1
|
Miyamoto K, Sujino T, Kanai T. The tryptophan metabolic pathway of the microbiome and host cells in health and disease. Int Immunol 2024; 36:601-616. [PMID: 38869080 DOI: 10.1093/intimm/dxae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
The intricate and dynamic tryptophan (Trp) metabolic pathway in both the microbiome and host cells highlights its profound implications for health and disease. This pathway involves complex interactions between host cellular and bacteria processes, producing bioactive compounds such as 5-hydroxytryptamine (5-HT) and kynurenine derivatives. Immune responses to Trp metabolites through specific receptors have been explored, highlighting the role of the aryl hydrocarbon receptor in inflammation modulation. Dysregulation of this pathway is implicated in various diseases, such as Alzheimer's and Parkinson's diseases, mood disorders, neuronal diseases, autoimmune diseases such as multiple sclerosis (MS), and cancer. In this article, we describe the impact of the 5-HT, Trp, indole, and Trp metabolites on health and disease. Furthermore, we review the impact of microbiome-derived Trp metabolites that affect immune responses and contribute to maintaining homeostasis, especially in an experimental autoimmune encephalitis model of MS.
Collapse
Affiliation(s)
- Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Miyarisan Pharmaceutical Co., Research Laboratory, Tokyo, Japan
| | - Tomohisa Sujino
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan
- Keio Global Research Institute, Keio University, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Sun B, Wang Y, Bai J, Li X, Ma L, Man S. Litchi Procyanidins Ameliorate DSS-Induced Colitis through Gut Microbiota-Dependent Regulation of Treg/Th17 Balance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24823-24832. [PMID: 39315595 DOI: 10.1021/acs.jafc.4c05577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Ulcerative colitis (UC) is a common chronic, relapsing inflammatory bowel condition. Procyanidins (PC) are known for their antiangiogenic, anti-inflammatory, antioxidant, and antimetastatic properties. However, there is comparatively limited information on how PC interacts with UC. In this study, 5 mg/10 mL/kg body weight of PC was administered to mice with dextran sulfate sodium (DSS)-induced colitis mice. PC treatment prolonged the survival period of mice, ameliorated UC symptoms, reduced damage to the intestinal mucosal barrier, and increased the protein expression of ZO-1 and occludin in the DSS-treated mice. Importantly, PC treatment significantly reduced gene expression related to Th17 cell differentiation, including STAT3, SMAD3, TGF-β, and JAK1. The results of the flow cytometry analysis indicated significant increase in the number of Treg cells and a concomitant decrease in the proportion of Th17 cells in the colon following PC treatment. Additionally, PC increased the abundance of gut microbiota such as Bacteroidota, Oscillospiraceae, Muribaculaceae, and Desulfovibrionaceae, as well as the concentrations of acetate acid, propionate acid, and butyrate acid in the feces. PC also activated short-chain fatty acid receptors, such as G-protein coupled receptor 43 in the colon, which promoted the proliferation of Treg cells. The depletion of gut microbiota and subsequent transplantation of fecal microbiota demonstrated that PC's effects on gut microbiota were effective in improving UC and restoring intestinal Th17/Treg homeostasis in a microbiota-dependent manner. This suggests that PC could be a promising functional food for the prevention and treatment of UC in the future.
Collapse
Affiliation(s)
- Benyue Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yunhui Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jingjing Bai
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xuejiao Li
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Key Laboratory of Hereditary Rare Diseases of Health Commission of Henan Province, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471003, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
3
|
Zaki K, Ouabane M, Guendouzi A, Sbai A, Sekkate C, Bouachrine M, Lakhlifi T. From farm to pharma: Investigation of the therapeutic potential of the dietary plants Apium graveolens L., Coriandrum sativum, and Mentha longifolia, as AhR modulators for Immunotherapy. Comput Biol Med 2024; 181:109051. [PMID: 39186905 DOI: 10.1016/j.compbiomed.2024.109051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Autoimmune diseases represent a complex array of conditions where the body's immune system mistakenly attacks its own tissues. These disorders, affecting millions worldwide, encompass a broad spectrum of conditions ranging from rheumatoid arthritis and multiple sclerosis to lupus and type 1 diabetes. The Aryl hydrocarbon receptor (AhR) translocator, expressed across immune and other cell types, plays crucial roles in immune disorders and inflammatory diseases. With a realm towards natural remedies in modern medicine for disease prevention, this study investigates the electronic properties and behaviors of bioactive compounds from dietary sources, including Apium graveolens L. (Celery), Coriandrum sativum seeds (Coriander), and Mentha longifolia, as AhR modulators. Through comprehensive analysis (HOMO-LUMO, ESP, LOL, and ELF), electron-rich and -poor regions, electron localization, and delocalization are identified, contrasting these compounds with the toxic AhR ligand, TCDD. Evaluation of Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties reveals favorable pharmacokinetics without blood-brain barrier penetration, indicating drug-like characteristics. Molecular docking demonstrates stronger interactions of dietary flavonoid ligands with AhR transcription compared to TCDD. Molecular dynamics simulations confirm the stability of complexes and the sustainability of interactions formed. This research underscores the potential of natural compounds as effective AhR modulators for therapeutic interventions in immune-related disorders.
Collapse
Affiliation(s)
- Khadija Zaki
- Molecular Chemistry and Natural Substances Laboratory, Moulay Ismail University, Faculty of Science, Meknes, Morocco
| | - Mohamed Ouabane
- Molecular Chemistry and Natural Substances Laboratory, Moulay Ismail University, Faculty of Science, Meknes, Morocco; Chemistry-Biology Applied to the Environment URL CNRT 13, Department of Chemistry, Faculty of Science, My Ismail University, Meknes, Morocco
| | - Abdelkrim Guendouzi
- Laboratory of Chemistry, Synthesis, Properties and Applications, Department of Chemistry, Faculty of Science, University of Saida, Algeria
| | - Abdelouahid Sbai
- Molecular Chemistry and Natural Substances Laboratory, Moulay Ismail University, Faculty of Science, Meknes, Morocco.
| | - Chakib Sekkate
- Chemistry-Biology Applied to the Environment URL CNRT 13, Department of Chemistry, Faculty of Science, My Ismail University, Meknes, Morocco
| | - Mohammed Bouachrine
- Molecular Chemistry and Natural Substances Laboratory, Moulay Ismail University, Faculty of Science, Meknes, Morocco
| | - Tahar Lakhlifi
- Molecular Chemistry and Natural Substances Laboratory, Moulay Ismail University, Faculty of Science, Meknes, Morocco
| |
Collapse
|
4
|
Ionescu E, Nagler CR. The role of intestinal bacteria in promoting tolerance to food. Curr Opin Immunol 2024; 91:102492. [PMID: 39326201 DOI: 10.1016/j.coi.2024.102492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
The global prevalence of atopic diseases, including food allergy, is increasing and correlates with shifts in the commensal microbiota triggered by modern lifestyle factors. Current research focuses on the immunological mechanisms and microbial cues that regulate mucosal immunity and prevent allergic responses to food. We review the identification and characterization of novel antigen-presenting cell subsets that may be critical for the establishment and maintenance of tolerance to both food and intestinal bacteria. Microbially derived products, particularly from the Lachnospiraceae family of Clostridia, regulate intestinal homeostasis through a variety of mechanisms. Here, we highlight recent work on Clostridial metabolites and products that mediate protection against allergic responses to food.
Collapse
Affiliation(s)
- Edward Ionescu
- Pritzker School of Molecular Engineering, University of Chicago, USA.
| | - Cathryn R Nagler
- Pritzker School of Molecular Engineering, University of Chicago, USA; Biological Sciences Division, University of Chicago, 924 E 57th Street, R402, Chicago, IL, 60637, USA
| |
Collapse
|
5
|
Kou RW, Li ZQ, Wang JL, Jiang SQ, Zhang RJ, He YQ, Xia B, Gao JM. Ganoderic Acid A Mitigates Inflammatory Bowel Disease through Modulation of AhR Activity by Microbial Tryptophan Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17912-17923. [PMID: 39078661 DOI: 10.1021/acs.jafc.4c01166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a complex gastrointestinal condition influenced by genetic, microbial, and environmental factors, among which the gut microbiota plays a crucial role and has emerged as a potential therapeutic target. Ganoderic acid A (GAA), which is a lanostane triterpenoid compound derived from edible mushroom Ganoderma lucidum, has demonstrated the ability to modulate gut dysbiosis. Thus, we investigated the impact of GAA on IBD using a dextran sodium sulfate (DSS)-induced colitis mouse model. GAA effectively prevented colitis, preserved epithelial and mucus layer integrity, and modulated the gut microbiota. In addition, GAA promoted tryptophan metabolism, especially 3-IAld generation, activated the aryl hydrocarbon receptor (AhR), and induced IL-22 production. Fecal microbiota transplantation validated the mediating role of the gut microbiota in the IBD protection conferred by GAA. Our study suggests that GAA holds potential as a nutritional intervention for ameliorating IBD by influencing the gut microbiota, thereby regulating tryptophan metabolism, enhancing AhR activity, and ultimately improving gut barrier function.
Collapse
Affiliation(s)
- Rong-Wei Kou
- School of Science, Xi'an University of Technology, Xi'an 710048, Shaanxi, People's Republic of China
| | - Zhi-Qing Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Jia-Lin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Shi-Qi Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Rui-Jing Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Yang-Qing He
- School of Science, Xi'an University of Technology, Xi'an 710048, Shaanxi, People's Republic of China
| | - Bing Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| |
Collapse
|
6
|
Jonić N, Koprivica I, Chatzigiannis CM, Tsiailanis AD, Kyrkou SG, Tzakos EP, Pavić A, Dimitrijević M, Jovanović A, Jovanović MB, Marinho S, Castro-Almeida I, Otašević V, Moura-Alves P, Tzakos AG, Stojanović I. Development of FluoAHRL: A Novel Synthetic Fluorescent Compound That Activates AHR and Potentiates Anti-Inflammatory T Regulatory Cells. Molecules 2024; 29:2988. [PMID: 38998940 PMCID: PMC11243367 DOI: 10.3390/molecules29132988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Aryl Hydrocarbon Receptor (AHR) ligands, upon binding, induce distinct gene expression profiles orchestrated by the AHR, leading to a spectrum of pro- or anti-inflammatory effects. In this study, we designed, synthesized and evaluated three indole-containing potential AHR ligands (FluoAHRL: AGT-4, AGT-5 and AGT-6). All synthesized compounds were shown to emit fluorescence in the near-infrared. Their AHR agonist activity was first predicted using in silico docking studies, and then confirmed using AHR luciferase reporter cell lines. FluoAHRLs were tested in vitro using mouse peritoneal macrophages and T lymphocytes to assess their immunomodulatory properties. We then focused on AGT-5, as it illustrated the predominant anti-inflammatory effects. Notably, AGT-5 demonstrated the ability to foster anti-inflammatory regulatory T cells (Treg) while suppressing pro-inflammatory T helper (Th)17 cells in vitro. AGT-5 actively induced Treg differentiation from naïve CD4+ cells, and promoted Treg proliferation, cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) expression and interleukin-10 (IL-10) production. The increase in IL-10 correlated with an upregulation of Signal Transducer and Activator of Transcription 3 (STAT3) expression. Importantly, the Treg-inducing effect of AGT-5 was also observed in human tonsil cells in vitro. AGT-5 showed no toxicity when applied to zebrafish embryos and was therefore considered safe for animal studies. Following oral administration to C57BL/6 mice, AGT-5 significantly upregulated Treg while downregulating pro-inflammatory Th1 cells in the mesenteric lymph nodes. Due to its fluorescent properties, AGT-5 could be visualized both in vitro (during uptake by macrophages) and ex vivo (within the lamina propria of the small intestine). These findings make AGT-5 a promising candidate for further exploration in the treatment of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Natalija Jonić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (N.J.); (I.K.); (M.D.)
| | - Ivan Koprivica
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (N.J.); (I.K.); (M.D.)
| | - Christos M. Chatzigiannis
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.M.C.); (A.D.T.); (S.G.K.)
| | - Antonis D. Tsiailanis
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.M.C.); (A.D.T.); (S.G.K.)
| | - Stavroula G. Kyrkou
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.M.C.); (A.D.T.); (S.G.K.)
| | | | - Aleksandar Pavić
- Laboratory for Microbial Molecular Genetics and Ecology, Institute for Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia;
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (N.J.); (I.K.); (M.D.)
| | - Andjelina Jovanović
- Department of Otorhinolaryngology with Maxillofacial Surgery, Clinical Hospital Center “Zemun”, 11080 Belgrade, Serbia; (A.J.); (M.B.J.)
| | - Milan B. Jovanović
- Department of Otorhinolaryngology with Maxillofacial Surgery, Clinical Hospital Center “Zemun”, 11080 Belgrade, Serbia; (A.J.); (M.B.J.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Sérgio Marinho
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; (S.M.); (I.C.-A.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Inês Castro-Almeida
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; (S.M.); (I.C.-A.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Vesna Otašević
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia;
| | - Pedro Moura-Alves
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; (S.M.); (I.C.-A.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Andreas G. Tzakos
- Section of Organic Chemistry & Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (C.M.C.); (A.D.T.); (S.G.K.)
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (N.J.); (I.K.); (M.D.)
| |
Collapse
|
7
|
Marafini I, Monteleone I, Laudisi F, Monteleone G. Aryl Hydrocarbon Receptor Signalling in the Control of Gut Inflammation. Int J Mol Sci 2024; 25:4527. [PMID: 38674118 PMCID: PMC11050475 DOI: 10.3390/ijms25084527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Aryl hydrocarbon receptor (AHR), a transcription factor activated by many natural and synthetic ligands, represents an important mediator of the interplay between the environment and the host's immune responses. In a healthy gut, AHR activation promotes tolerogenic signals, which help maintain mucosal homeostasis. AHR expression is defective in the inflamed gut of patients with inflammatory bowel diseases (IBD), where decreased AHR signaling is supposed to contribute to amplifying the gut tissue's destructive immune-inflammatory responses. We here review the evidence supporting the role of AHR in controlling the "physiological" intestinal inflammation and summarize the data about the therapeutic effects of AHR activators, both in preclinical mouse models of colitis and in patients with IBD.
Collapse
Affiliation(s)
- Irene Marafini
- Gastroenterology Unit, Policlinico Universitario Tor Vergata, 00133 Rome, Italy;
| | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of “Tor Vergata”, 00133 Rome, Italy;
| | - Federica Laudisi
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy;
| | - Giovanni Monteleone
- Gastroenterology Unit, Policlinico Universitario Tor Vergata, 00133 Rome, Italy;
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy;
| |
Collapse
|
8
|
Shimada F, Yoshimatsu Y, Sujino T, Fukuda T, Aoki Y, Hayashi Y, Tojo A, Kawaguchi T, Kiyohara H, Sugimoto S, Nanki K, Mikami Y, Miyamoto K, Takabayashi K, Hosoe N, Kato M, Ogata H, Naganuma M, Kanai T. Clinical outcomes of patients with remitting ulcerative colitis after discontinuation of indigo naturalis. Sci Rep 2024; 14:5778. [PMID: 38459203 PMCID: PMC10923923 DOI: 10.1038/s41598-024-56543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/07/2024] [Indexed: 03/10/2024] Open
Abstract
Indigo naturalis is an effective treatment for ulcerative colitis. However, long-term use of indigo naturalis causes adverse events, such as pulmonary hypertension. The natural history of patients with ulcerative colitis who discontinued indigo naturalis after induction therapy is unknown. Moreover, the clinical features of patients who relapsed within 52 weeks after the discontinuation of indigo naturalis are unclear. This study aimed to assess the clinical outcomes of patients with ulcerative colitis after discontinuation of indigo naturalis and to identify potential markers responsible for relapse. This single-center retrospective study investigated the follow-up of 72 patients who achieved a clinical response 8 weeks after indigo naturalis treatment. We observed relapse in patients with ulcerative colitis after the discontinuation of indigo naturalis. We analyzed the factors predicting long-term outcomes after discontinuation of indigo naturalis. Relapse was observed in 24%, 57%, and 71% of patients at 8, 26, and 52 weeks, respectively. There were no predictive markers in patients who relapsed within 52 weeks after the discontinuation of indigo naturalis. The ulcerative colitis relapse rate after indigo naturalis discontinuation was high. Follow-up treatment is required after the discontinuation of indigo naturalis in patients with ulcerative colitis.
Collapse
Affiliation(s)
- Fumie Shimada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yusuke Yoshimatsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tomohisa Sujino
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Tomohiro Fukuda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Division of Gastroenterology, Yokohama Municipal Citizen's Hospital, 1-1, Nishimachi, Mitsuzawa, Kanagawaku, Yokohama, Kanagawa, 221-0855, Japan
| | - Yasuhiro Aoki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yukie Hayashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Anna Tojo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takaaki Kawaguchi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroki Kiyohara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shinya Sugimoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kosaku Nanki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Miyarisan Pharmaceutical Co., Ltd., 1-10-3, Kaminakazato, Kita-ku, Tokyo, 114-0016, Japan
| | - Kaoru Takabayashi
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Naoki Hosoe
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Motohiko Kato
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Haruhiko Ogata
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Makoto Naganuma
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-3-1, Shinmachi, Maikatashi, Osaka, 573-1191, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
9
|
Schreiber F, Balas I, Robinson MJ, Bakdash G. Border Control: The Role of the Microbiome in Regulating Epithelial Barrier Function. Cells 2024; 13:477. [PMID: 38534321 PMCID: PMC10969408 DOI: 10.3390/cells13060477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/28/2024] Open
Abstract
The gut mucosal epithelium is one of the largest organs in the body and plays a critical role in regulating the crosstalk between the resident microbiome and the host. To this effect, the tight control of what is permitted through this barrier is of high importance. There should be restricted passage of harmful microorganisms and antigens while at the same time allowing the absorption of nutrients and water. An increased gut permeability, or "leaky gut", has been associated with a variety of diseases ranging from infections, metabolic diseases, and inflammatory and autoimmune diseases to neurological conditions. Several factors can affect gut permeability, including cytokines, dietary components, and the gut microbiome. Here, we discuss how the gut microbiome impacts the permeability of the gut epithelial barrier and how this can be harnessed for therapeutic purposes.
Collapse
Affiliation(s)
| | | | | | - Ghaith Bakdash
- Microbiotica Ltd., Cambridge CB10 1XL, UK; (F.S.); (I.B.); (M.J.R.)
| |
Collapse
|
10
|
Xu Y, Lin C, Tan HY, Bian ZX. The double-edged sword effect of indigo naturalis. Food Chem Toxicol 2024; 185:114476. [PMID: 38301993 DOI: 10.1016/j.fct.2024.114476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
Indigo naturalis (IN) is a dried powder derived from plants such as Baphicacanthus cusia (Neeks) Bremek., Polygonum tinctorium Ait. and Isatis indigotica Fork. It has a historical application as a dye in ancient India, Egypt, Africa and China. Over time, it has been introduced to China and Japan for treatment of various ailments including hemoptysis, epistaxis, chest discomfort, and aphtha. Clinical and pre-clinical studies have widely demonstrated its promising effects on autoimmune diseases like psoriasis and Ulcerative colitis (UC). Despite the documented efficacy of IN in UC patients, concerns have been raised on the development of adverse effects with long term consumption, prompting a closer examination of its safety and tolerability in these contexts. This review aims to comprehensively assess the efficacy of IN in both clinical and pre-clinical settings, with a detailed exploration of the mechanisms of action involved. Additionally, it summarizes the observed potential toxicity of IN in animal and human settings was summarized. This review will deepen our understanding on the beneficial and detrimental effects of IN in UC, providing valuable insights for its future application in patients with this condition.
Collapse
Affiliation(s)
- Yiqi Xu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chengyuan Lin
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hor-Yue Tan
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Zhao-Xiang Bian
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
11
|
Kakdiya R, Jha DK, Choudhury A, Jena A, Sharma V. Indigo naturalis (Qing dai) for inflammatory bowel disease: A systematic review and meta-analysis. Clin Res Hepatol Gastroenterol 2024; 48:102250. [PMID: 38006941 DOI: 10.1016/j.clinre.2023.102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Indigo naturalis (Qing dai) is a traditional therapy reported to be useful in inflammatory bowel disease (IBD), especially for ulcerative colitis. We performed a systematic review of its efficacy and safety in IBD. METHODS Electronic databases (Pubmed, Embase, and Scopus) were searched on 4th March 2023 to identify reports about the use of indigo naturalis in IBD. We extracted data with respect to clinical response, remission, endoscopic and histological responses, and adverse events with the use of indigo naturalis in IBD. Pooled clinical response rates and remission rates were calculated. The quality of studies was assessed using Joanna-Briggs tools. RESULTS Nine studies reporting on 299 patients were included. The pooled clinical response rate was 0.796 (95 %CI, 0.7465-0.8379, I2=0), and the clinical remission rate in ulcerative colitis was 0.668 (0.488- 0.809, I2=85.2 %). The pooled relative risk of clinical response was higher in the indigo naturalis group as compared to placebo in the two randomized trials [3.82 (2.04; 7.14, I2=0)]. Except for one reversible pulmonary arterial hypertension case, most reported adverse effects were mild. The endoscopic and histological responses, when reported, suggested that indigo naturalis is effective for ulcerative colitis. The limitations of the systematic review included a small number of randomized studies, reports only from East Asia and a relatively small number of patients, especially for Crohn's disease. CONCLUSION Indigo naturalis is effective in the treatment of ulcerative colitis. Future studies should evaluate the comparative efficacy with other drugs.
Collapse
Affiliation(s)
| | - Daya Krishna Jha
- Department of Gastroenterology, Army Hospital R and R, Delhi, India
| | - Arup Choudhury
- Department of Medicine, Nagaon Medical College Hospital, Assam, India
| | - Anuraag Jena
- Department of Gastroenterology, Institute of Medical Sciences and SUM Hospital, Bhubaneswar, India
| | - Vishal Sharma
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
12
|
Prame Kumar K, Ooi JD, Goldberg R. The interplay between the microbiota, diet and T regulatory cells in the preservation of the gut barrier in inflammatory bowel disease. Front Microbiol 2023; 14:1291724. [PMID: 38107848 PMCID: PMC10722198 DOI: 10.3389/fmicb.2023.1291724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
Inflammatory bowel disease (IBD) is becoming more common in the Western world due to changes in diet-related microbial dysbiosis, genetics and lifestyle. Incidences of gut permeability can predate IBD and continued gut barrier disruptions increase the exposure of bacterial antigens to the immune system thereby perpetuating chronic inflammation. Currently, most of the approved IBD therapies target individual pro-inflammatory cytokines and pathways. However, they fail in approximately 50% of patients due to their inability to overcome the redundant pro inflammatory immune responses. There is increasing interest in the therapeutic potential of T regulatory cells (Tregs) in inflammatory conditions due to their widespread capability to dampen inflammation, promote tolerance of intestinal bacteria, facilitate healing of the mucosal barrier and ability to be engineered for more targeted therapy. Intestinal Treg populations are inherently shaped by dietary molecules and gut microbiota-derived metabolites. Thus, understanding how these molecules influence Treg-mediated preservation of the intestinal barrier will provide insights into immune tolerance-mediated mucosal homeostasis. This review comprehensively explores the interplay between diet, gut microbiota, and immune system in influencing the intestinal barrier function to attenuate the progression of colitis.
Collapse
Affiliation(s)
- Kathryn Prame Kumar
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | | | | |
Collapse
|
13
|
Qazi A, Comiskey S, Calzadilla N, Amin F, Sharma A, Khin E, Holton N, Weber CR, Saksena S, Kumar A, Alrefai WA, Gill RK. Potential Dietary and Therapeutic Strategies Involving Indole-3-Carbinole in Preclinical Models of Intestinal Inflammation. Nutrients 2023; 15:4980. [PMID: 38068838 PMCID: PMC10708520 DOI: 10.3390/nu15234980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Diet-microbiota interactions are emerging as important contributors in the pathogenesis of inflammatory bowel diseases (IBD), characterized by chronic inflammation of the GI tract. The aryl hydrocarbon receptor (AhR) transcription factor regulates xenobiotic metabolism and is activated by exogenous ligands, including indole-3-carbinole (I3C), which is found in cruciferous vegetables. However, studies investigating the impact of dietary I3C and AhR in preclinical models resembling human IBD are lacking. Mice (WT or AhR KO in IECs, 6-8 weeks) or SAMP/YitFC and AKR/J control (4 weeks, m/f) were fed an AhR ligand-depleted or I3C (200 ppm)-supplemented diet. There were increased levels of LPS and exacerbated inflammation, resulting in increased mortality in AhRΔIEC mice fed the AhR ligand-depleted diet in response to chronic DSS. The mechanisms underlying the protective effects of I3C supplementation during colonic colitis involved amelioration of intestinal inflammation and restoration of the altered gut microbiota, particularly the families of clostridicae and lachnospriaceae. Furthermore, the AhR-depleted diet led to the emergence of pathobiont Parvibacter caecicola in WT mice. SAMP/YitFc mice with spontaneous ileitis showed significant recovery in epithelial abnormalities when fed dietary I3C. These data demonstrate the critical role of AhR and the mechanisms of dietary I3C in maintaining epithelial homeostasis and ameliorating inflammation.
Collapse
Affiliation(s)
- Aisha Qazi
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA; (A.Q.); (S.C.); (F.A.); (A.S.); (E.K.); (N.H.); (S.S.); (A.K.); (W.A.A.)
| | - Shane Comiskey
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA; (A.Q.); (S.C.); (F.A.); (A.S.); (E.K.); (N.H.); (S.S.); (A.K.); (W.A.A.)
| | - Nathan Calzadilla
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Fatimah Amin
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA; (A.Q.); (S.C.); (F.A.); (A.S.); (E.K.); (N.H.); (S.S.); (A.K.); (W.A.A.)
| | - Anchal Sharma
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA; (A.Q.); (S.C.); (F.A.); (A.S.); (E.K.); (N.H.); (S.S.); (A.K.); (W.A.A.)
| | - Ei Khin
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA; (A.Q.); (S.C.); (F.A.); (A.S.); (E.K.); (N.H.); (S.S.); (A.K.); (W.A.A.)
| | - Nathaniel Holton
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA; (A.Q.); (S.C.); (F.A.); (A.S.); (E.K.); (N.H.); (S.S.); (A.K.); (W.A.A.)
| | | | - Seema Saksena
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA; (A.Q.); (S.C.); (F.A.); (A.S.); (E.K.); (N.H.); (S.S.); (A.K.); (W.A.A.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Anoop Kumar
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA; (A.Q.); (S.C.); (F.A.); (A.S.); (E.K.); (N.H.); (S.S.); (A.K.); (W.A.A.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Waddah A. Alrefai
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA; (A.Q.); (S.C.); (F.A.); (A.S.); (E.K.); (N.H.); (S.S.); (A.K.); (W.A.A.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Ravinder K. Gill
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL 60612, USA; (A.Q.); (S.C.); (F.A.); (A.S.); (E.K.); (N.H.); (S.S.); (A.K.); (W.A.A.)
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
14
|
Maseda D, Manfredo-Vieira S, Payne AS. T cell and bacterial microbiota interaction at intestinal and skin epithelial interfaces. DISCOVERY IMMUNOLOGY 2023; 2:kyad024. [PMID: 38567051 PMCID: PMC10917213 DOI: 10.1093/discim/kyad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/28/2023] [Accepted: 11/24/2023] [Indexed: 04/04/2024]
Abstract
Graphical Abstract.
Collapse
Affiliation(s)
- Damian Maseda
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Silvio Manfredo-Vieira
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Van NT, Zhang K, Wigmore RM, Kennedy AI, DaSilva CR, Huang J, Ambelil M, Villagomez JH, O'Connor GJ, Longman RS, Cao M, Snook AE, Platten M, Kasenty G, Sigal LJ, Prendergast GC, Kim SV. Dietary L-Tryptophan consumption determines the number of colonic regulatory T cells and susceptibility to colitis via GPR15. Nat Commun 2023; 14:7363. [PMID: 37963876 PMCID: PMC10645889 DOI: 10.1038/s41467-023-43211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023] Open
Abstract
Environmental factors are the major contributor to the onset of immunological disorders such as ulcerative colitis. However, their identities remain unclear. Here, we discover that the amount of consumed L-Tryptophan (L-Trp), a ubiquitous dietary component, determines the transcription level of the colonic T cell homing receptor, GPR15, hence affecting the number of colonic FOXP3+ regulatory T (Treg) cells and local immune homeostasis. Ingested L-Trp is converted by host IDO1/2 enzymes, but not by gut microbiota, to compounds that induce GPR15 transcription preferentially in Treg cells via the aryl hydrocarbon receptor. Consequently, two weeks of dietary L-Trp supplementation nearly double the colonic GPR15+ Treg cells via GPR15-mediated homing and substantially reduce the future risk of colitis. In addition, humans consume 3-4 times less L-Trp per kilogram of body weight and have fewer colonic GPR15+ Treg cells than mice. Thus, we uncover a microbiota-independent mechanism linking dietary L-Trp and colonic Treg cells, that may have therapeutic potential.
Collapse
Affiliation(s)
- Nguyen T Van
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
| | - Karen Zhang
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
| | - Rachel M Wigmore
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
| | - Anne I Kennedy
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
| | - Carolina R DaSilva
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
| | - Jialing Huang
- Department of Pathology, Anatomy, & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Anatomic Pathology, Geisinger Medical Center, Danville, PA, USA
| | - Manju Ambelil
- Department of Pathology, Anatomy, & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jose H Villagomez
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
| | - Gerald J O'Connor
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
| | - Randy S Longman
- Jill Roberts Center for IBD, Weill Cornell Medicine, New York, NY, USA
| | - Miao Cao
- Department of Pharmacology, Physiology, & Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam E Snook
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
- Department of Pharmacology, Physiology, & Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael Platten
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Gerard Kasenty
- Department of Genetics and Development, Irving Medical Center, Columbia University, NY, USA
| | - Luis J Sigal
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
| | - George C Prendergast
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
- Lankenau Institute of Medical Research, Wynnewood, PA, USA
| | - Sangwon V Kim
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Goya-Jorge E, Bondue P, Gonza I, Laforêt F, Antoine C, Boutaleb S, Douny C, Scippo ML, de Ribaucourt JC, Crahay F, Delcenserie V. Butyrogenic, bifidogenic and slight anti-inflammatory effects of a green kiwifruit powder (Kiwi FFG®) in a human gastrointestinal model simulating mild constipation. Food Res Int 2023; 173:113348. [PMID: 37803696 DOI: 10.1016/j.foodres.2023.113348] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 10/08/2023]
Abstract
Green kiwi (Actinidia deliciosa var. Hayward) is a fruit with important nutritional attributes and traditional use as a laxative. In this work, we studied in vitro the colonic fermentation of a standardized green kiwifruit powder (Kiwi FFG®) using representative intestinal microbial content of mildly constipated women. Static (batch) and dynamic configurations of the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) were used to estimate the impact of Kiwi FFG® in the human gut. Analysis of metabolites revealed a significant butyrogenic effect of the kiwifruit powder and, consistently, butyrate-producing bacterial populations (i.e., Faecalibacterium prausnitzii, Cluster IV, Roseburia spp.) were greatly increased in the dynamic gastrointestinal model. Bifidobacterium spp. was also found boosted in the microflora of ascending and transverse colon sections, and a significant rise of Akkermansia muciniphila was identified in the transverse colon. Reporter gene assays using human intestinal cells (HT-29) showed that kiwifruit fermentation metabolites activate the aryl hydrocarbon receptor (AhR) transcriptional pathway, which is an important regulator of intestinal homeostasis and immunity. Moreover, modulation in the production of human interleukins (IL-6 and IL-10) in Caco-2 cells suggested a potential mild anti-inflammatory effect of the kiwifruit powder and its gut microbiota-derived metabolites. Our results suggested a potential health benefit of Kiwi FFG® in the gut microbiota, particularly in the context of constipated people.
Collapse
Affiliation(s)
- Elizabeth Goya-Jorge
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium
| | - Pauline Bondue
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium; ORTIS S.A., Hinter der Heck 46, 4750 Elsenborn, Belgium
| | - Irma Gonza
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium
| | - Fanny Laforêt
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium
| | - Céline Antoine
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium
| | - Samiha Boutaleb
- Laboratory of Food Analysis, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium
| | - Caroline Douny
- Laboratory of Food Analysis, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium
| | | | | | - Véronique Delcenserie
- Laboratory of Food Quality Management, Department of Food Sciences, FARAH - Veterinary Public Health, University of Liège, B43b, 4000 Liège, Belgium.
| |
Collapse
|
17
|
Kemter AM, Patry RT, Arnold J, Hesser LA, Campbell E, Ionescu E, Mimee M, Wang S, Nagler CR. Commensal bacteria signal through TLR5 and AhR to improve barrier integrity and prevent allergic responses to food. Cell Rep 2023; 42:113153. [PMID: 37742185 PMCID: PMC10697505 DOI: 10.1016/j.celrep.2023.113153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023] Open
Abstract
The increasing prevalence of food allergies has been linked to reduced commensal microbial diversity. In this article, we describe two features of allergy-protective Clostridia that contribute to their beneficial effects. Some Clostridial taxa bear flagella (a ligand for TLR5) and produce indole (a ligand for the aryl hydrocarbon receptor [AhR]). Lysates and flagella from a Clostridia consortium induced interleukin-22 (IL-22) secretion from ileal explants. IL-22 production is abrogated in explants from mice in which TLR5 or MyD88 signaling is deficient either globally or conditionally in CD11c+ antigen-presenting cells. AhR signaling in RORγt+ cells is necessary for the induction of IL-22. Mice deficient in AhR in RORγt+ cells exhibit increased intestinal permeability and are more susceptible to an anaphylactic response to food. Our findings implicate TLR5 and AhR signaling in a molecular mechanism by which commensal Clostridia protect against allergic responses to food.
Collapse
Affiliation(s)
- Andrea M Kemter
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Robert T Patry
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Jack Arnold
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Lauren A Hesser
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Evelyn Campbell
- Committee on Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Edward Ionescu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| | - Mark Mimee
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA; Committee on Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Shan Wang
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Cathryn R Nagler
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
18
|
Yokote A, Imazu N, Umeno J, Kawasaki K, Fujioka S, Fuyuno Y, Matsuno Y, Moriyama T, Miyawaki K, Akashi K, Kitazono T, Torisu T. Ferroptosis in the colon epithelial cells as a therapeutic target for ulcerative colitis. J Gastroenterol 2023; 58:868-882. [PMID: 37410250 DOI: 10.1007/s00535-023-02016-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Ferroptosis, a type of programmed cell death triggered by oxidative stress, was suspected to play a role in ulcerative colitis. Indigo naturalis is highly effective against ulcerative colitis, but its mechanism is unclear. This study found that indigo naturalis treatment suppressed ferroptosis. METHODS We analyzed 770 mRNA expressions of patients with ulcerative colitis. Suppression of ferroptosis by indigo naturalis treatment was shown using a cell death assay. Malondialdehyde levels and reactive oxygen species were analyzed in CaCo-2 cells treated with indigo naturalis. Glutathione metabolism was shown by metabolomic analysis. Extraction of the ingredients indigo naturalis from the rectal mucosa was performed using liquid chromatograph-mass spectrometry. RESULTS Gene expression profiling showed that indigo naturalis treatment increased antioxidant genes in the mucosa of patients with ulcerative colitis. In vitro analysis showed that nuclear factor erythroid-2-related factor 2-related antioxidant gene expression was upregulated by indigo naturalis. Indigo naturalis treatment rendered cells resistant to ferroptosis. Metabolomic analysis suggested that an increase in reduced glutathione by indigo naturalis. The protein expression of CYP1A1 and GPX4 was increased in the rectum by treatment with indigo naturalis. The main ingredients of indigo naturalis, indirubin and indigo inhibited ferroptosis. Indirubin was detected in the rectal mucosa of patients with ulcerative colitis who were treated with indigo naturalis. CONCLUSIONS Suppression of ferroptosis by indigo naturalis in the intestinal epithelium could be therapeutic target for ulcerative colitis. The main active ingredient of indigo naturalis may be indirubin.
Collapse
Affiliation(s)
- Akihito Yokote
- Department of Medicine and Clinical Science, Graduate School of Medical Science, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Noriyuki Imazu
- Department of Medicine and Clinical Science, Graduate School of Medical Science, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Junji Umeno
- Department of Medicine and Clinical Science, Graduate School of Medical Science, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Keisuke Kawasaki
- Department of Medicine and Clinical Science, Graduate School of Medical Science, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shin Fujioka
- Department of Endoscopic Diagnostics and Therapeutics, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Yuta Fuyuno
- Department of Medicine and Clinical Science, Graduate School of Medical Science, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuichi Matsuno
- Department of Medicine and Clinical Science, Graduate School of Medical Science, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomohiko Moriyama
- International Medical Department, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Kohta Miyawaki
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Science, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takehiro Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Science, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
19
|
Umeda S, Sujino T, Miyamoto K, Yoshimatsu Y, Harada Y, Nishiyama K, Aoto Y, Adachi K, Hayashi N, Amafuji K, Moritoki N, Shibata S, Sasaki N, Mita M, Tanemoto S, Ono K, Mikami Y, Sasabe J, Takabayashi K, Hosoe N, Suzuki T, Sato T, Atarashi K, Teratani T, Ogata H, Nakamoto N, Shiomi D, Ashida H, Kanai T. D-amino Acids Ameliorate Experimental Colitis and Cholangitis by Inhibiting Growth of Proteobacteria: Potential Therapeutic Role in Inflammatory Bowel Disease. Cell Mol Gastroenterol Hepatol 2023; 16:1011-1031. [PMID: 37567385 PMCID: PMC10632532 DOI: 10.1016/j.jcmgh.2023.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND & AIMS D-amino acids, the chiral counterparts of protein L-amino acids, were primarily produced and utilized by microbes, including those in the human gut. However, little was known about how orally administered or microbe-derived D-amino acids affected the gut microbial community or gut disease progression. METHODS The ratio of D- to L-amino acids was analyzed in feces and blood from patients with ulcerative colitis (UC) and healthy controls. Also, composition of microbe was analyzed from patients with UC. Mice were treated with D-amino acid in dextran sulfate sodium colitis model and liver cholangitis model. RESULTS The ratio of D- to L-amino acids was lower in the feces of patients with UC than that of healthy controls. Supplementation of D-amino acids ameliorated UC-related experimental colitis and liver cholangitis by inhibiting growth of Proteobacteria. Addition of D-alanine, a major building block for bacterial cell wall formation, to culture medium inhibited expression of the ftsZ gene required for cell fission in the Proteobacteria Escherichia coli and Klebsiella pneumoniae, thereby inhibiting growth. Overexpression of ftsZ restored growth of E. coli even when D-alanine was present. We found that D-alanine not only inhibited invasion of pathological K. pneumoniae into the host via pore formation in intestinal epithelial cells but also inhibited growth of E. coli and generation of antibiotic-resistant strains. CONCLUSIONS D-amino acids might have potential for use in novel therapeutic approaches targeting Proteobacteria-associated dysbiosis and antibiotic-resistant bacterial diseases by means of their effects on the intestinal microbiota community.
Collapse
Affiliation(s)
- Satoko Umeda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomohisa Sujino
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan.
| | - Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; Miyarisan Pharmaceutical Co, Ltd., Tokyo, Japan
| | - Yusuke Yoshimatsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yosuke Harada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keita Nishiyama
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan; JSR-Keio University Medical and Chemical Innovation Center (JKiC), Keio University School of Medicine, Tokyo, Japan
| | - Yoshimasa Aoto
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corp, Tokyo, Japan
| | - Keika Adachi
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corp, Tokyo, Japan
| | - Naoki Hayashi
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corp, Tokyo, Japan
| | - Kimiko Amafuji
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corp, Tokyo, Japan
| | - Nobuko Moritoki
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Nobuo Sasaki
- Institute of Molecular and Cellular Regulation, Gunma University, Maebashi City, Japan
| | | | - Shun Tanemoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Ono
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jumpei Sasabe
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan
| | - Kaoru Takabayashi
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Hosoe
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan
| | - Toshihiko Suzuki
- Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Koji Atarashi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Haruhiko Ogata
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Shiomi
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Hiroshi Ashida
- Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; AMED-CREST, Tokyo, Japan.
| |
Collapse
|
20
|
Huang W, Rui K, Wang X, Peng N, Zhou W, Shi X, Lu L, Hu D, Tian J. The aryl hydrocarbon receptor in immune regulation and autoimmune pathogenesis. J Autoimmun 2023; 138:103049. [PMID: 37229809 DOI: 10.1016/j.jaut.2023.103049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023]
Abstract
As a ligand-activated transcription factor, the aryl hydrocarbon receptor (AhR) is activated by structurally diverse ligands derived from the environment, diet, microorganisms, and metabolic activity. Recent studies have demonstrated that AhR plays a key role in modulating both innate and adaptive immune responses. Moreover, AhR regulates innate immune and lymphoid cell differentiation and function, which is involved in autoimmune pathogenesis. In this review, we discuss recent advances in understanding the mechanism of activation of AhR and its mediated functional regulation in various innate immune and lymphoid cell populations, as well as the immune-regulatory effect of AhR in the development of autoimmune diseases. In addition, we highlight the identification of AhR agonists and antagonists that may serve as potential therapeutic targets for the treatment of autoimmune disorders.
Collapse
Affiliation(s)
- Wei Huang
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Xiaomeng Wang
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Na Peng
- Department of Rheumatology and Nephrology, The Second People's Hospital, China Three Gorges University, Yichang, China
| | - Wenhao Zhou
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital and School of Medicine, Henan University of Science and Technology, Luoyang, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Chongqing International Institute for Immunology, China
| | - Dajun Hu
- Department of Rheumatology and Nephrology, The Second People's Hospital, China Three Gorges University, Yichang, China.
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
21
|
Kamata K, Hara A, Minaga K, Yoshikawa T, Kurimoto M, Sekai I, Okai N, Omaru N, Masuta Y, Otsuka Y, Takada R, Takamura S, Kudo M, Strober W, Watanabe T. Activation of the aryl hydrocarbon receptor inhibits the development of experimental autoimmune pancreatitis through IL-22-mediated signaling pathways. Clin Exp Immunol 2023; 212:uxad040. [PMID: 37166987 PMCID: PMC10243912 DOI: 10.1093/cei/uxad040] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor expressed in hematopoietic and non-hematopoietic cells. Activation of the AhR by xenobiotics, microbial metabolites, and natural substances induces immunoregulatory responses. Autoimmune pancreatitis (AIP) is a chronic fibroinflammatory disorder of the pancreas driven by autoimmunity. Although AhR activation generally suppresses pathogenic autoimmune responses, the roles played by the AhR in AIP have been poorly defined. In this study, we examined how AhR activation affected the development of experimental AIP caused by the activation of plasmacytoid dendritic cells producing IFN-α and IL-33. Experimental AIP was induced in MRL/MpJ mice by repeated injections of polyinosinic-polycytidylic acid. Activation of the AhR by indole-3-pyruvic acid and indigo naturalis, which were supplemented in the diet, inhibited the development of experimental AIP, and these effects were independent of the activation of plasmacytoid dendritic cells producing IFN-α and IL-33. Interaction of indole-3-pyruvic acid and indigo naturalis with AhRs robustly augmented the production of IL-22 by pancreatic islet α cells. The blockade of IL-22 signaling pathways completely canceled the beneficial effects of AhR ligands on experimental AIP. Serum IL-22 concentrations were elevated in patients with type 1 AIP after the induction of remission with prednisolone. These data suggest that AhR activation suppresses chronic fibroinflammatory reactions that characterize AIP via IL-22 produced by pancreatic islet α cells.
Collapse
Affiliation(s)
- Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Akane Hara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Tomoe Yoshikawa
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Masayuki Kurimoto
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Ikue Sekai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Natsuki Okai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Naoya Omaru
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yasuhiro Masuta
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Yasuo Otsuka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Ryutaro Takada
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Shiki Takamura
- Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Warren Strober
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
- Mucosal Immunity Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
22
|
Laukova M, Glatman Zaretsky A. Regulatory T cells as a therapeutic approach for inflammatory bowel disease. Eur J Immunol 2023; 53:e2250007. [PMID: 36562391 PMCID: PMC10107179 DOI: 10.1002/eji.202250007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/20/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Foxp3+ T regulatory (Treg) cells suppress inflammation and are essential for maintaining tissue homeostasis. A growing appreciation of tissue-specific Treg functions has built interest in leveraging the endogenous suppressive mechanisms of these cells into cellular therapeutics in organ-specific diseases. Notably, Treg cells play a critical role in maintaining the intestinal environment. As a barrier site, the gut requires Treg cells to mediate interactions with the microbiota, support barrier integrity, and regulate the immune system. Without fully functional Treg cells, intestinal inflammation and microbial dysbiosis ensue. Thus, there is a particular interest in developing Treg cellular therapies for intestinal inflammatory disease, such as inflammatory bowel disease (IBD). This article reviews some of the critical pathways that are dysregulated in IBD, Treg cell mechanisms of suppression, and the efforts and approaches in the field to develop these cells as a cellular therapy for IBD.
Collapse
|
23
|
Harada Y, Miyamoto K, Chida A, Okuzawa AT, Yoshimatsu Y, Kudo Y, Sujino T. Localization and movement of Tregs in gastrointestinal tract: a systematic review. Inflamm Regen 2022; 42:47. [PMID: 36329556 PMCID: PMC9632047 DOI: 10.1186/s41232-022-00232-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The intestine is rich in food-derived and microbe-derived antigens. Regulatory T cells (Tregs) are an essential T-cell population that prevents systemic autoimmune diseases and inhibits inflammation by encountering antigens. Previously, it was reported that the functional loss of Tregs induces systemic inflammation, including inflammatory bowel disease and graft-versus-host disease in human and murine models. However, there is a dearth of information about how Tregs localize in different tissues and suppress effector cells. MAIN BODY The development of Tregs and their molecular mechanism in the digestive tract have been elucidated earlier using murine genetic models, infectious models, and human samples. Tregs suppress immune and other nonimmune cells through direct effect and cytokine production. The recent development of in vivo imaging technology allows us to visualize how Tregs localize and move in the settings of inflammation and homeostasis. This is important because, according to a recent report, Treg characterization and function are regulated by their location. Tregs located in the proximal intestine and its draining lymph nodes induce tolerance against food antigens, and those located in the distal intestine suppress the inflammation induced by microbial antigens. Taken together, various Tregs are induced in a location-specific manner in the gastrointestinal tract and influence the homeostasis of the gut. CONCLUSION In this review, we summarize how Tregs are induced in the digestive tract and the application of in vivo Treg imaging to elucidate immune homeostasis in the digestive tract.
Collapse
Affiliation(s)
- Yosuke Harada
- Department of Gastroenterology and Hepatology, School of Medicine, Keio University, Tokyo, Japan
| | - Kentaro Miyamoto
- Department of Gastroenterology and Hepatology, School of Medicine, Keio University, Tokyo, Japan.,Miyarisan Pharm. Co. Ltd, Tokyo, Japan
| | - Akihiko Chida
- Department of Gastroenterology and Hepatology, School of Medicine, Keio University, Tokyo, Japan
| | - Anna Tojo Okuzawa
- Department of Gastroenterology and Hepatology, School of Medicine, Keio University, Tokyo, Japan
| | - Yusuke Yoshimatsu
- Department of Gastroenterology and Hepatology, School of Medicine, Keio University, Tokyo, Japan
| | - Yumi Kudo
- Department of Pediatric Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Tomohisa Sujino
- Center for the Diagnostic and Therapeutic Endoscopy, School of Medicine, Keio University, Tokyo, Japan.
| |
Collapse
|
24
|
Tanemoto S, Sujino T, Miyamoto K, Moody J, Yoshimatsu Y, Ando Y, Koya I, Harada Y, Tojo AO, Ono K, Hayashi Y, Takabayashi K, Okabayashi K, Teratani T, Mikami Y, Nakamoto N, Hosoe N, Ogata H, Hon CC, Shin JW, Kanai T. Single-cell transcriptomics of human gut T cells identifies cytotoxic CD4 +CD8A + T cells related to mouse CD4 cytotoxic T cells. Front Immunol 2022; 13:977117. [PMID: 36353619 PMCID: PMC9639511 DOI: 10.3389/fimmu.2022.977117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/07/2022] [Indexed: 08/21/2023] Open
Abstract
Cytotoxic CD4+ T cells (CD4-CTLs) show the presence of cytolytic granules, which include the enzymes granzyme and perforin. The cells have a pathogenic and protective role in various diseases, including cancer, viral infection, and autoimmune disease. In mice, cytotoxic CD4+ T cells express CD8αα+ and reside in the intestine (mouse CD4+CTLs; mCD4-CTLs). The population of cytotoxic CD4+ T cells in the human intestine is currently unknown. Moreover, it is unclear how cytotoxic CD4 T cells change in patients with inflammatory bowel disease (IBD). Here, we aimed to identify cytotoxic CD4+ T cells in the human intestine and analyze the characteristics of the population in patients with IBD using single-cell RNA-seq (scRNA-seq). In CD4+ T cells, granzyme and perforin expression was high in humanMAIT (hMAIT) cells and hCD4+CD8A+ T cell cluster. Both CD4 and CD8A were expressed in hTreg, hMAIT, and hCD4+CD8A+ T cell clusters. Next we performed fast gene set enrichment analysis to identify cell populations that showed homology to mCD4CTLs. The analysis identified the hCD4+CD8A+ T cell cluster (hCTL-like population; hCD4-CTL) similar to mouse CTLs. The percentage of CD4+CD8A+ T cells among the total CD4+ T cells in the inflamed intestine of the patients with Crohn's disease was significantly reduced compared with that in the noninflamed intestine of the patients. In summary, we identified cytotoxic CD4+CD8+ T cells in the small intestine of humans. The integration of the mouse and human sc-RNA-seq data analysis highlight an approach to identify human cell populations related to mouse cell populations, which may help determine the functional properties of several human cell populations in mice.
Collapse
Affiliation(s)
- Shun Tanemoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomohisa Sujino
- Center for Diagnostic and Therapeutic Endoscopy , Keio University School of Medicine, Tokyo, Japan
| | - Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Research Laboratory, Miyarisan Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Jonathan Moody
- RIKEN Center for Integrative Medical Sciences, Laboratory for Genomic Information Analysis, Yokohama, Japan
| | - Yusuke Yoshimatsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoshinari Ando
- RIKEN Center for Integrative Medical Sciences, Laboratory for Genomic Information Analysis, Yokohama, Japan
| | - Ikuko Koya
- RIKEN Center for Integrative Medical Sciences, Laboratory for Genomic Information Analysis, Yokohama, Japan
| | - Yosuke Harada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Anna Okuzawa Tojo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Ono
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yukie Hayashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kaoru Takabayashi
- Center for Diagnostic and Therapeutic Endoscopy , Keio University School of Medicine, Tokyo, Japan
| | - Koji Okabayashi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Hosoe
- Center for Diagnostic and Therapeutic Endoscopy , Keio University School of Medicine, Tokyo, Japan
| | - Haruhiko Ogata
- Center for Diagnostic and Therapeutic Endoscopy , Keio University School of Medicine, Tokyo, Japan
| | - Chung-Chau Hon
- RIKEN Center for Integrative Medical Sciences, Laboratory for Genomic Information Analysis, Yokohama, Japan
| | - Jay W. Shin
- RIKEN Center for Integrative Medical Sciences, Laboratory for Genomic Information Analysis, Yokohama, Japan
- Laboratory of Regulatory Genomics, Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Song S, Wood TK. Manipulating indole symbiont signalling. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:691-696. [PMID: 35667868 DOI: 10.1111/1758-2229.13100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Sooyeon Song
- Department of Animal Science, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
- Agricultural Convergence Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|