1
|
Nakamura K, Ida N, Hirasawa A, Okamoto K, Vu TH, Hai Ly DT, Masuyama H. CD63 as a potential biomarker for patients with ovarian cancer. Eur J Obstet Gynecol Reprod Biol 2025; 306:87-93. [PMID: 39799740 DOI: 10.1016/j.ejogrb.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/12/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
INTRODUCTION Exosomes play an important role in regulating physiological processes and mediating the systemic dissemination of various types of cancer. We investigated the association of exosomal tetraspanins CD9, CD63, and CD81 in patients with ovarian cancer (OC). MATERIAL AND METHODS We measured the plasma tetraspanins CD9, CD63, and CD81 by enzyme-linked immunosorbent assay in 91 patients who underwent treatment for OC between April 2018 and March 2024. Additionally, we analyzed clinical pathologic factors, chemotherapy response, and prognosis. RESULTS In terms of stages, CD63 expression was significantly higher in patients with stage IV compared to those with stage I OC (p = 0.003). In terms of histological type, CD63 expression was significantly higher in high-grade serous carcinoma (HGSC) than in clear cell carcinoma (CCC) with OC (p = 0.009). Furthermore, CD63 levels were significantly higher in advanced-stage, HGSC than in patients with early-stage, non-HGSC and early-stage, HGSC OC (p = 0.045 and p = 0.002, respectively). In the Neoadjuvant chemotherapy (NAC) of 12 patients with OC assessed as having either a partial response (PR) or complete response (CR), CD63 was significantly decreased (p = 0.043), whereas perforin was significantly increased (p = 0.001). In the NAC of 16 patients with OC, CD63 of the response rate to chemotherapy tended to differ between the progressive disease (PD) and PR/CR groups (p = 0.056). A moderate inverse correlation was observed between CD63 and perforin levels (R = 0.638, R2 = 0.428, p = 0.008). CONCLUSIONS CD63 could be a potential biomarker for all types of OC patients.
Collapse
Affiliation(s)
- Keiichiro Nakamura
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho kitaku, Okayama 700-8558, Japan.
| | - Naoyuki Ida
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho kitaku, Okayama 700-8558, Japan
| | - Akira Hirasawa
- Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho kitaku, Okayama 700-8558, Japan.
| | - Kazuhiro Okamoto
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho kitaku, Okayama 700-8558, Japan
| | - Thuy Ha Vu
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho kitaku, Okayama 700-8558, Japan
| | - Dao Thi Hai Ly
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho kitaku, Okayama 700-8558, Japan.
| | - Hisashi Masuyama
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho kitaku, Okayama 700-8558, Japan.
| |
Collapse
|
2
|
Zhi-Xiong C. Single-cell RNA sequencing in ovarian cancer: Current progress and future prospects. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:100-129. [PMID: 39778630 DOI: 10.1016/j.pbiomolbio.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/25/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Ovarian cancer is one of the most prevalent gynaecological malignancies. The rapid development of single-cell RNA sequencing (scRNA-seq) has allowed scientists to use this technique to study ovarian cancer development, heterogeneity, and tumour environment. Although multiple original research articles have reported the use of scRNA-seq in understanding ovarian cancer and how therapy resistance occurs, there is a lack of a comprehensive review that could summarize the findings from multiple studies. Therefore, this review aimed to fill this gap by comparing and summarizing the results from different studies that have used scRNA-seq in understanding ovarian cancer development, heterogeneity, tumour microenvironment, and treatment resistance. This review will begin with an overview of scRNA-seq workflow, followed by a discussion of various applications of scRNA-seq in studying ovarian cancer. Next, the limitations and future directions of scRNA-seq in ovarian cancer research will be presented.
Collapse
Affiliation(s)
- Chong Zhi-Xiong
- Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500 Selangor, Malaysia; Victor Biotech, 81200 Johor Bahru, Johor, Malaysia.
| |
Collapse
|
3
|
Kim J, Park S, Kim J, Kim Y, Yoon HM, Rayhan BR, Jeong J, Bothwell ALM, Shin JH. Trogocytosis-mediated immune evasion in the tumor microenvironment. Exp Mol Med 2025:10.1038/s12276-024-01364-2. [PMID: 39741180 DOI: 10.1038/s12276-024-01364-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 01/02/2025] Open
Abstract
Trogocytosis is a dynamic cellular process characterized by the exchange of the plasma membrane and associated cytosol during cell-to-cell interactions. Unlike phagocytosis, this transfer maintains the surface localization of transferred membrane molecules. For example, CD4 T cells engaging with antigen-presenting cells undergo trogocytosis, which facilitates the transfer of antigen-loaded major histocompatibility complex (MHC) class II molecules from antigen-presenting cells to CD4 T cells. This transfer results in the formation of antigen-loaded MHC class II molecule-dressed CD4 T cells. These "dressed" CD4 T cells subsequently participate in antigen presentation to other CD4 T cells. Additionally, trogocytosis enables the acquisition of immune-regulatory molecules, such as CTLA-4 and Tim3, in recipient cells, thereby modulating their anti-tumor immunity. Concurrently, donor cells undergo plasma membrane loss, and substantial loss can trigger trogocytosis-mediated cell death, termed trogoptosis. This review aims to explore the trogocytosis-mediated transfer of immune regulatory molecules and their implications within the tumor microenvironment to elucidate the underlying mechanisms of immune evasion in cancers.
Collapse
Affiliation(s)
- Jeonghyun Kim
- Institute of Advanced Bio-Industry Convergence, Yonsei University, Seoul, Korea
| | - Soyeon Park
- Institute of Advanced Bio-Industry Convergence, Yonsei University, Seoul, Korea
| | - Jungseo Kim
- Integrative Science and Engineering Division, Underwood International College, Yonsei University, Incheon, 21983, Korea
| | - Yewon Kim
- Integrative Science and Engineering Division, Underwood International College, Yonsei University, Incheon, 21983, Korea
| | - Hong Min Yoon
- Integrative Science and Engineering Division, Underwood International College, Yonsei University, Incheon, 21983, Korea
| | - Bima Rexa Rayhan
- Integrative Science and Engineering Division, Underwood International College, Yonsei University, Incheon, 21983, Korea
| | - Jaekwang Jeong
- Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Alfred L M Bothwell
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, 505 S. 45th Street, Omaha, NE, 68198, USA.
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Jae Hun Shin
- Institute of Advanced Bio-Industry Convergence, Yonsei University, Seoul, Korea.
- Integrative Science and Engineering Division, Underwood International College, Yonsei University, Incheon, 21983, Korea.
| |
Collapse
|
4
|
Tan R, Wen M, Yang W, Zhan D, Zheng N, Liu M, Zhu F, Chen X, Wang M, Yang S, Xie B, He Q, Yuan K, Sun L, Wang Y, Qin J, Zhang Y. Integrated proteomics and scRNA-seq analyses of ovarian cancer reveal molecular subtype-associated cell landscapes and immunotherapy targets. Br J Cancer 2025; 132:111-125. [PMID: 39548315 PMCID: PMC11723995 DOI: 10.1038/s41416-024-02894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) represents the most lethal gynaecological malignancy, yet understanding the connections between its molecular subtypes and their therapeutic implications remains incomplete. METHODS We conducted mass spectrometry-based proteomics analyses of 154 EOC tumour samples and 29 normal fallopian tubes, and single-cell RNA sequencing (scRNA-seq) analyses of an additional eight EOC tumours to classify proteomic subtypes and assess their cellular ecosystems and clinical significance. The efficacy of identified therapeutic targets was evaluated in patient-derived xenograft (PDX) and orthotopic mouse models. RESULTS We identified four proteomic subtypes with distinct clinical relevance: malignant proliferative (C1), immune infiltrating (C2), Fallopian-like (C3) and differentiated (C4) subtypes. C2 subtype was characterized by lymphocyte infiltration, notably an increased presence of GZMK CD8+ T cells and phagocytosis-like MRC+ macrophages. Additionally, we identified CD40 as a specific prognostic factor for C2 subtype. The interaction between CD40+ phagocytosis-like macrophages and CD40RL+ IL17R CD4+ T cells was correlated with a favourable prognosis. Finally, we established a druggable landscape for non-immune EOC patients and verified a TYMP inhibitor as a promising therapeutic strategy. CONCLUSIONS Our study refines the current immune subtype for EOC, highlighting CD40 agonists as promising therapies for C2 subtype patients and targeting TYMP for non-immune patients.
