increased SORL1 expression enhances endosomal recycling for APP and GLUA1. Our unbiased transcriptomic data further support SORL1's role in endosomal recycling. We observe altered expression networks that regulate cell surface trafficking and neurotrophic signaling in SORL1-depleted neurons. CONCLUSION Collectively, and together with other recent observations, these findings suggest that one role for SORL1 is to contribute to endosomal degradation and recycling pathways in neurons, a conclusion that has both pathogenic and therapeutic implications for Alzheimer's disease.
Collapse
Affiliation(s)
- Swati Mishra
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195 USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195 USA
| | - Allison Knupp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195 USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195 USA
| | - Marcell P. Szabo
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195 USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195 USA
| | - Charles A. Williams
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195 USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195 USA
| | - Chizuru Kinoshita
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195 USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195 USA
| | - Dale W. Hailey
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195 USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195 USA
| | - Yuliang Wang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195 USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98195 USA
| | - Olav M. Andersen
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus University, Aarhus, Denmark
| | - Jessica E. Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195 USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
44
|
Binkle L, Klein M, Borgmeyer U, Kuhl D, Hermey G. The adaptor protein PICK1 targets the sorting receptor SorLA. Mol Brain 2022; 15:18. [PMID: 35183222 PMCID: PMC8858569 DOI: 10.1186/s13041-022-00903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
SorLA is a member of the Vps10p-domain (Vps10p-D) receptor family of type-I transmembrane proteins conveying neuronal endosomal sorting. The extracellular/luminal moiety of SorLA has a unique mosaic domain composition and interacts with a large number of different and partially unrelated ligands, including the amyloid precursor protein as well as amyloid-β. Several studies support a strong association of SorLA with sporadic and familial forms of Alzheimer’s disease (AD). Although SorLA seems to be an important factor in AD, the large number of different ligands suggests a role as a neuronal multifunctional receptor with additional intracellular sorting capacities. Therefore, understanding the determinants of SorLA’s subcellular targeting might be pertinent for understanding neuronal endosomal sorting mechanisms in general. A number of cytosolic adaptor proteins have already been demonstrated to determine intracellular trafficking of SorLA. Most of these adaptors and several ligands of the extracellular/luminal moiety are shared with the Vps10p-D receptor Sortilin. Although SorLA and Sortilin show both a predominant intracellular and endosomal localization, they are targeted to different endosomal compartments. Thus, independent adaptor proteins may convey their differential endosomal targeting. Here, we hypothesized that Sortilin and SorLA interact with the cytosolic adaptors PSD95 and PICK1 which have been shown to bind the Vps10p-D receptor SorCS3. We observed only an interaction for SorLA and PICK1 in mammalian-two-hybrid, pull-down and cellular recruitment experiments. We demonstrate by mutational analysis that the C-terminal minimal PDZ domain binding motif VIA of SorLA mediates the interaction. Moreover, we show co-localization of SorLA and PICK1 at vesicular structures in primary neurons. Although the physiological role of the interaction between PICK1 and SorLA remains unsolved, our study suggests that PICK1 partakes in regulating SorLA’s intracellular itinerary.
