1
|
Kaur Sardarni U, Ambikan AT, Acharya A, Johnson SD, Avedissian SN, Végvári Á, Neogi U, Byrareddy SN. SARS-CoV-2 variants mediated tissue-specific metabolic reprogramming determines the disease pathophysiology in a hamster model. Brain Behav Immun 2025; 123:914-927. [PMID: 39481495 DOI: 10.1016/j.bbi.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/28/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024] Open
Abstract
Despite significant effort, a clear understanding of host tissue-specific responses and their implications for immunopathogenicity against the severe acute respiratory syndrome coronavirus2 (SARS-CoV-2) variant infection has remained poorly defined. To shed light on the interaction between tissues and SARS-CoV-2 variants, we sought to characterize the complex relationship among acute multisystem manifestations, dysbiosis of the gut microbiota, and the resulting implications for SARS-CoV-2 variant-specific immunopathogenesis in the Golden Syrian Hamster (GSH) model using multi-omics approaches. Our investigation revealed the presence of increased SARS-CoV-2 genomic RNA in diverse tissues of delta-infected GSH compared to the omicron variant. Multi-omics analyses uncovered distinctive metabolic responses between the delta and omicron variants, with the former demonstrating dysregulation in synaptic transmission proteins associated with neurocognitive disorders. Additionally, delta-infected GSH exhibited an altered fecal microbiota composition, marked by increased inflammation-associated taxa and reduced commensal bacteria compared to the omicron variant. These findings underscore the SARS-CoV-2-mediated tissue insult, characterized by modified host metabolites, neurological protein dysregulation, and gut dysbiosis, highlighting the compromised gut-lung-brain axis during acute infection.
Collapse
Affiliation(s)
- Urvinder Kaur Sardarni
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anoop T Ambikan
- The Systems Virology Laboratory, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, Stockholm, Sweden
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Samuel D Johnson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sean N Avedissian
- Antiviral Pharmacology Laboratory, Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ujjwal Neogi
- The Systems Virology Laboratory, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, Stockholm, Sweden.
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
2
|
Targett IL, Crompton LA, Conway ME, Craig TJ. Differentiation of SH-SY5Y neuroblastoma cells using retinoic acid and BDNF: a model for neuronal and synaptic differentiation in neurodegeneration. In Vitro Cell Dev Biol Anim 2024; 60:1058-1067. [PMID: 39017752 PMCID: PMC11534981 DOI: 10.1007/s11626-024-00948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
There has been much interest in the use of cell culture models of neurones, to avoid the animal welfare and cost issues of using primary and human-induced pluripotent stem cell (hiPSC)-derived neurones respectively. The human neuroblastoma cell line, SH-SY5Y, is extensively used in laboratories as they can be readily expanded, are of low cost and can be differentiated into neuronal-like cells. However, much debate remains as to their phenotype once differentiated, and their ability to recapitulate the physiology of bona fide neurones. Here, we characterise a differentiation protocol using retinoic acid and BDNF, which results in extensive neurite outgrowth/branching within 10 days, and expression of key neuronal and synaptic markers. We propose that these differentiated SH-SY5Y cells may be a useful substitute for primary or hiPSC-derived neurones for cell biology studies, in order to reduce costs and animal usage. We further propose that this characterised differentiation timecourse could be used as an in vitro model for neuronal differentiation, for proof-of principle studies on neurogenesis, e.g. relating to neurodegenerative diseases. Finally, we demonstrate profound changes in Tau phosphorylation during differentiation of these cells, suggesting that they should not be used for neurodegeneration studies in their undifferentiated state.
Collapse
Affiliation(s)
- Imogen L Targett
- Centre for Research in Biosciences, School of Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | - Lucy A Crompton
- Centre for Research in Biosciences, School of Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | | | - Tim J Craig
- Centre for Research in Biosciences, School of Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK.