Collapse
Affiliation(s)
- Rong Tan
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China.
| | - Ming Wen
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan key laboratory of aging biology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenqing Yang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Gynecological Oncology Research and Engineering Center of Hunan Province, Changsha, Hunan, China
| | - Dongdong Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
- Beijing Pineal Diagnostics Co., Ltd., Beijing, China
| | - Nairen Zheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Fang Zhu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Gynecological Oncology Research and Engineering Center of Hunan Province, Changsha, Hunan, China
| | - Xiaodan Chen
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Gynecological Oncology Research and Engineering Center of Hunan Province, Changsha, Hunan, China
| | - Meng Wang
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Siyu Yang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Gynecological Oncology Research and Engineering Center of Hunan Province, Changsha, Hunan, China
| | - Bin Xie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Qiongqiong He
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Kai Yuan
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, China
| | - Lunquan Sun
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, China
- Center for Molecular Imaging of Central South University, Xiangya Hospital, Changsha, China
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Yu Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Gynecological Oncology Research and Engineering Center of Hunan Province, Changsha, Hunan, China.
| |
Collapse
|
5
|
Vledder A, Paijens ST, Loiero D, Maagdenberg A, Duiker EW, Bart J, Hendriks AM, Jalving M, Werner N, van Rooij N, Plat A, Wisman GBA, Yigit R, Roelofsen T, Kruse AJ, de Lange NM, Koelzer VH, de Bruyn M, Nijman HW. B cells critical for outcome in high grade serous ovarian carcinoma. Int J Cancer 2024; 155:2265-2276. [PMID: 39175107 DOI: 10.1002/ijc.35149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/24/2024]
Abstract
Recent work has shown evidence for the prognostic significance of tumor infiltrating B cells (B-TIL) in high grade serous ovarian carcinoma (HGSOC), the predominant histological subtype of ovarian cancer. However, it remains unknown how the favorable prognosis associated with B-TIL relates to the current standard treatments of primary debulking surgery (PDS) followed by chemotherapy or (neo-)adjuvant chemotherapy (NACT) combined with interval debulking surgery. To address this, we analyzed the prognostic impact of B-TIL in relationship to primary treatment and tumor infiltrating T cell status in a highly homogenous cohort of HGSOC patients. This analysis involved a combined approach utilizing histological data and high-dimensional flow cytometry analysis. Our findings indicate that while HGSOC tumors pre-treated with NACT are infiltrated with tumor-reactive CD8+ and CD4+ TIL subsets, only B-TIL and IgA plasma blasts confer prognostic benefit in terms of overall survival. Importantly, the prognostic value of B-TIL and IgA plasma blasts was not restricted to patients treated with NACT, but was also evident in patients treated with PDS. Together, our data point to a critical prognostic role for B-TIL in HGSOC patients independent of T cell status, suggesting that alternative treatment approaches focused on the activation of B cells should be explored for HGSOC.
Collapse
Affiliation(s)
- Annegé Vledder
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sterre T Paijens
- Department of Radiotherapy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dominik Loiero
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zürich, Switzerland
| | - Alexis Maagdenberg
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Evelien W Duiker
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joost Bart
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anne M Hendriks
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mathilde Jalving
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Naomi Werner
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nienke van Rooij
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Annechien Plat
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - G Bea A Wisman
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Refika Yigit
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Thijs Roelofsen
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arnold J Kruse
- Department of Obstetrics and Gynecology, Isala Hospital Zwolle, Zwolle, The Netherlands
| | - Nastascha M de Lange
- Department of Obstetrics and Gynecology, Isala Hospital Zwolle, Zwolle, The Netherlands
| | - Viktor H Koelzer
- Department of Pathology and Molecular Pathology, University Hospital and University of Zurich, Zürich, Switzerland
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hans W Nijman
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Kurnit KC, Odunsi K. Harnessing Antitumor Immunity in Ovarian Cancer. Cold Spring Harb Perspect Med 2024; 14:a041336. [PMID: 38621830 PMCID: PMC11610759 DOI: 10.1101/cshperspect.a041336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Despite progress in other tumor types, immunotherapy is not yet part of the standard of care treatment for high-grade serous ovarian cancer patients. Although tumor infiltration by T cells is frequently observed in patients with ovarian cancer, clinical responses to immunotherapy remain low. Mechanisms for immune resistance in ovarian cancer have been explored and may provide insight into future approaches to improve response to immunotherapy agents. In this review, we discuss what is known about the immune landscape in ovarian cancer, review the available data for immunotherapy-based strategies in these patients, and provide possible future directions.
Collapse
Affiliation(s)
- Katherine C Kurnit
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois 60637, USA
| | - Kunle Odunsi
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois 60637, USA
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois 60637, USA
| |
Collapse
|
7
|
Bedia JS, Huang YW, Gonzalez AD, Gonzalez VD, Funingana IG, Rahil Z, Mike A, Lowber A, Vias M, Ashworth A, Brenton JD, Fantl WJ. Coordinated protein modules define DNA damage responses to carboplatin at single cell resolution in human ovarian carcinoma models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624591. [PMID: 39605494 PMCID: PMC11601625 DOI: 10.1101/2024.11.21.624591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Tubo-ovarian high-grade serous carcinoma (HGSC) is the most lethal gynecological malignancy and frequently responds to platinum-based chemotherapy because of common genetic and somatic impairment of DNA damage repair (DDR) pathways. The mechanisms of clinical platinum resistance are diverse and poorly molecularly defined. Consequently, there are no biomarkers or medicines that improve patient outcomes. Herein we use single cell mass cytometry (CyTOF) to systematically evaluate the phosphorylation and abundance of proteins known to participate in the DNA damage response (DDR). Single cell analyses of highly characterized HGSC cell lines that phenocopy human patients show that cells with comparable levels of intranuclear platinum, a proxy for carboplatin uptake, undergo different cell fates. Unsupervised analyses revealed a continuum of DDR responses. Decompositional methods were used to identify eight distinct protein modules of carboplatin resistance and sensitivity at single cell resolution. CyTOF profiling of primary and secondary platinum-resistance patient models shows that a complex DDR sensitivity module is strongly associated with response, suggesting it as a potential tool to clinically characterize complex drug resistance phenotypes.
Collapse
Affiliation(s)
- Jacob S. Bedia
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ying-Wen Huang
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Veronica D. Gonzalez
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ionut-Gabriel Funingana
- Department of Oncology, University of Cambridge, Cambridgeshire, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, Cambridgeshire, CB2 0RE, UK
- Department of Oncology, Addenbrooke’s Hospital, Cambridge University Hospitals, NHS Foundation Trust, Cambridge, UK
| | - Zainab Rahil
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alyssa Mike
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexis Lowber
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maria Vias
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, Cambridgeshire, CB2 0RE, UK
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 Third Street, San Francisco, CA 94158, USA
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, Cambridgeshire, CB2 0RE, UK
- Department of Oncology, Addenbrooke’s Hospital, Cambridge University Hospitals, NHS Foundation Trust, Cambridge, UK
| | - Wendy J. Fantl
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Comprehensive Cancer Institute
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Sandoval TA, Salvagno C, Chae CS, Awasthi D, Giovanelli P, Falco MM, Hwang SM, Teran-Cabanillas E, Suominen L, Yamazaki T, Kuo HH, Moyer JE, Martin ML, Manohar J, Kim K, Sierra MA, Ramos Y, Tan C, Emmanuelli A, Song M, Morales DK, Zamarin D, Frey MK, Cantillo E, Chapman-Davis E, Holcomb K, Mason CE, Galluzzi L, Zhou ZN, Vähärautio A, Cloonan SM, Cubillos-Ruiz JR. Iron Chelation Therapy Elicits Innate Immune Control of Metastatic Ovarian Cancer. Cancer Discov 2024; 14:1901-1921. [PMID: 39073085 PMCID: PMC11452292 DOI: 10.1158/2159-8290.cd-23-1451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Iron accumulation in tumors contributes to disease progression and chemoresistance. Although targeting this process can influence various hallmarks of cancer, the immunomodulatory effects of iron chelation in the tumor microenvironment are unknown. Here, we report that treatment with deferiprone, an FDA-approved iron chelator, unleashes innate immune responses that restrain ovarian cancer. Deferiprone reprogrammed ovarian cancer cells toward an immunostimulatory state characterized by the production of type-I IFN and overexpression of molecules that activate NK cells. Mechanistically, these effects were driven by innate sensing of mitochondrial DNA in the cytosol and concomitant activation of nuclear DNA damage responses triggered upon iron chelation. Deferiprone synergized with chemotherapy and prolonged the survival of mice with ovarian cancer by bolstering type-I IFN responses that drove NK cell-dependent control of metastatic disease. Hence, iron chelation may represent an alternative immunotherapeutic strategy for malignancies that are refractory to current T-cell-centric modalities. Significance: This study uncovers that targeting dysregulated iron accumulation in ovarian tumors represents a major therapeutic opportunity. Iron chelation therapy using an FDA-approved agent causes immunogenic stress responses in ovarian cancer cells that delay metastatic disease progression and enhance the effects of first-line chemotherapy. See related commentary by Bell and Zou, p. 1771.
