1
|
Gonzalez-Martinez D, Roth L, Mumford TR, Guan J, Le A, Doebele RC, Huang B, Tulpule A, Niewiadomska-Bugaj M, Bivona TG, Bugaj LJ. Oncogenic EML4-ALK assemblies suppress growth factor perception and modulate drug tolerance. Nat Commun 2024; 15:9473. [PMID: 39488530 PMCID: PMC11531495 DOI: 10.1038/s41467-024-53451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/12/2024] [Indexed: 11/04/2024] Open
Abstract
Drug resistance remains a challenge for targeted therapy of cancers driven by EML4-ALK and related fusion oncogenes. EML4-ALK forms cytoplasmic protein condensates, which result from networks of interactions between oncogene and adapter protein multimers. While these assemblies are associated with oncogenic signaling, their role in drug response is unclear. Here, we use optogenetics and live-cell imaging to find that EML4-ALK assemblies suppress transmembrane receptor tyrosine kinase (RTK) signaling by sequestering RTK adapter proteins including GRB2 and SOS1. Furthermore, ALK inhibition, while suppressing oncogenic signaling, simultaneously releases the sequestered adapters and thereby resensitizes RTK signaling. Resensitized RTKs promote rapid and pulsatile ERK reactivation that originates from paracrine ligands shed by dying cells. Reactivated ERK signaling promotes cell survival, which can be counteracted by combination therapies that block paracrine signaling. Our results identify a regulatory role for RTK fusion assemblies and uncover a mechanism of tolerance to targeted therapies.
Collapse
Affiliation(s)
| | - Lee Roth
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Thomas R Mumford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Juan Guan
- Department of Physics, Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, 32611, USA
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Anh Le
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Robert C Doebele
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Bo Huang
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, 94143, USA
- Department of Biochemistry and Biophysics, UCSF, San Francisco, 94143, USA
- Chan Zuckerberg Biohub, San Francisco, 94158, USA
| | - Asmin Tulpule
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Trever G Bivona
- Department of Medicine, Division of Hematology and Oncology, UCSF, San Francisco, CA, 94143, USA
| | - Lukasz J Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Feng J, Zhang X, Tian T. Mathematical Modeling and Inference of Epidermal Growth Factor-Induced Mitogen-Activated Protein Kinase Cell Signaling Pathways. Int J Mol Sci 2024; 25:10204. [PMID: 39337687 PMCID: PMC11432143 DOI: 10.3390/ijms251810204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway is an important intracellular signaling cascade that plays a key role in various cellular processes. Understanding the regulatory mechanisms of this pathway is essential for developing effective interventions and targeted therapies for related diseases. Recent advances in single-cell proteomic technologies have provided unprecedented opportunities to investigate the heterogeneity and noise within complex, multi-signaling networks across diverse cells and cell types. Mathematical modeling has become a powerful interdisciplinary tool that bridges mathematics and experimental biology, providing valuable insights into these intricate cellular processes. In addition, statistical methods have been developed to infer pathway topologies and estimate unknown parameters within dynamic models. This review presents a comprehensive analysis of how mathematical modeling of the MAPK pathway deepens our understanding of its regulatory mechanisms, enhances the prediction of system behavior, and informs experimental research, with a particular focus on recent advances in modeling and inference using single-cell proteomic data.
Collapse
Affiliation(s)
- Jinping Feng
- School of Mathematics and Statistics, Henan University, Kaifeng 475001, China
| | - Xinan Zhang
- School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China
| | - Tianhai Tian
- School of Mathematics, Monash University, Melbourne 3800, Australia
| |
Collapse
|
3
|
Aristoff D, Copperman J, Mankovich N, Davies A. Featurizing Koopman mode decomposition for robust forecasting. J Chem Phys 2024; 161:064103. [PMID: 39120039 PMCID: PMC11316605 DOI: 10.1063/5.0220277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
This article introduces an advanced Koopman mode decomposition (KMD) technique-coined Featurized Koopman Mode Decomposition (FKMD)-that uses delay embedding and a learned Mahalanobis distance to enhance analysis and prediction of high-dimensional dynamical systems. The delay embedding expands the observation space to better capture underlying manifold structures, while the Mahalanobis distance adjusts observations based on the system's dynamics. This aids in featurizing KMD in cases where good features are not a priori known. We show that FKMD improves predictions for a high-dimensional linear oscillator, a high-dimensional Lorenz attractor that is partially observed, and a cell signaling problem from cancer research.
Collapse
Affiliation(s)
- David Aristoff
- Colorado State University, Fort Collins, Colorado 80523, USA
| | - Jeremy Copperman
- Oregon Health and Science University, Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Portland, Oregon 97201, USA
| | | | | |
Collapse
|
4
|
Copperman J, Mclean IC, Gross SM, Singh J, Chang YH, Zuckerman DM, Heiser LM. Single-cell morphodynamical trajectories enable prediction of gene expression accompanying cell state change. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576248. [PMID: 38293173 PMCID: PMC10827140 DOI: 10.1101/2024.01.18.576248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Extracellular signals induce changes to molecular programs that modulate multiple cellular phenotypes, including proliferation, motility, and differentiation status. The connection between dynamically adapting phenotypic states and the molecular programs that define them is not well understood. Here we develop data-driven models of single-cell phenotypic responses to extracellular stimuli by linking gene transcription levels to "morphodynamics" - changes in cell morphology and motility observable in time-lapse image data. We adopt a dynamics-first view of cell state by grouping single-cell trajectories into states with shared morphodynamic responses. The single-cell trajectories enable development of a first-of-its-kind computational approach to map live-cell dynamics to snapshot gene transcript levels, which we term MMIST, Molecular and Morphodynamics-Integrated Single-cell Trajectories. The key conceptual advance of MMIST is that cell behavior can be quantified based on dynamically defined states and that extracellular signals alter the overall distribution of cell states by altering rates of switching between states. We find a cell state landscape that is bound by epithelial and mesenchymal endpoints, with distinct sequences of epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial transition (MET) intermediates. The analysis yields predictions for gene expression changes consistent with curated EMT gene sets and provides a prediction of thousands of RNA transcripts through extracellular signal-induced EMT and MET with near-continuous time resolution. The MMIST framework leverages true single-cell dynamical behavior to generate molecular-level omics inferences and is broadly applicable to other biological domains, time-lapse imaging approaches and molecular snapshot data.