| |
Collapse
|
3
|
Smukowski SN, Danyko C, Somberg J, Kaufman EJ, Course MM, Postupna N, Barker-Haliski M, Keene CD, Valdmanis PN. mRNA and circRNA mislocalization to synapses are key features of Alzheimer's disease. PLoS Genet 2024; 20:e1011359. [PMID: 39074152 PMCID: PMC11309398 DOI: 10.1371/journal.pgen.1011359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/08/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Proper transport of RNAs to synapses is essential for localized translation of proteins in response to synaptic signals and synaptic plasticity. Alzheimer's disease (AD) is a neurodegenerative disease characterized by accumulation of amyloid aggregates and hyperphosphorylated tau neurofibrillary tangles followed by widespread synapse loss. To understand whether RNA synaptic localization is impacted in AD, we performed RNA sequencing on synaptosomes and brain homogenates from AD patients and cognitively healthy controls. This resulted in the discovery of hundreds of mislocalized mRNAs in AD among frontal and temporal brain regions. Similar observations were found in an APPswe/PSEN1dE9 mouse model. Furthermore, major differences were observed among circular RNAs (circRNAs) localized to synapses in AD including two overlapping isoforms of circGSK3β, one upregulated, and one downregulated. Expression of these distinct isoforms affected tau phosphorylation in neuronal cells substantiating the importance of circRNAs in the brain and pointing to a new class of therapeutic targets.
Collapse
Affiliation(s)
- Samuel N. Smukowski
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Cassidy Danyko
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Fred Hutch Cancer Center, Basic Sciences Division, University of Washington, Seattle, Washington, United States of America
| | - Jenna Somberg
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Eli J. Kaufman
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Meredith M. Course
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado, United States of America
| | - Nadia Postupna
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Melissa Barker-Haliski
- Department of Pharmacy, University of Washington School of Pharmacy, Seattle, Washington, United States of America
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Paul N. Valdmanis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
4
|
Badal KK, Zhao Y, Raveendra BL, Lozano-Villada S, Miller KE, Puthanveettil SV. PKA Activity-Driven Modulation of Bidirectional Long-Distance transport of Lysosomal vesicles During Synapse Maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601272. [PMID: 38979384 PMCID: PMC11230415 DOI: 10.1101/2024.06.28.601272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The bidirectional long-distance transport of organelles is crucial for cell body-synapse communication. However, the mechanisms by which this transport is modulated for synapse formation, maintenance, and plasticity are not fully understood. Here, we demonstrate through quantitative analyses that maintaining sensory neuron-motor neuron synapses in the Aplysia gill-siphon withdrawal reflex is linked to a sustained reduction in the retrograde transport of lysosomal vesicles in sensory neurons. Interestingly, while mitochondrial transport in the anterograde direction increases within 12 hours of synapse formation, the reduction in lysosomal vesicle retrograde transport appears three days after synapse formation. Moreover, we find that formation of new synapses during learning induced by neuromodulatory neurotransmitter serotonin further reduces lysosomal vesicle transport within 24 hours, whereas mitochondrial transport increases in the anterograde direction within one hour of exposure. Pharmacological inhibition of several signaling pathways pinpoints PKA as a key regulator of retrograde transport of lysosomal vesicles during synapse maintenance. These results demonstrate that synapse formation leads to organelle-specific and direction specific enduring changes in long-distance transport, offering insights into the mechanisms underlying synapse maintenance and plasticity.
Collapse
Affiliation(s)
- Kerriann. K. Badal
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, USA
- Integrative Biology PhD Program, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Yibo. Zhao
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Bindu L Raveendra
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Sebastian Lozano-Villada
- Harriet L. Wilkes Honors College, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Kyle. E. Miller
- Harriet L. Wilkes Honors College, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458, USA
| | - Sathyanarayanan V. Puthanveettil
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
5
|
Banerjee S, Zhao Q, Wang B, Qin J, Yuan X, Lou Z, Zheng W, Li H, Wang X, Cheng X, Zhu Y, Lin F, Yang F, Xu J, Munshi A, Das P, Zhou Y, Mandal K, Wang Y, Ayub M, Hirokawa N, Xi Y, Chen G, Li C. A novel in-frame deletion in KIF5C gene causes infantile onset epilepsy and psychomotor retardation. MedComm (Beijing) 2024; 5:e469. [PMID: 38525108 PMCID: PMC10960728 DOI: 10.1002/mco2.469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 03/26/2024] Open
Abstract
Motor proteins, encoded by Kinesin superfamily (KIF) genes, are critical for brain development and plasticity. Increasing studies reported KIF's roles in neurodevelopmental disorders. Here, a 6 years and 3 months-old Chinese boy with markedly symptomatic epilepsy, intellectual disability, brain atrophy, and psychomotor retardation was investigated. His parents and younger sister were phenotypically normal and had no disease-related family history. Whole exome sequencing identified a novel heterozygous in-frame deletion (c.265_267delTCA) in exon 3 of the KIF5C in the proband, resulting in the removal of evolutionarily highly conserved p.Ser90, located in its ATP-binding domain. Sanger sequencing excluded the proband's parents and family members from harboring this variant. The activity of ATP hydrolysis in vitro was significantly reduced as predicted. Immunofluorescence studies showed wild-type KIF5C was widely distributed throughout the cytoplasm, while mutant KIF5C was colocalized with microtubules. The live-cell imaging of the cargo-trafficking assay revealed that mutant KIF5C lost the peroxisome-transporting ability. Drosophila models also confirmed p.Ser90del's essential role in nervous system development. This study emphasized the importance of the KIF5C gene in intracellular cargo-transport as well as germline variants that lead to neurodevelopmental disorders and might enable clinicians for timely and accurate diagnosis and disease management in the future.