Collapse
Affiliation(s)
- Tito A. Sandoval
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Camilla Salvagno
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Chang-Suk Chae
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Deepika Awasthi
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Paolo Giovanelli
- Weill Cornell Graduate School of Medical Sciences. New York, NY 10065. USA
| | - Matias Marin Falco
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sung-Min Hwang
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Eli Teran-Cabanillas
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Lasse Suominen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Hui-Hsuan Kuo
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065. USA
| | - Jenna E. Moyer
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065. USA
| | - M Laura Martin
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065. USA
| | - Jyothi Manohar
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065. USA
| | - Kihwan Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine. New York, NY 10065, USA
| | - Maria A. Sierra
- Weill Cornell Graduate School of Medical Sciences. New York, NY 10065. USA
| | - Yusibeska Ramos
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Chen Tan
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Alexander Emmanuelli
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences. New York, NY 10065. USA
| | - Minkyung Song
- Departments of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University. Suwon, Gyeonggi-do, Korea
| | - Diana K. Morales
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Dmitriy Zamarin
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Melissa K. Frey
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Evelyn Cantillo
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Eloise Chapman-Davis
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Kevin Holcomb
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Christopher E. Mason
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine. New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine. New York, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine. New York, NY, USA
| | - Lorenzo Galluzzi
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
- Department of Radiation Oncology, Weill Cornell Medicine. New York, NY 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065. USA
| | - Zhen Ni Zhou
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Anna Vähärautio
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Suzanne M. Cloonan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine. New York, NY 10065, USA
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College. Dublin, Ireland
| | - Juan R. Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences. New York, NY 10065. USA
| |
Collapse
|
9
|
Lian J, Li M, Duan M, Sun Y, Wang Z, Guo X, Li J, Gao G, Li K. NK-92 cells labeled with Fe 3O 4-PEG-CD56/Avastin@Ce6 nanoprobes for the targeted treatment and noninvasive therapeutic evaluation of breast cancer. J Nanobiotechnology 2024; 22:313. [PMID: 38840120 PMCID: PMC11151526 DOI: 10.1186/s12951-024-02599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Adoptive cellular immunotherapy as a promising and alternative cancer therapy platform is critical for future clinical applications. Natural killer (NK) cells have attracted attention as an important type of innate immune regulatory cells that can rapidly kill multiple adjacent cancer cells. However, these cells are significantly less effective in treating solid tumors than in treating hematological tumors. Herein, we report the synthesis of a Fe3O4-PEG-CD56/Avastin@Ce6 nanoprobe labeled with NK-92 cells that can be used for adoptive cellular immunotherapy, photodynamic therapy and dual-modality imaging-based in vivo fate tracking. The labeled NK-92 cells specifically target the tumor cells, which increases the amount of cancer cell apoptosis in vitro. Furthermore, the in vivo results indicate that the labeled NK-92 cells can be used for tumor magnetic resonance imaging and fluorescence imaging, adoptive cellular immunotherapy, and photodynamic therapy after tail vein injection. These data show that the developed multifunctional nanostructure is a promising platform for efficient innate immunotherapy, photodynamic treatment and noninvasive therapeutic evaluation of breast cancer.
Collapse
Affiliation(s)
- Jingge Lian
- Department of Radiology, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 201600, P.R. China
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China
| | - Meng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Meng Duan
- Department of Instrument Science and Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaqian Sun
- Department of Radiology, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 201600, P.R. China
- Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, P.R. China
| | - Zilin Wang
- Department of Radiology, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 201600, P.R. China
| | - Xinyu Guo
- Department of Radiology, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 201600, P.R. China
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China.
| | - Guo Gao
- Department of Instrument Science and Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Kangan Li
- Department of Radiology, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 201600, P.R. China.
| |
Collapse
|
10
|
Merabet A, Westrelin F, Vieillard V. [PD-1 receptor expression by NK cells after contact with tumor cells: from origin to function]. Med Sci (Paris) 2024; 40:576-577. [PMID: 38986107 DOI: 10.1051/medsci/2024074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Affiliation(s)
- Anis Merabet
- Master Biologie Moléculaire et Cellulaire (BMC), Parcours Immunologie, M2 Immunologie Intégrative et Systémique (I2S), Sorbonne Université, Paris, France
| | - Florian Westrelin
- Master Biologie Moléculaire et Cellulaire (BMC), Parcours Immunologie, M2 Immunologie Translationnelle et Biothérapies (ITB), Sorbonne UNiversité, Paris, France
| | - Vincent Vieillard
- Sorbonne Université, Inserm U1135, CNRS ERL8285, Centre d'immunologie et des maladies infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
11
|
Amniouel S, Yalamanchili K, Sankararaman S, Jafri MS. Evaluating Ovarian Cancer Chemotherapy Response Using Gene Expression Data and Machine Learning. BIOMEDINFORMATICS 2024; 4:1396-1424. [PMID: 39149564 PMCID: PMC11326537 DOI: 10.3390/biomedinformatics4020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background Ovarian cancer (OC) is the most lethal gynecological cancer in the United States. Among the different types of OC, serous ovarian cancer (SOC) stands out as the most prevalent. Transcriptomics techniques generate extensive gene expression data, yet only a few of these genes are relevant to clinical diagnosis. Methods Methods for feature selection (FS) address the challenges of high dimensionality in extensive datasets. This study proposes a computational framework that applies FS techniques to identify genes highly associated with platinum-based chemotherapy response on SOC patients. Using SOC datasets from the Gene Expression Omnibus (GEO) database, LASSO and varSelRF FS methods were employed. Machine learning classification algorithms such as random forest (RF) and support vector machine (SVM) were also used to evaluate the performance of the models. Results The proposed framework has identified biomarkers panels with 9 and 10 genes that are highly correlated with platinum-paclitaxel and platinum-only response in SOC patients, respectively. The predictive models have been trained using the identified gene signatures and accuracy of above 90% was achieved. Conclusions In this study, we propose that applying multiple feature selection methods not only effectively reduces the number of identified biomarkers, enhancing their biological relevance, but also corroborates the efficacy of drug response prediction models in cancer treatment.
Collapse
Affiliation(s)
- Soukaina Amniouel
- School of System Biology, George Mason University, Fairfax, VA 22030, USA
| | - Keertana Yalamanchili
- School of System Biology, George Mason University, Fairfax, VA 22030, USA
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Sreenidhi Sankararaman
- School of System Biology, George Mason University, Fairfax, VA 22030, USA
- Department of Biomedical Engineering, The John Hopkins University, Baltimore, MD 21218, USA
| | - Mohsin Saleet Jafri
- School of System Biology, George Mason University, Fairfax, VA 22030, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
Onuma T, Asare-Werehene M, Fujita Y, Yoshida Y, Tsang BK. Plasma Gelsolin Inhibits Natural Killer Cell Function and Confers Chemoresistance in Epithelial Ovarian Cancer. Cells 2024; 13:905. [PMID: 38891037 PMCID: PMC11171658 DOI: 10.3390/cells13110905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Plasma gelsolin (pGSN) overexpression in ovarian cancer (OVCA) disarms immune function, contributing to chemoresistance. The aim of this study was to investigate the immunoregulatory effects of pGSN expression on natural killer (NK) cell function in OVCA. OVCA tissues from primary surgeries underwent immunofluorescent staining of pGSN and the activated NK cell marker natural cytotoxicity triggering receptor 1 to analyze the prognostic impact of pGSN expression and activated NK cell infiltration. The immunoregulatory effects of pGSN on NK cells were assessed using apoptosis assay, cytokine secretion, immune checkpoint-receptor expression, and phosphorylation of STAT3. In OVCA tissue analyses, activated NK cell infiltration provided survival advantages to patients. However, high pGSN expression attenuated the survival benefits of activated NK cell infiltration. In the in vitro experiment, pGSN in OVCA cells induced NK cell death through cell-to-cell contact. pGSN increased T-cell immunoglobulin and mucin-domain-containing-3 expression (TIM-3) on activated NK cells. Further, it decreased interferon-γ production in activated TIM-3+ NK cells, attenuating their anti-tumor effects. Thus, increased pGSN expression suppresses the anti-tumor functions of NK cells. The study provides insights into why immunotherapy is rarely effective in patients with OVCA and suggests novel treatment strategies.
Collapse
Affiliation(s)
- Toshimichi Onuma
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada; (T.O.); (M.A.-W.)
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine & The Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Obstetrics and Gynecology, University of Fukui, Fukui 910-1193, Japan;
| | - Meshach Asare-Werehene
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada; (T.O.); (M.A.-W.)
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine & The Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Yuko Fujita
- Department of Obstetrics and Gynecology, University of Fukui, Fukui 910-1193, Japan;
| | - Yoshio Yoshida
- Department of Obstetrics and Gynecology, University of Fukui, Fukui 910-1193, Japan;
| | - Benjamin K. Tsang
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada; (T.O.); (M.A.-W.)
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine & The Centre for Infection, Immunity and Inflammation (CI3), Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
13
|
Santiso A, Heinemann A, Kargl J. Prostaglandin E2 in the Tumor Microenvironment, a Convoluted Affair Mediated by EP Receptors 2 and 4. Pharmacol Rev 2024; 76:388-413. [PMID: 38697857 DOI: 10.1124/pharmrev.123.000901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 05/05/2024] Open
Abstract
The involvement of the prostaglandin E2 (PGE2) system in cancer progression has long been recognized. PGE2 functions as an autocrine and paracrine signaling molecule with pleiotropic effects in the human body. High levels of intratumoral PGE2 and overexpression of the key metabolic enzymes of PGE2 have been observed and suggested to contribute to tumor progression. This has been claimed for different types of solid tumors, including, but not limited to, lung, breast, and colon cancer. PGE2 has direct effects on tumor cells and angiogenesis that are known to promote tumor development. However, one of the main mechanisms behind PGE2 driving cancerogenesis is currently thought to be anchored in suppressed antitumor immunity, thus providing possible therapeutic targets to be used in cancer immunotherapies. EP2 and EP4, two receptors for PGE2, are emerging as being the most relevant for this purpose. This review aims to summarize the known roles of PGE2 in the immune system and its functions within the tumor microenvironment. SIGNIFICANCE STATEMENT: Prostaglandin E2 (PGE2) has long been known to be a signaling molecule in cancer. Its presence in tumors has been repeatedly associated with disease progression. Elucidation of its effects on immunological components of the tumor microenvironment has highlighted the potential of PGE2 receptor antagonists in cancer treatment, particularly in combination with immune checkpoint inhibitor therapeutics. Adjuvant treatment could increase the response rates and the efficacy of immune-based therapies.
