1
|
Tresenrider A, Hooper M, Todd L, Kierney F, Blasdel NA, Trapnell C, Reh TA. A multiplexed, single-cell sequencing screen identifies compounds that increase neurogenic reprogramming of murine Muller glia. eLife 2024; 12:RP92091. [PMID: 39665620 PMCID: PMC11637464 DOI: 10.7554/elife.92091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Retinal degeneration in mammals causes permanent loss of vision, due to an inability to regenerate naturally. Some non-mammalian vertebrates show robust regeneration, via Muller glia (MG). We have recently made significant progress in stimulating adult mouse MG to regenerate functional neurons by transgenic expression of the proneural transcription factor Ascl1. While these results showed that MG can serve as an endogenous source of neuronal replacement, the efficacy of this process is limited. With the goal of improving this in mammals, we designed a small molecule screen using sci-Plex, a method to multiplex up to thousands of single-nucleus RNA-seq conditions into a single experiment. We used this technology to screen a library of 92 compounds, identified, and validated two that promote neurogenesis in vivo. Our results demonstrate that high-throughput single-cell molecular profiling can substantially improve the discovery process for molecules and pathways that can stimulate neural regeneration and further demonstrate the potential for this approach to restore vision in patients with retinal disease.
Collapse
Affiliation(s)
- Amy Tresenrider
- Department of Genome Sciences, University of WashingtonSeattleUnited States
| | - Marcus Hooper
- Department of Biological Structure, University of WashingtonSeattleUnited States
| | - Levi Todd
- Department of Biological Structure, University of WashingtonSeattleUnited States
| | - Faith Kierney
- Department of Biological Structure, University of WashingtonSeattleUnited States
| | - Nicolai A Blasdel
- Department of Biological Structure, University of WashingtonSeattleUnited States
| | - Cole Trapnell
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Brotman-Baty Institute for Precision Medicine, University of WashingtonSeattleUnited States
- Allen Discovery Center for Cell Lineage TracingSeattleUnited States
| | - Thomas A Reh
- Department of Biological Structure, University of WashingtonSeattleUnited States
| |
Collapse
|
2
|
Septiana WL, Pawitan JA. Potential Use of Organoids in Regenerative Medicine. Tissue Eng Regen Med 2024; 21:1125-1139. [PMID: 39412646 PMCID: PMC11589048 DOI: 10.1007/s13770-024-00672-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND In vitro cell culture is crucial for studying human diseases and development. Compared to traditional monolayer cultures, 3D culturing with organoids offers significant advantages by more accurately replicating natural tissues' structural and functional features. This advancement enhances disease modeling, drug testing, and regenerative medicine applications. Organoids, derived from stem cells, mimic tissue physiology in a more relevant manner. Despite their promise, the clinical use of regenerative medicine currently needs to be improved by reproducibility, scalability, and maturation issues. METHODS This article overviews recent organoid research, focusing on their types, sources, 3D culturing methods, and applications in regenerative medicine. A literature review of "organoid" and "regenerative medicine" in PubMed/MEDLINE highlighted relevant studies published over the past decade, emphasizing human-sourced organoids and their regenerative benefits, as well as the availability of free full-text articles. The review uses descriptive data, including tables and text, to illustrate the challenges and potential of organoids in regenerative medicine. RESULTS The transition from 2D to 3D models, particularly organoids, has significantly advanced in vitro research. This review covers a decade of progress in various organoid types-such as liver, cholangiocyte, intestinal, pancreatic, cardiac, brain, thymus, and mammary organoids-and their 3D culture methods and applications. It addresses critical issues of maturity, scalability, and reproducibility and underscores the need for standardization and improved production techniques to facilitate broader clinical applications in regenerative medicine. CONCLUSIONS Successful therapy requires increased scalability and standardization. Organoids have enormous potential in biological research, notwithstanding obstacles.
Collapse
Affiliation(s)
- Wahyunia L Septiana
- Department of Histology Faculty of Medicine, Gunadarma University, Depok, Indonesia.
| | - Jeanne A Pawitan
- Department of Histology Faculty of Medicine,, Universitas Indonesia, Jakarta, Indonesia
- Stem Cell and Tissue Engineering Research Center (SCTE) IMERI, Jakarta, Indonesia
| |
Collapse
|
3
|
Wouterlood FG. Generating and maintaining brain organoids at various levels of complexity. J Neurosci Methods 2024; 412:110291. [PMID: 39299578 DOI: 10.1016/j.jneumeth.2024.110291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Affiliation(s)
- Floris G Wouterlood
- Emeritus, Department of Anatomy & Neurosciences, Amsterdam University Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Hu H, Quon G. scPair: Boosting single cell multimodal analysis by leveraging implicit feature selection and single cell atlases. Nat Commun 2024; 15:9932. [PMID: 39548084 PMCID: PMC11568318 DOI: 10.1038/s41467-024-53971-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
Multimodal single-cell assays profile multiple sets of features in the same cells and are widely used for identifying and mapping cell states between chromatin and mRNA and linking regulatory elements to target genes. However, the high dimensionality of input features and shallow sequencing depth compared to unimodal assays pose challenges in data analysis. Here we present scPair, a multimodal single-cell data framework that overcomes these challenges by employing an implicit feature selection approach. scPair uses dual encoder-decoder structures trained on paired data to align cell states across modalities and predict features from one modality to another. We demonstrate that scPair outperforms existing methods in accuracy and execution time, and facilitates downstream tasks such as trajectory inference. We further show scPair can augment smaller multimodal datasets with larger unimodal atlases to increase statistical power to identify groups of transcription factors active during different stages of neural differentiation.
Collapse
Affiliation(s)
- Hongru Hu
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA.
- Genome Center, University of California, Davis, CA, USA.
| | - Gerald Quon
- Genome Center, University of California, Davis, CA, USA.
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA.
| |
Collapse
|
5
|
Chien Y, Wu YR, Chen CY, Yang YP, Ching LJ, Wang BX, Chang WC, Chiang IH, Su P, Chen SY, Lin WC, Wang IC, Lin TC, Chen SJ, Chiou SH. Identifying Multiomic Signatures of X-Linked Retinoschisis-Derived Retinal Organoids and Mice Harboring Patient-Specific Mutation Using Spatiotemporal Single-Cell Transcriptomics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2405818. [PMID: 39503290 DOI: 10.1002/advs.202405818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/26/2024] [Indexed: 11/08/2024]
Abstract
X-linked retinoschisis (XLRS) is an inherited retinal disorder with severe retinoschisis and visual impairments. Multiomics approaches integrate single-cell RNA-sequencing (scRNA-seq) and spatiotemporal transcriptomics (ST) offering potential for dissecting transcriptional networks and revealing cell-cell interactions involved in biomolecular pathomechanisms. Herein, a multimodal approach is demonstrated combining high-throughput scRNA-seq and ST to elucidate XLRS-specific transcriptomic signatures in two XLRS-like models with retinal splitting phenotypes, including genetically engineered (Rs1emR209C) mice and patient-derived retinal organoids harboring the same patient-specific p.R209C mutation. Through multiomics transcriptomic analysis, the endoplasmic reticulum (ER) stress/eukryotic initiation factor 2 (eIF2) signaling, mTOR pathway, and the regulation of eIF4 and p70S6K pathways are identified as chronically enriched and highly conserved disease pathways between two XLRS-like models. Western blots and proteomics analysis validate the occurrence of unfolded protein responses, chronic eIF2α signaling activation, and chronic ER stress-induced apoptosis. Furthermore, therapeutic targeting of the chronic ER stress/eIF2α pathway activation synergistically enhances the efficacy of AAV-mediated RS1 gene delivery, ultimately improving bipolar cell integrity, postsynaptic transmission, disorganized retinal architecture, and electrophysiological responses. Collectively, the complex transcriptomic signatures obtained from Rs1emR209C mice and patient-derived retinal organoids using the multiomics approach provide opportunities to unravel potential therapeutic targets for incurable retinal diseases, such as XLRS.
Collapse
Affiliation(s)
- Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - You-Ren Wu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Chih-Ying Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Lo-Jei Ching
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Bo-Xuan Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 40447, Taiwan
| | - I-Hsun Chiang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Pong Su
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
| | - Shih-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, 10617, Taiwan
| | - Wen-Chang Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - I-Chieh Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Tai-Chi Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
| | - Shih-Jen Chen
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
6
|
Yao X, Li Z, Lei Y, Liu Q, Chen S, Zhang H, Dong X, He K, Guo J, Li MJ, Wang X, Yan H. Single-Cell Multiomics Profiling Reveals Heterogeneity of Müller Cells in the Oxygen-Induced Retinopathy Model. Invest Ophthalmol Vis Sci 2024; 65:8. [PMID: 39504047 PMCID: PMC11547256 DOI: 10.1167/iovs.65.13.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/28/2024] [Indexed: 11/10/2024] Open
Abstract
Purpose Retinal neovascularization poses heightened risks of vision loss and blindness. Despite its clinical significance, the molecular mechanisms underlying the pathogenesis of retinal neovascularization remain elusive. This study utilized single-cell multiomics profiling in an oxygen-induced retinopathy (OIR) model to comprehensively investigate the intricate molecular landscape of retinal neovascularization. Methods Mice were exposed to hyperoxia to induce the OIR model, and retinas were isolated for nucleus isolation. The cellular landscape of the single-nucleus suspensions was extensively characterized through single-cell multiomics sequencing. Single-cell data were integrated with genome-wide association study (GWAS) data to identify correlations between ocular cell types and diabetic retinopathy. Cell communication analysis among cells was conducted to unravel crucial ligand-receptor signals. Trajectory analysis and dynamic characterization of Müller cells were performed, followed by integration with human retinal data for pathway analysis. Results The multiomics dataset revealed six major ocular cell classes, with Müller cells/astrocytes showing significant associations with proliferative diabetic retinopathy (PDR). Cell communication analysis highlighted pathways that are associated with vascular proliferation and neurodevelopment, such as Vegfa-Vegfr2, Igf1-Igf1r, Nrxn3-Nlgn1, and Efna5-Epha4. Trajectory analysis identified a subset of Müller cells expressing genes linked to photoreceptor degeneration. Multiomics data integration further unveiled positively regulated genes in OIR Müller cells/astrocytes associated with axon development and neurotransmitter transmission. Conclusions This study significantly advances our understanding of the intricate cellular and molecular mechanisms underlying retinal neovascularization, emphasizing the pivotal role of Müller cells. The identified pathways provide valuable insights into potential therapeutic targets for PDR, offering promising directions for further research and clinical interventions.