Collapse
Affiliation(s)
- Santasree Banerjee
- Department of Human Genetics and Department of Ultrasound, Women's HospitalSchool of Basic Medical ScienceZhejiang Provincial Key Laboratory of Genetic and Developmental DisordersZhejiang University School of MedicineHangzhouChina
- Department of GeneticsCollege of Basic Medical SciencesJilin UniversityChangchunChina
- Department of GeneticsUniversity of DelhiNew DelhiIndia
| | - Qiang Zhao
- Department of Human Genetics and Department of Ultrasound, Women's HospitalSchool of Basic Medical ScienceZhejiang Provincial Key Laboratory of Genetic and Developmental DisordersZhejiang University School of MedicineHangzhouChina
| | - Bo Wang
- Department of PediatricsShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen University Health Science CenterShenzhenChina
| | - Jiale Qin
- Department of Human Genetics and Department of Ultrasound, Women's HospitalSchool of Basic Medical ScienceZhejiang Provincial Key Laboratory of Genetic and Developmental DisordersZhejiang University School of MedicineHangzhouChina
| | - Xin Yuan
- Department of Human Genetics and Department of Ultrasound, Women's HospitalSchool of Basic Medical ScienceZhejiang Provincial Key Laboratory of Genetic and Developmental DisordersZhejiang University School of MedicineHangzhouChina
| | - Ziwei Lou
- Department of Human Genetics and Department of Ultrasound, Women's HospitalSchool of Basic Medical ScienceZhejiang Provincial Key Laboratory of Genetic and Developmental DisordersZhejiang University School of MedicineHangzhouChina
| | - Weizeng Zheng
- Department of RadiologyWomen's HospitalZhejiang University School of MedicineHangzhouChina
| | - Huanguo Li
- Department of RadiologyHangzhou Hospital of Traditional Chinese MedicineHangzhouChina
| | - Xiaojun Wang
- Department of Neurobiology, Department of Rehabilitation and Department of Internal Medicine of the Children's Hospital, Zhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouChina
| | - Xiawei Cheng
- School of PharmacyEast China University of Science and TechnologyShanghaiChina
| | - Yu Zhu
- Department of Neurobiology, Department of Rehabilitation and Department of Internal Medicine of the Children's Hospital, Zhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouChina
| | - Fan Lin
- Department of Cell BiologySchool of Basic Medical SciencesNanjing Medical UniversityNanjingChina
| | - Fan Yang
- Department of Human Genetics and Department of Ultrasound, Women's HospitalSchool of Basic Medical ScienceZhejiang Provincial Key Laboratory of Genetic and Developmental DisordersZhejiang University School of MedicineHangzhouChina
| | - Junyu Xu
- Department of Neurobiology, Department of Rehabilitation and Department of Internal Medicine of the Children's Hospital, Zhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouChina
| | - Anjana Munshi
- Department of Human Genetics and Molecular MedicineCentral University of PunjabBathindaIndia
| | - Parimal Das
- Centre for Genetic DisordersBanaras Hindu UniversityVaranasiIndia
| | - Yuanfeng Zhou
- Department of Neurology and Epilepsy CenterChildren's Hospital of Fudan UniversityShanghaiChina
| | - Kausik Mandal
- Department of Medical GeneticsSanjay Gandhi Postgraduate Institute of Medical SciencesLucknowUttar PradeshIndia
| | - Yi Wang
- Department of Neurology and Epilepsy CenterChildren's Hospital of Fudan UniversityShanghaiChina
| | - Muhammad Ayub
- Department of PsychiatryUniversity College LondonLondonUK
| | - Nobutaka Hirokawa
- Department of Cell Biology and AnatomyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Yongmei Xi
- Department of Human Genetics and Department of Ultrasound, Women's HospitalSchool of Basic Medical ScienceZhejiang Provincial Key Laboratory of Genetic and Developmental DisordersZhejiang University School of MedicineHangzhouChina
| | - Guangfu Chen
- Department of PediatricsShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen University Health Science CenterShenzhenChina
| | - Chen Li