Collapse
Affiliation(s)
- Ana Santiso
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
14
|
Hou Y, Zhao X, Nie X. Enhancing the therapeutic efficacy of NK cells in the treatment of ovarian cancer (Review). Oncol Rep 2024; 51:50. [PMID: 38299257 PMCID: PMC10851334 DOI: 10.3892/or.2024.8709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
Ovarian cancer is a prevalent gynecological malignancy associated with a high mortality rate and a low 5‑year survival rate. Typically, >70% of patients present with an advanced stage of the disease, resulting in a high number of ovarian cancer‑associated deaths worldwide. Over the past decade, adoptive cellular immunotherapy has been investigated in clinical trials, and the results have led to the increased use in cancer treatment. Natural killer (NK) cells are cytotoxic lymphoid cells that recognize and lyse transformed cells, thereby impeding tumor growth. Thus, NK cells exhibit potential as a form of immunotherapy in the treatment of cancer. However, some patients with ovarian cancer treated with NK cells have experienced unsatisfactory outcomes. Therefore, further optimization of NK cells is required to increase the number of patients achieving long‑term remission. In the present review article, studies focusing on improving NK cell function were systematically summarized, and innovative strategies that augment the anticancer properties of NK cells were proposed.
Collapse
Affiliation(s)
- Yuzhu Hou
- Department of Gynecology, Qingdao Eighth People's Hospital, Qingdao, Shandong 266000, P.R. China
| | - Xiujun Zhao
- Department of Gynecology, Qingdao Eighth People's Hospital, Qingdao, Shandong 266000, P.R. China
| | - Xiaoqian Nie
- Department of Gynecology, Qingdao Eighth People's Hospital, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
15
|
Franzén AS, Boulifa A, Radecke C, Stintzing S, Raftery MJ, Pecher G. Next-Generation CEA-CAR-NK-92 Cells against Solid Tumors: Overcoming Tumor Microenvironment Challenges in Colorectal Cancer. Cancers (Basel) 2024; 16:388. [PMID: 38254876 PMCID: PMC10814835 DOI: 10.3390/cancers16020388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Colorectal carcinoma (CRC) presents a formidable medical challenge, demanding innovative therapeutic strategies. Chimeric antigen receptor (CAR) natural killer (NK) cell therapy has emerged as a promising alternative to CAR T-cell therapy for cancer. A suitable tumor antigen target on CRC is carcinoembryonic antigen (CEA), given its widespread expression and role in tumorigenesis and metastasis. CEA is known to be prolifically shed from tumor cells in a soluble form, thus hindering CAR recognition of tumors and migration through the TME. We have developed a next-generation CAR construct exclusively targeting cell-associated CEA, incorporating a PD1-checkpoint inhibitor and a CCR4 chemokine receptor to enhance homing and infiltration of the CAR-NK-92 cell line through the TME, and which does not induce fratricidal killing of CAR-NK-92-cells. To evaluate this therapeutic approach, we harnessed intricate 3D multicellular tumor spheroid models (MCTS), which emulate key elements of the TME. Our results demonstrate the effective cytotoxicity of CEA-CAR-NK-92 cells against CRC in colorectal cell lines and MCTS models. Importantly, minimal off-target activity against non-cancerous cell lines underscores the precision of this therapy. Furthermore, the integration of the CCR4 migration receptor augments homing by recognizing target ligands, CCL17 and CCL22. Notably, our CAR design results in no significant trogocytosis-induced fratricide. In summary, the proposed CEA-targeting CAR-NK cell therapy could offer a promising solution for CRC treatment, combining precision and efficacy in a tailored approach.
Collapse
Affiliation(s)
- Alexander Sebastian Franzén
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Competence Center of Immuno-Oncology and Translational Cell Therapy (KITZ), Department of Hematology, Oncology and Tumor Immunology, CCM, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Abdelhadi Boulifa
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Competence Center of Immuno-Oncology and Translational Cell Therapy (KITZ), Department of Hematology, Oncology and Tumor Immunology, CCM, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Clarissa Radecke
- Competence Center of Immuno-Oncology and Translational Cell Therapy (KITZ), Department of Hematology, Oncology and Tumor Immunology, CCM, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Sebastian Stintzing
- Competence Center of Immuno-Oncology and Translational Cell Therapy (KITZ), Department of Hematology, Oncology and Tumor Immunology, CCM, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Martin J. Raftery
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Competence Center of Immuno-Oncology and Translational Cell Therapy (KITZ), Department of Hematology, Oncology and Tumor Immunology, CCM, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Gabriele Pecher
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Competence Center of Immuno-Oncology and Translational Cell Therapy (KITZ), Department of Hematology, Oncology and Tumor Immunology, CCM, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
16
|
Agbakwuru D, Wetzel SA. The Biological Significance of Trogocytosis. Results Probl Cell Differ 2024; 73:87-129. [PMID: 39242376 DOI: 10.1007/978-3-031-62036-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Trogocytosis is the intercellular transfer of membrane and membrane-associated proteins between cells. Trogocytosis is an underappreciated phenomenon that has historically routinely been dismissed as an artefact. With a greater understanding of the process and the implications it has on biological systems, trogocytosis has the potential to become a paradigm changer. The presence on a cell of molecules they don't endogenously express can alter the biological activity of the cell and could also lead to the acquisition of new functions. To better appreciate this phenomenon, it is important to understand how these intercellular membrane exchanges influence the function and activity of the donor and the recipient cells. In this chapter, we will examine how the molecules acquired by trogocytosis influence the biology of a variety of systems including mammalian fertilization, treatment of hemolytic disease of the newborn, viral and parasitic infections, cancer immunotherapy, and immune modulation.
Collapse
Affiliation(s)
- Deborah Agbakwuru
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA
| | - Scott A Wetzel
- Center for Environmental Health Sciences, University of Montana, Missoula, MT, USA.
- Division of Biological Sciences, University of Montana, Missoula, MT, USA.
| |
Collapse
|
17
|
Park S, Kim J, Shin JH. Intercellular Transfer of Immune Regulatory Molecules Via Trogocytosis. Results Probl Cell Differ 2024; 73:131-146. [PMID: 39242377 DOI: 10.1007/978-3-031-62036-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Trogocytosis, an active cellular process involving the transfer of plasma membrane and attached cytosol during cell-to-cell contact, has been observed prominently in CD4 T cells interacting with antigen-presenting cells carrying antigen-loaded major histocompatibility complex (MHC) class II molecules. Despite the inherent absence of MHC class II molecules in CD4 T cells, they actively acquire these molecules from encountered antigen-presenting cells, leading to the formation of antigen-loaded MHC class II molecules-dressed CD4 T cells. Subsequently, these dressed CD4 T cells engage in antigen presentation to other CD4 T cells, revealing a dynamic mechanism of immune communication. The transferred membrane proteins through trogocytosis retain their surface localization, thereby altering cellular functions. Concurrently, the donor cells experience a loss of membrane proteins, resulting in functional changes due to the altered membrane properties. This chapter provides a focused exploration into trogocytosis-mediated transfer of immune regulatory molecules and its consequential impact on diverse immune responses.
Collapse
Affiliation(s)
- Soyeon Park
- The interdisciplinary graduate program in integrative biology, Yonsei University, Incheon, South Korea
| | - Jeonghyun Kim
- The interdisciplinary graduate program in integrative biology, Yonsei University, Incheon, South Korea
| | - Jae Hun Shin
- The interdisciplinary graduate program in integrative biology, Yonsei University, Incheon, South Korea.
- Integrative Science and Engineering Division, Underwood International College, Yonsei University, Incheon, South Korea.
| |
Collapse
|
18
|
Ramezani F, Panahi Meymandi AR, Akbari B, Tamtaji OR, Mirzaei H, Brown CE, Mirzaei HR. Outsmarting trogocytosis to boost CAR NK/T cell therapy. Mol Cancer 2023; 22:183. [PMID: 37974170 PMCID: PMC10652537 DOI: 10.1186/s12943-023-01894-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Chimeric antigen receptor (CAR) NK and T cell therapy are promising immunotherapeutic approaches for the treatment of cancer. However, the efficacy of CAR NK/T cell therapy is often hindered by various factors, including the phenomenon of trogocytosis, which involves the bidirectional exchange of membrane fragments between cells. In this review, we explore the role of trogocytosis in CAR NK/T cell therapy and highlight potential strategies for its modulation to improve therapeutic efficacy. We provide an in-depth analysis of trogocytosis as it relates to the fate and function of NK and T cells, focusing on its effects on cell activation, cytotoxicity, and antigen presentation. We discuss how trogocytosis can mediate transient antigen loss on cancer cells, thereby negatively affecting the effector function of CAR NK/T cells. Additionally, we address the phenomenon of fratricide and trogocytosis-associated exhaustion, which can limit the persistence and effectiveness of CAR-expressing cells. Furthermore, we explore how trogocytosis can impact CAR NK/T cell functionality, including the acquisition of target molecules and the modulation of signaling pathways. To overcome the negative effects of trogocytosis on cellular immunotherapy, we propose innovative approaches to modulate trogocytosis and augment CAR NK/T cell therapy. These strategies encompass targeting trogocytosis-related molecules, engineering CAR NK/T cells to resist trogocytosis-induced exhaustion and leveraging trogocytosis to enhance the function of CAR-expressing cells. By overcoming the limitations imposed by trogocytosis, it may be possible to unleash the full potential of CAR NK/T therapy against cancer. The knowledge and strategies presented in this review will guide future research and development, leading to improved therapeutic outcomes in the field of immunotherapy.