Collapse
Affiliation(s)
- Jeremy Copperman
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland OR 97239, U.S.A
| | - Ian C. Mclean
- Department of Biomedical Engineering, Oregon Health and Science University, Portland OR 97239, U.S.A
| | | | - Jalim Singh
- Knight Cancer Institute, Oregon Health and Science University, Portland OR 97239, U.S.A
| | - Young Hwan Chang
- Department of Biomedical Engineering, Oregon Health and Science University, Portland OR 97239, U.S.A
- Knight Cancer Institute, Oregon Health and Science University, Portland OR 97239, U.S.A
| | - Daniel M. Zuckerman
- Department of Biomedical Engineering, Oregon Health and Science University, Portland OR 97239, U.S.A
- Knight Cancer Institute, Oregon Health and Science University, Portland OR 97239, U.S.A
| | - Laura M. Heiser
- Department of Biomedical Engineering, Oregon Health and Science University, Portland OR 97239, U.S.A
- Knight Cancer Institute, Oregon Health and Science University, Portland OR 97239, U.S.A
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland OR 97239, U.S.A
| |
Collapse
|
5
|
Singh A, Sen S, Iter M, Adelaja A, Luecke S, Guo X, Hoffmann A. Stimulus-response signaling dynamics characterize macrophage polarization states. Cell Syst 2024; 15:563-577.e6. [PMID: 38843840 PMCID: PMC11226196 DOI: 10.1016/j.cels.2024.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/03/2023] [Accepted: 05/10/2024] [Indexed: 06/22/2024]
Abstract
The functional state of cells is dependent on their microenvironmental context. Prior studies described how polarizing cytokines alter macrophage transcriptomes and epigenomes. Here, we characterized the functional responses of 6 differentially polarized macrophage populations by measuring the dynamics of transcription factor nuclear factor κB (NF-κB) in response to 8 stimuli. The resulting dataset of single-cell NF-κB trajectories was analyzed by three approaches: (1) machine learning on time-series data revealed losses of stimulus distinguishability with polarization, reflecting canalized effector functions. (2) Informative trajectory features driving stimulus distinguishability ("signaling codons") were identified and used for mapping a cell state landscape that could then locate macrophages conditioned by an unrelated condition. (3) Kinetic parameters, inferred using a mechanistic NF-κB network model, provided an alternative mapping of cell states and correctly predicted biochemical findings. Together, this work demonstrates that a single analyte's dynamic trajectories may distinguish the functional states of single cells and molecular network states underlying them. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Apeksha Singh
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Supriya Sen
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Iter
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Adewunmi Adelaja
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stefanie Luecke
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiaolu Guo
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
6
|
Bennett JJR, Stern AD, Zhang X, Birtwistle MR, Pandey G. Low-frequency ERK and Akt activity dynamics are predictive of stochastic cell division events. NPJ Syst Biol Appl 2024; 10:65. [PMID: 38834572 PMCID: PMC11150372 DOI: 10.1038/s41540-024-00389-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
Understanding the dynamics of intracellular signaling pathways, such as ERK1/2 (ERK) and Akt1/2 (Akt), in the context of cell fate decisions is important for advancing our knowledge of cellular processes and diseases, particularly cancer. While previous studies have established associations between ERK and Akt activities and proliferative cell fate, the heterogeneity of single-cell responses adds complexity to this understanding. This study employed a data-driven approach to address this challenge, developing machine learning models trained on a dataset of growth factor-induced ERK and Akt activity time courses in single cells, to predict cell division events. The most predictive models were developed by applying discrete wavelet transforms (DWTs) to extract low-frequency features from the time courses, followed by using Ensemble Integration, a data integration and predictive modeling framework. The results demonstrated that these models effectively predicted cell division events in MCF10A cells (F-measure=0.524, AUC=0.726). ERK dynamics were found to be more predictive than Akt, but the combination of both measurements further enhanced predictive performance. The ERK model`s performance also generalized to predicting division events in RPE cells, indicating the potential applicability of these models and our data-driven methodology for predicting cell division across different biological contexts. Interpretation of these models suggested that ERK dynamics throughout the cell cycle, rather than immediately after growth factor stimulation, were associated with the likelihood of cell division. Overall, this work contributes insights into the predictive power of intra-cellular signaling dynamics for cell fate decisions, and highlights the potential of machine learning approaches in unraveling complex cellular behaviors.
Collapse
Affiliation(s)
- Jamie J R Bennett
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alan D Stern
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiang Zhang
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Marc R Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA.
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
7
|
Qian Z, Li R, Zhao T, Xie K, Li P, Li G, Shen N, Gong J, Hong X, Yang L, Li H. Blockade of the ADAM8-Fra-1 complex attenuates neuroinflammation by suppressing the Map3k4/MAPKs axis after spinal cord injury. Cell Mol Biol Lett 2024; 29:75. [PMID: 38755530 PMCID: PMC11100242 DOI: 10.1186/s11658-024-00589-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Mechanical spinal cord injury (SCI) is a deteriorative neurological disorder, causing secondary neuroinflammation and neuropathy. ADAM8 is thought to be an extracellular metalloproteinase, which regulates proteolysis and cell adherence, but whether its intracellular region is involved in regulating neuroinflammation in microglia after SCI is unclear. METHODS Using animal tissue RNA-Seq and clinical blood sample examinations, we found that a specific up-regulation of ADAM8 in microglia was associated with inflammation after SCI. In vitro, microglia stimulated by HMGB1, the tail region of ADAM8, promoted microglial inflammation, migration and proliferation by directly interacting with ERKs and Fra-1 to promote activation, then further activated Map3k4/JNKs/p38. Using SCI mice, we used BK-1361, a specific inhibitor of ADAM8, to treat these mice. RESULTS The results showed that administration of BK-1361 attenuated the level of neuroinflammation and reduced microglial activation and recruitment by inhibiting the ADAM8/Fra-1 axis. Furthermore, treatment with BK-1361 alleviated glial scar formation, and also preserved myelin and axonal structures. The locomotor recovery of SCI mice treated with BK-1361 was therefore better than those without treatment. CONCLUSIONS Taken together, the results showed that ADAM8 was a critical molecule, which positively regulated neuroinflammatory development and secondary pathogenesis by promoting microglial activation and migration. Mechanically, ADAM8 formed a complex with ERK and Fra-1 to further activate the Map3k4/JNK/p38 axis in microglia. Inhibition of ADAM8 by treatment with BK-1361 decreased the levels of neuroinflammation, glial formation, and neurohistological loss, leading to favorable improvement in locomotor functional recovery in SCI mice.