- Department of Human Genetics and Department of Ultrasound, Women's HospitalSchool of Basic Medical ScienceZhejiang Provincial Key Laboratory of Genetic and Developmental DisordersZhejiang University School of MedicineHangzhouChina
- Alibaba‐Zhejiang University Joint Research Center of Future Digital HealthcareHangzhouChina
| |
Collapse
|
6
|
Espadas I, Wingfield JL, Nakahata Y, Chanda K, Grinman E, Ghosh I, Bauer KE, Raveendra B, Kiebler MA, Yasuda R, Rangaraju V, Puthanveettil S. Synaptically-targeted long non-coding RNA SLAMR promotes structural plasticity by increasing translation and CaMKII activity. Nat Commun 2024; 15:2694. [PMID: 38538603 PMCID: PMC10973417 DOI: 10.1038/s41467-024-46972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in maintaining cell homeostasis and function. However, it remains largely unknown whether and how neuronal activity impacts the transcriptional regulation of lncRNAs, or if this leads to synapse-related changes and contributes to the formation of long-term memories. Here, we report the identification of a lncRNA, SLAMR, which becomes enriched in CA1-hippocampal neurons upon contextual fear conditioning but not in CA3 neurons. SLAMR is transported along dendrites via the molecular motor KIF5C and is recruited to the synapse upon stimulation. Loss of function of SLAMR reduces dendritic complexity and impairs activity-dependent changes in spine structural plasticity and translation. Gain of function of SLAMR, in contrast, enhances dendritic complexity, spine density, and translation. Analyses of the SLAMR interactome reveal its association with CaMKIIα protein through a 220-nucleotide element also involved in SLAMR transport. A CaMKII reporter reveals a basal reduction in CaMKII activity with SLAMR loss-of-function. Furthermore, the selective loss of SLAMR function in CA1 disrupts the consolidation of fear memory in male mice, without affecting their acquisition, recall, or extinction, or spatial memory. Together, these results provide new molecular and functional insight into activity-dependent changes at the synapse and consolidation of contextual fear.
Collapse
Affiliation(s)
- Isabel Espadas
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Jenna L Wingfield
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | | | - Kaushik Chanda
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Eddie Grinman
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Ilika Ghosh
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Karl E Bauer
- Biomedical Center, Department for Cell Biology, Ludwig-Maximilians-University of Munich, Medical Faculty, 82152, Planegg-Martinsried, Germany
| | - Bindu Raveendra
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Michael A Kiebler
- Biomedical Center, Department for Cell Biology, Ludwig-Maximilians-University of Munich, Medical Faculty, 82152, Planegg-Martinsried, Germany
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | | | - Sathyanarayanan Puthanveettil
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA.
| |
Collapse
|
7
|
Yang S, Zhu G. Phytotherapy of abnormality of fear memory: A narrative review of mechanisms. Fitoterapia 2023; 169:105618. [PMID: 37482307 DOI: 10.1016/j.fitote.2023.105618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
It is generally believed that in post-traumatic stress disorder (PTSD), the high expression of fear memory is mainly determined by amygdala hyperactivity and hippocampus hypoactivity. In this review, we firstly updated the mechanisms of fear memory, and then searched the experimental evidence of phytotherapy for fear memory in the past five years. Based on the summary of those experimental studies, we further discussed the future research strategies of plant medicines, including the study of the mechanism of specific brain regions, the optimal time for the prevention and treatment of fear memory-related diseases such as PTSD, and the development of new drugs with active components of plant medicines. Accordingly, plant medicines play a clear role in improving fear memory abnormalities and have the drug development potential in the treatment of fear-related disorders.