Collapse
|
45
|
Lambert E, Saha O, Soares Landeira B, Melo de Farias AR, Hermant X, Carrier A, Pelletier A, Gadaut J, Davoine L, Dupont C, Amouyel P, Bonnefond A, Lafont F, Abdelfettah F, Verstreken P, Chapuis J, Barois N, Delahaye F, Dermaut B, Lambert JC, Costa MR, Dourlen P. The Alzheimer susceptibility gene BIN1 induces isoform-dependent neurotoxicity through early endosome defects. Acta Neuropathol Commun 2022; 10:4. [PMID: 34998435 PMCID: PMC8742943 DOI: 10.1186/s40478-021-01285-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 02/08/2023] Open
Abstract
The Bridging Integrator 1 (BIN1) gene is a major susceptibility gene for Alzheimer’s disease (AD). Deciphering its pathophysiological role is challenging due to its numerous isoforms. Here we observed in Drosophila that human BIN1 isoform1 (BIN1iso1) overexpression, contrary to human BIN1 isoform8 (BIN1iso8) and human BIN1 isoform9 (BIN1iso9), induced an accumulation of endosomal vesicles and neurodegeneration. Systematic search for endosome regulators able to prevent BIN1iso1-induced neurodegeneration indicated that a defect at the early endosome level is responsible for the neurodegeneration. In human induced neurons (hiNs) and cerebral organoids, BIN1 knock-out resulted in the narrowing of early endosomes. This phenotype was rescued by BIN1iso1 but not BIN1iso9 expression. Finally, BIN1iso1 overexpression also led to an increase in the size of early endosomes and neurodegeneration in hiNs. Altogether, our data demonstrate that the AD susceptibility gene BIN1, and especially BIN1iso1, contributes to early-endosome size deregulation, which is an early pathophysiological hallmark of AD pathology.
Collapse
|
46
|
Szabo MP, Mishra S, Knupp A, Young JE. The role of Alzheimer's disease risk genes in endolysosomal pathways. Neurobiol Dis 2022; 162:105576. [PMID: 34871734 PMCID: PMC9071255 DOI: 10.1016/j.nbd.2021.105576] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022] Open
Abstract
There is ample pathological and biological evidence for endo-lysosomal dysfunction in Alzheimer's disease (AD) and emerging genetic studies repeatedly implicate endo-lysosomal genes as associated with increased AD risk. The endo-lysosomal network (ELN) is essential for all cell types of the central nervous system (CNS), yet each unique cell type utilizes cellular trafficking differently (see Fig. 1). Challenges ahead involve defining the role of AD associated genes in the functionality of the endo-lysosomal network (ELN) and understanding how this impacts the cellular dysfunction that occurs in AD. This is critical to the development of new therapeutics that will impact, and potentially reverse, early disease phenotypes. Here we review some early evidence of ELN dysfunction in AD pathogenesis and discuss the role of selected AD-associated risk genes in this pathway. In particular, we review genes that have been replicated in multiple genome-wide association studies(Andrews et al., 2020; Jansen et al., 2019; Kunkle et al., 2019; Lambert et al., 2013; Marioni et al., 2018) and reviewed in(Andrews et al., 2020) that have defined roles in the endo-lysosomal network. These genes include SORL1, an AD risk gene harboring both rare and common variants associated with AD risk and a role in trafficking cargo, including APP, through the ELN; BIN1, a regulator of clathrin-mediated endocytosis whose expression correlates with Tau pathology; CD2AP, an AD risk gene with roles in endosome morphology and recycling; PICALM, a clathrin-binding protein that mediates trafficking between the trans-Golgi network and endosomes; and Ephrin Receptors, a family of receptor tyrosine kinases with AD associations and interactions with other AD risk genes. Finally, we will discuss how human cellular models can elucidate cell-type specific differences in ELN dysfunction in AD and aid in therapeutic development.
Collapse
Affiliation(s)
- Marcell P Szabo
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America
| | - Swati Mishra
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America
| | - Allison Knupp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America
| | - Jessica E Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America.