Collapse
Affiliation(s)
- Xueming Yao
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Ziqi Li
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Yi Lei
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Qiangyun Liu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Siyue Chen
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Haokun Zhang
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xue Dong
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Kai He
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Ju Guo
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mulin Jun Li
- Department of Bioinformatics, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohong Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
7
|
Wang S, Tong S, Jin X, Li N, Dang P, Sui Y, Liu Y, Wang D. Single-cell RNA sequencing analysis of the retina under acute high intraocular pressure. Neural Regen Res 2024; 19:2522-2531. [PMID: 38526288 PMCID: PMC11090430 DOI: 10.4103/1673-5374.389363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/27/2023] [Accepted: 09/13/2023] [Indexed: 03/26/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202419110-00032/figure1/v/2024-03-08T184507Z/r/image-tiff High intraocular pressure causes retinal ganglion cell injury in primary and secondary glaucoma diseases, yet the molecular landscape characteristics of retinal cells under high intraocular pressure remain unknown. Rat models of acute hypertension ocular pressure were established by injection of cross-linked hyaluronic acid hydrogel (Healaflow®). Single-cell RNA sequencing was then used to describe the cellular composition and molecular profile of the retina following high intraocular pressure. Our results identified a total of 12 cell types, namely retinal pigment epithelial cells, rod-photoreceptor cells, bipolar cells, Müller cells, microglia, cone-photoreceptor cells, retinal ganglion cells, endothelial cells, retinal progenitor cells, oligodendrocytes, pericytes, and fibroblasts. The single-cell RNA sequencing analysis of the retina under acute high intraocular pressure revealed obvious changes in the proportions of various retinal cells, with ganglion cells decreased by 23%. Hematoxylin and eosin staining and TUNEL staining confirmed the damage to retinal ganglion cells under high intraocular pressure. We extracted data from retinal ganglion cells and analyzed the retinal ganglion cell cluster with the most distinct expression. We found upregulation of the B3gat2 gene, which is associated with neuronal migration and adhesion, and downregulation of the Tsc22d gene, which participates in inhibition of inflammation. This study is the first to reveal molecular changes and intercellular interactions in the retina under high intraocular pressure. These data contribute to understanding of the molecular mechanism of retinal injury induced by high intraocular pressure and will benefit the development of novel therapies.
Collapse
Affiliation(s)
- Shaojun Wang
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Siti Tong
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Xin Jin
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Na Li
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Pingxiu Dang
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Yang Sui
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Ying Liu
- Department of Ophthalmology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Dajiang Wang
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Kriukov E, Soucy JR, Labrecque E, Baranov P. Unraveling the developmental heterogeneity within the human retina to reconstruct the continuity of retinal ganglion cell maturation and stage-specific intrinsic and extrinsic factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618776. [PMID: 39464118 PMCID: PMC11507843 DOI: 10.1101/2024.10.16.618776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Tissue development is a complex spatiotemporal process with multiple interdependent components. Anatomical, histological, sequencing, and evolutional strategies can be used to profile and explain tissue development from different perspectives. The introduction of scRNAseq methods and the computational tools allows to deconvolute developmental heterogeneity and draw a decomposed uniform map. In this manuscript, we decomposed the development of a human retina with a focus on the retinal ganglion cells (RGC). To increase the temporal resolution of retinal cell classes maturation state we assumed the working hypothesis that that maturation of retinal ganglion cells is a continuous, non-discrete process. We have assembled the scRNAseq atlas of human fetal retina from fetal week 8 to week 27 and applied the computational methods to unravel maturation heterogeneity into a uniform maturation track. We align RGC transcriptomes in pseudotime to map RGC developmental fate trajectories against the broader timeline of retinal development. Through this analysis, we identified the continuous maturation track of RGC and described the cell-intrinsic (DEGs, maturation gene profiles, regulons, transcriptional motifs) and -extrinsic profiles (neurotrophic receptors across maturation, cell-cell interactions) of different RGC maturation states. We described the genes involved in the retina and RGC maturation, including de novo RGC maturation drivers. We demonstrate the application of the human fetal retina atlas as a reference tool, allowing automated annotation and universal embedding of scRNAseq data. Altogether, our findings deepen the current knowledge of the retina and RGC maturation by bringing in the maturation dimension for the cell class vs. state analysis. We show how the pseudotime application contributes to developmental-oriented analyses, allowing to order the cells by their maturation state. This approach not only improves the downstream computational analysis but also provides a true maturation track transcriptomics profile.
Collapse
Affiliation(s)
- Emil Kriukov
- Massachusetts Eye and Ear, Boston, MA
- Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Jonathan R. Soucy
- Massachusetts Eye and Ear, Boston, MA
- Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Everett Labrecque
- Massachusetts Eye and Ear, Boston, MA
- Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Petr Baranov
- Massachusetts Eye and Ear, Boston, MA
- Department of Ophthalmology, Harvard Medical School, Boston, MA
| |
Collapse
|
9
|
Shayler DW, Stachelek K, Cambier L, Lee S, Bai J, Reid MW, Weisenberger DJ, Bhat B, Aparicio JG, Kim Y, Singh M, Bay M, Thornton ME, Doyle EK, Fouladian Z, Erberich SG, Grubbs BH, Bonaguidi MA, Craft CM, Singh HP, Cobrinik D. Identification and characterization of early human photoreceptor states and cell-state-specific retinoblastoma-related features. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.28.530247. [PMID: 38915659 PMCID: PMC11195049 DOI: 10.1101/2023.02.28.530247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Human cone photoreceptors differ from rods and serve as the retinoblastoma cell-of-origin, yet the developmental basis for their distinct behaviors is poorly understood. Here, we used deep full-length single-cell RNA-sequencing to distinguish post-mitotic cone and rod developmental states and identify cone-specific features that contribute to retinoblastomagenesis. The analyses revealed early post-mitotic cone- and rod-directed populations characterized by higher THRB or NRL regulon activities, an immature photoreceptor precursor population with concurrent cone and rod gene and regulon expression, and distinct early and late cone and rod maturation states distinguished by maturation-associated declines in RAX regulon activity. Unexpectedly, both L/M cone and rod precursors co-expressed NRL and THRB RNAs, yet they differentially expressed functionally antagonistic NRL and THRB isoforms and prematurely terminated THRB transcripts. Early L/M cone precursors exhibited successive expression of several lncRNAs along with MYCN, which composed the seventh most L/M-cone-specific regulon, and SYK, which contributed to the early cone precursors' proliferative response to RB1 loss. These findings reveal previously unrecognized photoreceptor precursor states and a role for early cone-precursor-intrinsic SYK expression in retinoblastoma initiation.
Collapse
Affiliation(s)
- Dominic W.H. Shayler
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kevin Stachelek
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Cancer Biology and Genomics Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Linda Cambier
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Sunhye Lee
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Jinlun Bai
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mark W. Reid
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Daniel J. Weisenberger
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bhavana Bhat
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Jennifer G. Aparicio
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Yeha Kim
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Mitali Singh
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Maxwell Bay
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matthew E. Thornton
- Maternal-Fetal Medicine Division of the Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eamon K. Doyle
- Department of Radiology and The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zachary Fouladian
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephan G. Erberich
- Department of Radiology and The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brendan H. Grubbs
- Maternal-Fetal Medicine Division of the Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael A. Bonaguidi
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Development, Stem Cell, and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Cheryl Mae Craft
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hardeep P. Singh
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David Cobrinik
- The Vision Center, Department of Surgery, and Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Yang X, Mann KK, Wu H, Ding J. scCross: a deep generative model for unifying single-cell multi-omics with seamless integration, cross-modal generation, and in silico exploration. Genome Biol 2024; 25:198. [PMID: 39075536 PMCID: PMC11285326 DOI: 10.1186/s13059-024-03338-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Single-cell multi-omics data reveal complex cellular states, providing significant insights into cellular dynamics and disease. Yet, integration of multi-omics data presents challenges. Some modalities have not reached the robustness or clarity of established transcriptomics. Coupled with data scarcity for less established modalities and integration intricacies, these challenges limit our ability to maximize single-cell omics benefits. We introduce scCross, a tool leveraging variational autoencoders, generative adversarial networks, and the mutual nearest neighbors (MNN) technique for modality alignment. By enabling single-cell cross-modal data generation, multi-omics data simulation, and in silico cellular perturbations, scCross enhances the utility of single-cell multi-omics studies.
Collapse
Affiliation(s)
- Xiuhui Yang
- School of Software, Shandong University, 1500 Shunhua, Jinan, 250101, Shandong, China
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, H4A 3J1, QC, Canada
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Koren K Mann
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Hao Wu
- School of Software, Shandong University, 1500 Shunhua, Jinan, 250101, Shandong, China.
| | - Jun Ding
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, H4A 3J1, QC, Canada.
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, H3G 1Y6, Canada.
- Mila-Quebec AI Institute, Montreal, QC, H2S 3H1, Canada.
| |
Collapse
|
11
|
Hu X, Chen J, Dai W, Xiao Y, Chen X, Chen Z, Zhang S, Hu Y. PHLDA1-PRDM1 mediates the effect of lentiviral vectors on fate-determination of human retinal progenitor cells. Cell Mol Life Sci 2024; 81:305. [PMID: 39012348 PMCID: PMC11335229 DOI: 10.1007/s00018-024-05279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/30/2024] [Accepted: 05/13/2024] [Indexed: 07/17/2024]
Abstract
Lentiviral vectors have markedly enhanced gene therapy efficiency in treating congenital diseases, but their long-term safety remains controversial. Most gene therapies for congenital eye diseases need to be carried out at early ages, yet the assessment of related risks to ocular development posed by lentiviral vectors is challenging. Utilizing single-cell transcriptomic profiling on human retinal organoids, this study explored the impact of lentiviral vectors on the retinal development and found that lentiviral vectors can cause retinal precursor cells to shift toward photoreceptor fate through the up-regulation of key fate-determining genes such as PRDM1. Further investigation demonstrated that the intron and intergenic region of PRDM1 was bound by PHLDA1, which was also up-regulated by lentiviral vectors exposure. Importantly, knockdown of PHLDA1 successfully suppressed the lentivirus-induced differentiation bias of photoreceptor cells. The findings also suggest that while lentiviral vectors may disrupt the fate determination of retinal precursor cells, posing risks in early-stage retinal gene therapy, these risks could potentially be reduced by inhibiting the PHLDA1-PRDM1 axis.