Collapse
Affiliation(s)
- Shaojie Yang
- The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230061, China; Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, Anhui 230012, China.
| |
Collapse
|
8
|
Espadas I, Wingfield J, Grinman E, Ghosh I, Chanda K, Nakahata Y, Bauer K, Raveendra B, Kiebler M, Yasuda R, Rangaraju V, Puthanveettil S. SLAMR, a synaptically targeted lncRNA, facilitates the consolidation of contextual fear memory. RESEARCH SQUARE 2023:rs.3.rs-2489387. [PMID: 36993323 PMCID: PMC10055528 DOI: 10.21203/rs.3.rs-2489387/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
LncRNAs are involved in critical processes for cell homeostasis and function. However, it remains largely unknown whether and how the transcriptional regulation of long noncoding RNAs results in activity-dependent changes at the synapse and facilitate formation of long-term memories. Here, we report the identification of a novel lncRNA, SLAMR, that becomes enriched in CA1- but not in CA3-hippocampal neurons upon contextual fear conditioning. SLAMR is transported to dendrites via the molecular motor KIF5C and recruited to the synapse in response to stimulation. Loss of function of SLAMR reduced dendritic complexity and impaired activity dependent changes in spine structural plasticity. Interestingly, gain of function of SLAMR enhanced dendritic complexity, and spine density through enhanced translation. Analyses of the SLAMR interactome revealed its association with CaMKIIα protein through a 220-nucleotide element and its modulation of CaMKIIα activity. Furthermore, loss-of-function of SLAMR in CA1 selectively impairs consolidation but neither acquisition, recall, nor extinction of fear memory and spatial memory. Together, these results establish a new mechanism for activity dependent changes at the synapse and consolidation of contextual fear.
Collapse
Affiliation(s)
- Isabel Espadas
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Jenna Wingfield
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Eddie Grinman
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Ilika Ghosh
- Max Planck Florida Institute, Jupiter, FL, USA
| | - Kaushik Chanda
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | | | - Karl Bauer
- Biomedical Center (BMC), Department for Cell Biology, Medical Faculty, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | - Bindu Raveendra
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Michael Kiebler
- Biomedical Center (BMC), Department for Cell Biology, Medical Faculty, Ludwig-Maximilians-University of Munich, 82152 Planegg-Martinsried, Germany
| | | | | | - Sathyanarayanan Puthanveettil
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| |
Collapse
|
9
|
Dotts AJ, Reiman D, Yin P, Kujawa S, Grobman WA, Dai Y, Bulun SE. In Vivo Genome-Wide PGR Binding in Pregnant Human Myometrium Identifies Potential Regulators of Labor. Reprod Sci 2023; 30:544-559. [PMID: 35732928 PMCID: PMC9988762 DOI: 10.1007/s43032-022-01002-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/03/2022] [Indexed: 12/22/2022]
Abstract
The alterations in myometrial biology during labor are not well understood. The myometrium is the contractile portion of the uterus and contributes to labor, a process that may be regulated by the steroid hormone progesterone. Thus, human myometrial tissues from term pregnant in-active-labor (TIL) and term pregnant not-in-labor (TNIL) subjects were used for genome-wide analyses to elucidate potential future preventive or therapeutic targets involved in the regulation of labor. Using myometrial tissues directly subjected to RNA sequencing (RNA-seq), progesterone receptor (PGR) chromatin immunoprecipitation sequencing (ChIP-seq), and histone modification ChIP-seq, we profiled genome-wide changes associated with gene expression in myometrial smooth muscle tissue in vivo. In TIL myometrium, PGR predominantly occupied promoter regions, including the classical progesterone response element, whereas it bound mainly to intergenic regions in TNIL myometrial tissue. Differential binding analysis uncovered over 1700 differential PGR-bound sites between TIL and TNIL, with 1361 sites gained and 428 lost in labor. Functional analysis identified multiple pathways involved in cAMP-mediated signaling enriched in labor. A three-way integration of the data for ChIP-seq, RNA-seq, and active histone marks uncovered the following genes associated with PGR binding, transcriptional activation, and altered mRNA levels: ATP11A, CBX7, and TNS1. In vitro studies showed that ATP11A, CBX7, and TNS1 are progesterone responsive. We speculate that these genes may contribute to the contractile phenotype of the myometrium during various stages of labor. In conclusion, we provide novel labor-associated genome-wide events and PGR-target genes that can serve as targets for future mechanistic studies.
