1
|
Thierens NDE, Verdonk RC, Löhr JM, van Santvoort HC, Bouwense SA, van Hooft JE. Chronic pancreatitis. Lancet 2025; 404:2605-2618. [PMID: 39647500 DOI: 10.1016/s0140-6736(24)02187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 12/10/2024]
Abstract
Chronic pancreatitis is a progressive fibroinflammatory disease primarily caused by a complex interplay of environmental and genetic risk factors. It might result in pancreatic exocrine and endocrine insufficiency, chronic pain, reduced quality of life, and increased mortality. The diagnosis is based on the presence of typical symptoms and multiple morphological manifestations of the pancreas, including pancreatic duct stones and strictures, parenchymal calcifications, and pseudocysts. Management of chronic pancreatitis consists of prevention and treatment of complications, requiring a multidisciplinary approach focusing on lifestyle modifications, exocrine insufficiency, nutritional status, bone health, endocrine insufficiency, pain management, and psychological care. To optimise clinical outcomes, screening for complications and evaluation of treatment efficacy are indicated in all patients with chronic pancreatitis.
Collapse
Affiliation(s)
- Naomi DE Thierens
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, Netherlands; Department of Research and Development, St Antonius Hospital, Nieuwegein, Netherlands.
| | - Robert C Verdonk
- Department of Gastroenterology and Hepatology, St Antonius Hospital, Nieuwegein, Netherlands
| | - J Matthias Löhr
- Department of Upper Abdominal Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Hjalmar C van Santvoort
- Department of Surgery, St Antonius Hospital, Nieuwegein, Netherlands; Department of Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Stefan Aw Bouwense
- Department of Surgery, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Jeanin E van Hooft
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
2
|
Parisien M, Fillingim M, Tanguay-Sabourin C, Roy M, Vachon-Presseau E, Diatchenko L. Sex-specific genetics underlie increased chronic pain risk in women: genome-wide association studies from the UK Biobank. Br J Anaesth 2025:S0007-0912(25)00234-X. [PMID: 40410097 DOI: 10.1016/j.bja.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/31/2025] [Accepted: 04/17/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND Chronic pain disproportionately affects women, but the reasons for this disparity are unclear. METHODS We investigated this from a genetic perspective using data from the UK Biobank, focusing on multi-site chronic pain, which is highly heritable and manifests a sex bias. RESULTS Genome-wide association studies (GWAS) revealed that women have approximately 4500 sex-specific causal loci for overlapping pains-four times more than men-accounting for their higher heritability. Heritability partitioning indicated that pain-related loci are primarily enriched in brain regions, but only in women. Additionally, 200 imaging-derived brain phenotypes were significantly associated with pain in women, compared with only six in men. GWAS of these brain phenotypes showed stronger genetic correlations with pain in women, particularly regarding cortical thickness and striatal volume. When disentangling pleiotropy from causation in genetically correlated pairs of brain- and pain-related traits, we found that the genetics of brain phenotypes are more often causally implicated with the presence of chronic pain in women. CONCLUSIONS Our findings suggest that genetics play a crucial role in the increased risk of chronic pain observed in women.
Collapse
Affiliation(s)
- Marc Parisien
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada; Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada.
| | - Matthew Fillingim
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada; Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Christophe Tanguay-Sabourin
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada; Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Mathieu Roy
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada; Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Department of Psychology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Etienne Vachon-Presseau
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada; Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada; Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
3
|
Hostrup SN, Croosu SS, Røikjer J, Mørch CD, Ejskjær N, Hansen TM, Frøkjær JB. Altered surface-based brain morphometry in type 1 diabetes and neuropathic pain. Neuroscience 2025; 566:39-48. [PMID: 39706517 DOI: 10.1016/j.neuroscience.2024.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
This study explored surface brain morphometry in type 1 diabetes including focus on painful diabetic peripheral neuropathy (DPN). Brain MRI was obtained from 56 individuals with diabetes (18 without DPN, 19 with painless DPN, 19 with painful DPN) and 20 healthy controls. Cortical thickness, sulcus depth, and gyrification were analysed globally and regionally in each group and in the combined diabetes group. Associations with clinical characteristics and pain were assessed. Globally, cortical thickness was reduced in the combined diabetes group and in painful DPN compared to healthy controls. No differences in sulcus depth and gyrification were found. Several regions, including the middle frontal gyrus showed reduced cortical thickness in the combined diabetes- and painful DPN group. The postcentral gyrus exhibited reduced cortical thickness in painful DPN compared to healthy controls, and reduced sulcus depth compared to painless DPN correlating with higher pain intensity. Cortical thinning manifested across the brain cortex in diabetes, especially for painful DPN. Altered postcentral gyrus morphometry may be associated with neuropathic pain. Assessing cortical morphometry may be critical for comprehending central neuropathy and the manifestation of painful DPN in diabetes.
Collapse
Affiliation(s)
- Søren Nf Hostrup
- Radiology Research Center, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | - Suganthiya S Croosu
- Radiology Research Center, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark; Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark.
| | - Johan Røikjer
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark; Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark.
| | - Carsten D Mørch
- Center for Neuroplasticity and Pain (CNAP). SMI. Department of Health Science and Technology. Aalborg University, Aalborg, Denmark.
| | - Niels Ejskjær
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark; Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark.
| | - Tine M Hansen
- Radiology Research Center, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | - Jens B Frøkjær
- Radiology Research Center, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
4
|
van Gool R, Far A, Drenthen GS, Jansen JFA, Goijen CP, Backes WH, Linden DEJ, Merkies ISJ, Faber CG, Upadhyay J, Hoeijmakers JGJ. Peripheral Pain Captured Centrally: Altered Brain Morphology on MRI in Small Fiber Neuropathy Patients With and Without an SCN9A Gene Variant. THE JOURNAL OF PAIN 2024; 25:730-741. [PMID: 37921732 DOI: 10.1016/j.jpain.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/05/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
The current study aims to characterize brain morphology of pain as reported by small fiber neuropathy (SFN) patients with or without a gain-of-function variant involving the SCN9A gene and compare these with findings in healthy controls without pain. The Neuropathic Pain Scale was used in patients with idiopathic SFN (N = 20) and SCN9A-associated SFN (N = 12) to capture pain phenotype. T1-weighted, structural magnetic resonance imaging (MRI) data were collected in patients and healthy controls (N = 21) to 1) compare cortical thickness and subcortical volumes and 2) quantify the association between severity, quality, and duration of pain with morphological properties. SCN9A-associated SFN patients showed significant (P < .017, Bonferroni corrected) higher cortical thickness in sensorimotor regions, compared to idiopathic SFN patients, while lower cortical thickness was found in more functionally diverse regions (eg, posterior cingulate cortex). SFN patient groups combined demonstrated a significant (Spearman's ρ = .44-.55, P = .005-.049) correlation among itch sensations (Neuropathic Pain Scale-7) and thickness of the left precentral gyrus, and midcingulate cortices. Significant associations were found between thalamic volumes and duration of pain (left: ρ = -.37, P = .043; right: ρ = -.40, P = .025). No associations were found between morphological properties and other pain qualities. In conclusion, in SCN9A-associated SFN, profound morphological alterations anchored within the pain matrix are present. The association between itch sensations of pain and sensorimotor and midcingulate structures provides a novel basis for further examining neurobiological underpinnings of itch in SFN. PERSPECTIVE: Cortical thickness and subcortical volume alterations in SFN patients were found in pain hubs, more profound in SCN9A-associated neuropathy, and correlated with itch and durations of pain. These findings contribute to our understanding of the pathophysiological pathways underlying chronic neuropathic pain and symptoms of itch in SFN.
Collapse
Affiliation(s)
- Raquel van Gool
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Amir Far
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Neurology, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands
| | - Gerhard S Drenthen
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands
| | - Jacobus F A Jansen
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, North Brabant, The Netherlands
| | - Celine P Goijen
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Neurology, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands
| | - Walter H Backes
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands
| | - David E J Linden
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Ingemar S J Merkies
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Neurology, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands; Department of Neurology, Curaçao Medical Center, Willemstad, Kingdom of the Netherlands, Curaçao
| | - Catharina G Faber
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Neurology, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands
| | - Jaymin Upadhyay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Janneke G J Hoeijmakers
- School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Limburg, The Netherlands; Department of Neurology, Maastricht University Medical Center+, Maastricht, Limburg, The Netherlands
| |
Collapse
|
5
|
Yu Z, Yang H, Liu LY, Chen L, Su MH, Yang L, Zhu MJ, Yang LL, Liang F, Yu S, Yang J. Altered cognitive control network mediates the association between long-term pain and anxiety symptoms in primary dysmenorrhea. Neuroreport 2024; 35:9-16. [PMID: 37994619 PMCID: PMC10702699 DOI: 10.1097/wnr.0000000000001971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/31/2023] [Indexed: 11/24/2023]
Abstract
Neuroimaging studies have demonstrated the association of the cognitive control network (CCN) with the maintenance of chronic pain. However, whether and how dorsolateral prefrontal cortex (DLPFC), a key region within the CCN, is altered in menstrual pain is unclear. In this study, we aimed to investigate alterations in the DLPFC functional connectivity network in patients with primary dysmenorrhea (PDM). The study comprised 41 PDM patients and 39 matched healthy controls (HCs), all of whom underwent a resting-state functional MRI scan during the menstrual stage. All participants were instructed to complete the clinical assessment before the MRI scan. We used the DLPFC as the seed in resting-state functional connectivity (rsFC) analysis to investigate the difference between PDM patients and HCs. Compared to HCs, PDM patients showed increased right DLPFC rsFC at the bilateral lingual gyrus, dorsal anterior cingulate cortex (dACC), and middle cingulate cortex, and decreased left DLPFC rsFC at the right orbital frontal cortex. In addition, increased right DLPFC-bilateral dACC connectivity mediated the association between disease duration and the self-rating anxiety scale (SAS) scores in PDM patients. We confirmed that the DLPFC-dACC rsFC was associated with higher SAS scores, which could mediate the association between disease duration and anxiety symptoms in patients with PDM. Our findings provide central pathological evidence for an abnormal rsFC of the CCN in PDM patients, which may contribute to a better understanding of the neuropathophysiological mechanisms underlying PDM.