Collapse
Affiliation(s)
- Faezeh Ramezani
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Reza Panahi Meymandi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Christine E Brown
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, USA
- Department of Immuno-Oncology, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
19
|
Thomsen LCV, Kleinmanns K, Anandan S, Gullaksen SE, Abdelaal T, Iversen GA, Akslen LA, McCormack E, Bjørge L. Combining Mass Cytometry Data by CyTOFmerge Reveals Additional Cell Phenotypes in the Heterogeneous Ovarian Cancer Tumor Microenvironment: A Pilot Study. Cancers (Basel) 2023; 15:5106. [PMID: 37894472 PMCID: PMC10605295 DOI: 10.3390/cancers15205106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The prognosis of high-grade serous ovarian carcinoma (HGSOC) is poor, and treatment selection is challenging. A heterogeneous tumor microenvironment (TME) characterizes HGSOC and influences tumor growth, progression, and therapy response. Better characterization with multidimensional approaches for simultaneous identification and categorization of the various cell populations is needed to map the TME complexity. While mass cytometry allows the simultaneous detection of around 40 proteins, the CyTOFmerge MATLAB algorithm integrates data sets and extends the phenotyping. This pilot study explored the potential of combining two datasets for improved TME phenotyping by profiling single-cell suspensions from ten chemo-naïve HGSOC tumors by mass cytometry. A 35-marker pan-tumor dataset and a 34-marker pan-immune dataset were analyzed separately and combined with the CyTOFmerge, merging 18 shared markers. While the merged analysis confirmed heterogeneity across patients, it also identified a main tumor cell subset, additionally to the nine identified by the pan-tumor panel. Furthermore, the expression of traditional immune cell markers on tumor and stromal cells was revealed, as were marker combinations that have rarely been examined on individual cells. This study demonstrates the potential of merging mass cytometry data to generate new hypotheses on tumor biology and predictive biomarker research in HGSOC that could improve treatment effectiveness.
Collapse
Affiliation(s)
- Liv Cecilie Vestrheim Thomsen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, 5021 Bergen, Norway
- Norwegian Institute of Public Health, 5015 Bergen, Norway
| | - Katrin Kleinmanns
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Shamundeeswari Anandan
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Stein-Erik Gullaksen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Tamim Abdelaal
- Delft Bioinformatics Laboratory, Delft University of Technology, 2628XE Delft, The Netherlands
- Department of Radiology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Grete Alrek Iversen
- Department of Obstetrics and Gynecology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Lars Andreas Akslen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
- Department of Pathology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Emmet McCormack
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Line Bjørge
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Department of Obstetrics and Gynecology, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
20
|
Campos-Mora M, Jacot W, Garcin G, Depondt ML, Constantinides M, Alexia C, Villalba M. NK cells in peripheral blood carry trogocytosed tumor antigens from solid cancer cells. Front Immunol 2023; 14:1199594. [PMID: 37593736 PMCID: PMC10427869 DOI: 10.3389/fimmu.2023.1199594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/10/2023] [Indexed: 08/19/2023] Open
Abstract
The innate immune lymphocyte lineage natural killer (NK) cell infiltrates tumor environment where it can recognize and eliminate tumor cells. NK cell tumor infiltration is linked to patient prognosis. However, it is unknown if some of these antitumor NK cells leave the tumor environment. In blood-borne cancers, NK cells that have interacted with leukemic cells are recognized by the co-expression of two CD45 isoforms (CD45RARO cells) and/or the plasma membrane presence of tumor antigens (Ag), which NK cells acquire by trogocytosis. We evaluated solid tumor Ag uptake by trogocytosis on NK cells by performing co-cultures in vitro. We analyzed NK population subsets by unsupervised dimensional reduction techniques in blood samples from breast tumor (BC) patients and healthy donors (HD). We confirmed that NK cells perform trogocytosis from solid cancer cells in vitro. The extent of trogocytosis depends on the target cell and the antigen, but not on the amount of Ag expressed by the target cell or the sensitivity to NK cell killing. We identified by FlowSOM (Self-Organizing Maps) several NK cell clusters differentially abundant between BC patients and HD, including anti-tumor NK subsets with phenotype CD45RARO+CD107a+. These analyses showed that bona-fide NK cells that have degranulated were increased in patients and, additionally, these NK cells exhibit trogocytosis of solid tumor Ag on their surface. However, the frequency of NK cells that have trogocytosed is very low and much lower than that found in hematological cancer patients, suggesting that the number of NK cells that exit the tumor environment is scarce. To our knowledge, this is the first report describing the presence of solid tumor markers on circulating NK subsets from breast tumor patients. This NK cell immune profiling could lead to generate novel strategies to complement established therapies for BC patients or to the use of peripheral blood NK cells in the theranostic of solid cancer patients after treatment.
Collapse
Affiliation(s)
| | - William Jacot
- Institut du Cancer de Montpellier (ICM) Val d’Aurelle, Montpellier University, INSERM U1194, Montpellier, France
| | | | | | | | | | - Martin Villalba
- IRMB, Univ Montpellier, INSERM, Montpellier, France
- IRMB, University of Montpellier, INSERM, CNRS, Montpellier, France
- Institut du Cancer Avignon-Provence Sainte Catherine, Avignon, France
| |
Collapse
|
21
|
Bernson E, Huhn O, Karlsson V, Hawkes D, Lycke M, Cazzetta V, Mikulak J, Hall J, Piskorz AM, Portuesi R, Vitobello D, Fiamengo B, Siesto G, Horowitz A, Ghadially H, Mavilio D, Brenton JD, Sundfeldt K, Colucci F. Identification of Tissue-Resident Natural Killer and T Lymphocytes with Anti-Tumor Properties in Ascites of Ovarian Cancer Patients. Cancers (Basel) 2023; 15:3362. [PMID: 37444472 PMCID: PMC10340516 DOI: 10.3390/cancers15133362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/30/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Women with ovarian cancer have limited therapy options, with immunotherapy being unsatisfactory for a large group of patients. Tumor cells spread from the ovary or the fallopian tube into the abdominal cavity, which is commonly accompanied with massive ascites production. The ascites represents a unique peritoneal liquid tumor microenvironment with the presence of both tumor and immune cells, including cytotoxic lymphocytes. We characterized lymphocytes in ascites from patients with high-grade serous ovarian cancer. Our data reveal the presence of NK and CD8+ T lymphocytes expressing CD103 and CD49a, which are markers of tissue residency. Moreover, these cells express high levels of the inhibitory NKG2A receptor, with the highest expression level detected on tissue-resident NK cells. Lymphocytes with these features were also present at the primary tumor site. Functional assays showed that tissue-resident NK cells in ascites are highly responsive towards ovarian tumor cells. Similar results were observed in an in vivo mouse model, in which tissue-resident NK and CD8+ T cells were detected in the peritoneal fluid upon tumor growth. Together, our data reveal the presence of highly functional lymphocyte populations that may be targeted to improve immunotherapy for patients with ovarian cancer.
Collapse
Affiliation(s)
- Elin Bernson
- Department of Obstetrics and Gynaecology, University of Cambridge School of Clinical Medicine, NIHR Cambridge Biomedical Research Centre, Addenbrooke’s Hosptial, Cambridge CB2 0QQ, UK
- Sahlgrenska Center for Cancer Research, Department of Obstetrics and Gynecology, Institute of Clinical Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Oisín Huhn
- Department of Obstetrics and Gynaecology, University of Cambridge School of Clinical Medicine, NIHR Cambridge Biomedical Research Centre, Addenbrooke’s Hosptial, Cambridge CB2 0QQ, UK
| | - Veronika Karlsson
- Sahlgrenska Center for Cancer Research, Department of Obstetrics and Gynecology, Institute of Clinical Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Delia Hawkes
- Department of Obstetrics and Gynaecology, University of Cambridge School of Clinical Medicine, NIHR Cambridge Biomedical Research Centre, Addenbrooke’s Hosptial, Cambridge CB2 0QQ, UK
| | - Maria Lycke
- Sahlgrenska Center for Cancer Research, Department of Obstetrics and Gynecology, Institute of Clinical Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Valentina Cazzetta
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20122 Milan, Italy
| | - Joanna Mikulak
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - James Hall
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 1TN, UK
| | - Anna M. Piskorz
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 1TN, UK
| | - Rosalba Portuesi
- Unit of Gynecology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Domenico Vitobello
- Unit of Gynecology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Barbara Fiamengo
- Unit of Pathological Anatomy, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Gabriele Siesto
- Unit of Gynecology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Amir Horowitz
- Department of Oncological Sciences, Lipschultz Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hormas Ghadially
- AstraZeneca, Oncology R&D, Granta Park, Cambridge CB21 6GP, UK
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences, Mahatma Gandhi Road, Blantyre Private Bag 360, Malawi
| | - Domenico Mavilio
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20122 Milan, Italy
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 1TN, UK
| | - Karin Sundfeldt
- Sahlgrenska Center for Cancer Research, Department of Obstetrics and Gynecology, Institute of Clinical Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Francesco Colucci
- Department of Obstetrics and Gynaecology, University of Cambridge School of Clinical Medicine, NIHR Cambridge Biomedical Research Centre, Addenbrooke’s Hosptial, Cambridge CB2 0QQ, UK
| |
Collapse
|
22
|
Kilgour MK, Bastin DJ, Lee SH, Ardolino M, McComb S, Visram A. Advancements in CAR-NK therapy: lessons to be learned from CAR-T therapy. Front Immunol 2023; 14:1166038. [PMID: 37205115 PMCID: PMC10187144 DOI: 10.3389/fimmu.2023.1166038] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Advancements in chimeric antigen receptor engineered T-cell (CAR-T) therapy have revolutionized treatment for several cancer types over the past decade. Despite this success, obstacles including the high price tag, manufacturing complexity, and treatment-associated toxicities have limited the broad application of this therapy. Chimeric antigen receptor engineered natural killer cell (CAR-NK) therapy offers a potential opportunity for a simpler and more affordable "off-the-shelf" treatment, likely with fewer toxicities. Unlike CAR-T, CAR-NK therapies are still in early development, with few clinical trials yet reported. Given the challenges experienced through the development of CAR-T therapies, this review explores what lessons we can apply to build better CAR-NK therapies. In particular, we explore the importance of optimizing the immunochemical properties of the CAR construct, understanding factors leading to cell product persistence, enhancing trafficking of transferred cells to the tumor, ensuring the metabolic fitness of the transferred product, and strategies to avoid tumor escape through antigen loss. We also review trogocytosis, an important emerging challenge that likely equally applies to CAR-T and CAR-NK cells. Finally, we discuss how these limitations are already being addressed in CAR-NK therapies, and what future directions may be possible.