Collapse
Affiliation(s)
- Ariel J Dotts
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Derek Reiman
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ping Yin
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Stacy Kujawa
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - William A Grobman
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Yang Dai
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Serdar E Bulun
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
10
|
Involvement of miR-135a-5p Downregulation in Acute and Chronic Stress Response in the Prefrontal Cortex of Rats. Int J Mol Sci 2023; 24:ijms24021552. [PMID: 36675068 PMCID: PMC9865685 DOI: 10.3390/ijms24021552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Stress is a key risk factor in the onset of neuropsychiatric disorders. The study of the mechanisms underlying stress response is important to understand the etiopathogenetic mechanisms and identify new putative therapeutic targets. In this context, microRNAs (miRNAs) have emerged as key regulators of the complex patterns of gene/protein expression changes in the brain, where they have a crucial role in the regulation of neuroplasticity, neurogenesis, and neuronal differentiation. Among them, miR-135a-5p has been associated with stress response, synaptic plasticity, and the antidepressant effect in different brain areas. Here, we used acute unavoidable foot-shock stress (FS) and chronic mild stress (CMS) on male rats to study whether miR-135a-5p was involved in stress-induced changes in the prefrontal cortex (PFC). Both acute and chronic stress decreased miR-135a-5p levels in the PFC, although after CMS the reduction was induced only in animals vulnerable to CMS, according to a sucrose preference test. MiR-135a-5p downregulation in the primary neurons reduced dendritic spine density, while its overexpression exerted the opposite effect. Two bioinformatically predicted target genes, Kif5c and Cplx1/2, were increased in FS rats 24 h after stress. Altogether, we found that miR-135a-5p might play a role in stress response in PFC involving synaptic mechanisms.
Collapse
|
11
|
Sadhu A, Badal KK, Zhao Y, Ali AA, Swarnkar S, Tsaprailis G, Crynen GC, Puthanveettil SV. Short-Term and Long-Term Sensitization Differentially Alters the Composition of an Anterograde Transport Complex in Aplysia. eNeuro 2023; 10:ENEURO.0266-22.2022. [PMID: 36549915 PMCID: PMC9829102 DOI: 10.1523/eneuro.0266-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Long-term memory formation requires anterograde transport of proteins from the soma of a neuron to its distal synaptic terminals. This allows new synaptic connections to be grown and existing ones remodeled. However, we do not yet know which proteins are transported to synapses in response to activity and temporal regulation. Here, using quantitative mass spectrometry, we have profiled anterograde protein cargos of a learning-regulated molecular motor protein kinesin [Aplysia kinesin heavy chain 1 (ApKHC1)] following short-term sensitization (STS) and long-term sensitization (LTS) in Aplysia californica Our results reveal enrichment of specific proteins associated with ApKHC1 following both STS and LTS, as well as temporal changes within 1 and 3 h of LTS training. A significant number of proteins enriched in the ApKHC1 complex participate in synaptic function, and, while some are ubiquitously enriched across training conditions, a few are enriched in response to specific training. For instance, factors aiding new synapse formation, such as synaptotagmin-1, dynamin-1, and calmodulin, are differentially enriched in anterograde complexes 1 h after LTS but are depleted 3 h after LTS. Proteins including gelsolin-like protein 2 and sec23A/sec24A, which function in actin filament stabilization and vesicle transport, respectively, are enriched in cargos 3 h after LTS. These results establish that the composition of anterograde transport complexes undergo experience-dependent specific changes and illuminate dynamic changes in the communication between soma and synapse during learning.