Collapse
Affiliation(s)
- Zheng Yu
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu
| | - Han Yang
- Division of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University
| | - Li-ying Liu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine
| | - Lin Chen
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine
| | - Meng-hua Su
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine
| | - Lu Yang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine
| | - Man-jia Zhu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu
| | - Li-li Yang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine
| | - Fanrong Liang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine
| | - Siyi Yu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine
| | - Jie Yang
- Traditional Chinese Medicine Department, Sichuan Jinxin Xi’nan Women’s and Children’s Hospital
| |
Collapse
|
6
|
Knoph CS, Nedergaard RB, Olesen SS, Kuhlmann L, Drewes AM. Spinal Excitability in Patients with Painful Chronic Pancreatitis. J Pain Res 2023; 16:2287-2298. [PMID: 37431436 PMCID: PMC10329835 DOI: 10.2147/jpr.s408523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/10/2023] [Indexed: 07/12/2023] Open
Abstract
Purpose Abdominal pain is common in patients with chronic pancreatitis (CP), but management is challenging - possibly due to altered pain processing within the central nervous system rendering conventional treatments ineffective. We hypothesized that many patients with painful CP have generalized hyperalgesia correlating with central neuronal hyperexcitability. Patients and Methods Seventeen CP patients with pain and 20 matched healthy controls underwent experimental pain testing, including repeated pain stimuli (temporal summation), pressure algometry performed in dermatomes with same spinal innervation as the pancreatic gland (pancreatic areas) and remote dermatomes (control areas), a cold pressor test and a conditioned pain modulation paradigm. To probe central neuronal excitability, the nociceptive withdrawal reflex was elicited by electrical stimulation of the plantar skin, and electromyography was obtained from the ipsilateral anterior tibial muscle together with somatosensory evoked brain potentials. Results Compared to healthy controls, patients with painful CP had generalized hyperalgesia as evidenced by 45% lower pressure pain detection thresholds (P<0.05) and decreased cold pressor endurance time (120 vs 180 seconds, P<0.001). In patients, reflex thresholds were lower (14 vs 23 mA, P=0.02), and electromyographic responses were increased (16.4 vs 9.7, P=0.04) during the withdrawal reflex, reflecting predominantly spinal hyperexcitability. Evoked brain potentials did not differ between groups. A positive correlation was found between reflex thresholds and cold pressor endurance time (ρ=0.71, P=0.004). Conclusion We demonstrated somatic hyperalgesia in patients with painful CP associated with spinal hyperexcitability. This highlights that management should be directed at central mechanisms using, eg, gabapentinoids or serotonin-noradrenaline reuptake inhibitors.
Collapse
Affiliation(s)
- Cecilie Siggaard Knoph
- Center for Pancreatic Diseases & Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Rasmus Bach Nedergaard
- Center for Pancreatic Diseases & Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Søren Schou Olesen
- Center for Pancreatic Diseases & Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Louise Kuhlmann
- Center for Pancreatic Diseases & Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Asbjørn Mohr Drewes
- Center for Pancreatic Diseases & Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
7
|
Tuck NL, Teo K, Kuhlmann L, Olesen SS, Johnson M, Bean DJ, Rashid U, MacCormick AD, Srikumar G, Drewes AM, Windsor JA. Pain patterns in chronic pancreatitis and chronic primary pain. Pancreatology 2022; 22:572-582. [PMID: 35562269 DOI: 10.1016/j.pan.2022.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Abdominal pain is the most distressing symptom of chronic pancreatitis (CP), and current treatments show limited benefit. Pain phenotypes may be more useful than diagnostic categories when planning treatments, and the presence or absence of constant pain in CP may be a useful prognostic indicator. AIMS This cross-sectional study examined dimensions of pain in CP, compared pain in CP with chronic primary pain (CPP), and assessed whether constant pain in CP is associated with poorer outcomes. METHODS Patients with CP (N = 91) and CPP (N = 127) completed the Comprehensive Pancreatitis Assessment Tool. Differences in clinical characteristics and pain dimensions were assessed between a) CP and CPP and b) CP patients with constant versus intermittent pain. Latent class regression analysis was performed (N = 192) to group participants based on pain dimensions and clinical characteristics. RESULTS Compared to CPP, CP patients had higher quality of life (p < 0.001), lower pain severity (p < 0.001), and were more likely to use strong opioids (p < 0.001). Within CP, constant pain was associated with a stronger response to pain triggers (p < 0.05), greater pain spread (p < 0.01), greater pain severity, more features of central sensitization, greater pain catastrophising, and lower quality of life compared to intermittent pain (all p values ≤ 0.001). Latent class regression analysis identified three groups, that mapped onto the following patient groups 1) combined CPP and CP-constant, 2) majority CPP, and 3) majority CP-intermittent. CONCLUSIONS Within CP, constant pain may represent a pain phenotype that corresponds with poorer outcomes. CP patients with constant pain show similarities to some patients with CPP, potentially indicating shared mechanisms.
Collapse
Affiliation(s)
- N L Tuck
- The Health and Rehabilitation Research Institute, School of Clinical Sciences, Faculty of Health and Environmental Sciences, Auckland University of Technology (AUT), Auckland, New Zealand; The Auckland Regional Pain Service (TARPS), Auckland District Health Board (ADHB), Auckland, New Zealand; The Pain Management Unit, Department of Anaesthesia and Perioperative Medicine, Waitematā District Health Board (WDHB), Auckland, New Zealand.
| | - K Teo
- Department of Surgery, School of Medicine, Faculty of Medical and Health Science, University of Auckland, New Zealand
| | - L Kuhlmann
- Centre for Pancreatic Diseases & Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark; Department of Internal Medicine, Randers Regional Hospital, Randers, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - S S Olesen
- Centre for Pancreatic Diseases & Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - M Johnson
- Department of Psychological Medicine, Faculty of Medical and Health Science, University of Auckland, New Zealand
| | - D J Bean
- The Health and Rehabilitation Research Institute, School of Clinical Sciences, Faculty of Health and Environmental Sciences, Auckland University of Technology (AUT), Auckland, New Zealand; The Pain Management Unit, Department of Anaesthesia and Perioperative Medicine, Waitematā District Health Board (WDHB), Auckland, New Zealand
| | - U Rashid
- The Health and Rehabilitation Research Institute, School of Clinical Sciences, Faculty of Health and Environmental Sciences, Auckland University of Technology (AUT), Auckland, New Zealand
| | - A D MacCormick
- Department of Surgery, School of Medicine, Faculty of Medical and Health Science, University of Auckland, New Zealand; Department of General Surgery, Counties Manukau District Health Board (CMDHB), Auckland, New Zealand
| | - G Srikumar
- Department of General Surgery, Counties Manukau District Health Board (CMDHB), Auckland, New Zealand
| | - A M Drewes
- Centre for Pancreatic Diseases & Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - J A Windsor
- Department of Surgery, School of Medicine, Faculty of Medical and Health Science, University of Auckland, New Zealand
| |
Collapse
|
8
|
Ren D, Li JN, Qiu XT, Wan FP, Wu ZY, Fan BY, Zhang MM, Chen T, Li H, Bai Y, Li YQ. Anterior Cingulate Cortex Mediates Hyperalgesia and Anxiety Induced by Chronic Pancreatitis in Rats. Neurosci Bull 2021; 38:342-358. [PMID: 34907496 PMCID: PMC9068840 DOI: 10.1007/s12264-021-00800-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/29/2021] [Indexed: 12/18/2022] Open
Abstract
Central sensitization is essential in maintaining chronic pain induced by chronic pancreatitis (CP), but cortical modulation of painful CP remains elusive. Here, we examined the role of the anterior cingulate cortex (ACC) in the pathogenesis of abdominal hyperalgesia in a rat model of CP induced by intraductal administration of trinitrobenzene sulfonic acid (TNBS). TNBS treatment resulted in long-term abdominal hyperalgesia and anxiety in rats. Morphological data indicated that painful CP induced a significant increase in FOS-expressing neurons in the nucleus tractus solitarii (NTS) and ACC, and some FOS-expressing neurons in the NTS projected to the ACC. In addition, a larger portion of ascending fibers from the NTS innervated pyramidal neurons, the neural subpopulation primarily expressing FOS under the condition of painful CP, rather than GABAergic neurons within the ACC. CP rats showed increased expression of vesicular glutamate transporter 1, and increased membrane trafficking and phosphorylation of the N-methyl-D-aspartate receptor (NMDAR) subunit NR2B and the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) subunit GluR1 within the ACC. Microinjection of NMDAR and AMPAR antagonists into the ACC to block excitatory synaptic transmission significantly attenuated abdominal hyperalgesia in CP rats, which was similar to the analgesic effect of endomorphins injected into the ACC. Specifically inhibiting the excitability of ACC pyramidal cells via chemogenetics reduced both hyperalgesia and comorbid anxiety, whereas activating these neurons via optogenetics failed to aggravate hyperalgesia and anxiety in CP rats. Taken together, these findings provide neurocircuit, biochemical, and behavioral evidence for involvement of the ACC in hyperalgesia and anxiety in CP rats, as well as novel insights into the cortical modulation of painful CP, and highlights the ACC as a potential target for neuromodulatory interventions in the treatment of painful CP.
Collapse
Affiliation(s)
- Dan Ren
- Department of Anatomy, Guangxi Medical University, Nanning, 510000, China.,Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Jia-Ni Li
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin-Tong Qiu
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Fa-Ping Wan
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China.,Department of Anatomy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zhen-Yu Wu
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Bo-Yuan Fan
- Department of Cardiology, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an, 710004, China
| | - Ming-Ming Zhang
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Tao Chen
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Li
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Bai
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China. .,Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, 110016, China.
| | - Yun-Qing Li
- Department of Anatomy, Guangxi Medical University, Nanning, 510000, China. .,Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China. .,Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Haikou, 570216, China. .,Department of Human Anatomy, College of Basic Medicine, Dali University, Dali, 671000, China.
| |
Collapse
|
9
|
Psychiatric Disease Susceptibility and Pain in Chronic Pancreatitis: Association or Causation? Am J Gastroenterol 2021; 116:2026-2028. [PMID: 34459451 DOI: 10.14309/ajg.0000000000001491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022]
Abstract
Pain perception in chronic pancreatitis (CP) is governed by the transmission of nociceptive inputs into the pain processing centers of the brain. These regions of the brain overlap with those that regulate and process emotions and cognition. Disorders in these regions also result in psychiatric conditions such as depression, anxiety, and posttraumatic stress disorder. The present study by Dunbar et al. evaluated 24 single nucleotide polymorphisms associated with anxiety and/or posttraumatic stress disorder and found correlations with constant and severe pain phenotypes in CP patients from a large cross-sectional cohort study. Although causation cannot be proven, the findings suggest that there may be a role for neuromodulator drugs for the treatment of pain in CP based on individual genetic susceptibility.
Collapse
|
10
|
Guarnera A, Bottino F, Napolitano A, Sforza G, Cappa M, Chioma L, Pasquini L, Rossi-Espagnet MC, Lucignani G, Figà-Talamanca L, Carducci C, Ruscitto C, Valeriani M, Longo D, Papetti L. Early alterations of cortical thickness and gyrification in migraine without aura: a retrospective MRI study in pediatric patients. J Headache Pain 2021; 22:79. [PMID: 34294048 PMCID: PMC8296718 DOI: 10.1186/s10194-021-01290-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background Migraine is the most common neurological disease, with high social-economical burden. Although there is growing evidence of brain structural and functional abnormalities in patients with migraine, few studies have been conducted on children and no studies investigating cortical gyrification have been conducted on pediatric patients affected by migraine without aura. Methods Seventy-two pediatric patients affected by migraine without aura and eighty-two controls aged between 6 and 18 were retrospectively recruited with the following inclusion criteria: MRI exam showing no morphological or signal abnormalities, no systemic comorbidities, no abnormal neurological examination. Cortical thickness (CT) and local gyrification index (LGI) were obtained through a dedicated algorithm, consisting of a combination of voxel-based and surface-based morphometric techniques. The statistical analysis was performed separately on CT and LGI between: patients and controls; subgroups of controls and subgroups of patients. Results Patients showed a decreased LGI in the left superior parietal lobule and in the supramarginal gyrus, compared to controls. Female patients presented a decreased LGI in the right superior, middle and transverse temporal gyri, right postcentral gyrus and supramarginal gyrus compared to male patients. Compared to migraine patients younger than 12 years, the ≥ 12-year-old subjects showed a decreased CT in the superior and middle frontal gyri, pre- and post-central cortex, paracentral lobule, superior and transverse temporal gyri, supramarginal gyrus and posterior insula. Migraine patients experiencing nausea and/or vomiting during headache attacks presented an increased CT in the pars opercularis of the left inferior frontal gyrus. Conclusions Differences in CT and LGI in patients affected by migraine without aura may suggest the presence of congenital and acquired abnormalities in migraine and that migraine might represent a vast spectrum of different entities. In particular, ≥ 12-year-old pediatric patients showed a decreased CT in areas related to the executive function and nociceptive networks compared to younger patients, while female patients compared to males showed a decreased CT of the auditory cortex compared to males. Therefore, early and tailored therapies are paramount to obtain migraine control, prevent cerebral reduction of cortical thickness and preserve executive function and nociception networks to ensure a high quality of life.