Collapse
Affiliation(s)
- Zhanyang Qian
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- Department of Orthopedics, Zhongda Hospital of Southeast University, Nanjing, China
| | - Rulin Li
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- School of Postgraduate, Dalian Medical University, Dalian, China
| | - Tianyu Zhao
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- School of Postgraduate, Dalian Medical University, Dalian, China
| | - Kunxin Xie
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - PengFei Li
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- School of Postgraduate, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guangshen Li
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Na Shen
- School of Basic Medicine, Nanjing Medical University, Nanjing, China
| | - Jiamin Gong
- School of Basic Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Hong
- Department of Orthopedics, Zhongda Hospital of Southeast University, Nanjing, China
| | - Lei Yang
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
| | - Haijun Li
- Department of Orthopedics, Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
| |
Collapse
|
8
|
Ram A, Pargett M, Choi Y, Murphy D, Cabel M, Kosaisawe N, Quon G, Albeck J. Deciphering the History of ERK Activity from Fixed-Cell Immunofluorescence Measurements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580760. [PMID: 38405841 PMCID: PMC10889026 DOI: 10.1101/2024.02.16.580760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The Ras/ERK pathway drives cell proliferation and other oncogenic behaviors, and quantifying its activity in situ is of high interest in cancer diagnosis and therapy. Pathway activation is often assayed by measuring phosphorylated ERK. However, this form of measurement overlooks dynamic aspects of signaling that can only be observed over time. In this study, we combine a live, single-cell ERK biosensor approach with multiplexed immunofluorescence staining of downstream target proteins to ask how well immunostaining captures the dynamic history of ERK activity. Combining linear regression, machine learning, and differential equation models, we develop an interpretive framework for immunostains, in which Fra-1 and pRb levels imply long term activation of ERK signaling, while Egr-1 and c-Myc indicate recent activation. We show that this framework can distinguish different classes of ERK dynamics within a heterogeneous population, providing a tool for annotating ERK dynamics within fixed tissues.
Collapse
Affiliation(s)
- Abhineet Ram
- Department of Molecular and Cellular Biology, University of California, Davis
| | - Michael Pargett
- Department of Molecular and Cellular Biology, University of California, Davis
| | - Yongin Choi
- Department of Molecular and Cellular Biology, University of California, Davis
| | - Devan Murphy
- Department of Molecular and Cellular Biology, University of California, Davis
| | - Markhus Cabel
- Department of Molecular and Cellular Biology, University of California, Davis
| | - Nont Kosaisawe
- Department of Molecular and Cellular Biology, University of California, Davis
| | - Gerald Quon
- Department of Molecular and Cellular Biology, University of California, Davis
| | - John Albeck
- Department of Molecular and Cellular Biology, University of California, Davis
| |
Collapse
|
9
|
McAloney CA, Makkawi R, Budhathoki Y, Cannon MV, Franz EM, Gross AC, Cam M, Vetter TA, Duhen R, Davies AE, Roberts RD. Host-derived growth factors drive ERK phosphorylation and MCL1 expression to promote osteosarcoma cell survival during metastatic lung colonization. Cell Oncol (Dordr) 2024; 47:259-282. [PMID: 37676378 PMCID: PMC10899530 DOI: 10.1007/s13402-023-00867-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
PURPOSE For patients with osteosarcoma, disease-related mortality most often results from lung metastasis-a phenomenon shared with many solid tumors. While established metastatic lesions behave aggressively, very few of the tumor cells that reach the lung will survive. By identifying mechanisms that facilitate survival of disseminated tumor cells, we can develop therapeutic strategies that prevent and treat metastasis. METHODS We analyzed single cell RNA-sequencing (scRNAseq) data from murine metastasis-bearing lungs to interrogate changes in both host and tumor cells during colonization. We used these data to elucidate pathways that become activated in cells that survive dissemination and identify candidate host-derived signals that drive activation. We validated these findings through live cell reporter systems, immunocytochemistry, and fluorescent immunohistochemistry. We then validated the functional relevance of key candidates using pharmacologic inhibition in models of metastatic osteosarcoma. RESULTS Expression patterns suggest that the MAPK pathway is significantly elevated in early and established metastases. MAPK activity correlates with expression of anti-apoptotic genes, especially MCL1. Niche cells produce growth factors that increase ERK phosphorylation and MCL1 expression in tumor cells. Both early and established metastases are vulnerable to MCL1 inhibition, but not MEK inhibition in vivo. Combining MCL1 inhibition with chemotherapy both prevented colonization and eliminated established metastases in murine models of osteosarcoma. CONCLUSION Niche-derived growth factors drive MAPK activity and MCL1 expression in osteosarcoma, promoting metastatic colonization. Although later metastases produce less MCL1, they remain dependent on it. MCL1 is a promising target for clinical trials in both human and canine patients.