Collapse
Affiliation(s)
- Abhishek Sadhu
- Department of Neuroscience, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458
| | - Kerriann K Badal
- Department of Neuroscience, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458
- Integrated Biology Graduate Program, Florida Atlantic University, Jupiter, Florida 33458
| | - Yibo Zhao
- Department of Neuroscience, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458
| | - Adia A Ali
- Department of Neuroscience, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458
| | - Supriya Swarnkar
- Department of Neuroscience, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458
| | - George Tsaprailis
- Proteomics Core, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458
| | - Gogce C Crynen
- Bioinformatics Core, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458
| | | |
Collapse
|
12
|
Miryala CSJ, Holland ED, Dent EW. Contributions of microtubule dynamics and transport to presynaptic and postsynaptic functions. Mol Cell Neurosci 2022; 123:103787. [PMID: 36252720 PMCID: PMC9838116 DOI: 10.1016/j.mcn.2022.103787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
Microtubules (MT) are elongated, tubular, cytoskeletal structures formed from polymerization of tubulin dimers. They undergo continuous cycles of polymerization and depolymerization, primarily at their plus ends, termed dynamic instability. Although this is an intrinsic property of MTs, there are a myriad of MT-associated proteins that function in regulating MT dynamic instability and other dynamic processes that shape the MT array. Additionally, MTs assemble into long, semi-rigid structures which act as substrates for long-range, motor-driven transport of many different types of cargoes throughout the cell. Both MT dynamics and motor-based transport play important roles in the function of every known type of cell. Within the last fifteen years many groups have shown that MT dynamics and transport play ever-increasing roles in the neuronal function of mature neurons. Not only are neurons highly polarized cells, but they also connect with one another through synapses to form complex networks. Here we will focus on exciting studies that have illuminated how MTs function both pre-synaptically in axonal boutons and post-synaptically in dendritic spines. It is becoming clear that MT dynamics and transport both serve important functions in synaptic plasticity. Thus, it is not surprising that disruption of MTs, either through hyperstabilization or destabilization, has profound consequences for learning and memory. Together, the studies described here suggest that MT dynamics and transport play key roles in synaptic function and when disrupted result in compromised learning and memory.
Collapse
Affiliation(s)
- Chandra S. J. Miryala
- Department of Neuroscience, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705
| | - Elizabeth D. Holland
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705
| | - Erik W. Dent
- Department of Neuroscience, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53705,Corresponding Author: Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705,
| |
Collapse
|
13
|
Badal KK, Puthanveettil SV. Axonal transport deficits in neuropsychiatric disorders. Mol Cell Neurosci 2022; 123:103786. [PMID: 36252719 DOI: 10.1016/j.mcn.2022.103786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Axonal transport is a major cellular process that mediates bidirectional signaling between the soma and synapse, enabling both intracellular and intercellular communications. Cellular materials, such as proteins, RNAs, and organelles, are transported by molecular motor proteins along cytoskeletal highways in a highly regulated manner. Several studies have demonstrated that axonal transport is central to normal neuronal function, plasticity, and memory storage. Importantly, disruptions in axonal transport result in neuronal dysfunction and are associated with several neurodegenerative disorders. However, we do not know much about axonal transport deficits in neuropsychiatric disorders. Here, we briefly discuss our current understanding of the role of axonal transport in schizophrenia, bipolar and autism.
Collapse
Affiliation(s)
- Kerriann K Badal
- Department of Neuroscience, UF Scripps Biomedical Research, University of Florida, 130 Scripps Way, Jupiter, FL 33458, USA; Integrative Biology PhD Program, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL 33458, USA
| | | |
Collapse
|
14
|
KIF5C deficiency causes abnormal cortical neuronal migration, dendritic branching, and spine morphology in mice. Pediatr Res 2022; 92:995-1002. [PMID: 34966180 DOI: 10.1038/s41390-021-01922-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/18/2021] [Accepted: 12/13/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Malformation of cortical development (MCD) includes a variety of developmental disorders that are common causes of neurodevelopmental delay and epilepsy. Most recently, clinical studies found that patients carrying KIF5C mutations present early-onset MCD; however, the underlying mechanisms remain elusive. METHODS KIF5C expression level was examined in mouse primary cortical neurons and human ips-derived forebrain organoids. We studied the cortical neuronal migration, dendritic branching, and dendritic spine growth after knocking down the KIF5C gene by electroporation in vitro and in vivo. Then, we studied the transcriptome differences between the knockdown and control groups through RNA sequencing. RESULTS We observed high KIF5C expression in neurons during the early developmental stage in mice and the human brain. Kif5c deficiency results in disturbed cortical neuronal migration, dendritic, and spine growth. Finally, we found that Kif5c knockdown affected several genes associated with cortical neuronal development in vitro. CONCLUSIONS These results suggested a critical role for Kif5c in cortical development, providing insights into underlying pathogenic factors of kinesins in MCD. IMPACT KIF5C mutation-related MCD might be caused by abnormal early cortical neuronal development. Kif5c deficiency led to abnormal cortical neuronal dendritic and spine growth and neuronal migration. Our findings explain how Kif5c deficiency is involved in the aberrant development of cortical neurons and provide a new perspective for the pathology of MCD.