Collapse
Affiliation(s)
- Alessia Guarnera
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy.,Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Francesca Bottino
- Medical Physics Department, Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, Rome, Italy.
| | - Giorgia Sforza
- Pediatric Headache Center, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Marco Cappa
- Unit of Endocrinology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Laura Chioma
- Unit of Endocrinology, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| | - Luca Pasquini
- Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Via di Grottarossa, 1035-1039, 00189, Rome, Italy.,Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 10065, New York City, NY, USA
| | - Maria Camilla Rossi-Espagnet
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy.,Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Giulia Lucignani
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Lorenzo Figà-Talamanca
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Chiara Carducci
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Claudia Ruscitto
- Child Neurology Unit, Systems Medicine Department, Tor Vergata University Hospital of Rome, 00133, Rome, Italy
| | - Massimiliano Valeriani
- Pediatric Headache Center, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy.,Center for Sensory-Motor Interaction, Aalborg University, 9220, Aalborg, Denmark
| | - Daniela Longo
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165, Rome, Italy
| | - Laura Papetti
- Pediatric Headache Center, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio 4, 00165, Rome, Italy
| |
Collapse
|
11
|
Yang Z, Wang T, Hu LH. Progress in pharmacotherapy for alleviating pain of chronic pancreatitis. Shijie Huaren Xiaohua Zazhi 2021; 29:217-222. [DOI: 10.11569/wcjd.v29.i5.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pain is the main clinical symptom of chronic pancreatitis (CP), as well as the most common cause of patients' recurrent hospitalizations. The management regimen for CP pain needs to be formulated according to the patient's conditions. Lifestyle changes and drug treatment can usually be used as first-line therapy. Conventional analgesics, pancreatic enzymes, and antioxidants are commonly used in treating pain of CP. In recent years, the application of conventional analgesics has been further standardized. Besides, there have been more clinical studies on the treatment of CP pain with pancreatic enzymes or antioxidants. Traditional Chinese medicine has played an increasingly important role in the treatment of CP pain. New drugs such as camostat mesylate are expected to be used in CP pain, though more high-quality studies are still needed to confirm their safety and effectiveness.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Teng Wang
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Liang-Hao Hu
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
12
|
Distinct cortical thickness correlates of early life trauma exposure and posttraumatic stress disorder are shared among adolescent and adult females with interpersonal violence exposure. Neuropsychopharmacology 2021; 46:741-749. [PMID: 33273705 PMCID: PMC8027669 DOI: 10.1038/s41386-020-00918-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/26/2020] [Accepted: 11/15/2020] [Indexed: 01/21/2023]
Abstract
Early life trauma (ELT) exposure and posttraumatic stress disorder (PTSD) both affect neural structure, which predicts a variety of mental health concerns throughout the lifespan and may present differently between adolescents and adults. However, few studies have identified the relationship between ELT, PTSD, development, and brain structure using cortical thickness (CT). CT may reveal previously obscured alterations that are potentially clinically relevant and, furthermore, could identify specific structural correlates distinct to ELT from PTSD. Two hundred and fifty-three female adolescent and adult survivors of interpersonal violence and non-trauma-exposed demographically matched controls underwent structural MRI at two different sites. Images were processed and CT was estimated using FreeSurfer. Vertex-wise linear model tests were conducted across the cortical surface to investigate whether PTSD and ELT exposure uniquely affect CT, controlling for scanner site. Planned follow-up tests included second-level analyses of clinical symptoms for CT clusters that were significantly related to PTSD or ELT. CT in the middle cingulate cortex was inversely related to ELT in both age groups, such that individuals with more ELT demonstrated less CT in this region. Additionally, CT was significantly greater in the bilateral intraparietal sulcus and left angular gyrus in both adolescents and adults with PTSD. Furthermore, CT in these clusters was also significantly related to clinical symptom severity in the adult PTSD group. This study provides evidence for distinct CT correlates of ELT and PTSD that are present across adolescents and adults, suggesting consistent markers related to ELT and PTSD on gray matter structure in trauma-exposed individuals.
Collapse
|
13
|
Patient and Disease Characteristics Associate With Sensory Testing Results in Chronic Pancreatitis. Clin J Pain 2020; 35:786-793. [PMID: 31268890 PMCID: PMC6693925 DOI: 10.1097/ajp.0000000000000740] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Abdominal pain is the most common symptom in chronic pancreatitis (CP) and has an extensive impact on patients' lives. Quantitative sensory testing (QST) provides information on sensitivity to pain and mechanisms that can help quantify pain and guide treatment. The aims of this study were (1) to explore sensitivity to pain in patients with CP using QST and (2) to associate patient and disease characteristics with QST results. METHODS Ninety-one patients with painful CP and 28 healthy control participants completed a QST paradigm using static tests (muscle pressure stimulation and electrical skin stimulations) to unravel segmental and widespread hyperalgesia as a consequence of visceral pain. A dynamic conditioned pain modulation (CPM) paradigm was used as a proxy of pain modulation from the brainstem to inhibit incoming nociceptive barrage, and questionnaires were used to gather information on pain experience and quality of life. RESULTS Patients had impaired CPM compared with controls (18.0±29.3% vs. 30.9±29.3%, P=0.04) and were hypersensitive to pressure stimulation, specifically in the pancreatic (Th10) dermatome (P<0.001). The capacity of CPM was associated with clinical pain intensity (P=0.01) and (in the univariate analysis only) the use of opioids was associated with hyperalgesia to pressure stimulation (P<0.05). CONCLUSIONS Sensitivity to pain in CP patients can be characterized by a simple bedside QST. Severe clinical pain in CP was associated with reduced CPM function and should be targeted in management.
Collapse
|
14
|
Montesino-Goicolea S, Valdes-Hernandez PA, Hoyos L, Woods AJ, Cohen R, Huo Z, Riley JL, Porges EC, Fillingim RB, Cruz-Almeida Y. Cortical Thickness Mediates the Association Between Self-Reported Pain and Sleep Quality in Community-Dwelling Older Adults. J Pain Res 2020; 13:2389-2400. [PMID: 33061554 PMCID: PMC7522519 DOI: 10.2147/jpr.s260611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Musculoskeletal pain is prevalent in older adults representing the leading cause of disability in this population. Similarly, nearly half of older adults complain of difficulty sleeping. We aimed to explore the relationship between sleep quality with self-reported musculoskeletal pain, somatosensory and pain thresholds in community-dwelling older adults and further explore brain regions that may contribute to this association. METHODS Older adults (>60 years old, n=69) from the NEPAL study completed demographic, pain and sleep assessments followed by a quantitative sensory testing battery. A subset (n=49) also underwent a 3T high-resolution, T1-weighted anatomical scan. RESULTS Poorer sleep quality using the Pittsburgh Sleep Quality Index was positively associated with self-reported pain measures (all p's >0.05), but not somatosensory and pain thresholds (all p's >0.05). Using a non-parametric threshold-free cluster enhancement (TFCE) approach, worse sleep quality was significantly associated with lower cortical thickness in the precentral, postcentral, precuneus, superior parietal, and lateral occipital regions (TFCE-FWE-corrected at p < 0.05). Further, only postcentral cortical thickness significantly mediated the association between sleep quality and self-reported pain intensity using bootstrapped mediation methods. CONCLUSION Our findings in older adults are similar to previous studies in younger individuals where sleep is significantly associated with self-reported pain. Specifically, our study implicates brain structure as a significant mediator of this association in aging. Future larger studies are needed to replicate our findings and to further understand if the brain can be a therapeutic target for both improved sleep and pain relief in older individuals.
Collapse
Affiliation(s)
- Soamy Montesino-Goicolea
- Department of Community Dentistry & Behavioral Sciences, University of Florida, Gainesville, FL, USA
- Center for Cognitive Aging and Memory, McKnight Brain Foundation, University of Florida, Gainesville, FL, USA
| | - Pedro A Valdes-Hernandez
- Department of Community Dentistry & Behavioral Sciences, University of Florida, Gainesville, FL, USA
- Center for Cognitive Aging and Memory, McKnight Brain Foundation, University of Florida, Gainesville, FL, USA
| | - Lorraine Hoyos
- University of Central, Florida College of Medicine, Orlando, FL, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Foundation, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Health Professions, University of Florida, Gainesville, FL, USA
| | - Ronald Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Foundation, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Health Professions, University of Florida, Gainesville, FL, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health and Health Professions College of Medicine, University of Florida, Gainesville, FL, USA
| | - Joseph L Riley
- Department of Community Dentistry & Behavioral Sciences, University of Florida, Gainesville, FL, USA
- Institute on Aging, University of Florida, Gainesville, FL, USA
| | - Eric C Porges
- Center for Cognitive Aging and Memory, McKnight Brain Foundation, University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Health Professions, University of Florida, Gainesville, FL, USA
| | - Roger B Fillingim
- Department of Community Dentistry & Behavioral Sciences, University of Florida, Gainesville, FL, USA
- Institute on Aging, University of Florida, Gainesville, FL, USA
| | - Yenisel Cruz-Almeida
- Department of Community Dentistry & Behavioral Sciences, University of Florida, Gainesville, FL, USA
- Center for Cognitive Aging and Memory, McKnight Brain Foundation, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
- Institute on Aging, University of Florida, Gainesville, FL, USA
| |
Collapse
|
15
|
Disrupted functional connectivity of default mode and salience networks in chronic pancreatitis patients. Clin Neurophysiol 2020; 131:1021-1029. [DOI: 10.1016/j.clinph.2020.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/02/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022]
|
16
|
Olesen SS, Kuhlmann L, Novovic S, Nøjgaard C, Kalaitzakis E, Jensen NM, Engjom T, Dimcevski G, Waage A, Haas SL, Vujasinovic M, Riauka R, Pukitis A, Ozola-Zālīte I, Okhlobystin A, Parhiala M, Laukkarinen J, Drewes AM. Association of multiple patient and disease characteristics with the presence and type of pain in chronic pancreatitis. J Gastroenterol Hepatol 2020; 35:326-333. [PMID: 31314128 DOI: 10.1111/jgh.14783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/21/2019] [Accepted: 07/09/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND AIM Pain is the primary symptom of chronic pancreatitis (CP) and associates with a number of patient and disease characteristics. However, the complex interrelations of these parameters are incompletely understood, and pain treatment remains unsatisfactory in a large proportion of patients. The aim of this study is to investigate multiple pain risk factors in a large population of CP patients, with a special emphasis on patients' patterns of smoking and alcohol use. METHODS This was a multicenter, cross-sectional study including 1384 patients with CP. Patient demographics and disease characteristics, as well as current patterns of smoking and alcohol use, were compared for patients with pain (n = 801) versus without pain (n = 583). Multivariate logistic regression models were performed to assess the variables associated with the presence and type of pain (constant vs intermittent pain). RESULTS The mean age of participants was 52.1 ± 14.6 years, and 914 (66%) were men. Active smoking (odds ratio 1.6 [95% confidence interval 1.1-2.2], P = 0.005) and alcohol consumption (odds ratio 1.8 [95% confidence interval 1.1-3.0], P = 0.03) were independently associated with the presence of pain. In addition, patients' age at diagnosis, pancreatic duct pathology, and the presence of pseudocysts, duodenal stenosis, and exocrine pancreatic insufficiency were confirmed as pain risk factors (all P ≤ 0.01). Constant pain, as opposed to intermittent pain, was more frequently reported by smokers (P = 0.03), while alcohol consumption was associated with intermittent pain (P = 0.006). CONCLUSION Multiple patient and disease characteristics, including patterns of smoking and alcohol consumption, associate with the presence and type of pain in patients with CP.
