1
|
Overmiller AM, Uchiyama A, Hope ED, Nayak S, O'Neill CG, Hasneen K, Chen YW, Naz F, Dell'Orso S, Brooks SR, Jiang K, Morasso MI. Reprogramming of epidermal keratinocytes by PITX1 transforms the cutaneous cellular landscape and promotes wound healing. JCI Insight 2024; 9:e182844. [PMID: 39480496 DOI: 10.1172/jci.insight.182844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024] Open
Abstract
Cutaneous wound healing is a slow process that often terminates with permanent scarring while oral wounds, in contrast, regenerate after damage faster. Unique molecular networks in epidermal and oral epithelial keratinocytes contribute to the tissue-specific response to wounding, but key factors that establish those networks and how the keratinocytes interact with their cellular environment remain to be elucidated. The transcription factor PITX1 is highly expressed in the oral epithelium but is undetectable in cutaneous keratinocytes. To delineate if PITX1 contributes to oral keratinocyte identity, cell-cell interactions, and the improved wound healing capabilities, we ectopically expressed PITX1 in the epidermis of murine skin. Using comparative analysis of murine skin and oral (buccal) mucosa with single-cell RNA-Seq and spatial transcriptomics, we found that PITX1 expression enhances epidermal keratinocyte migration and proliferation and alters differentiation to a quasi-oral keratinocyte state. PITX1+ keratinocytes reprogrammed intercellular communication between skin-resident cells to mirror buccal tissue while stimulating the influx of neutrophils that establish a pro-inflammatory environment. Furthermore, PITX1+ skin healed significantly faster than control skin via increased keratinocyte activation and migration and a tunable inflammatory environment. These results illustrate that PITX1 programs oral keratinocyte identity and cellular interactions while revealing critical downstream networks that promote wound closure.
Collapse
Affiliation(s)
- Andrew M Overmiller
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Akihiko Uchiyama
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Emma D Hope
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Subhashree Nayak
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Christopher G O'Neill
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Kowser Hasneen
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Yi-Wen Chen
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | | | | | - Stephen R Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Kan Jiang
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Abidi SNF, Chan S, Seidel K, Lafkas D, Vermeulen L, Peale F, Siebel CW. The Jag2/Notch1 signaling axis promotes sebaceous gland differentiation and controls progenitor proliferation. eLife 2024; 13:RP98747. [PMID: 39585329 PMCID: PMC11588336 DOI: 10.7554/elife.98747] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
The sebaceous gland (SG) is a vital appendage of the epidermis, and its normal homeostasis and function is crucial for effective maintenance of the skin barrier. Notch signaling is a well-known regulator of epidermal differentiation, and has also been shown to be involved in postnatal maintenance of SGs. However, the precise role of Notch signaling in regulating SG differentiation in the adult homeostatic skin remains unclear. While there is evidence to suggest that Notch1 is the primary Notch receptor involved in regulating the differentiation process, the ligand remains unknown. Using monoclonal therapeutic antibodies designed to specifically inhibit of each of the Notch ligands or receptors, we have identified the Jag2/Notch1 signaling axis as the primary regulator of sebocyte differentiation in mouse homeostatic skin. Mature sebocytes are lost upon specific inhibition of the Jag2 ligand or Notch1 receptor, resulting in the accumulation of proliferative stem/progenitor cells in the SG. Strikingly, this phenotype is reversible, as these stem/progenitor cells re-enter differentiation when the inhibition of Notch activity is lifted. Thus, Notch activity promotes correct sebocyte differentiation, and is required to restrict progenitor proliferation.