Collapse
|
15
|
Fan R, Lai KO. Understanding how kinesin motor proteins regulate postsynaptic function in neuron. FEBS J 2021; 289:2128-2144. [PMID: 34796656 DOI: 10.1111/febs.16285] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 01/07/2023]
Abstract
The Kinesin superfamily proteins (KIFs) are major molecular motors that transport diverse set of cargoes along microtubules to both the axon and dendrite of a neuron. Much of our knowledge about kinesin function is obtained from studies on axonal transport. Emerging evidence reveals how specific kinesin motor proteins carry cargoes to dendrites, including proteins, mRNAs and organelles that are crucial for synapse development and plasticity. In this review, we will summarize the major kinesin motors and their associated cargoes that have been characterized to regulate postsynaptic function in neuron. We will also discuss how specific kinesins are selectively involved in the development of excitatory and inhibitory postsynaptic compartments, their regulation by post-translational modifications (PTM), as well as their roles beyond conventional transport carrier.
Collapse
Affiliation(s)
- Ruolin Fan
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Kwok-On Lai
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
16
|
Joseph NF, Zucca A, Wingfield JL, Espadas I, Page D, Puthanveettil SV. Molecular motor KIF3B in the prelimbic cortex constrains the consolidation of contextual fear memory. Mol Brain 2021; 14:162. [PMID: 34749771 PMCID: PMC8573985 DOI: 10.1186/s13041-021-00873-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/28/2021] [Indexed: 11/10/2022] Open
Abstract
Molecular and cellular mechanisms underlying the role of the prelimbic cortex in contextual fear memory remain elusive. Here we examined the kinesin family of molecular motor proteins (KIFs) in the prelimbic cortex for their role in mediating contextual fear, a form of associative memory. KIFs function as critical mediators of synaptic transmission and plasticity by their ability to modulate microtubule function and transport of gene products. However, the regulation and function of KIFs in the prelimbic cortex insofar as mediating memory consolidation is not known. We find that within one hour of contextual fear conditioning, the expression of KIF3B is upregulated in the prelimbic but not the infralimbic cortex. Importantly, lentiviral-mediated knockdown of KIF3B in the prelimbic cortex produces deficits in consolidation while reducing freezing behavior during extinction of contextual fear. We also find that the depletion of KIF3B increases spine density within prelimbic neurons. Taken together, these results illuminate a key role for KIF3B in the prelimbic cortex as far as mediating contextual fear memory.
Collapse
Affiliation(s)
- Nadine F Joseph
- The Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research Institute, La Jolla, CA, 92037, USA.,Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Aya Zucca
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Jenna L Wingfield
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Isabel Espadas
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Damon Page
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | | |
Collapse
|
17
|
Brachet A, Lario A, Fernández-Rodrigo A, Heisler FF, Gutiérrez Y, Lobo C, Kneussel M, Esteban JA. A kinesin 1-protrudin complex mediates AMPA receptor synaptic removal during long-term depression. Cell Rep 2021; 36:109499. [PMID: 34348158 DOI: 10.1016/j.celrep.2021.109499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 05/19/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022] Open
Abstract
The synaptic removal of AMPA-type glutamate receptors (AMPARs) is a core mechanism for hippocampal long-term depression (LTD). In this study, we address the role of microtubule-dependent transport of AMPARs as a driver for vesicular trafficking and sorting during LTD. Here, we show that the kinesin-1 motor KIF5A/C is strictly required for LTD expression in CA3-to-CA1 hippocampal synapses. Specifically, we find that KIF5 is required for an efficient internalization of AMPARs after NMDA receptor activation. We show that the KIF5/AMPAR complex is assembled in an activity-dependent manner and associates with microsomal membranes upon LTD induction. This interaction is facilitated by the vesicular adaptor protrudin, which is also required for LTD expression. We propose that protrudin links KIF5-dependent transport to endosomal sorting, preventing AMPAR recycling to synapses after LTD induction. Therefore, this work identifies an activity-dependent molecular motor and the vesicular adaptor protein that executes AMPAR synaptic removal during LTD.
Collapse
Affiliation(s)
- Anna Brachet
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Argentina Lario
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alba Fernández-Rodrigo
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Frank F Heisler
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), D-20251 Hamburg, Germany
| | - Yolanda Gutiérrez
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Clara Lobo
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Matthias Kneussel
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), D-20251 Hamburg, Germany
| | - José A Esteban
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|