Collapse
Affiliation(s)
- Søren S Olesen
- Centre for Pancreatic Diseases, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
- Clinical Institute, Aalborg University, Aalborg, Denmark
| | - Louise Kuhlmann
- Centre for Pancreatic Diseases, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
- Clinical Institute, Aalborg University, Aalborg, Denmark
- Department of Internal Medicine, North Denmark Regional Hospital, Hjørring, Denmark
| | - Srdan Novovic
- Department of Gastroenterology, Hvidovre University Hospital, Copenhagen, Denmark
| | - Camilla Nøjgaard
- Department of Gastroenterology, Hvidovre University Hospital, Copenhagen, Denmark
| | - Evangelos Kalaitzakis
- Copenhagen University Hospital/Herlev, University of Copenhagen, Copenhagen, Denmark
| | - Nanna M Jensen
- Abdominalcenter K, Bispebjerg Hospital, Copenhagen, Denmark
| | - Trond Engjom
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Georg Dimcevski
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Anne Waage
- Department of Surgery, Oslo University Hospital, Oslo, Norway
| | - Stephan L Haas
- Centre for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Miroslav Vujasinovic
- Centre for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Romualdas Riauka
- Department of Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Aldis Pukitis
- Centre of Gastroenterology, Hepatology and Nutrition, Pauls Stradiņš Clinical University Hospital, Riga, Latvia
| | - Imanta Ozola-Zālīte
- Centre of Gastroenterology, Hepatology and Nutrition, Pauls Stradiņš Clinical University Hospital, Riga, Latvia
| | - Alexey Okhlobystin
- Medical Faculty, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mikael Parhiala
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
- Cancer Center, Faculty of Medicine and Heath Technology, Tampere University, Tampere, Finland
| | - Johanna Laukkarinen
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
- Cancer Center, Faculty of Medicine and Heath Technology, Tampere University, Tampere, Finland
| | - Asbjørn M Drewes
- Centre for Pancreatic Diseases, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
- Clinical Institute, Aalborg University, Aalborg, Denmark
| |
Collapse
|
17
|
Abstract
Gastrointestinal (GI) pain - a form of visceral pain - is common in some disorders, such as irritable bowel syndrome, Crohn's disease and pancreatitis. However, identifying the cause of GI pain frequently represents a diagnostic challenge as the clinical presentation is often blurred by concomitant autonomic and somatic symptoms. In addition, GI pain can be nociceptive, neuropathic and associated with cancer, but in many cases multiple aetiologies coexist in an individual patient. Mechanisms of GI pain are complex and include both peripheral and central sensitization and the involvement of the autonomic nervous system, which has a role in generating the symptoms that frequently accompany pain. Treatment of GI pain depends on the precise type of pain and the primary disorder in the patient but can include, for example, pharmacological therapy, cognitive behavioural therapies, invasive surgical procedures, endoscopic procedures and lifestyle alterations. Owing to the major differences between organ involvement, disease mechanisms and individual factors, treatment always needs to be personalized and some data suggest that phenotyping and subsequent individual management of GI pain might be options in the future.
Collapse
|
18
|
Woodworth DC, Holly LT, Mayer EA, Salamon N, Ellingson BM. Alterations in Cortical Thickness and Subcortical Volume are Associated With Neurological Symptoms and Neck Pain in Patients With Cervical Spondylosis. Neurosurgery 2019; 84:588-598. [PMID: 29548020 DOI: 10.1093/neuros/nyy066] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 02/07/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Advanced cervical spondylosis (CS) can cause structural damage to the spinal cord resulting in long-term neurological impairment including neck pain and motor weakness. We hypothesized long-term structural reorganization within the brain in patients with CS. OBJECTIVE To explore the associations between cortical thickness, subcortical volumes, neurological symptoms, and pain severity in CS patients with or without myelopathy and healthy controls (HCs). METHODS High-resolution T1-weighted structural magnetic resonance imaging (MRI) scans from 26 CS patients and 45 HCs were acquired. Cortical thickness and subcortical volumes were computed and compared to the modified Japanese Orthopedic Association (mJOA) and the Neck Disability Index (NDI) scores. RESULTS Cortical thinning within the superior frontal gyrus, anterior cingulate, precuneus, and reduction in putamen volume were associated with worsening neurological and pain symptoms. Among the strongest associations were cortical thickness within the left precuneus (R2 = 0.34) and left and right putamen (R2 = 0.43, 0.47, respectively) vs mJOA, and the left precuneus (R2 = 0.55), insula (R2 = 0.57), and right putamen (R2 = 0.54) vs NDI (P ≤ .0001 for all). Cortical thickness along Brodmann areas 3a, 4a, and 4p were also moderately associated with mJOA. Preliminary evidence also suggests that patients with CS may undergo cortical atrophy at a faster rate than HCs. CONCLUSION Patients with CS appear to exhibit cortical thinning and atrophy with worsening neurological and pain symptoms in specific brain regions associated with sensorimotor and pain processing.
Collapse
Affiliation(s)
- Davis C Woodworth
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Department of Physics and Biology in Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Langston T Holly
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Emeran A Mayer
- Gail and Gerald Oppenheimer Family Center for Neurobiology of Stress and Resilience, Departments of Medicine, Physiology, and Psychiatry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Benjamin M Ellingson
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Department of Physics and Biology in Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
19
|
Niddam DM, Lee SH, Su YT, Chan RC. Altered cortical morphology in patients with chronic shoulder pain. Neurosci Lett 2019; 712:134515. [DOI: 10.1016/j.neulet.2019.134515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022]
|
20
|
Bai Y, Ma LT, Chen YB, Ren D, Chen YB, Li YQ, Sun HK, Qiu XT, Zhang T, Zhang MM, Yi XN, Chen T, Li H, Fan BY, Li YQ. Anterior insular cortex mediates hyperalgesia induced by chronic pancreatitis in rats. Mol Brain 2019; 12:76. [PMID: 31484535 PMCID: PMC6727343 DOI: 10.1186/s13041-019-0497-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
Central sensitization plays a pivotal role in the maintenance of chronic pain induced by chronic pancreatitis (CP), but cortical modulation of painful CP remains elusive. This study was designed to examine the role of anterior insular cortex (aIC) in the pathogenesis of hyperalgesia in a rat model of CP. CP was induced by intraductal administration of trinitrobenzene sulfonic acid (TNBS). Abdomen hyperalgesia and anxiety were assessed by von Frey filament and open field tests, respectively. Two weeks after surgery, the activation of aIC was indicated by FOS immunohistochemical staining and electrophysiological recordings. Expressions of VGluT1, NMDAR subunit NR2B and AMPAR subunit GluR1 were analyzed by immunoblottings. The regulatory roles of aIC in hyperalgesia and pain-related anxiety were detected via pharmacological approach and chemogenetics in CP rats. Our results showed that TNBS treatment resulted in long-term hyperalgesia and anxiety-like behavior in rats. CP rats exhibited increased FOS expression and potentiated excitatory synaptic transmission within aIC. CP rats also showed up-regulated expression of VGluT1, and increased membrane trafficking and phosphorylation of NR2B and GluR1 within aIC. Blocking excitatory synaptic transmission significantly attenuated abdomen mechanical hyperalgesia. Specifically inhibiting the excitability of insular pyramidal cells reduced both abdomen hyperalgesia and pain-related anxiety. In conclusion, our findings emphasize a key role for aIC in hyperalgesia and anxiety of painful CP, providing a novel insight into cortical modulation of painful CP and shedding light on aIC as a potential target for neuromodulation interventions in the treatment of CP.
Collapse
Affiliation(s)
- Yang Bai
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, No. 169, West Chang-le Road, Xi'an, 710032, China
| | - Li-Tian Ma
- Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yan-Bing Chen
- Department of Anatomy, Fujian Medical University, Fuzhou, 350108, China
| | - Dan Ren
- Department of Anatomy, Guangxi Medical University, Nanning, 530021, China
| | - Ying-Biao Chen
- Department of Anatomy, Fujian Health College, Fuzhou, 350101, China
| | - Ying-Qi Li
- Department of Cardiology, The Second Affiliated Hospital of Xian Jiaotong University, Xian Jiaotong University, Xi'an, 710004, China
| | - Hong-Ke Sun
- Department of Cardiology, The Second Affiliated Hospital of Xian Jiaotong University, Xian Jiaotong University, Xi'an, 710004, China
| | - Xin-Tong Qiu
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, No. 169, West Chang-le Road, Xi'an, 710032, China
| | - Ting Zhang
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, No. 169, West Chang-le Road, Xi'an, 710032, China
| | - Ming-Ming Zhang
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, No. 169, West Chang-le Road, Xi'an, 710032, China
| | - Xi-Nan Yi
- Joint Laboratory of Neuroscience at Hainan Medical University and Fourth Military Medical University, Hainan Medical University, Haikou, 571199, China
| | - Tao Chen
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, No. 169, West Chang-le Road, Xi'an, 710032, China
| | - Hui Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, No. 169, West Chang-le Road, Xi'an, 710032, China
| | - Bo-Yuan Fan
- Department of Cardiology, The Second Affiliated Hospital of Xian Jiaotong University, Xian Jiaotong University, Xi'an, 710004, China.