Collapse
Affiliation(s)
| | - Sara Chan
- Department of Research Pathology, GenentechSan FranciscoUnited States
| | - Kerstin Seidel
- Department of Discovery Oncology, GenentechSan FranciscoUnited States
| | - Daniel Lafkas
- Department of Discovery Oncology, GenentechSan FranciscoUnited States
| | - Louis Vermeulen
- Department of Discovery Oncology, GenentechSan FranciscoUnited States
| | - Frank Peale
- Department of Research Pathology, GenentechSan FranciscoUnited States
| | | |
Collapse
|
3
|
Yaba A, Thalheim T, Schneider MR. The role of cell-cell and cell-matrix junctional complexes in sebaceous gland homeostasis and differentiation. Cell Commun Signal 2024; 22:445. [PMID: 39313816 PMCID: PMC11421122 DOI: 10.1186/s12964-024-01835-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024] Open
Abstract
Sebaceous glands (SG) are essential for maintaining skin integrity, as their lipid-rich secretion (sebum) lubricates and protects the epidermis and hairs. In addition, these glands have an emerging role in immunomodulation and may affect whole-body energy metabolism, besides being an appealing model for research in topics as lipogenesis, stem cell biology and tumorigenesis. In spite of the increasing interest in studying SGs pathophysiology, sebocyte cell-cell and cell-matrix adhesion processes have been only superficially examined, and never in a systematic way. This is regrettable considering the key role of cellular adhesion in general, the specific expression pattern of indivdual junctional complexes, and the reports of structural changes in SGs after altered expression of adhesion-relevant proteins. Here, we review the available information on structural and functional aspects of cell-cell and cell-matrix junctions in sebocytes, and how these processes change under pathological conditions. This information will contribute for better understanding sebocyte differentiation and sebum secretion, and may provide hints for novel therapeutic strategies for skin diseases.
Collapse
Affiliation(s)
- Aylin Yaba
- Department of Histology and Embryology, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Torsten Thalheim
- Present Address: Deutsches Biomasseforschungszentrum gGmbH, Torgauer Str. 116, 04347, Leipzig, Germany
- Interdisciplinary Centre for Bioinformatics, Härtelstr. 16-18, 04107, Leipzig, Germany
| | - Marlon R Schneider
- Institute of Veterinary Physiology, University of Leipzig, An den Tierkliniken 7, 04103, Leipzig, Germany.
| |
Collapse
|
4
|
Zhu X, Xu M, Portal C, Lin Y, Ferdinand A, Peng T, Morrisey EE, Dlugosz AA, Castellano JM, Lee V, Seykora JT, Iomini C, Millar SE. Identification of Meibomian gland stem cell populations and mechanisms of aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607015. [PMID: 39149265 PMCID: PMC11326261 DOI: 10.1101/2024.08.09.607015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Meibomian glands secrete lipid-rich meibum, which prevents tear evaporation. Aging-related Meibomian gland shrinkage may result in part from stem cell exhaustion and is associated with evaporative dry eye disease, a common condition lacking effective treatment. The identities and niche of Meibomian gland stem cells and the signals controlling their activity are poorly defined. Using snRNA-seq, in vivo lineage tracing, ex vivo live imaging, and genetic studies in mice, we identified markers for stem cell populations that maintain distinct regions of the gland and uncovered Hh signaling as a key regulator of stem cell proliferation. Consistent with this, human Meibomian gland carcinoma exhibited increased Hh signaling. Aged glands displayed decreased Hh and EGF signaling, deficient innervation, and loss of collagen I in niche fibroblasts, indicating that alterations in both glandular epithelial cells and their surrounding microenvironment contribute to age-related degeneration. These findings suggest new approaches to treat aging-associated Meibomian gland loss.