Collapse
Affiliation(s)
- Camille A McAloney
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Rawan Makkawi
- Knight Cancer Institute's, Cancer Early Detection Advanced Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Yogesh Budhathoki
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH, USA
| | - Matthew V Cannon
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Emily M Franz
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH, USA
| | - Amy C Gross
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Maren Cam
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Tatyana A Vetter
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Rebekka Duhen
- Knight Cancer Institute's, Cancer Early Detection Advanced Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Alexander E Davies
- Knight Cancer Institute's, Cancer Early Detection Advanced Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| | - Ryan D Roberts
- Center for Childhood Cancers and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Division of Pediatric Hematology, Oncology, and BMT, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
- The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
10
|
Ram A, Murphy D, DeCuzzi N, Patankar M, Hu J, Pargett M, Albeck JG. A guide to ERK dynamics, part 2: downstream decoding. Biochem J 2023; 480:1909-1928. [PMID: 38038975 PMCID: PMC10754290 DOI: 10.1042/bcj20230277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023]
Abstract
Signaling by the extracellular signal-regulated kinase (ERK) pathway controls many cellular processes, including cell division, death, and differentiation. In this second installment of a two-part review, we address the question of how the ERK pathway exerts distinct and context-specific effects on multiple processes. We discuss how the dynamics of ERK activity induce selective changes in gene expression programs, with insights from both experiments and computational models. With a focus on single-cell biosensor-based studies, we summarize four major functional modes for ERK signaling in tissues: adjusting the size of cell populations, gradient-based patterning, wave propagation of morphological changes, and diversification of cellular gene expression states. These modes of operation are disrupted in cancer and other related diseases and represent potential targets for therapeutic intervention. By understanding the dynamic mechanisms involved in ERK signaling, there is potential for pharmacological strategies that not only simply inhibit ERK, but also restore functional activity patterns and improve disease outcomes.
Collapse
Affiliation(s)
- Abhineet Ram
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Devan Murphy
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Nicholaus DeCuzzi
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Madhura Patankar
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Jason Hu
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - Michael Pargett
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| | - John G. Albeck
- Department of Molecular and Cellular Biology, University of California, Davis, CA, U.S.A
| |
Collapse
|
11
|
Ram A, Murphy D, DeCuzzi N, Patankar M, Hu J, Pargett M, Albeck JG. A guide to ERK dynamics, part 1: mechanisms and models. Biochem J 2023; 480:1887-1907. [PMID: 38038974 PMCID: PMC10754288 DOI: 10.1042/bcj20230276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Extracellular signal-regulated kinase (ERK) has long been studied as a key driver of both essential cellular processes and disease. A persistent question has been how this single pathway is able to direct multiple cell behaviors, including growth, proliferation, and death. Modern biosensor studies have revealed that the temporal pattern of ERK activity is highly variable and heterogeneous, and critically, that these dynamic differences modulate cell fate. This two-part review discusses the current understanding of dynamic activity in the ERK pathway, how it regulates cellular decisions, and how these cell fates lead to tissue regulation and pathology. In part 1, we cover the optogenetic and live-cell imaging technologies that first revealed the dynamic nature of ERK, as well as current challenges in biosensor data analysis. We also discuss advances in mathematical models for the mechanisms of ERK dynamics, including receptor-level regulation, negative feedback, cooperativity, and paracrine signaling. While hurdles still remain, it is clear that higher temporal and spatial resolution provide mechanistic insights into pathway circuitry. Exciting new algorithms and advanced computational tools enable quantitative measurements of single-cell ERK activation, which in turn inform better models of pathway behavior. However, the fact that current models still cannot fully recapitulate the diversity of ERK responses calls for a deeper understanding of network structure and signal transduction in general.
Collapse
Affiliation(s)
- Abhineet Ram
- Department of Molecular and Cellular Biology, University of California, Davis, U.S.A
| | - Devan Murphy
- Department of Molecular and Cellular Biology, University of California, Davis, U.S.A
| | - Nicholaus DeCuzzi
- Department of Molecular and Cellular Biology, University of California, Davis, U.S.A
| | - Madhura Patankar
- Department of Molecular and Cellular Biology, University of California, Davis, U.S.A
| | - Jason Hu
- Department of Molecular and Cellular Biology, University of California, Davis, U.S.A
| | - Michael Pargett
- Department of Molecular and Cellular Biology, University of California, Davis, U.S.A
| | - John G. Albeck
- Department of Molecular and Cellular Biology, University of California, Davis, U.S.A
| |
Collapse
|
12
|
Xiong LI, Garfinkel A. Are physiological oscillations physiological? J Physiol 2023. [PMID: 37622389 DOI: 10.1113/jp285015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Despite widespread and striking examples of physiological oscillations, their functional role is often unclear. Even glycolysis, the paradigm example of oscillatory biochemistry, has seen questions about its oscillatory function. Here, we take a systems approach to argue that oscillations play critical physiological roles, such as enabling systems to avoid desensitization, to avoid chronically high and therefore toxic levels of chemicals, and to become more resistant to noise. Oscillation also enables complex physiological systems to reconcile incompatible conditions such as oxidation and reduction, by cycling between them, and to synchronize the oscillations of many small units into one large effect. In pancreatic β-cells, glycolytic oscillations synchronize with calcium and mitochondrial oscillations to drive pulsatile insulin release, critical for liver regulation of glucose. In addition, oscillation can keep biological time, essential for embryonic development in promoting cell diversity and pattern formation. The functional importance of oscillatory processes requires a re-thinking of the traditional doctrine of homeostasis, holding that physiological quantities are maintained at constant equilibrium values, a view that has largely failed in the clinic. A more dynamic approach will initiate a paradigm shift in our view of health and disease. A deeper look into the mechanisms that create, sustain and abolish oscillatory processes requires the language of nonlinear dynamics, well beyond the linearization techniques of equilibrium control theory. Nonlinear dynamics enables us to identify oscillatory ('pacemaking') mechanisms at the cellular, tissue and system levels.
Collapse
Affiliation(s)
- Lingyun Ivy Xiong
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Alan Garfinkel
- Departments of Medicine (Cardiology) and Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| |
Collapse
|
13
|
Chong ZX, Yong CY, Ong AHK, Yeap SK, Ho WY. Deciphering the roles of aryl hydrocarbon receptor (AHR) in regulating carcinogenesis. Toxicology 2023; 495:153596. [PMID: 37480978 DOI: 10.1016/j.tox.2023.153596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-dependent receptor that belongs to the superfamily of basic helix-loop-helix (bHLH) transcription factors. The activation of the canonical AHR signaling pathway is known to induce the expression of cytochrome P450 enzymes, facilitating the detoxification metabolism in the human body. Additionally, AHR could interact with various signaling pathways such as epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), hypoxia-inducible factor-1α (HIF-1α), nuclear factor ekappa B (NF-κβ), estrogen receptor (ER), and androgen receptor (AR) signaling pathways. Over the past 30 years, several studies have reported that various chemical, physical, or biological agents, such as tobacco, hydrocarbon compounds, industrial and agricultural chemical wastes, drugs, UV, viruses, and other toxins, could affect AHR expression or activity, promoting cancer development. Thus, it is valuable to overview how these factors regulate AHR-mediated carcinogenesis. Current findings have reported that many compounds could act as AHR ligands to drive the expressions of AHR-target genes, such as CYP1A1, CYP1B1, MMPs, and AXL, and other targets that exert a pro-proliferation or anti-apoptotic effect, like XIAP. Furthermore, some other physical and chemical agents, such as UV and 3-methylcholanthrene, could promote AHR signaling activities, increasing the signaling activities of a few oncogenic pathways, such as the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways. Understanding how various factors regulate AHR-mediated carcinogenesis processes helps clinicians and scientists plan personalized therapeutic strategies to improve anti-cancer treatment efficacy. As many studies that have reported the roles of AHR in regulating carcinogenesis are preclinical or observational clinical studies that did not explore the detailed mechanisms of how different chemical, physical, or biological agents promote AHR-mediated carcinogenesis processes, future studies should focus on conducting large-scale and functional studies to unravel the underlying mechanism of how AHR interacts with different factors in regulating carcinogenesis processes.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
| | - Chean Yeah Yong
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia
| | - Alan Han Kiat Ong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
14
|
Ota H, Sato H, Mizumoto S, Wakai K, Yoneda K, Yamamoto K, Nakanishi H, Ikeda JI, Sakamoto S, Ichikawa T, Yamada S, Takahashi S, Ikehara Y, Nishihara S. Switching mechanism from AR to EGFR signaling via 3-O-sulfated heparan sulfate in castration-resistant prostate cancer. Sci Rep 2023; 13:11618. [PMID: 37463954 DOI: 10.1038/s41598-023-38746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
Androgen deprivation therapy is given to suppress prostate cancer growth; however, some cells continue to grow hormone-independently as castration-resistant prostate cancer (CRPC). Sulfated glycosaminoglycans promote ligand binding to receptors as co-receptors, but their role in CRPC remains unknown. Using the human prostate cancer cell line C4-2, which can proliferate in hormone-dependent and hormone-independent conditions, we found that epidermal growth factor (EGF)-activated EGFR-ERK1/2 signaling via 3-O-sulfated heparan sulfate (HS) produced by HS 3-O-sulfotransferase 1 (HS3ST1) is activated in C4-2 cells under hormone depletion. Knockdown of HS3ST1 in C4-2 cells suppressed hormone-independent growth, and inhibited both EGF binding to the cell surface and activation of EGFR-ERK1/2 signaling. Gefitinib, an EGFR inhibitor, significantly suppressed C4-2 cell proliferation and growth of a xenografted C4-2 tumor in castrated mouse. Collectively, our study has revealed a mechanism by which cancer cells switch to hormone-independent growth and identified the key regulator as 3-O-sulfated HS.
Collapse
Affiliation(s)
- Hayato Ota
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo, Japan
| | - Hirokazu Sato
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo, Japan
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - Ken Wakai
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kei Yoneda
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuo Yamamoto
- Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hayao Nakanishi
- Laboratory of Pathology and Clinical Research, Aichi Cancer Center Aichi Hospital, Nagoya, Aichi, Japan
| | - Jun-Ichiro Ikeda
- Department of Diagnostic Pathology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shinichi Sakamoto
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Yuzuru Ikehara
- Department of Pathology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shoko Nishihara
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo, Japan.
- Glycan & Life System Integration Center (GaLSIC), Soka University, Tokyo, Japan.
| |
Collapse
|
15
|
Steiner I, Flores-Tellez TDNJ, Mevel R, Ali A, Wang P, Schofield P, Behan C, Forsythe N, Ashton G, Taylor C, Mills IG, Oliveira P, McDade SS, Zaiss DM, Choudhury A, Lacaud G, Baena E. Autocrine activation of MAPK signaling mediates intrinsic tolerance to androgen deprivation in LY6D prostate cancer cells. Cell Rep 2023; 42:112377. [PMID: 37060563 DOI: 10.1016/j.celrep.2023.112377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/12/2022] [Accepted: 03/23/2023] [Indexed: 04/16/2023] Open
Abstract
The emergence of castration-resistant prostate cancer remains an area of unmet clinical need. We recently identified a subpopulation of normal prostate progenitor cells, characterized by an intrinsic resistance to androgen deprivation and expression of LY6D. We here demonstrate that conditional deletion of PTEN in the murine prostate epithelium causes an expansion of transformed LY6D+ progenitor cells without impairing stem cell properties. Transcriptomic analyses of LY6D+ luminal cells identified an autocrine positive feedback loop, based on the secretion of amphiregulin (AREG)-mediated activation of mitogen-activated protein kinase (MAPK) signaling, increasing cellular fitness and organoid formation. Pharmacological interference with this pathway overcomes the castration-resistant properties of LY6D+ cells with a suppression of organoid formation and loss of LY6D+ cells in vivo. Notably, LY6D+ tumor cells are enriched in high-grade and androgen-resistant prostate cancer, providing clinical evidence for their contribution to advanced disease. Our data indicate that early interference with MAPK inhibitors can prevent progression of castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Ivana Steiner
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Teresita Del N J Flores-Tellez
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Renaud Mevel
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Amin Ali
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Pengbo Wang
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Pieta Schofield
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Caron Behan
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Nicholas Forsythe
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7BL Northern Ireland, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Garry Ashton
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Catherine Taylor
- The Christie NHS Foundation Trust, Manchester Academic Health Sciences Centre, M20 4BX Manchester, UK
| | - Ian G Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7BL Northern Ireland, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK; Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, OX3 9DU Oxford, UK; Department of Clinical Sciences and Centre for Cancer Biomarkers, University of Bergen, 7804 Bergen, Norway
| | - Pedro Oliveira
- Department of Pathology, The Christie NHS Foundation Trust, M20 4BX Manchester, UK
| | - Simon S McDade
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7BL Northern Ireland, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Dietmar M Zaiss
- Department of Immune Medicine, University Regensburg, Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, and Leibniz Institute for Immunotherapy (LIT), 93053 Regensburg, Germany
| | - Ananya Choudhury
- The Christie NHS Foundation Trust, Manchester Academic Health Sciences Centre, M20 4BX Manchester, UK; The University of Manchester, Manchester Cancer Research Centre, M20 4BX Manchester, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Georges Lacaud
- Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | - Esther Baena
- Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK; Belfast-Manchester Movember Centre of Excellence, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK.