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, No. 169, West Chang-le Road, Xi'an, 710032, China. .,Joint Laboratory of Neuroscience at Hainan Medical University and Fourth Military Medical University, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
21
|
Altered brain morphology in chronic pancreatitis patients and its association with pain and other disease characteristics. Eur J Gastroenterol Hepatol 2019; 31:1092-1098. [PMID: 31180988 DOI: 10.1097/meg.0000000000001470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE Abnormal pain processing in the central nervous system is a hallmark of chronic pancreatitis (CP). We characterized brain structure in CP patients and identified disease characteristics that impact the brain structure in CP patients. PATIENTS AND METHODS Thirty-three CP patients and 23 matched healthy controls underwent brain MRI. Total and regional gray matter volume (GMV) and cortical thickness analyses were carried out. Multivariate linear regression models were used to determine the independent predictors of total GMV. RESULTS CP patients had 31.9 ± 9.3 ml (mean ± SE) (5.1%) reduced total GMV compared with the healthy controls (587.1 ± 5.8 vs. 619.0 ± 7.0 cm, P < 0.001). Alcoholic etiology was associated independently with a decreased total GMV (P < 0.001), whereas no association was observed for pain or other disease characteristics (all P > 0.05). Similarly, regional GMV loss and cortical thinning were observed for several cortical areas in patients with alcoholic etiology compared with their nonalcoholic counterparts (P < 0.05). These regional differences were particularly evident for pain-related cortical areas; however, no significant differences in regional GMV or cortical thickness were observed between patients with and without pain (all P > 0.05). CONCLUSION Patients with CP have GMV loss that is associated with alcoholic disease etiology. No associations were detected between pain and GMV loss, likely because the potential effect of long-lasting pain on brain structure is masked by the effects of previous alcohol use. The findings imply that alcoholic etiology is the most prominent contributing factor for structural brain alterations in CP patients.
Collapse
|
22
|
Muthulingam JA, Olesen SS, Hansen TM, Brock C, Drewes AM, Frøkjær JB. Study protocol for a randomised double-blinded, sham-controlled, prospective, cross-over clinical trial of vagal neuromodulation for pain treatment in patients with chronic pancreatitis. BMJ Open 2019; 9:e029546. [PMID: 31603076 PMCID: PMC6720238 DOI: 10.1136/bmjopen-2019-029546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The management of chronic pancreatitis (CP) is challenging and requires a personalised approach focused on the individual patient's main symptoms. Abdominal pain is the most prominent symptom in CP, where central pain mechanisms, including sensitisation and impaired pain modulation, often are involved. Recent clinical studies suggest that vagal nerve stimulation (VNS) induces analgesic effects through the modulation of central pain pathways. This study aims to investigate the effect of 2 weeks transcutaneous VNS (t-VNS) on clinical pain in patients with CP, in comparison to the effect of sham treatment. METHODS AND ANALYSIS Twenty-one patients with CP will be enrolled in this randomised, double-blinded, single-centre, sham-controlled, cross-over study. The study has two treatment periods: A 2-week active t-VNS using GammaCore device and a 2-week treatment with a sham device. During both treatment periods, the patients are instructed to self-administer VNS bilaterally to the cervical vagal area, three times per day. Treatment periods will be separated by 2 weeks. During the study period, patients will record their daily pain experience in a diary (primary clinical endpoint). In addition, all subjects will undergo testing which will include MRI, quantitative sensory testing, cardiac vagal tone assessment and collecting blood samples, before and after the two treatments to investigate mechanisms underlying VNS effects. The data will be analysed using the principle of intention to treat. ETHICS AND DISSEMINATION The regional ethics committee has approved the study: N-20170023. Results of the trial will be submitted for publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER The study is registered at www.clinicaltrials.gov: NCT03357029.
Collapse
Affiliation(s)
- Janusiya Anajan Muthulingam
- Mech-Sense, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Søren Schou Olesen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Tine Maria Hansen
- Mech-Sense, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Christina Brock
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Aalborg University Hospital, Aalborg, UK
| | - Asbjørn Mohr Drewes
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Jens Brøndum Frøkjær
- Mech-Sense, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
23
|
Hansen TM, Muthulingam JA, Drewes AM, Olesen SS, Frøkjær JB. Cingulate glutamate levels associate with pain in chronic pancreatitis patients. NEUROIMAGE-CLINICAL 2019; 23:101925. [PMID: 31491831 PMCID: PMC6627035 DOI: 10.1016/j.nicl.2019.101925] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/29/2019] [Accepted: 06/30/2019] [Indexed: 12/18/2022]
Abstract
Aims Emerging evidence show that patients with chronic pancreatitis (CP) and abdominal pain have structural and functional alterations in the central nervous system. The aim was to investigate cerebral metabolic signatures in CP and the associations to various risk factors/clinical characteristics and patient outcomes. Methods Magnetic resonance spectroscopy was used to measure brain metabolites in the anterior cingulate cortex (ACC), insula, prefrontal cortex and the parietal region in patients with CP and healthy controls. Subgroup analyses based on disease characteristics (alcoholic etiology of CP, diabetes and opioid treatment) were performed. Finally, relations to abdominal pain symptoms and quality of life scores were explored. Results Thirty-one patients with CP (mean age 58.5 ± 9.2 years) and 23 healthy controls (54.6 ± 7.8 years) were included. Compared to healthy controls, patients had increased glutamate/creatine (glu/cre) levels in the ACC (1.24 ± 0.17 vs. 1.13 ± 0.21, p = .045) and reduced parietal N-acetylaspartate/creatine (NAA/cre) levels (1.44 ± 0.18 vs. 1.54 ± 0.12, p = .027). Patients with alcoholic etiology of CP had significant lower levels of parietal NAA/cre as compared to patients without alcoholic etiology and healthy controls (p < .006). Patients with a high level of ACC glu/cre reported more severe abdominal pain than their counterparts with a low level of ACC glu/cre (pain score 4.1 ± 2.7 vs.1.9 ± 2.3, p = .039). Conclusions Cerebral spectroscopy revealed novel and complementary information on central pain mechanisms and alcohol mediated toxic effects in patients with CP. Our data suggest that cingulate glutamate levels associate with the patients clinical pain symptoms, while parietal NAA levels more likely associate with an alcoholic etiology of CP. Patients with chronic pancreatitis have altered brain metabolites. Increased cingulate glutamate levels associate with clinical pain symptoms. Decreased parietal N-acetylaspartate levels likely relate to alcoholic etiology.
Collapse
Affiliation(s)
- Tine Maria Hansen
- Mech-Sense, Department of Radiology, Aalborg University Hospital, Hobrovej 18-22, 9000 Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Søndre Skovvej 11, 9000 Aalborg, Denmark
| | - Janusiya Anajan Muthulingam
- Mech-Sense, Department of Radiology, Aalborg University Hospital, Hobrovej 18-22, 9000 Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Søndre Skovvej 11, 9000 Aalborg, Denmark
| | - Asbjørn Mohr Drewes
- Department of Clinical Medicine, Aalborg University, Søndre Skovvej 11, 9000 Aalborg, Denmark; Centre for Pancreatic Diseases, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Mølleparkvej 4, 9000 Aalborg, Denmark
| | - Søren Schou Olesen
- Department of Clinical Medicine, Aalborg University, Søndre Skovvej 11, 9000 Aalborg, Denmark; Centre for Pancreatic Diseases, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Mølleparkvej 4, 9000 Aalborg, Denmark
| | - Jens Brøndum Frøkjær
- Mech-Sense, Department of Radiology, Aalborg University Hospital, Hobrovej 18-22, 9000 Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Søndre Skovvej 11, 9000 Aalborg, Denmark.
| |
Collapse
|
24
|
Dowdle LT, Borckardt JJ, Back SE, Morgan K, Adams D, Madan A, Balliet W, Hanlon CA. Sensitized brain response to acute pain in patients using prescription opiates for chronic pain: A pilot study. Drug Alcohol Depend 2019; 200:6-13. [PMID: 31071496 PMCID: PMC6914256 DOI: 10.1016/j.drugalcdep.2019.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Chronic opiate use leads to a sensitized behavioral response to acute pain, which in turn, leads to escalating doses of opiates. This study was designed to test the hypothesis that chronic opiate usage is also associated with a sensitized neurobiological response to acute pain in individuals that have used prescription opiates for 6 or more months. METHODS Fourteen patients with non-alcoholic chronic pancreatitis that have been taking prescription opiates for 6 or more months and 14 gender matched, non-opiate using controls were enrolled. Functional neuroimaging data was acquired while participants received blocks of thermal stimulation to their wrist (individually-tailored to their pain threshold). RESULTS Self-reported pain was significantly greater in opiate using patients (3.4 ± 3.4) than controls (0.2 ± 0.8: Brief Pain Inventory p < 0.005), however no significant difference between groups was observed in the individually-tailored pain thresholds. Opiate using patients evidenced a significantly greater response to pain than controls in two established nodes of the "Pain Matrix": somatosensory cortex (pFWE≤0.001) and anterior cingulate cortex (p ≤ 0.01). This response was positively correlated with prescribed morphine equivalent dosages (average: 133.5 ± 94.8 mg/day). CONCLUSION The findings suggest that in chronic pancreatitis patients, a dose of opiates that normalizes their behavioral response to acute pain is associated with an amplified neural response to acute pain. Further longitudinal studies are needed to determine if this neural sensitization hastens a behavioral tolerance to opiates or the development of an opioid use disorder.
Collapse
Affiliation(s)
- Logan T. Dowdle
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA,Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jeffrey J. Borckardt
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA,Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA,Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | - Sudie E. Back
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA,Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | - Katherine Morgan
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - David Adams
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Alok Madan
- Houston Methodist Behavioral Health, Houston, Texas, USA
| | - Wendy Balliet
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Colleen A. Hanlon
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA,Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA,Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA,Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| |
Collapse
|
25
|
Abstract
Purpose of Review The functional gastrointestinal disorders, or disorders of gut-brain interaction as defined by the Rome IV criteria, are the most common diagnostic entities in gastroenterology. Treatments that address the dysregulation of gut-brain interaction with these disorders are increasingly gaining interest as a better option than for example traditional analgesics, particularly opioids. Antidepressants, antianxiety and antipsychotic medications, and visceral analgesics, now termed neuromodulators, are included in this update addressing the evidence of treatment benefit in disorders of brain-gut interaction. Recent Findings By a careful selection based on a multidimensional clinical profile, a decreased symptom burden, particularly regarding abdominal pain, nausea, and vomiting, as well as improved social function and quality of life, can be obtained by use of neuromodulators. There is good evidence for the peripheral neuromodulators from studies in bowel disorders, and the central neuromodulators both from indirect evidence in chronic pain disorders as well as selected disorders of brain-gut interaction. Summary Basic knowledge about the pharmacologic properties and clinical use of neuromodulators in disorders of brain-gut interaction improves the treatment outcome and avoids use of traditional analgesics.