Collapse
Affiliation(s)
- Xing Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jia Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Wangxuan Dai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yuhua Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Zheyao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Shuyao Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Youjin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| |
Collapse
|
12
|
Mehta K, Daghsni M, Raeisossadati R, Xu Z, Davis E, Naidich A, Wang B, Tao S, Pi S, Chen W, Kostka D, Liu S, Gross JM, Kuwajima T, Aldiri I. A cis-regulatory module underlies retinal ganglion cell genesis and axonogenesis. Cell Rep 2024; 43:114291. [PMID: 38823017 PMCID: PMC11238474 DOI: 10.1016/j.celrep.2024.114291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024] Open
Abstract
Atoh7 is transiently expressed in retinal progenitor cells (RPCs) and is required for retinal ganglion cell (RGC) differentiation. In humans, a deletion in a distal non-coding regulatory region upstream of ATOH7 is associated with optic nerve atrophy and blindness. Here, we functionally interrogate the significance of the Atoh7 regulatory landscape to retinogenesis in mice. Deletion of the Atoh7 enhancer structure leads to RGC deficiency, optic nerve hypoplasia, and retinal blood vascular abnormalities, phenocopying inactivation of Atoh7. Further, loss of the Atoh7 remote enhancer impacts ipsilaterally projecting RGCs and disrupts proper axonal projections to the visual thalamus. Deletion of the Atoh7 remote enhancer is also associated with the dysregulation of axonogenesis genes, including the derepression of the axon repulsive cue Robo3. Our data provide insights into how Atoh7 enhancer elements function to promote RGC development and optic nerve formation and highlight a key role of Atoh7 in the transcriptional control of axon guidance molecules.
Collapse
Affiliation(s)
- Kamakshi Mehta
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Marwa Daghsni
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Reza Raeisossadati
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Zhongli Xu
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Emily Davis
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Abigail Naidich
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Bingjie Wang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Shiyue Tao
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Shaohua Pi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Wei Chen
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Dennis Kostka
- Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jeffrey M Gross
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Takaaki Kuwajima
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Issam Aldiri
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
13
|
Layer PG. In a century from agitated cells to human organoids. J Neurosci Methods 2024; 405:110083. [PMID: 38387805 DOI: 10.1016/j.jneumeth.2024.110083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Reaching back more than a century, suspension cultures have provided major insights into processes of histogenesis; e.g., cell communication, distinction of self/nonself, cell sorting and cell adhesion. Besides studies on lower animals, the vertebrate retina served as excellent reaggregate model to analyze 3D reconstruction of a complex neural laminar tissue. Methodologically, keeping cells under suspension is essential to achieve tissue organisation in vitro; thereby, the environmental conditions direct the emergent histotypic particulars. Recent progress in regenerative medicine is based to a large extent on human induced pluripotent stem cells (hiPSCs), which are cultured under suspension. Following their genetically directed differentiation into various histologic 3D structures, organoids provide excellent multipurpose in vitro assay models, as well as tissues for repair transplantations. Historically, a nearly fully laminated retinal spheroid from avian embryos was achieved already in 1984, foreshadowing the potential of culturing stem cells under suspension for tissue reconstruction purposes.
Collapse
Affiliation(s)
- Paul Gottlob Layer
- Technical University of Darmstadt, Developmental Biology & Neurogenetics, Schnittspahnstrasse 13, Darmstadt 64297, Germany.
| |
Collapse
|
14
|
Dorgau B, Collin J, Rozanska A, Zerti D, Unsworth A, Crosier M, Hussain R, Coxhead J, Dhanaseelan T, Patel A, Sowden JC, FitzPatrick DR, Queen R, Lako M. Single-cell analyses reveal transient retinal progenitor cells in the ciliary margin of developing human retina. Nat Commun 2024; 15:3567. [PMID: 38670973 PMCID: PMC11053058 DOI: 10.1038/s41467-024-47933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The emergence of retinal progenitor cells and differentiation to various retinal cell types represent fundamental processes during retinal development. Herein, we provide a comprehensive single cell characterisation of transcriptional and chromatin accessibility changes that underline retinal progenitor cell specification and differentiation over the course of human retinal development up to midgestation. Our lineage trajectory data demonstrate the presence of early retinal progenitors, which transit to late, and further to transient neurogenic progenitors, that give rise to all the retinal neurons. Combining single cell RNA-Seq with spatial transcriptomics of early eye samples, we demonstrate the transient presence of early retinal progenitors in the ciliary margin zone with decreasing occurrence from 8 post-conception week of human development. In retinal progenitor cells, we identified a significant enrichment for transcriptional enhanced associate domain transcription factor binding motifs, which when inhibited led to loss of cycling progenitors and retinal identity in pluripotent stem cell derived organoids.
Collapse
Affiliation(s)
- Birthe Dorgau
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Joseph Collin
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Agata Rozanska
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Darin Zerti
- Biosciences Institute, Newcastle University, Newcastle, UK
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Moira Crosier
- Biosciences Institute, Newcastle University, Newcastle, UK
| | | | | | | | - Aara Patel
- UCL Great Ormond Street Institute of Child Health and NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Jane C Sowden
- UCL Great Ormond Street Institute of Child Health and NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - David R FitzPatrick
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Rachel Queen
- Biosciences Institute, Newcastle University, Newcastle, UK.
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle, UK.
| |
Collapse
|
15
|
Dorgau B, Collin J, Rozanska A, Boczonadi V, Moya-Molina M, Unsworth A, Hussain R, Coxhead J, Dhanaseelan T, Armstrong L, Queen R, Lako M. Deciphering the spatiotemporal transcriptional and chromatin accessibility of human retinal organoid development at the single-cell level. iScience 2024; 27:109397. [PMID: 38510120 PMCID: PMC10952046 DOI: 10.1016/j.isci.2024.109397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/28/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Molecular information on the early stages of human retinal development remains scarce due to limitations in obtaining early human eye samples. Pluripotent stem cell-derived retinal organoids (ROs) provide an unprecedented opportunity for studying early retinogenesis. Using a combination of single cell RNA-seq and spatial transcriptomics we present for the first-time a single cell spatiotemporal transcriptome of RO development. Our data demonstrate that ROs recapitulate key events of retinogenesis including optic vesicle/cup formation, presence of a putative ciliary margin zone, emergence of retinal progenitor cells and their orderly differentiation to retinal neurons. Combining the scRNA- with scATAC-seq data, we were able to reveal cell-type specific transcription factor binding motifs on accessible chromatin at each stage of organoid development, and to show that chromatin accessibility is highly correlated to the developing human retina, but with some differences in the temporal emergence and abundance of some of the retinal neurons.
Collapse
Affiliation(s)
- Birthe Dorgau
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Joseph Collin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Agata Rozanska
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Veronika Boczonadi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Marina Moya-Molina
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
- Newcells Biotech, Newcastle upon Tyne NE4 5BX, UK
| | - Adrienne Unsworth
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Rafiqul Hussain
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Jonathan Coxhead
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Tamil Dhanaseelan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Lyle Armstrong
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Rachel Queen
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
16
|
Tresenrider A, Hooper M, Todd L, Kierney F, Blasdel N, Trapnell C, Reh TA. A multiplexed, single-cell sequencing screen identifies compounds that increase neurogenic reprogramming of murine Muller glia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.26.559569. [PMID: 37808650 PMCID: PMC10557658 DOI: 10.1101/2023.09.26.559569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Retinal degeneration in mammals causes permanent loss of vision, due to an inability to regenerate naturally. Some non-mammalian vertebrates show robust regeneration, via Muller glia (MG). We have recently made significant progress in stimulating adult mouse MG to regenerate functional neurons by transgenic expression of the proneural transcription factor Ascl1. While these results showed that MG can serve as an endogenous source of neuronal replacement, the efficacy of this process is limited. With the goal of improving this in mammals, we designed a small molecule screen using sci-Plex, a method to multiplex up to thousands of single nucleus RNA-seq conditions into a single experiment. We used this technology to screen a library of 92 compounds, identified, and validated two that promote neurogenesis in vivo. Our results demonstrate that high-throughput single-cell molecular profiling can substantially improve the discovery process for molecules and pathways that can stimulate neural regeneration and further demonstrate the potential for this approach to restore vision in patients with retinal disease.
Collapse
Affiliation(s)
- Amy Tresenrider
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Marcus Hooper
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Levi Todd
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Faith Kierney
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Nicolai Blasdel
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman-Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA
| | - Thomas A. Reh
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
17
|
Luo Z, Chang KC. Cell replacement with stem cell-derived retinal ganglion cells from different protocols. Neural Regen Res 2024; 19:807-810. [PMID: 37843215 PMCID: PMC10664109 DOI: 10.4103/1673-5374.381494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/20/2023] [Accepted: 06/13/2023] [Indexed: 10/17/2023] Open
Abstract
Glaucoma, characterized by a degenerative loss of retinal ganglion cells, is the second leading cause of blindness worldwide. There is currently no cure for vision loss in glaucoma because retinal ganglion cells do not regenerate and are not replaced after injury. Human stem cell-derived retinal ganglion cell transplant is a potential therapeutic strategy for retinal ganglion cell degenerative diseases. In this review, we first discuss a 2D protocol for retinal ganglion cell differentiation from human stem cell culture, including a rapid protocol that can generate retinal ganglion cells in less than two weeks and focus on their transplantation outcomes. Next, we discuss using 3D retinal organoids for retinal ganglion cell transplantation, comparing cell suspensions and clusters. This review provides insight into current knowledge on human stem cell-derived retinal ganglion cell differentiation and transplantation, with an impact on the field of regenerative medicine and especially retinal ganglion cell degenerative diseases such as glaucoma and other optic neuropathies.
Collapse
Affiliation(s)
- Ziming Luo
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Kun-Che Chang
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
18
|
McDonald A, Wijnholds J. Retinal Ciliopathies and Potential Gene Therapies: A Focus on Human iPSC-Derived Organoid Models. Int J Mol Sci 2024; 25:2887. [PMID: 38474133 PMCID: PMC10932180 DOI: 10.3390/ijms25052887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The human photoreceptor function is dependent on a highly specialised cilium. Perturbation of cilial function can often lead to death of the photoreceptor and loss of vision. Retinal ciliopathies are a genetically diverse range of inherited retinal disorders affecting aspects of the photoreceptor cilium. Despite advances in the understanding of retinal ciliopathies utilising animal disease models, they can often lack the ability to accurately mimic the observed patient phenotype, possibly due to structural and functional deviations from the human retina. Human-induced pluripotent stem cells (hiPSCs) can be utilised to generate an alternative disease model, the 3D retinal organoid, which contains all major retinal cell types including photoreceptors complete with cilial structures. These retinal organoids facilitate the study of disease mechanisms and potential therapies in a human-derived system. Three-dimensional retinal organoids are still a developing technology, and despite impressive progress, several limitations remain. This review will discuss the state of hiPSC-derived retinal organoid technology for accurately modelling prominent retinal ciliopathies related to genes, including RPGR, CEP290, MYO7A, and USH2A. Additionally, we will discuss the development of novel gene therapy approaches targeting retinal ciliopathies, including the delivery of large genes and gene-editing techniques.