Collapse
Affiliation(s)
- Marisa K. Kilgour
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | | | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Michele Ardolino
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Scott McComb
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Canada
| | - Alissa Visram
- Department of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada
| |
Collapse
|
23
|
Piccinelli S, Romee R, Shapiro RM. The natural killer cell immunotherapy platform: an overview of the landscape of clinical trials in liquid and solid tumors. Semin Hematol 2023; 60:42-51. [PMID: 37080710 DOI: 10.1053/j.seminhematol.2023.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
The translation of natural killer (NK) cells to the treatment of malignant disease has made significant progress in the last few decades. With a variety of available sources and improvements in both in vitro and in vivo NK cell expansion, the NK cell immunotherapy platform has come into its own. The enormous effort continues to further optimize this platform, including ways to enhance NK cell persistence, trafficking to the tumor microenvironment, and cytotoxicity. As this effort bears fruit, it is translated into a plethora of clinical trials in patients with advanced malignancies. The adoptive transfer of NK cells, either as a standalone therapy or in combination with other immunotherapies, has been applied for the treatment of both liquid and solid tumors, with numerous early-phase trials showing promising results. This review aims to summarize the key advantages of NK cell immunotherapy, highlight several of the current approaches being taken for its optimization, and give an overview of the landscape of clinical trials translating this platform into clinic.
Collapse
|
24
|
Multiparameter single-cell proteomic technologies give new insights into the biology of ovarian tumors. Semin Immunopathol 2023; 45:43-59. [PMID: 36635516 PMCID: PMC9974728 DOI: 10.1007/s00281-022-00979-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/11/2022] [Indexed: 01/13/2023]
Abstract
High-grade serous ovarian cancer (HGSOC) is the most lethal gynecological malignancy. Its diagnosis at advanced stage compounded with its excessive genomic and cellular heterogeneity make curative treatment challenging. Two critical therapeutic challenges to overcome are carboplatin resistance and lack of response to immunotherapy. Carboplatin resistance results from diverse cell autonomous mechanisms which operate in different combinations within and across tumors. The lack of response to immunotherapy is highly likely to be related to an immunosuppressive HGSOC tumor microenvironment which overrides any clinical benefit. Results from a number of studies, mainly using transcriptomics, indicate that the immune tumor microenvironment (iTME) plays a role in carboplatin response. However, in patients receiving treatment, the exact mechanistic details are unclear. During the past decade, multiplex single-cell proteomic technologies have come to the forefront of biomedical research. Mass cytometry or cytometry by time-of-flight, measures up to 60 parameters in single cells that are in suspension. Multiplex cellular imaging technologies allow simultaneous measurement of up to 60 proteins in single cells with spatial resolution and interrogation of cell-cell interactions. This review suggests that functional interplay between cell autonomous responses to carboplatin and the HGSOC immune tumor microenvironment could be clarified through the application of multiplex single-cell proteomic technologies. We conclude that for better clinical care, multiplex single-cell proteomic technologies could be an integral component of multimodal biomarker development that also includes genomics and radiomics. Collection of matched samples from patients before and on treatment will be critical to the success of these efforts.
Collapse
|
25
|
Identification of an Individualized Prognostic Biomarker for Serous Ovarian Cancer: A Qualitative Model. Diagnostics (Basel) 2022; 12:diagnostics12123128. [PMID: 36553135 PMCID: PMC9777083 DOI: 10.3390/diagnostics12123128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Serous ovarian cancer is the most common type of ovarian epithelial cancer and usually has a poor prognosis. The objective of this study was to construct an individualized prognostic model for predicting overall survival in serous ovarian cancer. Based on the relative expression orderings (Ea > Eb/Ea ≤ Eb) of gene pairs closely associated with serous ovarian prognosis, we tried constructing a potential individualized qualitative biomarker by the greedy algorithm and evaluated the performance in independent validation datasets. We constructed a prognostic biomarker consisting of 20 gene pairs (SOV-P20). The overall survival between high- and low-risk groups stratified by SOV-P20 was statistically significantly different in the training and independent validation datasets from other platforms (p < 0.05, Wilcoxon test). The average area under the curve (AUC) values of the training and three validation datasets were 0.756, 0.590, 0.630, and 0.680, respectively. The distribution of most immune cells between high- and low-risk groups was quite different (p < 0.001, Wilcoxon test). The low-risk patients tended to show significantly better tumor response to chemotherapy than the high-risk patients (p < 0.05, Fisher’s exact test). SOV-P20 achieved the highest mean index of concordance (C-index) (0.624) compared with the other seven existing prognostic signatures (ranging from 0.511 to 0.619). SOV-P20 is a promising prognostic biomarker for serous ovarian cancer, which will be applicable for clinical predictive risk assessment.
Collapse
|
26
|
Schoutrop E, Moyano-Galceran L, Lheureux S, Mattsson J, Lehti K, Dahlstrand H, Magalhaes I. Molecular, cellular and systemic aspects of epithelial ovarian cancer and its tumor microenvironment. Semin Cancer Biol 2022; 86:207-223. [PMID: 35395389 DOI: 10.1016/j.semcancer.2022.03.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/11/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
Ovarian cancer encompasses a heterogeneous group of malignancies that involve the ovaries, fallopian tubes and the peritoneal cavity. Despite major advances made within the field of cancer, the majority of patients with ovarian cancer are still being diagnosed at an advanced stage of the disease due to lack of effective screening tools. The overall survival of these patients has, therefore, not substantially improved over the past decades. Most patients undergo debulking surgery and treatment with chemotherapy, but often micrometastases remain and acquire resistance to the therapy, eventually leading to disease recurrence. Here, we summarize the current knowledge in epithelial ovarian cancer development and metastatic progression. For the most common subtypes, we focus further on the properties and functions of the immunosuppressive tumor microenvironment, including the extracellular matrix. Current and future treatment modalities are discussed and finally we provide an overview of the different experimental models used to develop novel therapies.
Collapse
Affiliation(s)
- Esther Schoutrop
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lidia Moyano-Galceran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Stephanie Lheureux
- University of Toronto, Toronto, Ontario, Canada; Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jonas Mattsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Gloria and Seymour Epstein Chair in Cell Therapy and Transplantation, Toronto, Ontario, Canada
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hanna Dahlstrand
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Medical unit Pelvic Cancer, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden.
| | - Isabelle Magalhaes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
27
|
Kandalaft LE, Dangaj Laniti D, Coukos G. Immunobiology of high-grade serous ovarian cancer: lessons for clinical translation. Nat Rev Cancer 2022; 22:640-656. [PMID: 36109621 DOI: 10.1038/s41568-022-00503-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 11/09/2022]
Abstract
Treatment of high-grade serous ovarian cancer (HGSOC) remains challenging. Although HGSOC can potentially be responsive to immunotherapy owing to endogenous immunity at the molecular or T cell level, immunotherapy for this disease has fallen short of expectations to date. This Review proposes a working classification for HGSOC based on the presence or absence of intraepithelial T cells, and elaborates the putative mechanisms that give rise to such immunophenotypes. These differences might explain the failures of existing immunotherapies, and suggest that rational therapeutic approaches tailored to each immunophenotype might meet with improved success. In T cell-inflamed tumours, treatment could focus on mobilizing pre-existing immunity and strengthening the activation of T cells embedded in intraepithelial tumour myeloid niches. Conversely, in immune-excluded and immune-desert tumours, treatment could focus on restoring inflammation by reprogramming myeloid cells, stromal cells and vascular epithelial cells. Poly(ADP-ribose) polymerase (PARP) inhibitors, low-dose radiotherapy, epigenetic drugs and anti-angiogenesis therapy are among the tools available to restore T cell infiltration in HGSOC tumours and could be implemented in combination with vaccines and redirected T cells.
Collapse
Affiliation(s)
- Lana E Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch, and Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Denarda Dangaj Laniti
- Ludwig Institute for Cancer Research, Lausanne Branch, and Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, Lausanne Branch, and Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
28
|
Mattei F, Andreone S, Spadaro F, Noto F, Tinari A, Falchi M, Piconese S, Afferni C, Schiavoni G. Trogocytosis in innate immunity to cancer is an intimate relationship with unexpected outcomes. iScience 2022; 25:105110. [PMID: 36185368 PMCID: PMC9515589 DOI: 10.1016/j.isci.2022.105110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/04/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Trogocytosis is a cellular process whereby a cell acquires a membrane fragment from a donor cell in a contact-dependent manner allowing for the transfer of surface proteins with functional integrity. It is involved in various biological processes, including cell-cell communication, immune regulation, and response to pathogens and cancer cells, with poorly defined molecular mechanisms. With the exception of eosinophils, trogocytosis has been reported in most immune cells and plays diverse roles in the modulation of anti-tumor immune responses. Here, we report that eosinophils acquire membrane fragments from tumor cells early after contact through the CD11b/CD18 integrin complex. We discuss the impact of trogocytosis in innate immune cells on cancer progression in the context of the evidence that eosinophils can engage in trogocytosis with tumor cells. We also discuss shared and cell-specific mechanisms underlying this process based on in silico modeling and provide a hypothetical molecular model for the stabilization of the immunological synapse operating in granulocytes and possibly other innate immune cells that enables trogocytosis. Trogocytosis in innate immune cells can regulate immune responses to cancer Eosinophils engage in trogocytosis with tumor cells via CD11b/CD18 integrin complex CD11b/CD18 integrin, focal adhesion molecules and actin network enable trogocytosis
Collapse
Affiliation(s)
- Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sara Andreone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Spadaro
- Core Facilities, Microscopy Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Noto
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Tinari
- Center for Gender Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mario Falchi
- National HIV/AIDS Research Center (CNAIDS), Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Piconese
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Italy
- Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Rome, Italy
| | - Claudia Afferni
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- Corresponding author
| |
Collapse
|
29
|
Functional crosstalk and regulation of natural killer cells in tumor microenvironment: Significance and potential therapeutic strategies. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
30
|
Delgado-Gonzalez A, Laz-Ruiz JA, Cano-Cortes MV, Huang YW, Gonzalez VD, Diaz-Mochon JJ, Fantl WJ, Sanchez-Martin RM. Hybrid Fluorescent Mass-Tag Nanotrackers as Universal Reagents for Long-Term Live-Cell Barcoding. Anal Chem 2022; 94:10626-10635. [PMID: 35866879 PMCID: PMC9352147 DOI: 10.1021/acs.analchem.2c00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Barcoding and pooling cells for processing as a composite
sample
are critical to minimize technical variability in multiplex technologies.
Fluorescent cell barcoding has been established as a standard method
for multiplexing in flow cytometry analysis. In parallel, mass-tag
barcoding is routinely used to label cells for mass cytometry. Barcode
reagents currently used label intracellular proteins in fixed and
permeabilized cells and, therefore, are not suitable for studies with
live cells in long-term culture prior to analysis. In this study,
we report the development of fluorescent palladium-based hybrid-tag
nanotrackers to barcode live cells for flow and mass cytometry dual-modal
readout. We describe the preparation, physicochemical characterization,
efficiency of cell internalization, and durability of these nanotrackers
in live cells cultured over time. In addition, we demonstrate their
compatibility with standardized cytometry reagents and protocols.
Finally, we validated these nanotrackers for drug response assays
during a long-term coculture experiment with two barcoded cell lines.
This method represents a new and widely applicable advance for fluorescent
and mass-tag barcoding that is independent of protein expression levels
and can be used to label cells before long-term drug studies.
Collapse
Affiliation(s)
- Antonio Delgado-Gonzalez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Gov-ernment, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain.,Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedi-cine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Grana-da, 18012 Granada, Spain.,Department of Urology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Jose Antonio Laz-Ruiz
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Gov-ernment, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain.,Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedi-cine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Grana-da, 18012 Granada, Spain
| | - M Victoria Cano-Cortes
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Gov-ernment, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain.,Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedi-cine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Grana-da, 18012 Granada, Spain
| | - Ying-Wen Huang
- Department of Urology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Veronica D Gonzalez
- Department of Urology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Juan Jose Diaz-Mochon
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Gov-ernment, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain.,Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedi-cine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Grana-da, 18012 Granada, Spain
| | - Wendy J Fantl
- Department of Urology, Stanford University School of Medicine, Stanford, California 94305, United States.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305, United States.,Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California 94304, United States
| | - Rosario M Sanchez-Martin
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Gov-ernment, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain.,Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedi-cine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Grana-da, 18012 Granada, Spain
| |
Collapse
|
31
|
Ran GH, Lin YQ, Tian L, Zhang T, Yan DM, Yu JH, Deng YC. Natural killer cell homing and trafficking in tissues and tumors: from biology to application. Signal Transduct Target Ther 2022; 7:205. [PMID: 35768424 PMCID: PMC9243142 DOI: 10.1038/s41392-022-01058-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/24/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells, a subgroup of innate lymphoid cells, act as the first line of defense against cancer. Although some evidence shows that NK cells can develop in secondary lymphoid tissues, NK cells develop mainly in the bone marrow (BM) and egress into the blood circulation when they mature. They then migrate to and settle down in peripheral tissues, though some special subsets home back into the BM or secondary lymphoid organs. Owing to its success in allogeneic adoptive transfer for cancer treatment and its "off-the-shelf" potential, NK cell-based immunotherapy is attracting increasing attention in the treatment of various cancers. However, insufficient infiltration of adoptively transferred NK cells limits clinical utility, especially for solid tumors. Expansion of NK cells or engineered chimeric antigen receptor (CAR) NK cells ex vivo prior to adoptive transfer by using various cytokines alters the profiles of chemokine receptors, which affects the infiltration of transferred NK cells into tumor tissue. Several factors control NK cell trafficking and homing, including cell-intrinsic factors (e.g., transcriptional factors), cell-extrinsic factors (e.g., integrins, selectins, chemokines and their corresponding receptors, signals induced by cytokines, sphingosine-1-phosphate (S1P), etc.), and the cellular microenvironment. Here, we summarize the profiles and mechanisms of NK cell homing and trafficking at steady state and during tumor development, aiming to improve NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Guang He Ran
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China
- Institute of Materia Medica, College of Pharmacy, Army Medical University, 400038, Chongqing, China
| | - Yu Qing Lin
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China
- Institute of Materia Medica, College of Pharmacy, Army Medical University, 400038, Chongqing, China
| | - Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Tao Zhang
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China.
| | - Dong Mei Yan
- Department of Immunology, School of Basic Medical, Jiamusi University, 154007, Jiamusi, China.
| | - Jian Hua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
| | - You Cai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University, 400038, Chongqing, China.
- Department of Clinical Hematology, College of Pharmacy, Army Medical University, 400038, Chongqing, China.
| |
Collapse
|
32
|
Delgado-Gonzalez A, Huang YW, Porpiglia E, Donoso K, Gonzalez VD, Fantl WJ. Measuring trogocytosis between ovarian tumor and natural killer cells. STAR Protoc 2022; 3:101425. [PMID: 35693208 PMCID: PMC9185020 DOI: 10.1016/j.xpro.2022.101425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Trogocytosis is an active transport mechanism by which one cell extracts a plasma membrane fragment with embedded molecules from an adjacent cell in a contact-dependent process leading to the acquisition of a new function. Our protocol, which has general applicability, consolidates and optimizes existing protocols while highlighting key experimental variables to demonstrate that natural killer (NK) cells acquire the tetraspanin CD9 by trogocytosis from ovarian tumor cells. For complete details on the use and execution of this protocol, please refer to Gonzalez et al. (2021).
Collapse
Affiliation(s)
- Antonio Delgado-Gonzalez
- Deparment of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ying-Wen Huang
- Deparment of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ermelinda Porpiglia
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Kenyi Donoso
- Deparment of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Veronica D. Gonzalez
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wendy J. Fantl
- Deparment of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
33
|
Krstic J, Deutsch A, Fuchs J, Gauster M, Gorsek Sparovec T, Hiden U, Krappinger JC, Moser G, Pansy K, Szmyra M, Gold D, Feichtinger J, Huppertz B. (Dis)similarities between the Decidual and Tumor Microenvironment. Biomedicines 2022; 10:1065. [PMID: 35625802 PMCID: PMC9138511 DOI: 10.3390/biomedicines10051065] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 02/05/2023] Open
Abstract
Placenta-specific trophoblast and tumor cells exhibit many common characteristics. Trophoblast cells invade maternal tissues while being tolerated by the maternal immune system. Similarly, tumor cells can invade surrounding tissues and escape the immune system. Importantly, both trophoblast and tumor cells are supported by an abetting microenvironment, which influences invasion, angiogenesis, and immune tolerance/evasion, among others. However, in contrast to tumor cells, the metabolic, proliferative, migrative, and invasive states of trophoblast cells are under tight regulatory control. In this review, we provide an overview of similarities and dissimilarities in regulatory processes that drive trophoblast and tumor cell fate, particularly focusing on the role of the abetting microenvironments.
Collapse
Affiliation(s)
- Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Alexander Deutsch
- Division of Hematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; (A.D.); (K.P.); (M.S.)
| | - Julia Fuchs
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
- Division of Biophysics, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Tina Gorsek Sparovec
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria; (T.G.S.); (U.H.); (D.G.)
| | - Ursula Hiden
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria; (T.G.S.); (U.H.); (D.G.)
| | - Julian Christopher Krappinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Gerit Moser
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Katrin Pansy
- Division of Hematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; (A.D.); (K.P.); (M.S.)
| | - Marta Szmyra
- Division of Hematology, Medical University of Graz, Stiftingtalstrasse 24, 8010 Graz, Austria; (A.D.); (K.P.); (M.S.)
| | - Daniela Gold
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria; (T.G.S.); (U.H.); (D.G.)
| | - Julia Feichtinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (J.K.); (J.F.); (M.G.); (J.C.K.); (G.M.); (B.H.)
| |
Collapse
|
34
|
Chung DC, Jacquelot N, Ghaedi M, Warner K, Ohashi PS. Innate Lymphoid Cells: Role in Immune Regulation and Cancer. Cancers (Basel) 2022; 14:2071. [PMID: 35565201 PMCID: PMC9102917 DOI: 10.3390/cancers14092071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Immune regulation is composed of a complex network of cellular and molecular pathways that regulate the immune system and prevent tissue damage. It is increasingly clear that innate lymphoid cells (ILCs) are also armed with immunosuppressive capacities similar to well-known immune regulatory cells (i.e., regulatory T cells). In cancer, immunoregulatory ILCs have been shown to inhibit anti-tumour immune response through various mechanisms including: (a) direct suppression of anti-tumour T cells or NK cells, (b) inhibiting T-cell priming, and (c) promoting other immunoregulatory cells. To provide a framework of understanding the role of immunosuppressive ILCs in the context of cancer, we first outline a brief history and challenges related to defining immunosuppressive ILCs. Furthermore, we focus on the mechanisms of ILCs in suppressing anti-tumour immunity and consequentially promoting tumour progression.
Collapse
Affiliation(s)
- Douglas C. Chung
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (N.J.); (M.G.); (K.W.)
| | - Nicolas Jacquelot
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (N.J.); (M.G.); (K.W.)
| | - Maryam Ghaedi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (N.J.); (M.G.); (K.W.)
| | - Kathrin Warner
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (N.J.); (M.G.); (K.W.)
| | - Pamela S. Ohashi
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (N.J.); (M.G.); (K.W.)
| |
Collapse
|
35
|
Hasim MS, Marotel M, Hodgins JJ, Vulpis E, Makinson OJ, Asif S, Shih HY, Scheer AK, MacMillan O, Alonso FG, Burke KP, Cook DP, Li R, Petrucci MT, Santoni A, Fallon PG, Sharpe AH, Sciumè G, Veillette A, Zingoni A, Gray DA, McCurdy A, Ardolino M. When killers become thieves: Trogocytosed PD-1 inhibits NK cells in cancer. SCIENCE ADVANCES 2022; 8:eabj3286. [PMID: 35417234 PMCID: PMC9007500 DOI: 10.1126/sciadv.abj3286] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 02/23/2022] [Indexed: 05/12/2023]
Abstract
Trogocytosis modulates immune responses, with still unclear underlying molecular mechanisms. Using leukemia mouse models, we found that lymphocytes perform trogocytosis at high rates with tumor cells. While performing trogocytosis, both Natural Killer (NK) and CD8+ T cells acquire the checkpoint receptor PD-1 from leukemia cells. In vitro and in vivo investigation revealed that PD-1 on the surface of NK cells, rather than being endogenously expressed, was derived entirely from leukemia cells in a SLAM receptor-dependent fashion. PD-1 acquired via trogocytosis actively suppressed NK cell antitumor immunity. PD-1 trogocytosis was corroborated in patients with clonal plasma cell disorders, where NK cells that stained for PD-1 also stained for tumor cell markers. Our results, in addition to shedding light on a previously unappreciated mechanism underlying the presence of PD-1 on NK and cytotoxic T cells, reveal the immunoregulatory effect of membrane transfer occurring when immune cells contact tumor cells.
Collapse
Affiliation(s)
- Mohamed S. Hasim
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- CI3, University of Ottawa, Ottawa, ON, Canada
| | - Marie Marotel
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- CI3, University of Ottawa, Ottawa, ON, Canada
| | - Jonathan J. Hodgins
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- CI3, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Elisabetta Vulpis
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci-Bolognetti, Rome, Italy
| | - Olivia J. Makinson
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- CI3, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Sara Asif
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- CI3, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Han-Yun Shih
- Neuro-Immune Regulome Unit, National Eye Institute, NIH, Bethesda, MD, USA
| | - Amit K. Scheer
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Olivia MacMillan
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- CI3, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Felipe G. Alonso
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Kelly P. Burke
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - David P. Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Rui Li
- Department of Medicine, McGill University, Montréal, QC, Canada
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, QC, Canada
| | - Maria Teresa Petrucci
- Department of Cellular Biotechnology and Hematology, “Sapienza” University of Rome, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci-Bolognetti, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Padraic G. Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Arlene H. Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
| | - Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci-Bolognetti, Rome, Italy
| | - André Veillette
- Department of Medicine, McGill University, Montréal, QC, Canada
- Laboratory of Molecular Oncology, Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Department of Medicine, University of Montréal, Montréal, QC, Canada
| | - Alessandra Zingoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci-Bolognetti, Rome, Italy
| | - Douglas A. Gray
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Arleigh McCurdy
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Division of Hematology, Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michele Ardolino
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- CI3, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
36
|
Ximei X, Yiqun L, Zhikun Z, Yueli N, Xiuli L, Wei S, Tao W, Pan W, Xiyu L, Yong H, Yongxiang Z, Lu G, Liping Z, Qiaoying C, Jian H. Targeted Anti-Hepatocellular Carcinoma Research of Targeted Peptides Combined with Drug-Loaded Cell-Derived Microparticles. J Biomed Nanotechnol 2022; 18:1009-1018. [PMID: 35854442 DOI: 10.1166/jbn.2022.3311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To conduct an anti-tumor research by using targeted drug-loaded cell-derived microparticles to target the tumor microenvironment and enhance NK cell killing function. In this experiment, we obtained HepG2 tumor cell-derived microparticles by physical extrusion, high speed centrifugation and filtration, modified the hepatocellular carcinoma targeting peptide SP94 on the surface of microparticles and encapsulated the TGF-β inhibitor SB505124. Finally we validated and analyzed whether the new drug delivery system can target to tumor site and enhance the anti-tumor function of NK cells. This type of novel targeted cell-derived microparticles drug delivery system will provide a novel idea for tumor immunotherapy.
Collapse
Affiliation(s)
- Xu Ximei
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Luo Yiqun
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zhang Zhikun
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Nie Yueli
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Liu Xiuli
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Shi Wei
- The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530023, China
| | - Wu Tao
- The First People's Hospital of Changde City, Changde, Hunan, 415003, China
| | - Wu Pan
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Liu Xiyu
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Huang Yong
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zhao Yongxiang
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Gan Lu
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zhong Liping
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Chen Qiaoying
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - He Jian
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| |
Collapse
|
37
|
Gonzalez VD, Huang YW, Fantl WJ. Mass Cytometry for the Characterization of Individual Cell Types in Ovarian Solid Tumors. Methods Mol Biol 2022; 2424:59-94. [PMID: 34918287 PMCID: PMC10509819 DOI: 10.1007/978-1-0716-1956-8_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mass cytometry aka Cytometry by Time-Of-Flight (CyTOF) is one of several recently developed multiparametric single-cell technologies designed to address cellular heterogeneity within healthy and diseased tissue. Mass cytometry is an adaptation of flow cytometry in which antibodies are labeled with stable heavy metal isotopes and the readout is by time-of-flight mass spectrometry. With minimal spillover between channels, mass cytometry enables readouts of up to 60 parameters per single cell. Critically, mass cytometry can identify minority cell populations that are lost in bulk tissue analysis. Mass cytometry has been used to great effect for the study of immune cells. We have extended its use to examine single cells within disaggregated solid tissues, specifically freshly resected tubo-ovarian high-grade serous tumors. Here we detail our protocols designed to ensure the production of high-quality single-cell datasets. The methodology can be modified to accommodate the study of other solid tissues.
Collapse
Affiliation(s)
- Veronica D Gonzalez
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
- 10X Genomics, Pleasanton, CA, USA
| | - Ying-Wen Huang
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Wendy J Fantl
- Department of Urology, Department of Obstetrics and Gynecology, Stanford Comprehensive Cancer Institute, Stanford, CA, USA.
| |
Collapse
|
38
|
Neutrophil and Natural Killer Cell Interactions in Cancers: Dangerous Liaisons Instructing Immunosuppression and Angiogenesis. Vaccines (Basel) 2021; 9:vaccines9121488. [PMID: 34960234 PMCID: PMC8709224 DOI: 10.3390/vaccines9121488] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 01/21/2023] Open
Abstract
The tumor immune microenvironment (TIME) has largely been reported to cooperate on tumor onset and progression, as a consequence of the phenotype/functional plasticity and adaptation capabilities of tumor-infiltrating and tumor-associated immune cells. Immune cells within the tumor micro (tissue-local) and macro (peripheral blood) environment closely interact by cell-to-cell contact and/or via soluble factors, also generating a tumor-permissive soil. These dangerous liaisons have been investigated for pillars of tumor immunology, such as tumor associated macrophages and T cell subsets. Here, we reviewed and discussed the contribution of selected innate immunity effector cells, namely neutrophils and natural killer cells, as "soloists" or by their "dangerous liaisons", in favoring tumor progression by dissecting the cellular and molecular mechanisms involved.
Collapse
|