Collapse
|
26
|
Progression of Structural Brain Changes in Patients With Chronic Pancreatitis and Its Association to Chronic Pain: A 7-Year Longitudinal Follow-up Study. Pancreas 2018; 47:1267-1276. [PMID: 30211804 DOI: 10.1097/mpa.0000000000001151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Temporal information about the structural brain changes in chronic pancreatitis (CP) and its relation to the clinical manifestations is lacking. This study investigated changes in morphological brain parameters over 7 years in painful CP patients, compared with controls. METHODS In this 7-year longitudinal magnetic resonance imaging study, we included 23 CP patients and 14 controls. Gray matter volume (GMV) and cortical thickness were examined using voxel-based and surface-based morphometry. In addition, patients completed pain questionnaires and diary. RESULTS At baseline, patients had reduced GMV and cortical thickness in widespread brain areas compared with controls. After 7 years of follow-up, the GMV loss was more pronounced in patients compared with controls, particularly in precentral gyrus and putamen. Moreover, an increase in pain scores was associated with a less reduction of thalamic GMV (P = 0.046), whereas an increase in brief pain inventory score was associated with more reduction in cortical thickness of precentral (P = 0.005) and superior temporal gyri (P = 0.019), indicating that brain morphological alterations are associated with the pain. CONCLUSIONS Chronic pancreatitis pain is associated with morphological brain changes over time in several areas, reflecting that brain plasticity may be a consequence of repeated long-term nociceptive signaling.
Collapse
|
27
|
Abstract
OBJECTIVE Chronic pain disorder (CPD) has been associated with brain changes, especially in limbic circuits. However, in most patients with chronic pain, depression or anxiety is a common comorbidity. In this exploratory and naturalistic study, we investigated brain cortical thickness (CTh) differences between patients with CPD and healthy controls, with consideration of concurrent psychiatric symptoms. METHODS Twenty-three patients with CPD and 23 age- and sex-matched healthy volunteers were included in this study. CTh was estimated using Freesurfer on high-resolution three-dimensional T1-weighted images acquired with a 3T scanner. Group differences were investigated using an analysis of covariance model that included age, sex, and Beck Depression Inventory I and Trait Anxiety Inventory scores as covariates. The relationship between CTh and Toronto Alexithymia Scale (TAS-20) scores was also investigated in patients. Data were corrected for multiplicity using the False Discovery Rate approach (q < .05). RESULTS The comparison between groups using demographics and Beck Depression Inventory I scores as covariates showed thinner cortex in patients compared with controls, after correction for multiplicity in the left precentral (F(1,42) = 21.9, p < .05) and postcentral gyri (F(1,42) = 26.9, p < .05) and in the left inferior temporal sulcus (F(1,42) = 19.6, p < .05). Moreover, using the Trait Anxiety Inventory as covariate, a trend toward significance (p < .001 uncorrected) was seen for the left precentral gyrus (F(1,42) = 13.8), right middle frontal (F(1,42) = 14.3) and inferior parietal gyri (F(1,42) = 13.4), and right anterior temporal pole (F(1,42) = 15.9). CONCLUSIONS The results indicate that brain morphological differences between patients with chronic pain disorder and healthy controls are localized to regions that correspond to sensory as well as affective dimensions of pain processing.
Collapse
|
28
|
Keller CE, Wilcox CM, Gudleski GD, Branham S, Lackner JM. Beyond Abdominal Pain: Pain Beliefs, Pain Affect, and Distress as Determinants of Quality of Life in Patients With Chronic Pancreatitis. J Clin Gastroenterol 2018; 52:563-568. [PMID: 28858939 PMCID: PMC5832507 DOI: 10.1097/mcg.0000000000000922] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
GOALS To assess the relationship between pain, psychological processes, and quality of life (QOL) in chronic pancreatitis (CP). BACKGROUND CP is a progressive inflammatory disorder of the pancreas characteristically resulting in abdominal pain and impairing QOL. Pain due to CP is poorly understood and frequently difficult to treat. This pain has historically been understood as a peripheral process originating from the pancreas itself, but a growing body of literature is revealing an important role offered by central influences. Viewed through the perspective of the biopsychosocial model of illness, cognitive variables strongly influence QOL. However, there is little understanding of variables that influence QOL in CP. STUDY Patients with CP from the University of Alabama at Birmingham were administered a 165-question test battery which was comprised of questionnaires evaluating pain beliefs, disease-specific QOL, psychological distress, pain sensation, pain affect, and long-term suffering. RESULTS Sixty-eight subjects completed the question battery between February 28, 2011 and January 16, 2014. Almost all (91.2%) reported taking pain medication. QOL was significantly associated with reported levels of pain intensity (r=-0.52, P<0.01) as well as perceived self-blame. CONCLUSIONS The significant predictors of QOL impairment in CP are pain intensity and perceived self-blame for pain. Further research is needed to elucidate this relationship while also evaluating the effectiveness of systematic modification of these variables in an attempt to improve pain and QOL in CP.
Collapse
Affiliation(s)
- Craig E Keller
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, SUNY, Buffalo, NY
| | - Charles Mel Wilcox
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Gregory D Gudleski
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, SUNY, Buffalo, NY
| | - Stacey Branham
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Jeffrey M Lackner
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, SUNY, Buffalo, NY
| |
Collapse
|
29
|
Pitiot A, Smith JK, Humes DJ, Garratt J, Francis ST, Gowland PA, Spiller RC, Marciani L. Cortical differences in diverticular disease and correlation with symptom reports. Neurogastroenterol Motil 2018; 30:e13303. [PMID: 29392838 DOI: 10.1111/nmo.13303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/07/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Recent studies have shown that the brain of patients with gastrointestinal disease differ both structurally and functionally from that of controls. Highly somatizing diverticular disease (HSDD) patients were also shown to differ from low somatizing (LSDD) patients functionally. This study aimed to investigate how they differed structurally. METHODS Four diseases subgroups were studied in a cross-sectional design: 20 patients with asymptomatic diverticular disease (ADD), 18 LSDD, 16 HSDD, and 18 with irritable bowel syndrome. We divided DD patients into LSDD and HSDD using a cutoff of 6 on the Patient Health Questionnaire 12 Somatic Symptom (PHQ12-SS) scale. All patients underwent a 1-mm isotropic structural brain MRI scan and were assessed for somatization, hospital anxiety, depression, and pain catastrophizing. Whole brain volumetry, cortical thickness analysis and voxel-based morphometry were carried out using Freesurfer and SPM. KEY RESULTS We observed decreases in gray matter density in the left and right dorsolateral prefrontal cortex (dlPFC), and in the mid-cingulate and motor cortex, and increases in the left (19, 20) and right (19, 38) Brodmann Areas. The average cortical thickness differed overall across groups (P = .002) and regionally: HSDD > ADD in the posterior cingulate cortex (P = .03), HSDD > LSDD in the dlPFC (P = .03) and in the ventrolateral PFC (P < .001). The thickness of the anterior cingulate cortex and of the mid-prefrontal cortex were also found to correlate with Pain Catastrophizing (Spearman's ρ = 0.24, P = .043 uncorrected and Spearman's ρ = 0.25, P = .03 uncorrected). CONCLUSION & INFERENCES This is the first study of structural gray matter abnormalities in diverticular disease patients. The data show brain differences in the pain network.
Collapse
Affiliation(s)
- A Pitiot
- Laboratory of Image & Data Analysis, Ilixa Ltd., Nottingham, UK
| | - J K Smith
- Nottingham Digestive Diseases Centre, NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham, UK
| | - D J Humes
- Nottingham Digestive Diseases Centre, NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham, UK
| | - J Garratt
- Nottingham Digestive Diseases Centre, NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham, UK
| | - S T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - P A Gowland
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - R C Spiller
- Nottingham Digestive Diseases Centre, NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham, UK
| | - L Marciani
- Nottingham Digestive Diseases Centre, NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottingham, UK
| |
Collapse
|
30
|
Ong WY, Stohler CS, Herr DR. Role of the Prefrontal Cortex in Pain Processing. Mol Neurobiol 2018; 56:1137-1166. [PMID: 29876878 PMCID: PMC6400876 DOI: 10.1007/s12035-018-1130-9] [Citation(s) in RCA: 413] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022]
Abstract
The prefrontal cortex (PFC) is not only important in executive functions, but also pain processing. The latter is dependent on its connections to other areas of the cerebral neocortex, hippocampus, periaqueductal gray (PAG), thalamus, amygdala, and basal nuclei. Changes in neurotransmitters, gene expression, glial cells, and neuroinflammation occur in the PFC during acute and chronic pain, that result in alterations to its structure, activity, and connectivity. The medial PFC (mPFC) could serve dual, opposing roles in pain: (1) it mediates antinociceptive effects, due to its connections with other cortical areas, and as the main source of cortical afferents to the PAG for modulation of pain. This is a ‘loop’ where, on one side, a sensory stimulus is transformed into a perceptual signal through high brain processing activity, and perceptual activity is then utilized to control the flow of afferent sensory stimuli at their entrance (dorsal horn) to the CNS. (2) It could induce pain chronification via its corticostriatal projection, possibly depending on the level of dopamine receptor activation (or lack of) in the ventral tegmental area-nucleus accumbens reward pathway. The PFC is involved in biopsychosocial pain management. This includes repetitive transcranial magnetic stimulation, transcranial direct current stimulation, antidepressants, acupuncture, cognitive behavioral therapy, mindfulness, music, exercise, partner support, empathy, meditation, and prayer. Studies demonstrate the role of the PFC during placebo analgesia, and in establishing links between pain and depression, anxiety, and loss of cognition. In particular, losses in PFC grey matter are often reversible after successful treatment of chronic pain.
Collapse
Affiliation(s)
- Wei-Yi Ong
- Department of Anatomy, National University of Singapore, Singapore, 119260, Singapore.
- Neurobiology and Ageing Research Programme, National University of Singapore, Singapore, 119260, Singapore.
| | | | - Deron R Herr
- Department of Pharmacology, National University of Singapore, Singapore, 119260, Singapore.
| |
Collapse
|
31
|
Drossman DA, Tack J, Ford AC, Szigethy E, Törnblom H, Van Oudenhove L. Neuromodulators for Functional Gastrointestinal Disorders (Disorders of Gut-Brain Interaction): A Rome Foundation Working Team Report. Gastroenterology 2018; 154:1140-1171.e1. [PMID: 29274869 DOI: 10.1053/j.gastro.2017.11.279] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/13/2017] [Accepted: 11/24/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Central neuromodulators (antidepressants, antipsychotics, and other central nervous system-targeted medications) are increasingly used for treatment of functional gastrointestinal disorders (FGIDs), now recognized as disorders of gut-brain interaction. However, the available evidence and guidance for the use of central neuromodulators in these conditions is scanty and incomplete. In this Rome Foundation Working Team report, a multidisciplinary team summarized available research evidence and clinical experience to provide guidance and treatment recommendations. METHODS The working team summarized the literature on the pharmacology of central neuromodulators and their effects on gastrointestinal sensorimotor function and conducted an evidence-based review on their use for treating FGID syndromes. Because of the paucity of data for FGIDs, we included data for non-gastrointestinal painful disorders and specific symptoms of pain, nausea, and vomiting. This information was combined into a final document comprising a synthesis of available evidence and recommendations for clinical use guided by the research and clinical experience of the experts on the committee. RESULTS The evidence-based review on neuromodulators in FGID, restricted by the limited available controlled trials, was integrated with open-label studies and case series, along with the experience of experts to create recommendations using a consensus (Delphi) approach. Due to the diversity of conditions and complexity of treatment options, specific recommendations were generated for different FGIDs. However, some general recommendations include: (1) low to modest dosages of tricyclic antidepressants provide the most convincing evidence of benefit for treating chronic gastrointestinal pain and painful FGIDs and serotonin noradrenergic reuptake inhibitors can also be recommended, though further studies are needed; (2) augmentation, that is, adding a second treatment (adding quetiapine, aripiprazole, buspirone α2δ ligand agents) is recommended when a single medication is unsuccessful or produces side effects at higher dosages; (3) treatment should be continued for 6-12 months to potentially prevent relapse; and (4) implementation of successful treatment requires effective communication skills to improve patient acceptance and adherence, and to optimize the patient-provider relationship. CONCLUSIONS Based on systematic and selectively focused review and the consensus of a multidisciplinary panel, we have provided summary information and guidelines for the use of central neuromodulators in the treatment of chronic gastrointestinal symptoms and FGIDs. Further studies are needed to confirm and refine these recommendations.