Collapse
Affiliation(s)
- Xuming Zhu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mingang Xu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Celine Portal
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Yvonne Lin
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Alyssa Ferdinand
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tien Peng
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Edward E. Morrisey
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrzej A. Dlugosz
- Department of Dermatology and the Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joseph M. Castellano
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vivian Lee
- Department of Ophthalmology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John T. Seykora
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carlo Iomini
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Sarah E Millar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
5
|
Ford NC, Benedeck RE, Mattoon MT, Peterson JK, Mesler AL, Veniaminova NA, Gardon DJ, Tsai SY, Uchida Y, Wong SY. Hair follicles modulate skin barrier function. Cell Rep 2024; 43:114347. [PMID: 38941190 PMCID: PMC11317994 DOI: 10.1016/j.celrep.2024.114347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/23/2024] [Accepted: 05/24/2024] [Indexed: 06/30/2024] Open
Abstract
Our skin provides a protective barrier that shields us from our environment. Barrier function is typically associated with the interfollicular epidermis; however, whether hair follicles influence this process remains unclear. Here, we utilize a potent genetic tool to probe barrier function by conditionally ablating a quintessential epidermal barrier gene, Abca12, which is mutated in the most severe skin barrier disease, harlequin ichthyosis. With this tool, we deduced 4 ways by which hair follicles modulate skin barrier function. First, the upper hair follicle (uHF) forms a functioning barrier. Second, barrier disruption in the uHF elicits non-cell-autonomous responses in the epidermis. Third, deleting Abca12 in the uHF impairs desquamation and blocks sebum release. Finally, barrier perturbation causes uHF cells to move into the epidermis. Neutralizing IL-17a, whose expression is enriched in the uHF, partially alleviated some disease phenotypes. Altogether, our findings implicate hair follicles as multi-faceted regulators of skin barrier function.
Collapse
Affiliation(s)
- Noah C Ford
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel E Benedeck
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew T Mattoon
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jamie K Peterson
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arlee L Mesler
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natalia A Veniaminova
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Danielle J Gardon
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shih-Ying Tsai
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yoshikazu Uchida
- Department of Food Science and Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Sunny Y Wong
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Schmidt M, Hansmann F, Loeffler-Wirth H, Zouboulis CC, Binder H, Schneider MR. A spatial portrait of the human sebaceous gland transcriptional program. J Biol Chem 2024; 300:107442. [PMID: 38838779 PMCID: PMC11261126 DOI: 10.1016/j.jbc.2024.107442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024] Open
Abstract
Sebaceous glands (SG) and their oily secretion (sebum) are indispensable for maintaining skin structure and function, and their deregulation causes skin disorders including but not limited to acne. Recent studies also indicate that sebum may have important immunomodulatory activities and may influence whole-body energy metabolism. However, the progressive transcriptional changes of sebocytes that lead to sebum production have never been characterized in detail. Here, we exploited the high cellular resolution provided by sebaceous hyperplasia and integrated spatial transcriptomics, pseudo time analysis, RNA velocity, and functional enrichment to map the landscape of sebaceous differentiation. Our results were validated by comparison with published SG transcriptome data and further corroborated by assessing the protein expression pattern of a subset of the transcripts in the public repository Human Protein Atlas. Departing from four sebocyte differentiation stages generated by unsupervised clustering, we demonstrate consecutive modulation of cellular functions associable with specific gene sets, from cell proliferation and oxidative phosphorylation via lipid synthesis to cell death. Both validation methods confirmed the biological significance of our results. Our report is complemented by a freely available and browsable online tool. Our data provide the first high-resolution spatial portrait of the SG transcriptional landscape and deliver starting points for experimentally assessing novel candidate molecules for regulating SG homeostasis in health and disease.