| |
Collapse
|
47
|
Investigating the Endo-Lysosomal System in Major Neurocognitive Disorders Due to Alzheimer's Disease, Frontotemporal Lobar Degeneration and Lewy Body Disease: Evidence for SORL1 as a Cross-Disease Gene. Int J Mol Sci 2021; 22:ijms222413633. [PMID: 34948429 PMCID: PMC8704369 DOI: 10.3390/ijms222413633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/26/2022] Open
Abstract
Dysfunctions in the endo-lysosomal system have been hypothesized to underlie neurodegeneration in major neurocognitive disorders due to Alzheimer's disease (AD), Frontotemporal Lobar Degeneration (FTLD), and Lewy body disease (DLB). The aim of this study is to investigate whether these diseases share genetic variability in the endo-lysosomal pathway. In AD, DLB, and FTLD patients and in controls (948 subjects), we performed a targeted sequencing of the top 50 genes belonging to the endo-lysosomal pathway. Genetic analyses revealed (i) four previously reported disease-associated variants in the SORL1 (p.N1246K, p.N371T, p.D2065V) and DNAJC6 genes (p.M133L) in AD, FTLD, and DLB, extending the previous knowledge attesting SORL1 and DNAJC6 as AD- and PD-related genes, respectively; (ii) three predicted null variants in AD patients in the SORL1 (p.R985X in early onset familial AD, p.R1207X) and PPT1 (p.R48X in early onset familial AD) genes, where loss of function is a known disease mechanism. A single variant and gene burden analysis revealed some nominally significant results of potential interest for SORL1 and DNAJC6 genes. Our data highlight that genes controlling key endo-lysosomal processes (i.e., protein sorting/transport, clathrin-coated vesicle uncoating, lysosomal enzymatic activity regulation) might be involved in AD, FTLD and DLB pathogenesis, thus suggesting an etiological link behind these diseases.
Collapse
|
48
|
Vigneswaran J, Muthukumar SA, Shafras M, Pant G. An insight into Alzheimer’s disease and its on-setting novel genes. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021. [DOI: 10.1186/s41983-021-00420-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractAccording to the World Health Organisation, as of 2019, globally around 50 million people suffer from dementia, with approximately another 10 million getting added to the list every year, wherein Alzheimer’s disease (AD) stands responsible for almost a whopping 60–70% for the existing number of cases. Alzheimer’s disease is one of the progressive, cognitive-declining, age-dependent, neurodegenerative diseases which is distinguished by histopathological symptoms, such as formation of amyloid plaque, senile plaque, neurofibrillary tangles, etc. Majorly four vital transcripts are identified in the AD complications which include Amyloid precursor protein (APP), Apolipoprotein E (ApoE), and two multi-pass transmembrane domain proteins—Presenilin 1 and 2. In addition, the formation of the abnormal filaments such as amyloid beta (Aβ) and tau and their tangling with some necessary factors contributing to the formation of plaques, neuroinflammation, and apoptosis which in turn leads to the emergence of AD. Although multiple molecular mechanisms have been elucidated so far, they are still counted as hypotheses ending with neuronal death on the basal forebrain and hippocampal area which results in AD. This review article is aimed at addressing the overview of the molecular mechanisms surrounding AD and the functional forms of the genes associated with it.
Collapse
|
49
|
Abstract
Abnormalities of the neuronal endolysosome and macroautophagy/autophagy system are an early and prominent feature of Alzheimer disease (AD). SORL1 is notable as a gene in which mutations are causal for a rare, autosomal dominant form of AD, and also variants that increase the risk of developing the common form of late-onset AD. In our recent study, we used patient-derived stem cells and CRISPR engineering to study the effects of SORL1 mutations on the endolysosome and autophagy system in human forebrain neurons. SORL1 mutations causal for monogenic AD are typically truncating mutations, and we found, using stem cells generated from an individual with dementia due to a heterozygous SORL1 truncation mutation, that this class of mutation results in SORL1 haploinsufficiency. Reducing SORL1 protein by half results in disrupted endosomal trafficking in patient-derived neurons, which we confirmed by studying the endolysosomal system in isogenic CRISPR-engineered SORL1 heterozygous null neurons. We also found that SORL1 homozygous null neurons develop more severe phenotypes, with endosome abnormalities, lysosome dysfunction and defects in the degradative phase of autophagy. Endolysosome and autophagy defects in SORL1 mutant neurons are dependent on APP, a key AD gene, as they are rescued by extracellular antisense oligonucleotides that reduce APP protein.
Collapse
Affiliation(s)
- Christy Hung
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, London, UK
| | - Frederick J Livesey
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, London, UK
| |
Collapse
|