Collapse
Affiliation(s)
- Douglas A Drossman
- Center for Functional Gastrointestinal and Motility Disorders, University of North Carolina, Chapel Hill, North Carolina; Center for Education and Practice of Biopsychosocial Care and Drossman Gastroenterology, Chapel Hill, North Carolina.
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Alexander C Ford
- Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, United Kingdom; Leeds Gastroenterology Institute, St James's University Hospital, Leeds, United Kingdom
| | - Eva Szigethy
- Departments of Psychiatry and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hans Törnblom
- Departments of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lukas Van Oudenhove
- Laboratory for Brain-Gut Axis Studies, Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| |
Collapse
|
32
|
Towards a neurobiological understanding of pain in chronic pancreatitis: mechanisms and implications for treatment. Pain Rep 2017; 2:e625. [PMID: 29392239 PMCID: PMC5741325 DOI: 10.1097/pr9.0000000000000625] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/30/2017] [Accepted: 09/08/2017] [Indexed: 12/19/2022] Open
Abstract
We summarize the evidence for a neurobiological understanding of pain in patients with chronic pancreatitis and discuss its potential impact on prevention and treatment. Introduction: Chronic pancreatitis (CP) is a disease characterized by inflammation of the pancreas resulting in replacement of the normal functioning parenchyma by fibrotic connective tissue. This process leads to progressively impairment of exocrine and endocrine function and many patients develop a chronic pain syndrome. Objectives: We aimed to characterize the neurobiological signature of pain associated with CP and to discuss its implications for treatment strategies. Methods: Relevant basic and clinical articles were selected for review following an extensive search of the literature. Results: Pathophysiological changes in the peripheral (pancreatic gland) and central nervous system characterize the pain syndrome associated with CP; involved mechanisms can be broken down to 3 main branches: (1) peripheral sensitization, (2) pancreatic neuropathy, and (3) neuroplastic changes in the central pain pathways. Disease flares (recurrent pancreatitis) may accelerate the pathophysiological process and further sensitize the pain system, which ultimately results in an autonomous and self-perpetuating pain state that may become independent of the peripheral nociceptive drive. These findings share many similarities with those observed in neuropathic pain disorders and have important implications for treatment; adjuvant analgesics are effective in a subset of patients, and neuromodulation and neuropsychological interventions may prove useful in the future. Conclusion: Chronic pancreatitis is associated with abnormal processing of pain at the peripheral and central level of the pain system. This neurobiological understanding of pain has important clinical implications for treatment and prevention of pain chronification.
Collapse
|
33
|
Differences in brain gray matter volume in patients with Crohn's disease with and without abdominal pain. Oncotarget 2017; 8:93624-93632. [PMID: 29212177 PMCID: PMC5706823 DOI: 10.18632/oncotarget.21161] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/08/2017] [Indexed: 01/16/2023] Open
Abstract
Increasing evidence indicates that abnormal pain processing is present in the central nervous system of patients with Crohn’s disease (CD). The purposes of this study were to assess changes in gray matter (GM) volumes in CD patients in remission and to correlate structural changes in the brain with abdominal pain. We used a 3.0 T magnetic resonance scanner to examine the GM structures in 21 CD patients with abdominal pain, 26 CD patients without abdominal pain, and 30 healthy control subjects (HCs). Voxel-based morphometric analyses were used to assess the brain GM volumes. Patients with abdominal pain exhibited higher CD activity index and lower inflammatory bowel disease questionnaire scores than those of the patients without abdominal pain. Compare to HCs and to patients without abdominal pain, patients with abdominal pain exhibited lower GM volumes in the insula and anterior cingulate cortex (ACC); whereas compare to HCs and to patients with abdominal pain, the patients without abdominal pain exhibited higher GM volumes in the hippocampal and parahippocampal cortex. The GM volumes in the insula and ACC were significantly negatively correlated with daily pain scores. These results suggest that differences exist in the brain GM volume between CD patients in remission with and without abdominal pain. The negative correlation between the GM volumes in the insula and ACC and the presence and severity of abdominal pain in CD suggests these structures are closely related to visceral pain processing.
Collapse
|
34
|
Castillo D, Ernst T, Cunningham E, Chang L. Altered Associations between Pain Symptoms and Brain Morphometry in the Pain Matrix of HIV-Seropositive Individuals. J Neuroimmune Pharmacol 2017; 13:77-89. [PMID: 28866752 DOI: 10.1007/s11481-017-9762-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023]
Abstract
Pain remains highly prevalent in HIV-seropositive (HIV+) patients despite their well-suppressed viremia with combined antiretroviral therapy. Investigating brain abnormalities within the pain matrix, and in relation to pain symptoms, in HIV+ participants may provide objective biomarkers and insights regarding their pain symptoms. We used Patient-Reported Outcome Measurement Information System (PROMIS®) pain questionnaire to evaluate pain symptoms (pain intensity, pain interference and pain behavior), and structural MRI to assess brain morphometry using FreeSurfer (cortical area, cortical thickness and subcortical volumes were evaluated in 12 regions within the pain matrix). Compared to seronegative (SN) controls, HIV+ participants had smaller surface areas in prefrontal pars triangularis (right: p = 0.04, left: p = 0.007) and right anterior cingulate cortex (p = 0.03) and smaller subcortical regions (thalamus: p ≤ 0.003 bilaterally; right putamen: p = 0.01), as well as higher pain scores (pain intensity-p = 0.005; pain interference-p = 0.008; pain-behavior-p = 0.04). Furthermore, higher pain scores were associated with larger cortical areas, thinner cortices and larger subcortical volumes in HIV+ participants; but smaller cortical areas, thicker cortices and smaller subcortical volumes in SN controls (interaction-p = 0.009 to p = 0.04). These group differences in the pain-associated brain abnormalities suggest that HIV+ individuals have abnormal pain responses. Since these abnormal pain-associated brain regions belong to the affective component of the pain matrix, affective symptoms may influence pain perception in HIV+ patients and should be treated along with their physical pain symptoms. Lastly, associations of lower pain scores with better physical or mental health scores, regardless of HIV-serostatus (p < 0.001), suggest adequate pain treatment would lead to better quality of life in all participants.
Collapse
Affiliation(s)
- Deborrah Castillo
- John A. Burns School of Medicine, Neuroscience and MR Research Program, University of Hawaii at Manoa, 1356 Lusitana Street, 7th Floor, Honolulu, HI, 96813, USA
| | - Thomas Ernst
- John A. Burns School of Medicine, Neuroscience and MR Research Program, University of Hawaii at Manoa, 1356 Lusitana Street, 7th Floor, Honolulu, HI, 96813, USA
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 419 W. Redwood Street, Suite 225, Baltimore, MD, 21201, USA
| | - Eric Cunningham
- John A. Burns School of Medicine, Neuroscience and MR Research Program, University of Hawaii at Manoa, 1356 Lusitana Street, 7th Floor, Honolulu, HI, 96813, USA
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 419 W. Redwood Street, Suite 225, Baltimore, MD, 21201, USA
| | - Linda Chang
- John A. Burns School of Medicine, Neuroscience and MR Research Program, University of Hawaii at Manoa, 1356 Lusitana Street, 7th Floor, Honolulu, HI, 96813, USA.
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 419 W. Redwood Street, Suite 225, Baltimore, MD, 21201, USA.
| |
Collapse
|
35
|
Abstract
The medical management of pain in chronic pancreatitis continues to pose significant challenges for clinicians caring for these patients. There are increasing data, suggesting that pain in chronic pancreatitis is largely due to peripheral and central sensitization that evolves, over time, as a result of nociceptive afferent associated with chronic inflammation and fibrosis of the pancreas. In many instances, patients rapidly progress to requiring opioid analgesics for the adequate treatment of pain despite the unequivocal risks associated with the long-term use of these drugs. Centrally acting drugs, such as gabapentinoids, appear to be effective means of treating pain due to their inhibition of neurotransmitters involved in central sensitization, but side effects limit their use. The present review explores the evidence for various non-pharmacologic and pharmacologic treatments for pain in chronic pancreatitis.
Collapse
|
36
|
Juel J, Brock C, Olesen SS, Madzak A, Farmer AD, Aziz Q, Frøkjær JB, Drewes AM. Acute physiological and electrical accentuation of vagal tone has no effect on pain or gastrointestinal motility in chronic pancreatitis. J Pain Res 2017; 10:1347-1355. [PMID: 28615966 PMCID: PMC5459955 DOI: 10.2147/jpr.s133438] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background The effective management of pain in chronic pancreatitis (CP) remains a therapeutic challenge. Analgesic drugs, such as opioids, and the underlying pathology can impair gut function. The autonomic nervous system influences hormone secretion and gut motility. In healthy volunteers, electrical (using noninvasive transcutaneous vagal nerve stimulation [t-VNS]) and physiological (using deep slow breathing [DSB]) modulation of parasympathetic tone results in pain attenuation and enhanced gut motility. Thus, the aims were to investigate whether t-VNS and DSB could enhance the parasympathetic tone, decrease pain sensitivity and improve gut motility in CP. Patients and methods A total of 20 patients (12 males, mean age=61 years, range: 50–78 years) with CP were randomized to short-term (60 minutes) t-VNS and DSB, or their placebo equivalent, in a crossover design. Cardiometrically derived parameters of autonomic tone, quantitative sensory testing of bone and muscle pain pressure, conditioned pain modulation (CPM) and assessments of gastroduodenal motility with ultrasound were performed. Results In comparison to sham, t-VNS and DSB increased cardiac vagal tone (CVT) (P<0.001). However, no changes in pain pressure thresholds for bone (P=0.95) or muscle (P=0.45) were seen. There was diminished CPM (P=0.04), and no changes in gastroduodenal motility were observed (P=0.3). Conclusion This explorative study demonstrated that t-VNS and DSB increased CVT in patients with CP. However, this short-lasting increase did not affect pain sensitivity to musculoskeletal pain or gastroduodenal motility. The chronic pain in CP patients is complex, and future trials optimizing neuromodulation for pain relief and improved motility are needed.