Collapse
Affiliation(s)
- Maria Schmidt
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, Leipzig, Germany
| | - Florian Hansmann
- Veterinary Faculty, Institute for Veterinary Pathology, University of Leipzig, Leipzig, Germany
| | - Henry Loeffler-Wirth
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, Leipzig, Germany
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics (IZBI), University of Leipzig, Leipzig, Germany
| | - Marlon R Schneider
- Institute of Veterinary Physiology, Veterinary Faculty, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
7
|
Briganti S, Mosca S, Di Nardo A, Flori E, Ottaviani M. New Insights into the Role of PPARγ in Skin Physiopathology. Biomolecules 2024; 14:728. [PMID: 38927131 PMCID: PMC11201613 DOI: 10.3390/biom14060728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a transcription factor expressed in many tissues, including skin, where it is essential for maintaining skin barrier permeability, regulating cell proliferation/differentiation, and modulating antioxidant and inflammatory responses upon ligand binding. Therefore, PPARγ activation has important implications for skin homeostasis. Over the past 20 years, with increasing interest in the role of PPARs in skin physiopathology, considerable effort has been devoted to the development of PPARγ ligands as a therapeutic option for skin inflammatory disorders. In addition, PPARγ also regulates sebocyte differentiation and lipid production, making it a potential target for inflammatory sebaceous disorders such as acne. A large number of studies suggest that PPARγ also acts as a skin tumor suppressor in both melanoma and non-melanoma skin cancers, but its role in tumorigenesis remains controversial. In this review, we have summarized the current state of research into the role of PPARγ in skin health and disease and how this may provide a starting point for the development of more potent and selective PPARγ ligands with a low toxicity profile, thereby reducing unwanted side effects.
Collapse
Affiliation(s)
| | | | | | - Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (S.B.); (S.M.); (A.D.N.); (M.O.)
| | | |
Collapse
|
8
|
Pagani A, Duscher D, Kempa S, Ghods M, Prantl L. Preliminary Single-Cell RNA-Sequencing Analysis Uncovers Adipocyte Heterogeneity in Lipedema. Cells 2024; 13:1028. [PMID: 38920656 PMCID: PMC11201579 DOI: 10.3390/cells13121028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Background: Despite its increasing incidence and prevalence throughout Western countries, lipedema continues to be a very enigmatic disease, often misunderstood or misdiagnosed by the medical community and with an intrinsic pathology that is difficult to trace. The nature of lipedemic tissue is one of hypertrophic adipocytes and poor tissue turnover. So far, there are no identified pathways responsible, and little is known about the cell populations of lipedemic fat. Methods: Adipose tissue samples were collected from affected areas of both lipedema and healthy participants. For single-cell RNA sequencing analysis, the samples were dissociated into single-cell suspensions using enzymatic digestion and then encapsulated into nanoliter-sized droplets containing barcoded beads. Within each droplet, cellular mRNA was converted into complementary DNA. Complementary DNA molecules were then amplified for downstream analysis. Results: The single-cell RNA-sequencing analysis revealed three distinct adipocyte populations at play in lipedema. These populations have unique gene signatures which can be characterized as a lipid generating adipocyte, a disease catalyst adipocyte, and a lipedemic adipocyte. Conclusions: The single-cell RNA sequencing of lipedemic tissue samples highlights a triad of distinct adipocyte subpopulations, each characterized by unique gene signatures and functional roles. The interplay between these adipocyte subtypes offers promising insights into the complex pathophysiology of lipedema.
Collapse
Affiliation(s)
- Andrea Pagani
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany
| | - Dominik Duscher
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany
| | - Sally Kempa
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany
| | - Mojtaba Ghods
- Department of Plastic, Aesthetic and Reconstructive Surgery, Clinic Ernst von Bergmann, Charlottenstraße 71, 14467 Potsdam, Germany
| | - Lukas Prantl
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
9
|
Ford NC, Benedeck RE, Mattoon MT, Peterson JK, Mesler AL, Veniaminova NA, Gardon DJ, Tsai SY, Uchida Y, Wong SY. Hair follicles modulate skin barrier function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590728. [PMID: 38712094 PMCID: PMC11071379 DOI: 10.1101/2024.04.23.590728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Our skin provides a protective barrier that shields us from our environment. Barrier function is typically associated with interfollicular epidermis; however, whether hair follicles influence this process remains unclear. Here, we utilize a potent genetic tool to probe barrier function by conditionally ablating a quintessential epidermal barrier gene, Abca12, which is mutated in the most severe skin barrier disease, harlequin ichthyosis. With this tool, we deduced 4 ways by which hair follicles modulate skin barrier function. First, the upper hair follicle (uHF) forms a functioning barrier. Second, barrier disruption in the uHF elicits non-cell autonomous responses in the epidermis. Third, deleting Abca12 in the uHF impairs desquamation and blocks sebum release. Finally, barrier perturbation causes uHF cells to move into the epidermis. Neutralizing Il17a, whose expression is enriched in the uHF, partially alleviated some disease phenotypes. Altogether, our findings implicate hair follicles as multi-faceted regulators of skin barrier function.