Collapse
Affiliation(s)
- Andrew McDonald
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
- Netherlands Institute of Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
19
|
Krueger MR, Fishman-Williams E, Simó S, Tarantal AF, La Torre A. Expression patterns of CYP26A1, FGF8, CDKN1A, and NPVF in the developing rhesus monkey retina. Differentiation 2024; 135:100743. [PMID: 38147763 PMCID: PMC10868720 DOI: 10.1016/j.diff.2023.100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
The fovea centralis (fovea) is a specialized region of the primate retina that plays crucial roles in high-resolution visual acuity and color perception. The fovea is characterized by a high density of cone photoreceptors and no rods, and unique anatomical properties that contribute to its remarkable visual capabilities. Early histological analyses identified some of the key events that contribute to foveal development, but the mechanisms that direct the specification of this area are not understood. Recently, the expression of the retinoic acid-metabolizing enzyme CYP26A1 has become a hallmark of some of the retinal specializations found in vertebrates, including the primate fovea and the high-acuity area in avian species. In chickens, the retinoic acid pathway regulates the expression of FGF8 to then direct the development of a rod-free area. Similarly, high levels of CYP26A1, CDKN1A, and NPVF expression have been observed in the primate macula using transcriptomic approaches. However, which retinal cells express these genes and their expression dynamics in the developing primate eye remain unknown. Here, we systematically characterize the expression patterns of CYP26A1, FGF8, CDKN1A, and NPVF during the development of the rhesus monkey retina, from early stages of development in the first trimester until the third trimester (near term). Our data suggest that some of the markers previously proposed to be fovea-specific are not enriched in the progenitors of the rhesus monkey fovea. In contrast, CYP26A1 is expressed at high levels in the progenitors of the fovea, while it localizes in a subpopulation of macular Müller glia cells later in development. Together these data provide invaluable insights into the expression dynamics of several molecules in the nonhuman primate retina and highlight the developmental advancement of the foveal region.
Collapse
Affiliation(s)
- Miranda R Krueger
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, 95616, United States
| | - Elizabeth Fishman-Williams
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, 95616, United States
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, 95616, United States
| | - Alice F Tarantal
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, 95616, United States; Department of Pediatrics, University of California, Davis, Davis, CA, 95616, United States; California National Primate Research Center, University of California, Davis, Davis, CA, 95616, United States
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, 95616, United States.
| |
Collapse
|
20
|
Zhang K, Cai W, Hu L, Chen S. Generating Retinas through Guided Pluripotent Stem Cell Differentiation and Direct Somatic Cell Reprogramming. Curr Stem Cell Res Ther 2024; 19:1251-1262. [PMID: 37807418 DOI: 10.2174/011574888x255496230923164547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023]
Abstract
Retinal degeneration diseases affect millions of people worldwide but are among the most difficult eye diseases to cure. Studying the mechanisms and developing new therapies for these blinding diseases requires researchers to have access to many retinal cells. In recent years there has been substantial advances in the field of biotechnology in generating retinal cells and even tissues in vitro, either through programmed sequential stem cell differentiation or direct somatic cell lineage reprogramming. The resemblance of these in vitro-generated retinal cells to native cells has been increasingly utilized by researchers. With the help of these in vitro retinal models, we now have a better understanding of human retinas and retinal diseases. Furthermore, these in vitro-generated retinal cells can be used as donor cells which solves a major hurdle in the development of cell replacement therapy for retinal degeneration diseases, while providing a promising option for patients suffering from these diseases. In this review, we summarize the development of pluripotent stem cell-to-retinal cell differentiation methods, the recent advances in generating retinal cells through direct somatic cell reprogramming, and the translational applications of retinal cells generated in vitro. Finally, we discuss the limitations of the current protocols and possible future directions for improvement.
Collapse
Affiliation(s)
- Ke Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510623, China
| | - Wenwen Cai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510623, China
| | - Leyi Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510623, China
| | - Shuyi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510623, China
| |
Collapse
|
21
|
Lee JW, Lee HY. Exploring distinct properties of endometrial stem cells through advanced single-cell analysis platforms. Stem Cell Res Ther 2023; 14:379. [PMID: 38124100 PMCID: PMC10734114 DOI: 10.1186/s13287-023-03616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
The endometrium is a dynamic tissue that undergoes cyclic changes in response to ovarian hormones during the menstrual cycle. These changes are crucial for pregnancy establishment and maintenance. Endometrial stem cells play a pivotal role in endometrial regeneration and repair by differentiating into various cell types within the endometrium. However, their involvement in endometrial disorders such as endometriosis, infertility, and endometrial cancer is still not fully understood yet. Traditional bulk sequencing methods have limitations in capturing heterogeneity and complexity of endometrial stem cell populations. To overcome these limitations, recent single-cell analysis techniques, including single-cell RNA sequencing (scRNA-Seq), single-cell ATAC sequencing (scATAC-Seq), and spatial transcriptomics, have emerged as valuable tools for studying endometrial stem cells. In this review, although there are still many technical limitations that require improvement, we will summarize the current state-of-the-art single-cell analysis techniques for endometrial stem cells and explore their relevance to related diseases. We will discuss studies utilizing various single-cell analysis platforms to identify and characterize distinct endometrial stem cell populations and investigate their dynamic changes in gene expression and epigenetic patterns during menstrual cycle and differentiation processes. These techniques enable the identification of rare cell populations, capture heterogeneity of cell populations within the endometrium, and provide potential targets for more effective therapies.
Collapse
Affiliation(s)
- Jin Woo Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840, Republic of Korea
| | - Hwa-Yong Lee
- Division of Science Education, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
22
|
Wohlschlegel J, Finkbeiner C, Hoffer D, Kierney F, Prieve A, Murry AD, Haugan AK, Ortuño-Lizarán I, Rieke F, Golden SA, Reh TA. ASCL1 induces neurogenesis in human Müller glia. Stem Cell Reports 2023; 18:2400-2417. [PMID: 38039971 PMCID: PMC10724232 DOI: 10.1016/j.stemcr.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/03/2023] Open
Abstract
In mammals, loss of retinal cells due to disease or trauma is an irreversible process that can lead to blindness. Interestingly, regeneration of retinal neurons is a well established process in some non-mammalian vertebrates and is driven by the Müller glia (MG), which are able to re-enter the cell cycle and reprogram into neurogenic progenitors upon retinal injury or disease. Progress has been made to restore this mechanism in mammals to promote retinal regeneration: MG can be stimulated to generate new neurons in vivo in the adult mouse retina after the over-expression of the pro-neural transcription factor Ascl1. In this study, we applied the same strategy to reprogram human MG derived from fetal retina and retinal organoids into neurons. Combining single cell RNA sequencing, single cell ATAC sequencing, immunofluorescence, and electrophysiology we demonstrate that human MG can be reprogrammed into neurogenic cells in vitro.
Collapse
Affiliation(s)
| | - Connor Finkbeiner
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Dawn Hoffer
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Faith Kierney
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Aric Prieve
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Alexandria D Murry
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Alexandra K Haugan
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | | | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Sam A Golden
- Department of Biological Structure, University of Washington, Seattle, WA, USA; Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, WA, USA; Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
23
|
Santiago CP, Gimmen MY, Lu Y, McNally MM, Duncan LH, Creamer TJ, Orzolek LD, Blackshaw S, Singh MS. Comparative Analysis of Single-cell and Single-nucleus RNA-sequencing in a Rabbit Model of Retinal Detachment-related Proliferative Vitreoretinopathy. OPHTHALMOLOGY SCIENCE 2023; 3:100335. [PMID: 37496518 PMCID: PMC10365955 DOI: 10.1016/j.xops.2023.100335] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 07/28/2023]
Abstract
Purpose Proliferative vitreoretinopathy (PVR) is the most common cause of failure of retinal reattachment surgery, and the molecular changes leading to this aberrant wound healing process are currently unknown. Our ultimate goal is to study PVR pathogenesis by employing single-cell transcriptomics to dissect cellular heterogeneity. Design Here we aimed to compare single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA-sequencing (snRNA-seq) of retinal PVR samples in the rabbit model. Participants Unilateral induction of PVR lesions in rabbit eyes with contralateral eyes serving as controls. Methods Proliferative vitreoretinopathy was induced unilaterally in Dutch Belted rabbits. At different timepoints after PVR induction, retinas were dissociated into either cells or nuclei suspension and processed for scRNA-seq or snRNA-seq. Main Outcome Measures Single cell and nuclei transcriptomic profiles of retinas after PVR induction. Results Single-cell RNA sequencing and snRNA-seq were conducted on retinas at 4 hours and 14 days after disease induction. Although the capture rate of unique molecular identifiers and genes were greater in scRNA-seq samples, overall gene expression profiles of individual cell types were highly correlated between scRNA-seq and snRNA-seq. A major disparity between the 2 sequencing modalities was the cell type capture rate, however, with glial cell types overrepresented in scRNA-seq, and inner retinal neurons were enriched by snRNA-seq. Furthermore, fibrotic Müller glia were overrepresented in snRNA-seq samples, whereas reactive Müller glia were overrepresented in scRNA-seq samples. Trajectory analyses were similar between the 2 methods, allowing for the combined analysis of the scRNA-seq and snRNA-seq data sets. Conclusions These findings highlight limitations of both scRNA-seq and snRNA-seq analysis and imply that use of both techniques together can more accurately identify transcriptional networks critical for aberrant fibrogenesis in PVR than using either in isolation. Financial Disclosures Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Clayton P. Santiago
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland
| | - Megan Y. Gimmen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland
| | - Yuchen Lu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Minda M. McNally
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Leighton H. Duncan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland
| | - Tyler J. Creamer
- Institute for Basic Biomedical Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Linda D. Orzolek
- Institute for Basic Biomedical Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland
| | - Mandeep S. Singh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
24
|
Gu Y, Zhang W, Wu X, Zhang Y, Xu K, Su J. Organoid assessment technologies. Clin Transl Med 2023; 13:e1499. [PMID: 38115706 PMCID: PMC10731122 DOI: 10.1002/ctm2.1499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023] Open
Abstract
Despite enormous advances in the generation of organoids, robust and stable protocols of organoids are still a major challenge to researchers. Research for assessing structures of organoids and the evaluations of their functions on in vitro or in vivo is often limited by precision strategies. A growing interest in assessing organoids has arisen, aimed at standardizing the process of obtaining organoids to accurately resemble human-derived tissue. The complex microenvironment of organoids, intricate cellular crosstalk, organ-specific architectures and further complicate functions urgently quest for high-through schemes. By utilizing multi-omics analysis and single-cell analysis, cell-cell interaction mechanisms can be deciphered, and their structures can be investigated in a detailed view by histological analysis. In this review, we will conclude the novel approaches to study the molecular mechanism and cell heterogeneity of organoids and discuss the histological and morphological similarity of organoids in comparison to the human body. Future perspectives on functional analysis will be developed and the organoids will become mature models.