Collapse
Affiliation(s)
- Jacob Juel
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital
| | - Christina Brock
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital.,Department of Clinical Medicine, Aalborg University, Aalborg.,Department of Rheumatology, Aarhus University Hospital, Aarhus.,Drug Design and Pharmacology, University of Copenhagen, Copenhagen
| | - Søren S Olesen
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital.,Department of Clinical Medicine, Aalborg University, Aalborg
| | - Adnan Madzak
- Mech-Sense, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - Adam D Farmer
- Mech-Sense, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark.,Department of Gastroenterology, University Hospitals of North Midlands, Stoke-on-Trent.,Centre for Neuroscience and Trauma, Blizard Institute, Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Qasim Aziz
- Centre for Neuroscience and Trauma, Blizard Institute, Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Jens B Frøkjær
- Department of Clinical Medicine, Aalborg University, Aalborg.,Mech-Sense, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - Asbjørn Mohr Drewes
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital.,Department of Clinical Medicine, Aalborg University, Aalborg
| |
Collapse
|
37
|
Differences in regional homogeneity between patients with Crohn's disease with and without abdominal pain revealed by resting-state functional magnetic resonance imaging. Pain 2017; 157:1037-1044. [PMID: 26761381 DOI: 10.1097/j.pain.0000000000000479] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abnormal pain processing in the central nervous system may be related to abdominal pain in patients with Crohn's disease (CD). The purpose of this study was to investigate changes in resting-state brain activity in patients with CD in remission and its relationship with the presence of abdominal pain. Twenty-five patients with CD and with abdominal pain, 25 patients with CD and without abdominal pain, and 32 healthy subjects were scanned using a 3.0-T functional magnetic resonance imaging scanner. Regional homogeneity (ReHo) was used to assess resting-state brain activity. Daily pain scores were collected 1 week before functional magnetic resonance imaging. We found that patients with abdominal pain exhibited lower ReHo values in the insula, middle cingulate cortex (MCC), and supplementary motor area and higher ReHo values in the temporal pole. In contrast, patients without abdominal pain exhibited lower ReHo values in the hippocampal/parahippocampal cortex and higher ReHo values in the dorsomedial prefrontal cortex (all P < 0.05, corrected). The ReHo values of the insula and MCC were significantly negatively correlated with daily pain scores for patients with abdominal pain (r = -0.53, P = 0.008 and r = -0.61, P = 0.002, respectively). These findings suggest that resting-state brain activities are different between remissive patients with CD with and without abdominal pain and that abnormal activities in insula and MCC are closely related to the severity of abdominal pain.
Collapse
|
38
|
Yang Q, Wang Z, Yang L, Xu Y, Chen LM. Cortical thickness and functional connectivity abnormality in chronic headache and low back pain patients. Hum Brain Mapp 2017; 38:1815-1832. [PMID: 28052444 DOI: 10.1002/hbm.23484] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 11/11/2016] [Accepted: 11/22/2016] [Indexed: 12/27/2022] Open
Abstract
This study aims to characterize the psychological wellbeing of chronic headache (CH) patients, to identify cortical structural abnormalities and any associations of those abnormalities with resting state functional connectivity (rsFC), and to determine whether such rsFC abnormality is specific to CH patients. Compared with healthy controls (CONCH ), CH patients suffered from mild depression, sleep disturbances, and relatively poor quality of life. CH patients also exhibited widespread cortical thickness (CT) abnormalities in left premotor (BA6), right primary somatosensory (S1) and right prefrontal (BA10) cortices, as well as in regions of default mode and executive control networks. Using cortical regions with thickness abnormality as seeds, we found cortical region pairs showed strengthened rsFC in CH patients. Using the same seeds, rsFC analysis from chronic low back pain (CLBP) patients and their controls (CONCLBP ) identified abnormalities in non-overlapping cortical region pairs. Direct comparison of rsFC between CH and CLBP patients revealed significantly differences in thirteen cortical region pairs, including the four identified in CH and CONCH comparison. Across all three groups (CH, CLBP and CON), the rsFC between left multisensory association area (BA39) and left posterior cingulate cortex (BA23) differed significantly. Eight regions showed CT abnormality in CLBP patients, two of which overlapped with those of CH patients. Our observations support the notion that CH and CLBP pain are pathological conditions, under which the brain develops distinct widespread structural and functional abnormalities. CH and CLBP groups share some similar structural abnormalities, but rsFC abnormalities in several cortical region pairs appear to be pathology-specific. Hum Brain Mapp 38:1815-1832, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Qing Yang
- Center for Biomedical Imaging Research, Shanghai Clinical Research Center/Xuhui Central Hospital, Chinese Academy of Sciences, People's Republic of China
| | - Zewei Wang
- School of Mechatronic Engineering and Automation, Shanghai University, People's Republic of China
| | - Lixia Yang
- Center for Biomedical Imaging Research, Shanghai Clinical Research Center/Xuhui Central Hospital, Chinese Academy of Sciences, People's Republic of China
| | - Yonghua Xu
- Center for Biomedical Imaging Research, Shanghai Clinical Research Center/Xuhui Central Hospital, Chinese Academy of Sciences, People's Republic of China
| | - Li Min Chen
- Center for Biomedical Imaging Research, Shanghai Clinical Research Center/Xuhui Central Hospital, Chinese Academy of Sciences, People's Republic of China.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee.,Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
39
|
Törnblom H, Drossman DA. Centrally Targeted Pharmacotherapy for Chronic Abdominal Pain: Understanding and Management. Handb Exp Pharmacol 2017; 239:417-440. [PMID: 28204956 DOI: 10.1007/164_2016_106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chronic abdominal pain has a widespread impact on the individual and the society. Identifying and explaining mechanisms of importance for the pain experience within a biopsychosocial context are central in order to select treatment that has a chance for symptom reduction. With current knowledge of brain-gut interactions, chronic abdominal pain, which mostly appears in functional gastrointestinal disorders, to a large extent involves pain mechanisms residing within the brain. As such, the use of centrally targeted pharmacotherapy as an effective treatment option is obvious in a selected number of patients. The antidepressants are most common, but also other classes of medications can be used, either alone or in combination. The latter option refers to when there is insufficient effect of one drug alone or side effects limiting dosage, and when combined in lower doses, certain drugs give rise to augmentation effects. This chapter outlines basic mechanisms of importance for the understanding of chronic abdominal pain and the pharmacologic treatment options.
Collapse
Affiliation(s)
- Hans Törnblom
- Dept of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345, Gothenburg, Sweden.
| | - Douglas A Drossman
- Drossman Center for the Education and Practice of Biopsychosocial Care, Professor Emeritus of Medicine and Psychiatry, UNC Center for Functional GI and Motility Disorders, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Drossman Gastroenterology PLLC, Chapel Hill, NC, USA
| |
Collapse
|
40
|
|
41
|
Poulsen JL, Olesen SS, Drewes AM, Ye B, Li WQ, Aghdassi AA, Sendler M, Mayerle J, Lerch MM. The Pathogenesis of Chronic Pancreatitis. CHRONIC PANCREATITIS 2017:29-62. [DOI: 10.1007/978-981-10-4515-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
42
|
Nair VA, Beniwal-Patel P, Mbah I, Young BM, Prabhakaran V, Saha S. Structural Imaging Changes and Behavioral Correlates in Patients with Crohn's Disease in Remission. Front Hum Neurosci 2016; 10:460. [PMID: 27695405 PMCID: PMC5025433 DOI: 10.3389/fnhum.2016.00460] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/31/2016] [Indexed: 11/27/2022] Open
Abstract
Background: Crohn’s disease (CD) is a subtype of inflammatory bowel disease caused by immune-mediated inflammation in the gastrointestinal tract. The extent of morphologic brain alterations and their associated cognitive and affective impairments remain poorly characterized. Aims: We used magnetic resonance imaging to identify structural brain differences between patients with Crohn’s disease in remission compared to age-matched healthy controls and evaluated for structural-behavioral correlates. Methods: Nineteen patients and 20 healthy, age-matched controls were recruited in the study. Group differences in brain morphometric measures and correlations between brain measures and performance on a cognitive task, the verbal fluency (VF) task, were examined. Correlations between brain measures and cognitive measures as well as self-reported measures of depression, personality, and affective scales were examined. Results: Patients showed significant cortical thickening in the left superior frontal region compared to controls. Significant group differences were observed in sub-cortical volume measures in both hemispheres. Investigation of brain-behavior correlations revealed significant group differences in the correlation between cortical surface area and VF performance, although behavioral performance was equivalent between the two groups. The left middle temporal surface area was a significant predictor of VF performance with controls showing a significant positive correlation between these measures, and patients showing the opposite effect. Conclusion: Our results indicate key differences in structural brain measures in patients with CD compared to controls. Additionally, correlation between brain measures and behavioral responses suggest there may be a neural basis to the alterations in patients’ cognitive and affective responses.
Collapse
Affiliation(s)
- Veena A Nair
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin - Madison, Madison WI, USA
| | - Poonam Beniwal-Patel
- Division of Gastroenterology and Hepatology, University of Wisconsin - Madison, Madison WI, USA
| | - Ifeanyi Mbah
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin - Madison, MadisonWI, USA; Division of Gastroenterology and Hepatology, University of Wisconsin - Madison, MadisonWI, USA
| | - Brittany M Young
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin - Madison, MadisonWI, USA; Medical Scientist Training Program, University of Wisconsin - Madison, MadisonWI, USA; Neuroscience Training Program, University of Wisconsin - Madison, MadisonWI, USA
| | - Vivek Prabhakaran
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin - Madison, MadisonWI, USA; Medical Scientist Training Program, University of Wisconsin - Madison, MadisonWI, USA; Neuroscience Training Program, University of Wisconsin - Madison, MadisonWI, USA; Department of Neurology, University of Wisconsin - Madison, MadisonWI, USA; Department of Psychology and Department of Psychiatry, University of Wisconsin - Madison, MadisonWI, USA
| | - Sumona Saha
- Division of Gastroenterology and Hepatology, University of Wisconsin - Madison, Madison WI, USA
| |
Collapse
|
43
|
|
44
|
Brock C, McCallum RW, Gyawali CP, Farmer AD, Frøkjaer JB, McMahon BP, Drewes AM. Neurophysiology and new techniques to assess esophageal sensory function: an update. Ann N Y Acad Sci 2016; 1380:78-90. [DOI: 10.1111/nyas.13175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/10/2016] [Accepted: 06/15/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Christina Brock
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital and Clinical Institute; Aalborg University; Aalborg Denmark
| | - Richard W. McCallum
- Department of Internal Medicine; Texas Tech University Health Sciences Center; El Paso Texas
| | - C. Prakash Gyawali
- Division of Gastroenterology; Washington University School of Medicine; St. Louis Missouri
| | - Adam D. Farmer
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital and Clinical Institute; Aalborg University; Aalborg Denmark
- Centre for Digestive Diseases, Blizard Institute, Wingate Institute of Neurogastroenterology, Barts and the London School of Medicine and Dentistry; Queen Mary University of London; London United Kingdom
- Department of Gastroenterology; University Hospitals of North Midlands; Stoke on Trent United Kingdom
| | - Jens Brøndum Frøkjaer
- Mech-Sense, Department of Radiology, Aalborg University Hospital and Clinical Institute; Aalborg University; Aalborg Denmark
| | - Barry P. McMahon
- Department of Medical Physics and Clinical Engineering; Tallaght Hospital and Trinity College; Dublin Ireland
| | - Asbjørn Mohr Drewes
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital and Clinical Institute; