1
|
Søndergaard JN, Tulyeu J, Priest D, Sakaguchi S, Wing JB. Single cell suppression profiling of human regulatory T cells. Nat Commun 2025; 16:1325. [PMID: 39900891 PMCID: PMC11791207 DOI: 10.1038/s41467-024-55746-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/23/2024] [Indexed: 02/05/2025] Open
Abstract
Regulatory T cells (Treg) play an important role in regulating immune homeostasis in health and disease. Traditionally their suppressive function has been assayed by mixing purified cell populations, which does not provide an accurate picture of a physiologically relevant response. To overcome this limitation, we here develop 'single cell suppression profiling of human Tregs' (scSPOT). scSPOT uses a 52-marker CyTOF panel, a cell division detection algorithm, and a whole PBMC system to assess the effect of Tregs on all other cell types simultaneously. In this head-to-head comparison, we find Tregs having the clearest suppressive effects on effector memory CD8 T cells through partial division arrest, cell cycle inhibition, and effector molecule downregulation. Additionally, scSPOT identifies a Treg phenotypic split previously observed in viral infection and propose modes of action by the FDA-approved drugs Ipilimumab and Tazemetostat. scSPOT is thus scalable, robust, widely applicable, and may be used to better understand Treg immunobiology and screen for therapeutic compounds.
Collapse
Affiliation(s)
- Jonas Nørskov Søndergaard
- Human Immunology Team, Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan.
| | - Janyerkye Tulyeu
- Human Immunology Team, Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| | - David Priest
- Laboratory of Human Single Cell Immunology, WPI-IFReC, Osaka University, Suita, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, WPI-IFReC, Osaka University, Suita, Japan
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - James B Wing
- Human Immunology Team, Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan.
- Laboratory of Human Single Cell Immunology, WPI-IFReC, Osaka University, Suita, Japan.
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan.
| |
Collapse
|
2
|
Asashima H, Akao S, Matsumoto I. Emerging roles of checkpoint molecules on B cells. Immunol Med 2025:1-12. [PMID: 39819449 DOI: 10.1080/25785826.2025.2454045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
Immune checkpoint molecules, including both co-inhibitory molecules and co-stimulatory molecules, are known to play critical roles in regulating T-cell responses. During the last decades, immunotherapies targeting these molecules (such as programmed cell death 1 (PD-1), and lymphocyte activation gene 3 (LAG-3)) have provided clinical benefits in many cancers. It is becoming apparent that not only T cells, but also B cells have a capacity to express some checkpoint molecules. These were originally thought to be only the markers for regulatory B cells which produce IL-10, but recent studies suggest that these molecules (especially T-cell immunoglobulin and mucin domain 1 (TIM-1), T cell immunoreceptor with Ig and ITIM domains (TIGIT), and PD-1) can regulate intrinsic B-cell activation and functions. Here, we focus on these molecules and summarize their characteristics, ligands, and functions on B cells.
Collapse
Affiliation(s)
- Hiromitsu Asashima
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Satoshi Akao
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Isao Matsumoto
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
3
|
Ren J, Ma K, Lu X, Peng H, Wang J, Nasser MI, Liu C. Occurrence and role of Tph cells in various renal diseases. Mol Med 2024; 30:174. [PMID: 39390361 PMCID: PMC11468416 DOI: 10.1186/s10020-024-00919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/31/2024] [Indexed: 10/12/2024] Open
Abstract
A new population of peripheral helper T (Tph) cells has been identified and contributed to various autoimmune diseases. Tph cells can secrete interleukin-21 (IL-21), interferon (IFN) and C-X-C motif chemokine ligand 13 (CXCL13) to moderate renal disease. Moreover, Tph cells can congregate in huge numbers and immerse within inflamed tissue. Compared to Tfh cells, Tph cells express high programmed cell death protein 1 (PD-1), major histocompatibility complex II (MHC-II), C-C chemokine receptor 2 (CCR2) and C-C chemokine receptor 5 (CCR5) but often lack expression of the chemokine receptor C-X-C chemokine receptor 5 (CXCR5). They display features distinct from other T cells, which are uniquely poised to promote responses and antibody production of B cells within pathologically inflamed non-lymphoid tissues and a key feature of Tph cells. In this review, we summarize recent findings on the role of Tph cells in chronic kidney disease, acute kidney injury, kidney transplantation and various renal diseases.