Collapse
Affiliation(s)
- Yuyuan Gu
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- School of MedicineShanghai UniversityShanghaiChina
| | - Wencai Zhang
- Department of OrthopedicsFirst Affiliated HospitalJinan UniversityGuangzhouChina
| | - Xianmin Wu
- Department of OrthopedicsShanghai Zhongye HospitalShanghaiChina
| | - Yuanwei Zhang
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- Department of OrthopaedicsXinhua Hospital Affiliated to Shanghai JiaoTong University School of MedicineShanghaiChina
| | - Ke Xu
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- Wenzhou Institute of Shanghai UniversityWenzhouChina
| | - Jiacan Su
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- Department of OrthopaedicsXinhua Hospital Affiliated to Shanghai JiaoTong University School of MedicineShanghaiChina
| |
Collapse
|
25
|
Gómez-Álvarez M, Agustina-Hernández M, Francés-Herrero E, Rodríguez-Eguren A, Bueno-Fernandez C, Cervelló I. Addressing Key Questions in Organoid Models: Who, Where, How, and Why? Int J Mol Sci 2023; 24:16014. [PMID: 37958996 PMCID: PMC10650475 DOI: 10.3390/ijms242116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Organoids are three-dimensional cellular structures designed to recreate the biological characteristics of the body's native tissues and organs in vitro. There has been a recent surge in studies utilizing organoids due to their distinct advantages over traditional two-dimensional in vitro approaches. However, there is no consensus on how to define organoids. This literature review aims to clarify the concept of organoids and address the four fundamental questions pertaining to organoid models: (i) What constitutes organoids?-The cellular material. (ii) Where do organoids grow?-The extracellular scaffold. (iii) How are organoids maintained in vitro?-Via the culture media. (iv) Why are organoids suitable in vitro models?-They represent reproducible, stable, and scalable models for biological applications. Finally, this review provides an update on the organoid models employed within the female reproductive tract, underscoring their relevance in both basic biology and clinical applications.
Collapse
Affiliation(s)
- María Gómez-Álvarez
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| | - Marcos Agustina-Hernández
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| | - Emilio Francés-Herrero
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
- Department of Pediatrics, Obstetrics and Gynecology, Universitat de València, 46010 Valencia, Spain
| | - Adolfo Rodríguez-Eguren
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| | - Clara Bueno-Fernandez
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
- Department of Pediatrics, Obstetrics and Gynecology, Universitat de València, 46010 Valencia, Spain
| | - Irene Cervelló
- Instituto de Investigación Sanitaria La Fe (IIS La Fe), IVI Foundation, IVIRMA Global Research Alliance, 46026 Valencia, Spain; (M.G.-Á.); (M.A.-H.); (E.F.-H.); (A.R.-E.); (C.B.-F.)
| |
Collapse
|
26
|
Kruczek K, Swaroop A. Patient stem cell-derived in vitro disease models for developing novel therapies of retinal ciliopathies. Curr Top Dev Biol 2023; 155:127-163. [PMID: 38043950 DOI: 10.1016/bs.ctdb.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Primary cilia are specialized organelles on the surface of almost all cells in vertebrate tissues and are primarily involved in the detection of extracellular stimuli. In retinal photoreceptors, cilia are uniquely modified to form outer segments containing components required for the detection of light in stacks of membrane discs. Not surprisingly, vision impairment is a frequent phenotype associated with ciliopathies, a heterogeneous class of conditions caused by mutations in proteins required for formation, maintenance and/or function of primary cilia. Traditionally, immortalized cell lines and model organisms have been used to provide insights into the biology of ciliopathies. The advent of methods for reprogramming human somatic cells into pluripotent stem cells has enabled the generation of in vitro disease models directly from patients suffering from ciliopathies. Such models help us in investigating pathological mechanisms specific to human physiology and in developing novel therapeutic approaches. In this article, we review current protocols to differentiate human pluripotent stem cells into retinal cell types, and discuss how these cellular and/or organoid models can be utilized to interrogate pathobiology of ciliopathies affecting the retina and for testing prospective treatments.
Collapse
Affiliation(s)
- Kamil Kruczek
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, United States.
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
27
|
Landon‐Brace N, Li NT, McGuigan AP. Exploring New Dimensions of Tumor Heterogeneity: The Application of Single Cell Analysis to Organoid-Based 3D In Vitro Models. Adv Healthc Mater 2023; 12:e2300903. [PMID: 37589373 PMCID: PMC11468421 DOI: 10.1002/adhm.202300903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/28/2023] [Indexed: 08/18/2023]
Abstract
Modeling the heterogeneity of the tumor microenvironment (TME) in vitro is essential to investigating fundamental cancer biology and developing novel treatment strategies that holistically address the factors affecting tumor progression and therapeutic response. Thus, the development of new tools for both in vitro modeling, such as patient-derived organoids (PDOs) and complex 3D in vitro models, and single cell omics analysis, such as single-cell RNA-sequencing, represents a new frontier for investigating tumor heterogeneity. Specifically, the integration of PDO-based 3D in vitro models and single cell analysis offers a unique opportunity to explore the intersecting effects of interpatient, microenvironmental, and tumor cell heterogeneity on cell phenotypes in the TME. In this review, the current use of PDOs in complex 3D in vitro models of the TME is discussed and the emerging directions in the development of these models are highlighted. Next, work that has successfully applied single cell analysis to PDO-based models is examined and important experimental considerations are identified for this approach. Finally, open questions are highlighted that may be amenable to exploration using the integration of PDO-based models and single cell analysis. Ultimately, such investigations may facilitate the identification of novel therapeutic targets for cancer that address the significant influence of tumor-TME interactions.
Collapse
Affiliation(s)
- Natalie Landon‐Brace
- Institute of Biomedical EngineeringUniversity of Toronto200 College StreetTorontoM5S3E5Canada
| | - Nancy T. Li
- Department of Chemical Engineering and Applied ChemistryUniversity of Toronto200 College StTorontoM5S3E5Canada
| | - Alison P. McGuigan
- Department of Chemical Engineering and Applied ChemistryInstitute of Biomedical EngineeringUniversity of Toronto200 College StTorontoM5S3E5Canada
| |
Collapse
|
28
|
Gaulton KJ, Preissl S, Ren B. Interpreting non-coding disease-associated human variants using single-cell epigenomics. Nat Rev Genet 2023; 24:516-534. [PMID: 37161089 PMCID: PMC10629587 DOI: 10.1038/s41576-023-00598-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/11/2023]
Abstract
Genome-wide association studies (GWAS) have linked hundreds of thousands of sequence variants in the human genome to common traits and diseases. However, translating this knowledge into a mechanistic understanding of disease-relevant biology remains challenging, largely because such variants are predominantly in non-protein-coding sequences that still lack functional annotation at cell-type resolution. Recent advances in single-cell epigenomics assays have enabled the generation of cell type-, subtype- and state-resolved maps of the epigenome in heterogeneous human tissues. These maps have facilitated cell type-specific annotation of candidate cis-regulatory elements and their gene targets in the human genome, enhancing our ability to interpret the genetic basis of common traits and diseases.
Collapse
Affiliation(s)
- Kyle J Gaulton
- Department of Paediatrics, Paediatric Diabetes Research Center, University of California San Diego School of Medicine, La Jolla, CA, USA.
| | - Sebastian Preissl
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA.
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Bing Ren
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, CA, USA.
- Ludwig Institute for Cancer Research, La Jolla, CA, USA.
| |
Collapse
|
29
|
Chirco KR, Martinez C, Lamba DA. Advancements in pre-clinical development of gene editing-based therapies to treat inherited retinal diseases. Vision Res 2023; 209:108257. [PMID: 37210864 PMCID: PMC10524382 DOI: 10.1016/j.visres.2023.108257] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023]
Abstract
One of the major goals in the inherited retinal disease (IRD) field is to develop an effective therapy that can be applied to as many patients as possible. Significant progress has already been made toward this end, with gene editing at the forefront. The advancement of gene editing-based tools has been a recent focus of many research groups around the world. Here, we provide an update on the status of CRISPR/Cas-derived gene editors, promising options for delivery of these editing systems to the retina, and animal models that aid in pre-clinical testing of new IRD therapeutics.
Collapse
Affiliation(s)
- Kathleen R Chirco
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States.
| | - Cassandra Martinez
- Department of Ophthalmology, University of California San Francisco, CA, United States; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, CA, United States
| | - Deepak A Lamba
- Department of Ophthalmology, University of California San Francisco, CA, United States; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, CA, United States
| |
Collapse
|
30
|
Móvio MI, de Lima-Vasconcellos TH, Dos Santos GB, Echeverry MB, Colombo E, Mattos LS, Resende RR, Kihara AH. Retinal organoids from human-induced pluripotent stem cells: From studying retinal dystrophies to early diagnosis of Alzheimer's and Parkinson's disease. Semin Cell Dev Biol 2023; 144:77-86. [PMID: 36210260 DOI: 10.1016/j.semcdb.2022.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/18/2022]
Abstract
Human-induced pluripotent stem cells (hiPSCs) have provided new methods to study neurodegenerative diseases. In addition to their wide application in neuronal disorders, hiPSCs technology can also encompass specific conditions, such as inherited retinal dystrophies. The possibility of evaluating alterations related to retinal disorders in 3D organoids increases the truthfulness of in vitro models. Moreover, both Alzheimer's (AD) and Parkinson's disease (PD) have been described as causing early retinal alterations, generating beta-amyloid protein accumulation, or affecting dopaminergic amacrine cells. This review addresses recent advances and future perspectives obtained from in vitro modeling of retinal diseases, focusing on retinitis pigmentosa (RP). Additionally, we depicted the possibility of evaluating changes related to AD and PD in retinal organoids obtained from potential patients long before the onset of the disease, constituting a valuable tool in early diagnosis. With this, we pointed out prospects in the study of retinal dystrophies and early diagnosis of AD and PD.