Collapse
Affiliation(s)
- Noah C. Ford
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel E. Benedeck
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Matthew T. Mattoon
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jamie K. Peterson
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arlee L. Mesler
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natalia A. Veniaminova
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Danielle J. Gardon
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shih-Ying Tsai
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yoshikazu Uchida
- Department of Food Science and Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, Republic of Korea
| | - Sunny Y. Wong
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
To TT, Oparaugo NC, Kheshvadjian AR, Nelson AM, Agak GW. Understanding Type 3 Innate Lymphoid Cells and Crosstalk with the Microbiota: A Skin Connection. Int J Mol Sci 2024; 25:2021. [PMID: 38396697 PMCID: PMC10888374 DOI: 10.3390/ijms25042021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Innate lymphoid cells (ILCs) are a diverse population of lymphocytes classified into natural killer (NK) cells, ILC1s, ILC2s, ILC3s, and ILCregs, broadly following the cytokine secretion and transcription factor profiles of classical T cell subsets. Nonetheless, the ILC lineage does not have rearranged antigen-specific receptors and possesses distinct characteristics. ILCs are found in barrier tissues such as the skin, lungs, and intestines, where they play a role between acquired immune cells and myeloid cells. Within the skin, ILCs are activated by the microbiota and, in turn, may influence the microbiome composition and modulate immune function through cytokine secretion or direct cellular interactions. In particular, ILC3s provide epithelial protection against extracellular bacteria. However, the mechanism by which these cells modulate skin health and homeostasis in response to microbiome changes is unclear. To better understand how ILC3s function against microbiota perturbations in the skin, we propose a role for these cells in response to Cutibacterium acnes, a predominant commensal bacterium linked to the inflammatory skin condition, acne vulgaris. In this article, we review current evidence describing the role of ILC3s in the skin and suggest functional roles by drawing parallels with ILC3s from other organs. We emphasize the limited understanding and knowledge gaps of ILC3s in the skin and discuss the potential impact of ILC3-microbiota crosstalk in select skin diseases. Exploring the dialogue between the microbiota and ILC3s may lead to novel strategies to ameliorate skin immunity.
Collapse
Affiliation(s)
- Thao Tam To
- Division of Dermatology, Department of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| | - Nicole Chizara Oparaugo
- Division of Dermatology, Department of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| | - Alexander R. Kheshvadjian
- Division of Dermatology, Department of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| | - Amanda M. Nelson
- Department of Dermatology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - George W. Agak
- Division of Dermatology, Department of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Bai R, Guo Y, Liu W, Song Y, Yu Z, Ma X. The Roles of WNT Signaling Pathways in Skin Development and Mechanical-Stretch-Induced Skin Regeneration. Biomolecules 2023; 13:1702. [PMID: 38136575 PMCID: PMC10741662 DOI: 10.3390/biom13121702] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/24/2023] Open
Abstract
The WNT signaling pathway plays a critical role in a variety of biological processes, including development, adult tissue homeostasis maintenance, and stem cell regulation. Variations in skin conditions can influence the expression of the WNT signaling pathway. In light of the above, a deeper understanding of the specific mechanisms of the WNT signaling pathway in different physiological and pathological states of the skin holds the potential to significantly advance clinical treatments of skin-related diseases. In this review, we present a comprehensive analysis of the molecular and cellular mechanisms of the WNT signaling pathway in skin development, wound healing, and mechanical stretching. Our review sheds new light on the crucial role of the WNT signaling pathway in the regulation of skin physiology and pathology.
Collapse
Affiliation(s)
- Ruoxue Bai
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yaotao Guo
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Department of The Cadet Team 6, School of Basic Medicine, Fourth Military Medical University, Xi’an 710032, China
| | - Wei Liu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Xianjie Ma
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
12
|
Melnik BC. Acne Transcriptomics: Fundamentals of Acne Pathogenesis and Isotretinoin Treatment. Cells 2023; 12:2600. [PMID: 37998335 PMCID: PMC10670572 DOI: 10.3390/cells12222600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
This review on acne transcriptomics allows for deeper insights into the pathogenesis of acne and isotretinoin's mode of action. Puberty-induced insulin-like growth factor 1 (IGF-1), insulin and androgen signaling activate the kinase AKT and mechanistic target of rapamycin complex 1 (mTORC1). A Western diet (hyperglycemic carbohydrates and milk/dairy products) also co-stimulates AKT/mTORC1 signaling. The AKT-mediated phosphorylation of nuclear FoxO1 and FoxO3 results in their extrusion into the cytoplasm, a critical switch which enhances the transactivation of lipogenic and proinflammatory transcription factors, including androgen receptor (AR), sterol regulatory element-binding transcription factor 1 (SREBF1), peroxisome proliferator-activated receptor γ (PPARγ) and signal transducer and activator of transcription 3 (STAT3), but reduces the FoxO1-dependent expression of GATA binding protein 6 (GATA6), the key transcription factor for infundibular keratinocyte homeostasis. The AKT-mediated phosphorylation of the p53-binding protein MDM2 promotes the degradation of p53. In contrast, isotretinoin enhances the expression of p53, FoxO1 and FoxO3 in the sebaceous glands of acne patients. The overexpression of these proapoptotic transcription factors explains isotretinoin's desirable sebum-suppressive effect via the induction of sebocyte apoptosis and the depletion of BLIMP1(+) sebocyte progenitor cells; it also explains its adverse effects, including teratogenicity (neural crest cell apoptosis), a reduced ovarian reserve (granulosa cell apoptosis), the risk of depression (the apoptosis of hypothalamic neurons), VLDL hyperlipidemia, intracranial hypertension and dry skin.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, 49069 Osnabrück, Germany
| |
Collapse
|
13
|
Savoia P, Azzimonti B, Rolla R, Zavattaro E. Role of the Microbiota in Skin Neoplasms: New Therapeutic Horizons. Microorganisms 2023; 11:2386. [PMID: 37894044 PMCID: PMC10608979 DOI: 10.3390/microorganisms11102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The skin and the gut are regularly colonized by a variety of microorganisms capable of interacting with the immune system through their metabolites and influencing the balance between immune tolerance and inflammation. Alterations in the composition and diversity of the skin microbiota have been described in various cutaneous diseases, including skin cancer, and the actual function of the human microbiota in skin carcinogenesis, such as in progression and metastasis, is currently an active area of research. The role of Human Papilloma Virus (HPV) in the pathogenesis of squamous cell carcinoma is well consolidated, especially in chronically immunosuppressed patients. Furthermore, an imbalance between Staphylococcus spp., such as Staphylococcus epidermidis and aureus, has been found to be strongly related to the progression from actinic keratosis to squamous cell carcinoma and differently associated with various stages of the diseases in cutaneous T-cell lymphoma patients. Also, in melanoma patients, differences in microbiota have been related to dissimilar disease course and prognosis and may affect the effectiveness and tolerability of immune checkpoint inhibitors, which currently represent one of the best chances of a cure. From this point of view, acting on microbiota can be considered a possible therapeutic option for patients with advanced skin cancers, even if several issues are still open.
Collapse
Affiliation(s)
- Paola Savoia
- Department of Health Science, University of Eastern Piedmont, via Solaroli 17, 28100 Novara, Italy; (B.A.); (R.R.); (E.Z.)
| | | | | | | |
Collapse
|