| |
Collapse
|
16
|
Sheu KM, Guru AA, Hoffmann A. Quantifying stimulus-response specificity to probe the functional state of macrophages. Cell Syst 2023; 14:180-195.e5. [PMID: 36657439 PMCID: PMC10023480 DOI: 10.1016/j.cels.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/05/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023]
Abstract
Immune sentinel macrophages initiate responses to pathogens via hundreds of immune response genes. Each immune threat demands a tailored response, suggesting that the capacity for stimulus-specific gene expression is a key functional hallmark of healthy macrophages. To quantify this property, termed "stimulus-response specificity" (SRS), we developed a single-cell experimental workflow and analytical approaches based on information theory and machine learning. We found that the response specificity of macrophages is driven by combinations of specific immune genes that show low cell-to-cell heterogeneity and are targets of separate signaling pathways. The "response specificity profile," a systematic comparison of multiple stimulus-response distributions, was distinctly altered by polarizing cytokines, and it enabled an assessment of the functional state of macrophages. Indeed, the response specificity profile of peritoneal macrophages from old and obese mice showed characteristic differences, suggesting that SRS may be a basis for measuring the functional state of innate immune cells. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Katherine M Sheu
- Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr S, Los Angeles, CA 90093, USA
| | - Aditya A Guru
- Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr S, Los Angeles, CA 90093, USA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 611 Charles E. Young Dr S, Los Angeles, CA 90093, USA.
| |
Collapse
|
17
|
Kolch W, Berta D, Rosta E. Dynamic regulation of RAS and RAS signaling. Biochem J 2023; 480:1-23. [PMID: 36607281 PMCID: PMC9988006 DOI: 10.1042/bcj20220234] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023]
Abstract
RAS proteins regulate most aspects of cellular physiology. They are mutated in 30% of human cancers and 4% of developmental disorders termed Rasopathies. They cycle between active GTP-bound and inactive GDP-bound states. When active, they can interact with a wide range of effectors that control fundamental biochemical and biological processes. Emerging evidence suggests that RAS proteins are not simple on/off switches but sophisticated information processing devices that compute cell fate decisions by integrating external and internal cues. A critical component of this compute function is the dynamic regulation of RAS activation and downstream signaling that allows RAS to produce a rich and nuanced spectrum of biological outputs. We discuss recent findings how the dynamics of RAS and its downstream signaling is regulated. Starting from the structural and biochemical properties of wild-type and mutant RAS proteins and their activation cycle, we examine higher molecular assemblies, effector interactions and downstream signaling outputs, all under the aspect of dynamic regulation. We also consider how computational and mathematical modeling approaches contribute to analyze and understand the pleiotropic functions of RAS in health and disease.
Collapse
Affiliation(s)
- Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dénes Berta
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, U.K
| | - Edina Rosta
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
18
|
Pargett M, Ram AR, Murthy V, Davies AE. Live-Cell Sender-Receiver Co-cultures for Quantitative Measurement of Paracrine Signaling Dynamics, Gene Expression, and Drug Response. Methods Mol Biol 2023; 2634:285-314. [PMID: 37074584 DOI: 10.1007/978-1-0716-3008-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Paracrine signaling is a fundamental process regulating tissue development, repair, and pathogenesis of diseases such as cancer. Herein we describe a method for quantitatively measuring paracrine signaling dynamics, and resultant gene expression changes, in living cells using genetically encoded signaling reporters and fluorescently tagged gene loci. We discuss considerations for selecting paracrine "sender-receiver" cell pairs, appropriate reporters, the use of this system to ask diverse experimental questions and screen drugs blocking intracellular communication, data collection, and the use of computational approaches to model and interpret these experiments.
Collapse
Affiliation(s)
- Michael Pargett
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Abhineet R Ram
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Vaibhav Murthy
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Knight Cancer Institute, Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Alexander E Davies
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
- Knight Cancer Institute, Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
19
|
Hussain S, Yates C, Campbell MJ. Vitamin D and Systems Biology. Nutrients 2022; 14:5197. [PMID: 36558356 PMCID: PMC9782494 DOI: 10.3390/nu14245197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The biological actions of the vitamin D receptor (VDR) have been investigated intensively for over 100 years and has led to the identification of significant insights into the repertoire of its biological actions. These were initially established to be centered on the regulation of calcium transport in the colon and deposition in bone. Beyond these well-known calcemic roles, other roles have emerged in the regulation of cell differentiation processes and have an impact on metabolism. The purpose of the current review is to consider where applying systems biology (SB) approaches may begin to generate a more precise understanding of where the VDR is, and is not, biologically impactful. Two SB approaches have been developed and begun to reveal insight into VDR biological functions. In a top-down SB approach genome-wide scale data are statistically analyzed, and from which a role for the VDR emerges in terms of being a hub in a biological network. Such approaches have confirmed significant roles, for example, in myeloid differentiation and the control of inflammation and innate immunity. In a bottom-up SB approach, current biological understanding is built into a kinetic model which is then applied to existing biological data to explain the function and identify unknown behavior. To date, this has not been applied to the VDR, but has to the related ERα and identified previously unknown mechanisms of control. One arena where applying top-down and bottom-up SB approaches may be informative is in the setting of prostate cancer health disparities.
Collapse
Affiliation(s)
- Shahid Hussain
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Moray J. Campbell
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
20
|
Ram A, Albeck JG. ERK signaling dynamics: Lights, camera, transduction. Dev Cell 2022; 57:2151-2152. [PMID: 36167056 DOI: 10.1016/j.devcel.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Three-dimensional mammary epithelial acini are a model for understanding how microenvironment-driven signaling coordinates cell behavior and tissue morphogenesis. In this issue of Developmental Cell, Ender et al. use live-cell imaging to capture dynamic spatiotemporal patterns of ERK activity that instruct cell migration and survival fates in developing acini.
Collapse
Affiliation(s)
- Abhineet Ram
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - John G Albeck
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA.
| |
Collapse
|
21
|
Krause HB, Karls AL, McClean MN, Kreeger PK. Cellular context alters EGF-induced ERK dynamics and reveals potential crosstalk with GDF-15. BIOMICROFLUIDICS 2022; 16:054104. [PMID: 36217350 PMCID: PMC9547670 DOI: 10.1063/5.0114334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Cellular signaling dynamics are sensitive to differences in ligand identity, levels, and temporal patterns. These signaling patterns are also impacted by the larger context that the cell experiences (i.e., stimuli such as media formulation or substrate stiffness that are constant in an experiment exploring a particular variable but may differ between independent experiments which explore that variable) although the reason for different dynamics is not always obvious. Here, we compared extracellular-regulated kinase (ERK) signaling in response to epidermal growth factor treatment of human mammary epithelial cells cultures in either well culture or a microfluidic device. Using a single-cell ERK kinase translocation reporter, we observed extended ERK activation in well culture and only transient activity in microfluidic culture. The activity in microfluidic culture resembled that of the control condition, suggesting that shear stress led to the early activity and a loss of autocrine factors dampened extended signaling. Through experimental analysis we identified growth differentiation factor-15 as a candidate factor that led to extended ERK activation through a protein kinase C-α/β dependent pathway. Our results demonstrate that context impacts ERK dynamics and that comparison of distinct contexts can be used to elucidate new aspects of the cell signaling network.
Collapse
Affiliation(s)
- Harris B. Krause
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Alexis L. Karls
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | - Pamela K. Kreeger
- Author to whom correspondence should be addressed:. Telephone: 608-890-2915
| |
Collapse
|
22
|
Comandante-Lou N, Baumann DG, Fallahi-Sichani M. AP-1 transcription factor network explains diverse patterns of cellular plasticity in melanoma cells. Cell Rep 2022; 40:111147. [PMID: 35926467 DOI: 10.1016/j.celrep.2022.111147] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/04/2022] [Accepted: 07/07/2022] [Indexed: 12/28/2022] Open
Abstract
Cellular plasticity associated with fluctuations in transcriptional programs allows individual cells in a tumor to adopt heterogeneous differentiation states and switch phenotype during their adaptive responses to therapies. Despite increasing knowledge of such transcriptional programs, the molecular basis of cellular plasticity remains poorly understood. Here, we combine multiplexed transcriptional and protein measurements at population and single-cell levels with multivariate statistical modeling to show that the state of AP-1 transcription factor network plays a unifying role in explaining diverse patterns of plasticity in melanoma. We find that a regulated balance among AP-1 factors cJUN, JUND, FRA2, FRA1, and cFOS determines the intrinsic diversity of differentiation states and adaptive responses to MAPK inhibitors in melanoma cells. Perturbing this balance through genetic depletion of specific AP-1 proteins, or by MAPK inhibitors, shifts cellular heterogeneity in a predictable fashion. Thus, AP-1 may serve as a critical node for manipulating cellular plasticity with potential therapeutic implications.
Collapse
Affiliation(s)
- Natacha Comandante-Lou
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Douglas G Baumann
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Mohammad Fallahi-Sichani
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; UVA Cancer Center, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
23
|
Valls PO, Esposito A. Signalling dynamics, cell decisions, and homeostatic control in health and disease. Curr Opin Cell Biol 2022; 75:102066. [PMID: 35245783 PMCID: PMC9097822 DOI: 10.1016/j.ceb.2022.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/13/2022]
Abstract
Cell signalling engenders cells with the capability to receive and process information from the intracellular and extracellular environments, trigger and execute biological responses, and communicate with each other. Ultimately, cell signalling is responsible for maintaining homeostasis at the cellular, tissue and systemic level. For this reason, cell signalling is a topic of intense research efforts aimed to elucidate how cells coordinate transitions between states in developing and adult organisms in physiological and pathological conditions. Here, we review current knowledge of how cell signalling operates at multiple spatial and temporal scales, focusing on how single-cell analytical techniques reveal mechanisms underpinning cell-to-cell variability, signalling plasticity, and collective cellular responses.
Collapse
Affiliation(s)
- Pablo Oriol Valls
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, United Kingdom
| | - Alessandro Esposito
- MRC Cancer Unit, University of Cambridge, Cambridge, CB2 0XZ, United Kingdom; Centre for Genome Engineering and Maintenance, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom.
| |
Collapse
|
24
|
Myers PJ, Lee SH, Lazzara MJ. MECHANISTIC AND DATA-DRIVEN MODELS OF CELL SIGNALING: TOOLS FOR FUNDAMENTAL DISCOVERY AND RATIONAL DESIGN OF THERAPY. CURRENT OPINION IN SYSTEMS BIOLOGY 2021; 28:100349. [PMID: 35935921 PMCID: PMC9348571 DOI: 10.1016/j.coisb.2021.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A full understanding of cell signaling processes requires knowledge of protein structure/function relationships, protein-protein interactions, and the abilities of pathways to control phenotypes. Computational models offer a valuable framework for integrating that knowledge to predict the effects of system perturbations and interventions in health and disease. Whereas mechanistic models are well suited for understanding the biophysical basis for signal transduction and principles of therapeutic design, data-driven models are particularly suited to distill complex signaling relationships among samples and between multivariate signaling changes and phenotypes. Both approaches have limitations and provide incomplete representations of signaling biology, but their careful implementation and integration can provide new understanding for how manipulating system variables impacts cellular decisions.
Collapse
Affiliation(s)
- Paul J. Myers
- Department of Chemical Engineering, Charlottesville, VA 22904
| | - Sung Hyun Lee
- Department of Chemical Engineering, Charlottesville, VA 22904
| | - Matthew J. Lazzara
- Department of Chemical Engineering, Charlottesville, VA 22904
- Department of Biomedical Engineering University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
25
|
Krause HB, Bondarowicz H, Karls AL, McClean MN, Kreeger PK. Design and implementation of a microfluidic device capable of temporal growth factor delivery reveal filtering capabilities of the EGFR/ERK pathway. APL Bioeng 2021; 5:046101. [PMID: 34765858 PMCID: PMC8566012 DOI: 10.1063/5.0059011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/15/2021] [Indexed: 12/30/2022] Open
Abstract
Utilizing microfluidics to mimic the dynamic temporal changes of growth factor and cytokine concentrations in vivo has greatly increased our understanding of how signal transduction pathways are structured to encode extracellular stimuli. To date, these devices have focused on delivering pulses of varying frequency, and there are limited cell culture models for delivering slowly increasing concentrations of stimuli that cells may experience in vivo. To examine this setting, we developed and validated a microfluidic device that can deliver increasing concentrations of growth factor over periods ranging from 6 to 24 h. Using this device and a fluorescent biosensor of extracellular-regulated kinase (ERK) activity, we delivered a slowly increasing concentration of epidermal growth factor (EGF) to human mammary epithelial cells and surprisingly observed minimal ERK activation, even at concentrations that stimulate robust activity in bolus delivery. The cells remained unresponsive to subsequent challenges with EGF, and immunocytochemistry suggested that the loss of an epidermal growth factor receptor was responsible. Cells were then challenged with faster rates of change of EGF, revealing an increased ERK activity as a function of rate of change. Specifically, both the fraction of cells that responded and the length of ERK activation time increased with the rate of change. This microfluidic device fills a gap in the current repertoire of in vitro microfluidic devices and demonstrates that slower, more physiological changes in growth factor presentation can reveal new regulatory mechanisms for how signal transduction pathways encode changes in the extracellular growth factor milieu.
Collapse
Affiliation(s)
- Harris B Krause
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Hanna Bondarowicz
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Alexis L Karls
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
26
|
Ingram K, Samson SC, Zewdu R, Zitnay RG, Snyder EL, Mendoza MC. NKX2-1 controls lung cancer progression by inducing DUSP6 to dampen ERK activity. Oncogene 2021; 41:293-300. [PMID: 34689179 PMCID: PMC8738158 DOI: 10.1038/s41388-021-02076-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/07/2023]
Abstract
The RAS→RAF→MEK→ERK pathway is hyperactivated in the majority of human lung adenocarcinoma (LUAD). However, the initial activating mutations induce homeostatic feedback mechanisms that limit ERK activity. How ERK activation reaches the tumor-promoting levels that overcome the feedback and drive malignant progression is unclear. We show here that the lung lineage transcription factor NKX2-1 suppresses ERK activity. In human tissue samples and cell lines, xenografts, and genetic mouse models, NKX2-1 induces the ERK phosphatase DUSP6, which inactivates ERK. In tumor cells from late-stage LUAD with silenced NKX2-1, re-introduction of NKX2-1 induces DUSP6 and inhibits tumor growth and metastasis. We show that DUSP6 is necessary for NKX2-1-mediated inhibition of tumor progression in vivo and that DUSP6 expression is sufficient to inhibit RAS-driven LUAD. Our results indicate that NKX2-1 silencing, and thereby DUSP6 downregulation, is a mechanism by which early LUAD can unleash ERK hyperactivation for tumor progression.
Collapse
Affiliation(s)
- Kelley Ingram
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA.,Huntsman Cancer Institute, Salt Lake City, UT, 84112, USA
| | - Shiela C Samson
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA.,Huntsman Cancer Institute, Salt Lake City, UT, 84112, USA
| | - Rediet Zewdu
- Huntsman Cancer Institute, Salt Lake City, UT, 84112, USA.,Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Rebecca G Zitnay
- Huntsman Cancer Institute, Salt Lake City, UT, 84112, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Eric L Snyder
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA.,Huntsman Cancer Institute, Salt Lake City, UT, 84112, USA.,Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Michelle C Mendoza
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA. .,Huntsman Cancer Institute, Salt Lake City, UT, 84112, USA. .,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
27
|
Huising MO, Albeck JG. Temporal coding of ERK signalling in β-cells. Nat Rev Endocrinol 2021; 17:517-518. [PMID: 34168342 DOI: 10.1038/s41574-021-00527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mark O Huising
- Departments of Neurobiology, Physiology and Behavior & Physiology and Membrane Biology, University of California Davis, Davis, CA, USA.
| | - John G Albeck
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA, USA
| |
Collapse
|
28
|
Tobin SJ, Chang H, Kent MS, Davies AE. JARID1-targeted histone H3 demethylase inhibitors exhibit anti-proliferative activity and overcome cisplatin resistance in canine oral melanoma cell lines. Vet Comp Oncol 2021; 19:518-528. [PMID: 33715247 DOI: 10.1111/vco.12691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/16/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
Histone demethylases are overexpressed or display altered activity in numerous human cancers leading to alterations in cell cycle dynamics, DNA repair kinetics, and therapeutic resistance. Consequently, therapeutic targeting of histone demethylases has become an active and promising area of research in human oncology. However, the role of histone demethylases and the potential efficacy of demethylase inhibition in canine cancers remains largely unknown. In the present work, we addressed this knowledge gap by exploring the therapeutic potential of histone demethylase inhibitors (HDIs) in canine oral melanoma. Using canine melanoma cell lines, we determined that broad spectrum HDIs result in decreased cell survival and prolonged DNA damage repair kinetics. We then showed that JARID1B, a histone H3 demethylase implicated in proliferation-dormancy regulation and drug sensitivity in human cancers, is highly expressed in canine tumour tissues. HDIs targeting JARID1B, and related JARID1 family members, significantly reduced survival fractions in canine melanoma cell lines, but did not appear to modulate DNA damage repair kinetics like broad spectrum HDI treatments. Importantly, we found that the anti-proliferative effects of JARID1-targeted HDIs are preserved in cell lines resistant to platinum-based chemotherapeutics, suggesting that HDIs may serve as a viable therapeutic strategy when faced with oral melanomas that progress despite the use of conventional therapies.
Collapse
Affiliation(s)
- Savannah J Tobin
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA.,Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Hong Chang
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Michael S Kent
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Alexander E Davies
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|