Collapse
Affiliation(s)
- Junyi Ren
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Xiangheng Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haoyu Peng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jia Wang
- General Practice Center, Sichuan Provincial People's Hospital, Sichuan Academy of Sciences, University of Electronic Science and Technology, Chengdu, 610072, China
| | - Moussa Ide Nasser
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510100, Guangdong, China.
| | - Chi Liu
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, China.
| |
Collapse
|
4
|
Wu Y, Wang X, Huang Y, Chen R, Xu Y, Wei W, Qin F, Yuan Z, Su J, Chen X, Liu J, Wen L, Shi M, Qin T, Liao Y, Lu B, Tao X, Wang C, Chen S, Li J, Liu WJ, Ye L, Liang H, Jiang J. Immunogenicity of an Inactivated COVID-19 Vaccine in People Living with HIV in Guangxi, China: A Prospective Cohort Study. Viruses 2024; 16:1481. [PMID: 39339957 PMCID: PMC11437430 DOI: 10.3390/v16091481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 09/30/2024] Open
Abstract
The inactivated COVID-19 vaccine has demonstrated high efficacy in the general population through extensive clinical and real-world studies. However, its effectiveness in immunocompromised individuals, particularly those living with HIV (PLWH), remains limited. In this study, 20 PLWH and 15 HIV-seronegative individuals were recruited to evaluate the immunogenicity of an inactivated COVID-19 vaccine in PLWH through a prospective cohort study. The median age of the 20 PLWH and 15 HIV-seronegative individuals was 42 years and 31 years, respectively. Of the PLWH, nine had been on ART for over five years. The median anti-SARS-CoV-2 S-RBD IgG antibody level on d224 was higher than that on d42 (8188.7 ng/mL vs. 3200.9 ng/mL, P < 0.05). Following COVID-19 infection, the antibody level increased to 29,872.5 ng/mL on dre+90, 12.19 times higher than that on d300. Compared with HIV-seronegative individuals, the antibody level in PLWH was lower on d210 (183.3 ng/mL vs. 509.3 ng/mL, P < 0.01), while there was no difference after d224. The symptoms of COVID-19 infection in PLWH were comparable to those in HIV-seronegative individuals. In this study, the inactivated COVID-19 vaccine demonstrated good immunogenicity in PLWH. The protective benefit of booster vaccinations for PLWH cannot be ignored. Implementing a booster vaccination policy for PLWH is an effective approach to providing better protection against the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yuting Wu
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Xinwei Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yunxuan Huang
- Guigang Center for Disease Control and Prevention, Guigang 537100, China
| | - Rongfeng Chen
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Yuexiang Xu
- Guigang Center for Disease Control and Prevention, Guigang 537100, China
| | - Wudi Wei
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Fengxiang Qin
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Zongxiang Yuan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Jinming Su
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Xiu Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Jie Liu
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Liufang Wen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Minjuan Shi
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Tongxue Qin
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yinlu Liao
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Beibei Lu
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Xing Tao
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Cuixiao Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Shanshan Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Jinmiao Li
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - William J Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
5
|
Li Z, He H, Zhang F, Li H, Jin X, Song Y, Liu S, Wang X, Zhuang J. Identifying immune checkpoints on dysregulated T-cells as prognostic biomarkers for multiple myeloma patients with COVID-19. Front Immunol 2024; 15:1448653. [PMID: 39355257 PMCID: PMC11442272 DOI: 10.3389/fimmu.2024.1448653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/29/2024] [Indexed: 10/03/2024] Open
Abstract
Background Broad T cell phenotypic alterations and potential dysfunctions were prominent in COVID-19. There are few and inconclusive data about the role of immune checkpoints for T cell exhaustion/activation during SARS-CoV-2 infection in multiple myeloma (MM) patients. Methods We tested T cell subsets and immune checkpoints in 177 MM patients with COVID-19, as well as in 32 healthy infected controls and 42 uninfected MM patients. The percentage of CD4+ and CD8+ subpopulation and immune checkpoints (PD-1, TIGIT, TIM-3, LAG-3, CTLA-4, OX40, and 4-1BB) were evaluated by flow cytometry. Results We have found that pronounced lymphopenia and inverted CD4/CD8 ratio in severe COVID-19 patients were especially developed within the first month after infection. And T cell subset dysregulation was persistent in severe patients recovering from SARS-CoV-2 infection. Immune checkpoints on CD4+ T cells were variable and uncorrelated with the level of adaptive immunity, while the proportion of CD4+ T cells was positively correlated with humoral immune response. PD-1 and TIGIT on CD8+ T cells were significantly elevated in severe patients and sustained for more than 2 months, which was associated with impaired cellular immune function. Moreover, exhausted molecules PD-1 and TIGIT on T cells were reduced in immunotherapy patients. Conclusion The prolonged T cell dysregulation after severe SARS-CoV-2 infection highlights the close surveillance from reinfection in MM patients even during convalescence. PD-1 and TIGIT on CD8+ T cells could be important prognostic factors to stratify prognosis in MM patients with COVID-19. Moreover, immunotherapy may downregulate the expression of exhausted checkpoints PD-1 and TIGIT, leading to T cell overactivation and severe COVID-19.
Collapse
Affiliation(s)
- Ziping Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Huiwen He
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Fujing Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Haolong Li
- Department of Medical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xianghong Jin
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuhang Song
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuangjiao Liu
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuan Wang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Junling Zhuang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Priest DG, Ebihara T, Tulyeu J, Søndergaard JN, Sakakibara S, Sugihara F, Nakao S, Togami Y, Yoshimura J, Ito H, Onishi S, Muratsu A, Mitsuyama Y, Ogura H, Oda J, Okusaki D, Matsumoto H, Wing JB. Atypical and non-classical CD45RB lo memory B cells are the majority of circulating SARS-CoV-2 specific B cells following mRNA vaccination or COVID-19. Nat Commun 2024; 15:6811. [PMID: 39122676 PMCID: PMC11315995 DOI: 10.1038/s41467-024-50997-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Resting memory B cells can be divided into classical or atypical groups, but the heterogenous marker expression on activated memory B cells makes similar classification difficult. Here, by longitudinal analysis of mass cytometry and CITE-seq data from cohorts with COVID-19, bacterial sepsis, or BNT162b2 mRNA vaccine, we observe that resting B cell memory consist of classical CD45RB+ memory and CD45RBlo memory, of which the latter contains of two distinct groups of CD11c+ atypical and CD23+ non-classical memory cells. CD45RB levels remain stable in these cells after activation, thereby enabling the tracking of activated B cells and plasmablasts derived from either CD45RB+ or CD45RBlo memory B cells. Moreover, in both COVID-19 patients and mRNA vaccination, CD45RBlo B cells formed the majority of SARS-CoV2 specific memory B cells and correlated with serum antibodies, while CD45RB+ memory are activated by bacterial sepsis. Our results thus identify that stably expressed CD45RB levels can be exploited to trace resting memory B cells and their activated progeny, and suggest that atypical and non-classical CD45RBlo memory B cells contribute to SARS-CoV-2 infection and vaccination.
Collapse
Affiliation(s)
- David G Priest
- Laboratory of Human Single Cell Immunology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, 563-0793, Japan
| | - Takeshi Ebihara
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Janyerkye Tulyeu
- Human Single Cell Immunology Team, Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Jonas N Søndergaard
- Human Single Cell Immunology Team, Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shuhei Sakakibara
- Laboratory of Immune Regulation, IFReC, Osaka University, Suita, Osaka, 563-0793, Japan
- Graduate School of Medical Safety Management, Jikei University of Health Care Sciences, Osaka, 532-0003, Japan
| | - Fuminori Sugihara
- Core Instrumentation Facility, Immunology Frontier Research Center and Research Institute for Microbial Disease, Osaka University, Suita, Osaka, 563-0793, Japan
- Research Institute for Microbial Disease, Osaka University, Suita, Osaka, 563-0793, Japan
| | - Shunichiro Nakao
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yuki Togami
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Jumpei Yoshimura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Ito
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shinya Onishi
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Arisa Muratsu
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yumi Mitsuyama
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, 558-8558, Japan
| | - Hiroshi Ogura
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Jun Oda
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Daisuke Okusaki
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan
- Laboratory of Human Immunology (Single Cell Genomics), WPI-IFReC, Osaka University, Suita, 565-0871, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, 565-0871, Japan
| | - Hisatake Matsumoto
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan.
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| | - James B Wing
- Laboratory of Human Single Cell Immunology, World Premier International Research Center Initiative Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, 563-0793, Japan.
- Human Single Cell Immunology Team, Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan.
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan.
| |
Collapse
|
7
|
Hou Y, Cao Y, He Y, Dong L, Zhao L, Dong Y, Niu R, Bi Y, Liu G. SIRT3 Negatively Regulates TFH-Cell Differentiation in Cancer. Cancer Immunol Res 2024; 12:891-904. [PMID: 38630891 DOI: 10.1158/2326-6066.cir-23-0786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/22/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Follicular helper T (TFH) cells are essential for inducing germinal center (GC) reactions to mediate humoral adaptive immunity in tumors; however, the mechanisms underlying TFH-cell differentiation remain unclear. In this study, we found that the metabolism sensor sirtuin 3 (SIRT3) is critical for TFH-cell differentiation and GC formation during tumor development and viral infection. SIRT3 deficiency in CD4+ T cells intrinsically enhanced TFH-cell differentiation and GC reactions during tumor development and viral infection. Mechanistically, damaged oxidative phosphorylation (OXPHOS) compensatively triggered the NAD+-glycolysis pathway to provide a cellular energy supply, which was necessary for SIRT3 deficiency-induced TFH-cell differentiation. Blocking NAD+ synthesis-glycolysis signaling or recovering OXPHOS activities reversed the TFH-cell differentiation induced by SIRT3 deficiency. Moreover, the mTOR and hypoxia-inducible factor 1α (HIF1α) signaling axis was found to be responsible for TFH-cell differentiation induced by SIRT3 deficiency. HIF1α directly interacted with and regulated the activity of the transcription factor Bcl6. Thus, our findings identify a cellular energy compensatory mechanism, regulated by the mitochondrial sensor SIRT3, that triggers NAD+-dependent glycolysis during mitochondrial OXPHOS injuries and an mTOR-HIF1α-Bcl6 pathway to reprogram TFH-cell differentiation. These data have implications for future cancer immunotherapy research targeting SIRT3 in T cells.
Collapse
Affiliation(s)
- Yueru Hou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ying He
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lin Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Longhao Zhao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yingjie Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ruiying Niu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
8
|
Sumida TS, Cheru NT, Hafler DA. The regulation and differentiation of regulatory T cells and their dysfunction in autoimmune diseases. Nat Rev Immunol 2024; 24:503-517. [PMID: 38374298 PMCID: PMC11216899 DOI: 10.1038/s41577-024-00994-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
The discovery of FOXP3+ regulatory T (Treg) cells as a distinct cell lineage with a central role in regulating immune responses provided a deeper understanding of self-tolerance. The transcription factor FOXP3 serves a key role in Treg cell lineage determination and maintenance, but is not sufficient to enable the full potential of Treg cell suppression, indicating that other factors orchestrate the fine-tuning of Treg cell function. Moreover, FOXP3-independent mechanisms have recently been shown to contribute to Treg cell dysfunction. FOXP3 mutations in humans cause lethal fulminant systemic autoinflammation (IPEX syndrome). However, it remains unclear to what degree Treg cell dysfunction is contributing to the pathophysiology of common autoimmune diseases. In this Review, we discuss the origins of Treg cells in the periphery and the multilayered mechanisms by which Treg cells are induced, as well as the FOXP3-dependent and FOXP3-independent cellular programmes that maintain the suppressive function of Treg cells in humans and mice. Further, we examine evidence for Treg cell dysfunction in the context of common autoimmune diseases such as multiple sclerosis, inflammatory bowel disease, systemic lupus erythematosus and rheumatoid arthritis.
Collapse
Affiliation(s)
- Tomokazu S Sumida
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Nardos T Cheru
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
9
|
Takada H, Demoruelle MK, Deane KD, Nakamura S, Katsumata Y, Ikari K, Buckner JH, Robinson WH, Seifert JA, Feser ML, Moss L, Norris JM, Harigai M, Hsieh EW, Holers VM, Okamoto Y. Expansion of HLA-DR Positive Peripheral Helper T and Naive B Cells in Anticitrullinated Protein Antibody-Positive Individuals At Risk for Rheumatoid Arthritis. Arthritis Rheumatol 2024; 76:1023-1035. [PMID: 38412870 PMCID: PMC11213678 DOI: 10.1002/art.42839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/23/2023] [Accepted: 02/26/2024] [Indexed: 02/29/2024]
Abstract
OBJECTIVE To investigate immune dysregulation in the peripheral blood that contributes to the pre-rheumatoid arthritis (RA) stage of RA development in anticitrullinated protein antibody (ACPA)+ individuals. METHODS Using 37 markers by mass cytometry, we investigated peripheral blood mononuclear cells (PBMCs) from ACPA+ at-risk individuals, ACPA+ early untreated patients with RA, and ACPA- controls in the Tokyo Women's Medical University cohort (n = 17 in each group). Computational algorithms, FlowSOM and Optimized t-Distributed Stochastic Neighbor Embedding, were employed to explore specific immunologic differences between study groups. These findings were further evaluated, and longitudinal changes were explored, using flow cytometry and PBMCs from the US-based Targeting Immune Responses for Prevention of RA cohort that included 11 ACPA+ individuals who later developed RA (pre-RA), of which 9 had post-RA diagnosis PBMCs (post-RA), and 11 ACPA- controls. RESULTS HLA-DR+ peripheral helper T (Tph) cells, activated regulatory T cells, PD-1hi CD8+ T cells, and CXCR5-CD11c-CD38+ naive B cells were significantly expanded in PBMCs from at-risk individuals and patients with early RA from the Tokyo Women's Medical University cohort. Expansion of HLA-DR+ Tph cells and CXCR5-CD11c-CD38+ naive B cells was likewise found in both pre-RA and post-RA time points in the Targeting Immune Responses for Prevention of RA cohort. CONCLUSION The expansion of HLA-DR+ Tph cells and CXCR5-CD11c-CD38+ naive B cells in ACPA+ individuals, including those who developed inflammatory arthritis and classified RA, supports a key role of these cells in transition from pre-RA to classified RA. These findings may identify a new mechanistic target for treatment and prevention in RA.
Collapse
Affiliation(s)
- Hideto Takada
- Division of Rheumatology, Department of Internal Medicine, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - M. Kristen Demoruelle
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kevin D. Deane
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shohei Nakamura
- Division of Rheumatology, Department of Internal Medicine, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
| | - Yasuhiro Katsumata
- Division of Rheumatology, Department of Internal Medicine, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
| | - Katsunori Ikari
- Department of Orthopedic Surgery, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
- Division of Multidisciplinary Management of Rheumatic Diseases, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
| | | | - William H. Robinson
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, USA
| | - Jennifer A. Seifert
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marie L. Feser
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - LauraKay Moss
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jill M. Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Masayoshi Harigai
- Division of Rheumatology, Department of Internal Medicine, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
| | - Elena W.Y. Hsieh
- University of Colorado School of Medicine, Department of Immunology and Microbiology Aurora, CO, USA
- University of Colorado School of Medicine, Children’s Hospital Colorado, Department of Pediatrics, Section of Allergy & Immunology, Aurora, CO, USA
| | - V. Michael Holers
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yuko Okamoto
- Division of Rheumatology, Department of Internal Medicine, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Kotliar D, Curtis M, Agnew R, Weinand K, Nathan A, Baglaenko Y, Zhao Y, Sabeti PC, Rao DA, Raychaudhuri S. Reproducible single cell annotation of programs underlying T-cell subsets, activation states, and functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592310. [PMID: 38746317 PMCID: PMC11092745 DOI: 10.1101/2024.05.03.592310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
T-cells recognize antigens and induce specialized gene expression programs (GEPs) enabling functions including proliferation, cytotoxicity, and cytokine production. Traditionally, different classes of helper T-cells express mutually exclusive responses - for example, Th1, Th2, and Th17 programs. However, new single-cell RNA sequencing (scRNA-Seq) experiments have revealed a continuum of T-cell states without discrete clusters corresponding to these subsets, implying the need for new analytical frameworks. Here, we advance the characterization of T-cells with T-CellAnnoTator (TCAT), a pipeline that simultaneously quantifies pre-defined GEPs capturing activation states and cellular subsets. From 1,700,000 T-cells from 700 individuals across 38 tissues and five diverse disease contexts, we discover 46 reproducible GEPs reflecting the known core functions of T-cells including proliferation, cytotoxicity, exhaustion, and T helper effector states. We experimentally characterize several novel activation programs and apply TCAT to describe T-cell activation and exhaustion in Covid-19 and cancer, providing insight into T-cell function in these diseases.
Collapse
Affiliation(s)
- Dylan Kotliar
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Michelle Curtis
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ryan Agnew
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kathryn Weinand
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Aparna Nathan
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Yuriy Baglaenko
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Center for Autoimmune Genetics and Etiology and Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45219, USA
| | - Yu Zhao
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Pardis C. Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Organismic and Evolutionary Biology, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Deepak A. Rao
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Luo RG, Wu YF, Lu HW, Weng D, Xu JY, Wang LL, Zhang LS, Zhao CQ, Li JX, Yu Y, Jia XM, Xu JF. Th2-skewed peripheral T-helper cells drive B-cells in allergic bronchopulmonary aspergillosis. Eur Respir J 2024; 63:2400386. [PMID: 38514095 PMCID: PMC11096668 DOI: 10.1183/13993003.00386-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Patients with allergic bronchopulmonary aspergillosis (ABPA) suffer from repeated exacerbations. The involvement of T-cell subsets remains unclear. METHODS We enrolled ABPA patients, asthma patients and healthy controls. T-helper type 1 (Th1), 2 (Th2) and 17 (Th17) cells, regulatory T-cells (Treg) and interleukin (IL)-21+CD4+T-cells in total or sorted subsets of peripheral blood mononuclear cells and ABPA bronchoalveolar lavage fluid (BALF) were analysed using flow cytometry. RNA sequencing of subsets of CD4+T-cells was done in exacerbated ABPA patients and healthy controls. Antibodies of T-/B-cell co-cultures in vitro were measured. RESULTS ABPA patients had increased Th2 cells, similar numbers of Treg cells and decreased circulating Th1 and Th17 cells. IL-5+IL-13+IL-21+CD4+T-cells were rarely detected in healthy controls, but significantly elevated in the blood of ABPA patients, especially the exacerbated ones. We found that IL-5+IL-13+IL-21+CD4+T-cells were mainly peripheral T-helper (Tph) cells (PD-1+CXCR5-), which also presented in the BALF of ABPA patients. The proportions of circulating Tph cells were similar among ABPA patients, asthma patients and healthy controls, while IL-5+IL-13+IL-21+ Tph cells significantly increased in ABPA patients. Transcriptome data showed that Tph cells of ABPA patients were Th2-skewed and exhibited signatures of follicular T-helper cells. When co-cultured in vitro, Tph cells of ABPA patients induced the differentiation of autologous B-cells into plasmablasts and significantly enhanced the production of IgE. CONCLUSION We identified a distinctly elevated population of circulating Th2-skewed Tph cells that induced the production of IgE in ABPA patients. It may be a biomarker and therapeutic target for ABPA.
Collapse
Affiliation(s)
- Rong-Guang Luo
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
- These authors contributed equally
| | - Yi-Fan Wu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
- These authors contributed equally
| | - Hai-Wen Lu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
- These authors contributed equally
| | - Dong Weng
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
- These authors contributed equally
| | - Jia-Yan Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Le-Le Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Li-Sha Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Cai-Qi Zhao
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Jian-Xiong Li
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Yong Yu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xin-Ming Jia
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
12
|
Zou X, Huo F, Sun L, Huang J. Peripheral helper T cells in human diseases. J Autoimmun 2024; 145:103218. [PMID: 38574420 DOI: 10.1016/j.jaut.2024.103218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/04/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
Peripheral helper T cells (Tph) are a specialized subset of CD4+ T cells with the ability to help B cells and induce antibody production. Although usually located in ectopic lymphoid-like structures (ELS), inside the peripheral blood, Tph cells can also be identified. The aberrant proliferation and functions of Tph cells are commonly found in the patients with disease. In this review, first we will summarize the biological characteristics of Tph cells, such as the expression of surface molecules, transcription factors and cytokines, and discuss its B cell help functions. Tph cells also have roles in a wide range of human diseases, including autoimmune diseases, infectious diseases, malignancies etc. Therefore, there is a strong interest in targeting Tph cells to improve treat strategies of human diseases.
Collapse
Affiliation(s)
- Xueyang Zou
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, 130000, PR China
| | - Feifei Huo
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, 130000, PR China
| | - Lulu Sun
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, 130000, PR China
| | - Jing Huang
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, 130000, PR China.
| |
Collapse
|
13
|
Yasumizu Y, Takeuchi D, Morimoto R, Takeshima Y, Okuno T, Kinoshita M, Morita T, Kato Y, Wang M, Motooka D, Okuzaki D, Nakamura Y, Mikami N, Arai M, Zhang X, Kumanogoh A, Mochizuki H, Ohkura N, Sakaguchi S. Single-cell transcriptome landscape of circulating CD4 + T cell populations in autoimmune diseases. CELL GENOMICS 2024; 4:100473. [PMID: 38359792 PMCID: PMC10879034 DOI: 10.1016/j.xgen.2023.100473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 02/17/2024]
Abstract
CD4+ T cells are key mediators of various autoimmune diseases; however, their role in disease progression remains unclear due to cellular heterogeneity. Here, we evaluated CD4+ T cell subpopulations using decomposition-based transcriptome characterization and canonical clustering strategies. This approach identified 12 independent gene programs governing whole CD4+ T cell heterogeneity, which can explain the ambiguity of canonical clustering. In addition, we performed a meta-analysis using public single-cell datasets of over 1.8 million peripheral CD4+ T cells from 953 individuals by projecting cells onto the reference and cataloging cell frequency and qualitative alterations of the populations in 20 diseases. The analyses revealed that the 12 transcriptional programs were useful in characterizing each autoimmune disease and predicting its clinical status. Moreover, genetic variants associated with autoimmune diseases showed disease-specific enrichment within the 12 gene programs. The results collectively provide a landscape of single-cell transcriptomes of CD4+ T cell subpopulations involved in autoimmune disease.
Collapse
Affiliation(s)
- Yoshiaki Yasumizu
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| | - Daiki Takeuchi
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; Faculty of Medicine, Osaka University, Osaka, Japan
| | - Reo Morimoto
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yusuke Takeshima
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tatsusada Okuno
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Makoto Kinoshita
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takayoshi Morita
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuhiro Kato
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Min Wang
- Clinical Immunology Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Daisuke Motooka
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan; Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan; Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yamami Nakamura
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Norihisa Mikami
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masaya Arai
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Atsushi Kumanogoh
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; Center for Infectious Diseases for Education and Research, Osaka University, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| | - Naganari Ohkura
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; Department of Frontier Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Shimon Sakaguchi
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan; Department of Experimental Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
14
|
Wang Y, Mei X, Lin Z, Yang X, Cao J, Zhong J, Wang J, Cheng L, Wang Z. Virus infection pattern imprinted and diversified the differentiation of T-cell memory in transcription and function. Front Immunol 2024; 14:1334597. [PMID: 38264657 PMCID: PMC10803622 DOI: 10.3389/fimmu.2023.1334597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Memory T (Tm) cells are a subpopulation of immune cells with great heterogeneity. Part of this diversity came from T cells that were primed with different viruses. Understanding the differences among different viral-specific Tms will help develop new therapeutic strategies for viral infections. Methods In this study, we compared the transcriptome of Tm cells that primed with CMV, EBV and SARS-CoV-2 with single-cell sequencing and studied the similarities and differences in terms of subpopulation composition, activation, metabolism and transcriptional regulation. Results We found that CMV is marked by plentiful cytotoxic Temra cells, while EBV is more abundant in functional Tem cells. More importantly, we found that CD28 and CTLA4 can be used as continuous indicators to interrogate the antiviral ability of T cells. Furthermore, we proposed that REL is a main regulatory factor for CMV-specific T cells producing cytokines and plays an antiviral role. Discussion Our data gives deep insight into molecular characteristics of Tm subsets from different viral infection, which is important to understand T cell immunization. Furthermore, our results provide basic background knowledges for T cell based vaccine development in future.
Collapse
Affiliation(s)
- Yuan Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Bioland, Guangzhou, Guangdong, China
| | - Xinyue Mei
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhengfang Lin
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoyun Yang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Bioland, Guangzhou, Guangdong, China
| | - Jinpeng Cao
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Bioland, Guangzhou, Guangdong, China
| | - Jiaying Zhong
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Junxiang Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li Cheng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhongfang Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Bioland, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Inamo J, Keegan J, Griffith A, Ghosh T, Horisberger A, Howard K, Pulford J, Murzin E, Hancock B, Jonsson AH, Seifert J, Feser ML, Norris JM, Cao Y, Apruzzese W, Louis Bridges S, Bykerk V, Goodman S, Donlin L, Firestein GS, Perlman H, Bathon JM, Hughes LB, Tabechian D, Filer A, Pitzalis C, Anolik JH, Moreland L, Guthridge JM, James JA, Brenner MB, Raychaudhuri S, Sparks JA, Michael Holers V, Deane KD, Lederer JA, Rao DA, Zhang F. Deep immunophenotyping reveals circulating activated lymphocytes in individuals at risk for rheumatoid arthritis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547507. [PMID: 37461737 PMCID: PMC10349983 DOI: 10.1101/2023.07.03.547507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease with currently no universally highly effective prevention strategies. Identifying pathogenic immune phenotypes in 'At-Risk' populations prior to clinical disease onset is crucial to establishing effective prevention strategies. Here, we applied mass cytometry to deeply characterize the immunophenotypes in blood from At-Risk individuals identified through the presence of serum antibodies to citrullinated protein antigens (ACPA) and/or first-degree relative (FDR) status (n=52), as compared to established RA (n=67), and healthy controls (n=48). We identified significant cell expansions in At-Risk individuals compared with controls, including CCR2+CD4+ T cells, T peripheral helper (Tph) cells, type 1 T helper cells, and CXCR5+CD8+ T cells. We also found that CD15+ classical monocytes were specifically expanded in ACPA-negative FDRs, and an activated PAX5 low naïve B cell population was expanded in ACPA-positive FDRs. Further, we developed an "RA immunophenotype score" classification method based on the degree of enrichment of cell states relevant to established RA patients. This score significantly distinguished At-Risk individuals from controls. In all, we systematically identified activated lymphocyte phenotypes in At-Risk individuals, along with immunophenotypic differences among both ACPA+ and ACPA-FDR At-Risk subpopulations. Our classification model provides a promising approach for understanding RA pathogenesis with the goal to further improve prevention strategies and identify novel therapeutic targets.
Collapse
|
16
|
Brown B, Ojha V, Fricke I, Al-Sheboul SA, Imarogbe C, Gravier T, Green M, Peterson L, Koutsaroff IP, Demir A, Andrieu J, Leow CY, Leow CH. Innate and Adaptive Immunity during SARS-CoV-2 Infection: Biomolecular Cellular Markers and Mechanisms. Vaccines (Basel) 2023; 11:408. [PMID: 36851285 PMCID: PMC9962967 DOI: 10.3390/vaccines11020408] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
The coronavirus 2019 (COVID-19) pandemic was caused by a positive sense single-stranded RNA (ssRNA) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, other human coronaviruses (hCoVs) exist. Historical pandemics include smallpox and influenza, with efficacious therapeutics utilized to reduce overall disease burden through effectively targeting a competent host immune system response. The immune system is composed of primary/secondary lymphoid structures with initially eight types of immune cell types, and many other subtypes, traversing cell membranes utilizing cell signaling cascades that contribute towards clearance of pathogenic proteins. Other proteins discussed include cluster of differentiation (CD) markers, major histocompatibility complexes (MHC), pleiotropic interleukins (IL), and chemokines (CXC). The historical concepts of host immunity are the innate and adaptive immune systems. The adaptive immune system is represented by T cells, B cells, and antibodies. The innate immune system is represented by macrophages, neutrophils, dendritic cells, and the complement system. Other viruses can affect and regulate cell cycle progression for example, in cancers that include human papillomavirus (HPV: cervical carcinoma), Epstein-Barr virus (EBV: lymphoma), Hepatitis B and C (HB/HC: hepatocellular carcinoma) and human T cell Leukemia Virus-1 (T cell leukemia). Bacterial infections also increase the risk of developing cancer (e.g., Helicobacter pylori). Viral and bacterial factors can cause both morbidity and mortality alongside being transmitted within clinical and community settings through affecting a host immune response. Therefore, it is appropriate to contextualize advances in single cell sequencing in conjunction with other laboratory techniques allowing insights into immune cell characterization. These developments offer improved clarity and understanding that overlap with autoimmune conditions that could be affected by innate B cells (B1+ or marginal zone cells) or adaptive T cell responses to SARS-CoV-2 infection and other pathologies. Thus, this review starts with an introduction into host respiratory infection before examining invaluable cellular messenger proteins and then individual immune cell markers.
Collapse
Affiliation(s)
| | | | - Ingo Fricke
- Independent Immunologist and Researcher, 311995 Lamspringe, Germany
| | - Suhaila A Al-Sheboul
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
- Department of Medical Microbiology, International School of Medicine, Medipol University-Istanbul, Istanbul 34810, Turkey
| | | | - Tanya Gravier
- Independent Researcher, MPH, San Francisco, CA 94131, USA
| | | | | | | | - Ayça Demir
- Faculty of Medicine, Afyonkarahisar University, Istanbul 03030, Turkey
| | - Jonatane Andrieu
- Faculté de Médecine, Aix–Marseille University, 13005 Marseille, France
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine, (INFORMM), Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| |
Collapse
|