Collapse
Affiliation(s)
- Marília Inês Móvio
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | | | | | - Marcela Bermudez Echeverry
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Elisabetta Colombo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Leonardo S Mattos
- Biomedical Robotics Laboratory, Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Rodrigo Ribeiro Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexandre Hiroaki Kihara
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil; Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil.
| |
Collapse
|
31
|
Li Q. scTour: a deep learning architecture for robust inference and accurate prediction of cellular dynamics. Genome Biol 2023; 24:149. [PMID: 37353848 PMCID: PMC10290357 DOI: 10.1186/s13059-023-02988-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 06/13/2023] [Indexed: 06/25/2023] Open
Abstract
Despite the continued efforts, a batch-insensitive tool that can both infer and predict the developmental dynamics using single-cell genomics is lacking. Here, I present scTour, a novel deep learning architecture to perform robust inference and accurate prediction of cellular dynamics with minimal influence from batch effects. For inference, scTour simultaneously estimates the developmental pseudotime, delineates the vector field, and maps the transcriptomic latent space under a single, integrated framework. For prediction, scTour precisely reconstructs the underlying dynamics of unseen cellular states or a new independent dataset. scTour's functionalities are demonstrated in a variety of biological processes from 19 datasets.
Collapse
Affiliation(s)
- Qian Li
- Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
32
|
Lin C, Jyotaki M, Quinlan J, Feng S, Zhou M, Jiang P, Matsumoto I, Huang L, Ninomiya Y, Margolskee RF, Reed DR, Wang H. Lipopolysaccharide increases bitter taste sensitivity via epigenetic changes in Tas2r gene clusters. iScience 2023; 26:106920. [PMID: 37283808 PMCID: PMC10239704 DOI: 10.1016/j.isci.2023.106920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/27/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023] Open
Abstract
T2R bitter receptors, encoded by Tas2r genes, are not only critical for bitter taste signal transduction but also important for defense against bacteria and parasites. However, little is known about whether and how Tas2r gene expression are regulated. Here, we show that in an inflammation model mimicking bacterial infection using lipopolysaccharide, the expression of many Tas2rs was significantly upregulated and mice displayed markedly increased neural and behavioral responses to bitter compounds. Using single-cell assays for transposase-accessible chromatin with sequencing (scATAC-seq), we found that the chromatin accessibility of Tas2rs was highly celltype specific and lipopolysaccharide increased the accessibility of many Tas2rs. scATAC-seq also revealed substantial chromatin remodeling in immune response genes in taste tissue stem cells, suggesting potential long-lasting effects. Together, our results suggest an epigenetic mechanism connecting inflammation, Tas2r gene regulation, and altered bitter taste, which may explain heightened bitter taste that can occur with infections and cancer treatments.
Collapse
Affiliation(s)
- Cailu Lin
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| | - Masafumi Jyotaki
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| | - John Quinlan
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| | - Shan Feng
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| | - Minliang Zhou
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| | - Peihua Jiang
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| | - Ichiro Matsumoto
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| | - Liquan Huang
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
- Institute of Cellular and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuzo Ninomiya
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
- Division of Sensory Physiology, Research and Development Center for Five-Sense Device, Kyushu University, Fukuoka, Japan
- Okayama University, Okayama, Japan
- Oral Science Research Center, Tokyo Dental College, Tokyo, Japan
| | | | - Danielle R. Reed
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| | - Hong Wang
- Monell Chemical Senses Center, 3500 Market St., Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
Liang Q, Cheng X, Wang J, Owen L, Shakoor A, Lillvis JL, Zhang C, Farkas M, Kim IK, Li Y, DeAngelis M, Chen R. A multi-omics atlas of the human retina at single-cell resolution. CELL GENOMICS 2023; 3:100298. [PMID: 37388908 PMCID: PMC10300490 DOI: 10.1016/j.xgen.2023.100298] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/22/2023] [Accepted: 03/17/2023] [Indexed: 07/01/2023]
Abstract
Cell classes in the human retina are highly heterogeneous with their abundance varying by several orders of magnitude. Here, we generated and integrated a multi-omics single-cell atlas of the adult human retina, including more than 250,000 nuclei for single-nuclei RNA-seq and 137,000 nuclei for single-nuclei ATAC-seq. Cross-species comparison of the retina atlas among human, monkey, mice, and chicken revealed relatively conserved and non-conserved types. Interestingly, the overall cell heterogeneity in primate retina decreases compared with that of rodent and chicken retina. Through integrative analysis, we identified 35,000 distal cis-element-gene pairs, constructed transcription factor (TF)-target regulons for more than 200 TFs, and partitioned the TFs into distinct co-active modules. We also revealed the heterogeneity of the cis-element-gene relationships in different cell types, even from the same class. Taken together, we present a comprehensive single-cell multi-omics atlas of the human retina as a resource that enables systematic molecular characterization at individual cell-type resolution.
Collapse
Affiliation(s)
- Qingnan Liang
- HGSC, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xuesen Cheng
- HGSC, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jun Wang
- HGSC, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Leah Owen
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84132, USA
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, University at Buffalo SUNY, Buffalo, NY 14203, USA
| | - Akbar Shakoor
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, University at Buffalo SUNY, Buffalo, NY 14203, USA
| | - John L. Lillvis
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, University at Buffalo SUNY, Buffalo, NY 14203, USA
- VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Charles Zhang
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, University at Buffalo SUNY, Buffalo, NY 14203, USA
| | - Michael Farkas
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, University at Buffalo SUNY, Buffalo, NY 14203, USA
- VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Ivana K. Kim
- Retina Service, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Yumei Li
- HGSC, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Margaret DeAngelis
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84132, USA
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Engineering, University at Buffalo SUNY, Buffalo, NY 14203, USA
- VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Rui Chen
- HGSC, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
34
|
Orozco LD, Owen LA, Hofmann J, Stockwell AD, Tao J, Haller S, Mukundan VT, Clarke C, Lund J, Sridhar A, Mayba O, Barr JL, Zavala RA, Graves EC, Zhang C, Husami N, Finley R, Au E, Lillvis JH, Farkas MH, Shakoor A, Sherva R, Kim IK, Kaminker JS, Townsend MJ, Farrer LA, Yaspan BL, Chen HH, DeAngelis MM. A systems biology approach uncovers novel disease mechanisms in age-related macular degeneration. CELL GENOMICS 2023; 3:100302. [PMID: 37388919 PMCID: PMC10300496 DOI: 10.1016/j.xgen.2023.100302] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/21/2023] [Accepted: 03/22/2023] [Indexed: 07/01/2023]
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness, affecting 200 million people worldwide. To identify genes that could be targeted for treatment, we created a molecular atlas at different stages of AMD. Our resource is comprised of RNA sequencing (RNA-seq) and DNA methylation microarrays from bulk macular retinal pigment epithelium (RPE)/choroid of clinically phenotyped normal and AMD donor eyes (n = 85), single-nucleus RNA-seq (164,399 cells), and single-nucleus assay for transposase-accessible chromatin (ATAC)-seq (125,822 cells) from the retina, RPE, and choroid of 6 AMD and 7 control donors. We identified 23 genome-wide significant loci differentially methylated in AMD, over 1,000 differentially expressed genes across different disease stages, and an AMD Müller state distinct from normal or gliosis. Chromatin accessibility peaks in genome-wide association study (GWAS) loci revealed putative causal genes for AMD, including HTRA1 and C6orf223. Our systems biology approach uncovered molecular mechanisms underlying AMD, including regulators of WNT signaling, FRZB and TLE2, as mechanistic players in disease.
Collapse
Affiliation(s)
- Luz D. Orozco
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080, USA
| | - Leah A. Owen
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Department of Population Health Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Jeffrey Hofmann
- Department of Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Amy D. Stockwell
- Department of Human Genetics, Genentech, South San Francisco, CA 94080, USA
| | - Jianhua Tao
- Department of Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Susan Haller
- Department of Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Vineeth T. Mukundan
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080, USA
| | - Christine Clarke
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080, USA
| | - Jessica Lund
- Departments of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA 94080, USA
| | - Akshayalakshmi Sridhar
- Department of Human Pathobiology & OMNI Reverse Translation, Genentech, South San Francisco, CA 94080, USA
| | - Oleg Mayba
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080, USA
| | - Julie L. Barr
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Rylee A. Zavala
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Elijah C. Graves
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Charles Zhang
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Nadine Husami
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Robert Finley
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - Elizabeth Au
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| | - John H. Lillvis
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Veterans Administration Western New York Healthcare System, Buffalo, NY 14212, USA
| | - Michael H. Farkas
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Veterans Administration Western New York Healthcare System, Buffalo, NY 14212, USA
| | - Akbar Shakoor
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
| | - Richard Sherva
- Department of Medicine, Biomedical Genetics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ivana K. Kim
- Retina Service, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Joshua S. Kaminker
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA 94080, USA
| | - Michael J. Townsend
- Department of Human Pathobiology & OMNI Reverse Translation, Genentech, South San Francisco, CA 94080, USA
| | - Lindsay A. Farrer
- Department of Medicine, Biomedical Genetics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Brian L. Yaspan
- Department of Human Genetics, Genentech, South San Francisco, CA 94080, USA
| | - Hsu-Hsin Chen
- Department of Human Pathobiology & OMNI Reverse Translation, Genentech, South San Francisco, CA 94080, USA
| | - Margaret M. DeAngelis
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Department of Population Health Sciences, University of Utah School of Medicine, The University of Utah, Salt Lake City, UT 84132, USA
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
- Genetics, Genomics and Bioinformatics Graduate Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
35
|
Kang J, Gong J, Yang C, Lin X, Yan L, Gong Y, Xu H. Application of Human Stem Cell Derived Retinal Organoids in the Exploration of the Mechanisms of Early Retinal Development. Stem Cell Rev Rep 2023:10.1007/s12015-023-10553-x. [PMID: 37269529 DOI: 10.1007/s12015-023-10553-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 06/05/2023]
Abstract
The intricate neural circuit of retina extracts salient features of the natural world and forms bioelectric impulse as the origin of vision. The early development of retina is a highly complex and coordinated process in morphogenesis and neurogenesis. Increasing evidence indicates that stem cells derived human retinal organoids (hROs) in vitro faithfully recapitulates the embryonic developmental process of human retina no matter in the transcriptome, cellular biology and histomorphology. The emergence of hROs greatly deepens on the understanding of early development of human retina. Here, we reviewed the events of early retinal development both in animal embryos and hROs studies, which mainly comprises the formation of optic vesicle and optic cup shape, differentiation of retinal ganglion cells (RGCs), photoreceptor cells (PRs) and its supportive retinal pigment epithelium cells (RPE). We also discussed the classic and frontier molecular pathways up to date to decipher the underlying mechanisms of early development of human retina and hROs. Finally, we summarized the application prospect, challenges and cutting-edge techniques of hROs for uncovering the principles and mechanisms of retinal development and related developmental disorder. hROs is a priori selection for studying human retinal development and function and may be a fundamental tool for unlocking the unknown insight into retinal development and disease.
Collapse
Affiliation(s)
- Jiahui Kang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Jing Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Cao Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xi Lin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Lijuan Yan
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Yu Gong
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
36
|
Li R, Liu J, Yi P, Yang X, Chen J, Zhao C, Liao X, Wang X, Xu Z, Lu H, Li H, Zhang Z, Liu X, Xiang J, Hu K, Qi H, Yu J, Yang P, Hou S. Integrative Single-Cell Transcriptomics and Epigenomics Mapping of the Fetal Retina Developmental Dynamics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206623. [PMID: 37017569 DOI: 10.1002/advs.202206623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/24/2023] [Indexed: 06/04/2023]
Abstract
The underlying mechanisms that determine gene expression and chromatin accessibility in retinogenesis are poorly understood. Herein, single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin sequencing are performed on human embryonic eye samples obtained 9-26 weeks after conception to explore the heterogeneity of retinal progenitor cells (RPCs) and neurogenic RPCs. The differentiation trajectory from RPCs to 7 major types of retinal cells are verified. Subsequently, diverse lineage-determining transcription factors are identified and their gene regulatory networks are refined at the transcriptomic and epigenomic levels. Treatment of retinospheres, with the inhibitor of RE1 silencing transcription factor, X5050, induces more neurogenesis with the regular arrangement, and a decrease in Müller glial cells. The signatures of major retinal cells and their correlation with pathogenic genes associated with multiple ocular diseases, including uveitis and age-related macular degeneration are also described. A framework for the integrated exploration of single-cell developmental dynamics of the human primary retina is provided.
Collapse
Affiliation(s)
- Ruonan Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Jiangyi Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, P. R. China
| | - Xianli Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, P. R. China
| | - Jun Chen
- Department of Obstetrics, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Chenyang Zhao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Xingyun Liao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, P. R. China
| | - Xiaotang Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Zongren Xu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
| | - Huiping Lu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Hongshun Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Zhi Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Xianyang Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Junjie Xiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Ke Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Hongbo Qi
- Department of Obstetrics, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, P. R. China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, P. R. China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, P. R. China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, 400016, P. R. China
- Chongqing Eye Institute, Chongqing, 400016, P. R. China
- Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, 400016, P. R. China
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, P. R. China
| |
Collapse
|
37
|
Yang S, Hu H, Kung H, Zou R, Dai Y, Hu Y, Wang T, Lv T, Yu J, Li F. Organoids: The current status and biomedical applications. MedComm (Beijing) 2023; 4:e274. [PMID: 37215622 PMCID: PMC10192887 DOI: 10.1002/mco2.274] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Organoids are three-dimensional (3D) miniaturized versions of organs or tissues that are derived from cells with stem potential and can self-organize and differentiate into 3D cell masses, recapitulating the morphology and functions of their in vivo counterparts. Organoid culture is an emerging 3D culture technology, and organoids derived from various organs and tissues, such as the brain, lung, heart, liver, and kidney, have been generated. Compared with traditional bidimensional culture, organoid culture systems have the unique advantage of conserving parental gene expression and mutation characteristics, as well as long-term maintenance of the function and biological characteristics of the parental cells in vitro. All these features of organoids open up new opportunities for drug discovery, large-scale drug screening, and precision medicine. Another major application of organoids is disease modeling, and especially various hereditary diseases that are difficult to model in vitro have been modeled with organoids by combining genome editing technologies. Herein, we introduce the development and current advances in the organoid technology field. We focus on the applications of organoids in basic biology and clinical research, and also highlight their limitations and future perspectives. We hope that this review can provide a valuable reference for the developments and applications of organoids.
Collapse
Affiliation(s)
- Siqi Yang
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Haijie Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Hengchung Kung
- Krieger School of Arts and SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Ruiqi Zou
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yushi Dai
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yafei Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Tiantian Wang
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
| | - Tianrun Lv
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Jun Yu
- Departments of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Departments of OncologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Fuyu Li
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
38
|
Loewa A, Feng JJ, Hedtrich S. Human disease models in drug development. NATURE REVIEWS BIOENGINEERING 2023; 1:1-15. [PMID: 37359774 PMCID: PMC10173243 DOI: 10.1038/s44222-023-00063-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 06/20/2023]
Abstract
Biomedical research is undergoing a paradigm shift towards approaches centred on human disease models owing to the notoriously high failure rates of the current drug development process. Major drivers for this transition are the limitations of animal models, which, despite remaining the gold standard in basic and preclinical research, suffer from interspecies differences and poor prediction of human physiological and pathological conditions. To bridge this translational gap, bioengineered human disease models with high clinical mimicry are being developed. In this Review, we discuss preclinical and clinical studies that benefited from these models, focusing on organoids, bioengineered tissue models and organs-on-chips. Furthermore, we provide a high-level design framework to facilitate clinical translation and accelerate drug development using bioengineered human disease models.
Collapse
Affiliation(s)
- Anna Loewa
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - James J. Feng
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC Canada
- Department of Mathematics, University of British Columbia, Vancouver, BC Canada
| | - Sarah Hedtrich
- Department of Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Center of Biological Design, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC Canada
- Max-Delbrück Center for Molecular Medicine (MCD), Helmholtz Association, Berlin, Germany
| |
Collapse
|
39
|
Yin W, Mao X, Xu M, Chen M, Xue M, Su N, Yuan S, Liu Q. Epigenetic regulation in the commitment of progenitor cells during retinal development and regeneration. Differentiation 2023:S0301-4681(23)00023-3. [PMID: 37069005 DOI: 10.1016/j.diff.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023]
Abstract
Retinal development is initiated by multipotent retinal progenitor cells, which undergo several rounds of cell divisions and subsequently terminal differentiation. Retinal regeneration is usually considered as the recapitulation of retinal development, which share common mechanisms underlying the cell cycle re-entry of adult retinal stem cells and the differentiation of retinal neurons. However, how proliferative retinal progenitor cells perform a precise transition to postmitotic retinal cell types during the process of development and regeneration remains elusive. It is proposed that both the intrinsic and extrinsic programming are involved in the transcriptional regulation of the spatio-temporal fate commitment. Epigenetic modifications and the regulatory mechanisms at both DNA and chromatin levels are also postulated to play an important role in the timing of differentiation of specific retinal cells. In the present review, we have summarized recent knowledge of epigenetic regulation that underlies the commitment of retinal progenitor cells in the settings of retinal development and regeneration.
Collapse
Affiliation(s)
- Wenjie Yin
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Xiying Mao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Miao Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Mingkang Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Mengting Xue
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Na Su
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Songtao Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
40
|
Ge Y, Chen X, Nan N, Bard J, Wu F, Yergeau D, Liu T, Wang J, Mu X. Key transcription factors influence the epigenetic landscape to regulate retinal cell differentiation. Nucleic Acids Res 2023; 51:2151-2176. [PMID: 36715342 PMCID: PMC10018358 DOI: 10.1093/nar/gkad026] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
How the diverse neural cell types emerge from multipotent neural progenitor cells during central nervous system development remains poorly understood. Recent scRNA-seq studies have delineated the developmental trajectories of individual neural cell types in many neural systems including the neural retina. Further understanding of the formation of neural cell diversity requires knowledge about how the epigenetic landscape shifts along individual cell lineages and how key transcription factors regulate these changes. In this study, we dissect the changes in the epigenetic landscape during early retinal cell differentiation by scATAC-seq and identify globally the enhancers, enriched motifs, and potential interacting transcription factors underlying the cell state/type specific gene expression in individual lineages. Using CUT&Tag, we further identify the enhancers bound directly by four key transcription factors, Otx2, Atoh7, Pou4f2 and Isl1, including those dependent on Atoh7, and uncover the sequential and combinatorial interactions of these factors with the epigenetic landscape to control gene expression along individual retinal cell lineages such as retinal ganglion cells (RGCs). Our results reveal a general paradigm in which transcription factors collaborate and compete to regulate the emergence of distinct retinal cell types such as RGCs from multipotent retinal progenitor cells (RPCs).
Collapse
Affiliation(s)
- Yichen Ge
- Department of Ophthalmology/Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Xushen Chen
- Department of Ophthalmology/Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Nan Nan
- Department of Ophthalmology/Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Jonathan Bard
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Fuguo Wu
- Department of Ophthalmology/Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Donald Yergeau
- New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Tao Liu
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jie Wang
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
41
|
Lin C, Jyotaki M, Quinlan J, Feng S, Zhou M, Jiang P, Matsumoto I, Huang L, Ninomiya Y, Margolskee RF, Reed DR, Wang H. Inflammation induces bitter taste oversensitization via epigenetic changes in Tas2r gene clusters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527520. [PMID: 36798225 PMCID: PMC9934667 DOI: 10.1101/2023.02.08.527520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
T2R bitter receptors, encoded by Tas2r genes, are not only critical for bitter taste signal transduction but also important for defense against bacteria and parasites. However, little is known about whether and how Tas2r gene expression are regulated. Here we show that, in an inflammation model mimicking bacterial infection, the expression of many Tas2rs are significantly up-regulated and mice displayed markedly increased neural and behavioral responses to bitter compounds. Using single-cell assays for transposase-accessible chromatin with sequencing (scATAC-seq), we found that the chromatin accessibility of Tas2rs was highly cell type specific and inflammation increased the accessibility of many Tas2rs . scATAC-seq also revealed substantial chromatin remodeling in immune response genes in taste tissue stem cells, suggesting potential long-term effects. Together, our results suggest an epigenetic mechanism connecting inflammation, Tas2r gene regulation, and altered bitter taste, which may explain heightened bitter taste that can occur with infections and cancer treatments.
Collapse
|
42
|
Todd L, Jenkins W, Finkbeiner C, Hooper MJ, Donaldson PC, Pavlou M, Wohlschlegel J, Ingram N, Mu X, Rieke F, Reh TA. Reprogramming Müller glia to regenerate ganglion-like cells in adult mouse retina with developmental transcription factors. SCIENCE ADVANCES 2022; 8:eabq7219. [PMID: 36417510 PMCID: PMC9683702 DOI: 10.1126/sciadv.abq7219] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/26/2022] [Indexed: 06/11/2023]
Abstract
Many neurodegenerative diseases cause degeneration of specific types of neurons. For example, glaucoma leads to death of retinal ganglion cells, leaving other neurons intact. Neurons are not regenerated in the adult mammalian central nervous system. However, in nonmammalian vertebrates, glial cells spontaneously reprogram into neural progenitors and replace neurons after injury. We have recently developed strategies to stimulate regeneration of functional neurons in the adult mouse retina by overexpressing the proneural factor Ascl1 in Müller glia. Here, we test additional transcription factors (TFs) for their ability to direct regeneration to particular types of retinal neurons. We engineered mice to express different combinations of TFs in Müller glia, including Ascl1, Pou4f2, Islet1, and Atoh1. Using immunohistochemistry, single-cell RNA sequencing, single-cell assay for transposase-accessible chromatin sequencing, and electrophysiology, we find that retinal ganglion-like cells can be regenerated in the damaged adult mouse retina in vivo with targeted overexpression of developmental retinal ganglion cell TFs.
Collapse
Affiliation(s)
- Levi Todd
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Wesley Jenkins
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Connor Finkbeiner
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Marcus J. Hooper
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Phoebe C. Donaldson
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Marina Pavlou
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Juliette Wohlschlegel
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Norianne Ingram
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 91895, USA
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 91895, USA
| | - Thomas A. Reh
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
43
|
Childs CJ, Eiken MK, Spence JR. Approaches to benchmark and characterize in vitro human model systems. Development 2022; 149:dev200641. [PMID: 36214410 PMCID: PMC10906492 DOI: 10.1242/dev.200641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
In vitro human models, such as gastruloids and organoids, are complex three-dimensional (3D) structures often consist of cells from multiple germ layers that possess some attributes of a developing embryo or organ. To use these models to interrogate human development and organogenesis, these 3D models must accurately recapitulate aspects of their in vivo counterparts. Recent advances in single-cell technologies, including sequencing and spatial approaches, have enabled efforts to better understand and directly compare organoids with native tissues. For example, single-cell genomic efforts have created cell and organ atlases that enable benchmarking of in vitro models and can also be leveraged to gain novel biological insights that can be used to further improve in vitro models. This Spotlight discusses the state of current in vitro model systems, the efforts to create large publicly available atlases of the developing human and how these data are being used to improve organoids. Limitations and perspectives on future efforts are also discussed.
Collapse
Affiliation(s)
- Charlie J. Childs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Madeline K. Eiken
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Jason R. Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
44
|
Chew SH, Martinez C, Chirco KR, Kandoi S, Lamba DA. Timed Notch Inhibition Drives Photoreceptor Fate Specification in Human Retinal Organoids. Invest Ophthalmol Vis Sci 2022; 63:12. [PMID: 36129723 PMCID: PMC9513742 DOI: 10.1167/iovs.63.10.12] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Transplanting photoreceptors from human pluripotent stem cell-derived retinal organoids have the potential to reverse vision loss in affected individuals. However, transplantable photoreceptors are only a subset of all cells in the organoids. Hence, the goal of our current study was to accelerate and synchronize photoreceptor differentiation in retinal organoids by inhibiting the Notch signaling pathway at different developmental time-points using a small molecule, PF-03084014 (PF). Methods Human induced pluripotent stem cell- and human embryonic stem cells-derived retinal organoids were treated with 10 µM PF for 3 days starting at day 45 (D45), D60, D90, and D120 of differentiation. Organoids were collected at post-treatment days 14, 28, and 42 and analyzed for progenitor and photoreceptor markers and Notch pathway inhibition by immunohistochemistry (IHC), quantitative PCR, and bulk RNA sequencing (n = 3-5 organoids from three independent experiments). Results Retinal organoids collected after treatment showed a decrease in progenitor markers (KI67, VSX2, PAX6, and LHX2) and an increase in differentiated pan-photoreceptor markers (OTX2, CRX, and RCVRN) at all organoid stages except D120. PF-treated organoids at D45 and D60 exhibited an increase in cone photoreceptor markers (RXRG and ARR3). PF treatment at D90 revealed an increase in cone and rod photoreceptors markers (ARR3, NRL, and NR2E3). Bulk RNA sequencing analysis mirrored the immunohistochemistry data and quantitative PCR confirmed Notch effector inhibition. Conclusions Timing the Notch pathway inhibition in human retinal organoids to align with progenitor competency stages can yield an enriched population of early cone or rod photoreceptors.
Collapse
Affiliation(s)
- Shereen H. Chew
- Department of Ophthalmology, University of California San Francisco, California, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, California, United States
| | - Cassandra Martinez
- Department of Ophthalmology, University of California San Francisco, California, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, California, United States
| | - Kathleen R. Chirco
- Department of Ophthalmology, University of California San Francisco, California, United States
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States
| | - Sangeetha Kandoi
- Department of Ophthalmology, University of California San Francisco, California, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, California, United States
| | - Deepak A. Lamba
- Department of Ophthalmology, University of California San Francisco, California, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, California, United States
| |
Collapse
|
45
|
Wang SK, Nair S, Li R, Kraft K, Pampari A, Patel A, Kang JB, Luong C, Kundaje A, Chang HY. Single-cell multiome of the human retina and deep learning nominate causal variants in complex eye diseases. CELL GENOMICS 2022; 2:100164. [PMID: 36277849 PMCID: PMC9584034 DOI: 10.1016/j.xgen.2022.100164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/10/2022] [Accepted: 07/07/2022] [Indexed: 01/19/2023]
Abstract
Genome-wide association studies (GWASs) of eye disorders have identified hundreds of genetic variants associated with ocular disease. However, the vast majority of these variants are noncoding, making it challenging to interpret their function. Here we present a joint single-cell atlas of gene expression and chromatin accessibility of the adult human retina with more than 50,000 cells, which we used to analyze single-nucleotide polymorphisms (SNPs) implicated by GWASs of age-related macular degeneration, glaucoma, diabetic retinopathy, myopia, and type 2 macular telangiectasia. We integrate this atlas with a HiChIP enhancer connectome, expression quantitative trait loci (eQTL) data, and base-resolution deep learning models to predict noncoding SNPs with causal roles in eye disease, assess SNP impact on transcription factor binding, and define their known and novel target genes. Our efforts nominate pathogenic SNP-target gene interactions for multiple vision disorders and provide a potentially powerful resource for interpreting noncoding variation in the eye.
Collapse
Affiliation(s)
- Sean K. Wang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - Surag Nair
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Katerina Kraft
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Anusri Pampari
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Aman Patel
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Joyce B. Kang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
| | - Christy Luong
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Howard Y. Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
46
|
Bachu VS, Kandoi S, Park KU, Kaufman ML, Schwanke M, Lamba DA, Brzezinski JA. An enhancer located in a Pde6c intron drives transient expression in the cone photoreceptors of developing mouse and human retinas. Dev Biol 2022; 488:131-150. [PMID: 35644251 PMCID: PMC10676565 DOI: 10.1016/j.ydbio.2022.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/29/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023]
Abstract
How cone photoreceptors are formed during retinal development is only partially known. This is in part because we do not fully understand the gene regulatory network responsible for cone genesis. We reasoned that cis-regulatory elements (enhancers) active in nascent cones would be regulated by the same upstream network that controls cone formation. To dissect this network, we searched for enhancers active in developing cones. By electroporating enhancer-driven fluorescent reporter plasmids, we observed that a sequence within an intron of the cone-specific Pde6c gene acted as an enhancer in developing mouse cones. Similar fluorescent reporter plasmids were used to generate stable transgenic human induced pluripotent stem cells that were then grown into three-dimensional human retinal organoids. These organoids contained fluorescently labeled cones, demonstrating that the Pde6c enhancer was also active in human cones. We observed that enhancer activity was transient and labeled a minor population of developing rod photoreceptors in both mouse and human systems. This cone-enriched pattern argues that the Pde6c enhancer is activated in cells poised between rod and cone fates. Additionally, it suggests that the Pde6c enhancer is activated by the same regulatory network that selects or stabilizes cone fate choice. To further understand this regulatory network, we identified essential enhancer sequence regions through a series of mutagenesis experiments. This suggested that the Pde6c enhancer was regulated by transcription factor binding at five or more locations. Binding site predictions implicated transcription factor families known to control photoreceptor formation and families not previously associated with cone development. These results provide a framework for deciphering the gene regulatory network that controls cone genesis in both human and mouse systems. Our new transgenic human stem cell lines provide a tool for determining which cone developmental mechanisms are shared and distinct between mice and humans.
Collapse
Affiliation(s)
- Vismaya S Bachu
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sangeetha Kandoi
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Ko Uoon Park
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael L Kaufman
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael Schwanke
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deepak A Lamba
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Joseph A Brzezinski
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
47
|
Hamamoto R, Takasawa K, Machino H, Kobayashi K, Takahashi S, Bolatkan A, Shinkai N, Sakai A, Aoyama R, Yamada M, Asada K, Komatsu M, Okamoto K, Kameoka H, Kaneko S. Application of non-negative matrix factorization in oncology: one approach for establishing precision medicine. Brief Bioinform 2022; 23:6628783. [PMID: 35788277 PMCID: PMC9294421 DOI: 10.1093/bib/bbac246] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/06/2022] [Accepted: 05/25/2022] [Indexed: 12/19/2022] Open
Abstract
The increase in the expectations of artificial intelligence (AI) technology has led to machine learning technology being actively used in the medical field. Non-negative matrix factorization (NMF) is a machine learning technique used for image analysis, speech recognition, and language processing; recently, it is being applied to medical research. Precision medicine, wherein important information is extracted from large-scale medical data to provide optimal medical care for every individual, is considered important in medical policies globally, and the application of machine learning techniques to this end is being handled in several ways. NMF is also introduced differently because of the characteristics of its algorithms. In this review, the importance of NMF in the field of medicine, with a focus on the field of oncology, is described by explaining the mathematical science of NMF and the characteristics of the algorithm, providing examples of how NMF can be used to establish precision medicine, and presenting the challenges of NMF. Finally, the direction regarding the effective use of NMF in the field of oncology is also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Rina Aoyama
- Showa University Graduate School of Medicine School of Medicine
| | | | - Ken Asada
- RIKEN Center for Advanced Intelligence Project
| | | | | | | | | |
Collapse
|
48
|
Zhang Z, O'Laughlin R, Song H, Ming GL. Patterning of brain organoids derived from human pluripotent stem cells. Curr Opin Neurobiol 2022; 74:102536. [PMID: 35405627 PMCID: PMC9167774 DOI: 10.1016/j.conb.2022.102536] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 11/03/2022]
Abstract
The emerging technology of brain organoids deriving from human pluripotent stem cells provides unprecedented opportunities to study human brain development and associated disorders. Various brain organoid protocols have been developed that can recapitulate some key features of cell type diversity, cytoarchitectural organization, developmental processes, functions, and pathologies of the developing human brain. In this review, we focus on patterning of human stem cell-derived brain organoids. We start with an overview of general procedures to generate brain organoids. We then highlight some recently developed brain organoid protocols and chemical cues involved in modeling development of specific human brain regions, subregions, and multiple regions together. We also discuss limitations and potential future improvements of human brain organoid technology.
Collapse
Affiliation(s)
- Zhijian Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Philadelphia, PA 19104, USA
| | - Richard O'Laughlin
- Department of Neuroscience and Mahoney Institute for Neurosciences, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Philadelphia, PA 19104, USA; The Epigenetics Institute, Philadelphia, PA 19104, USA. https://twitter.com/UPenn_SongMing
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|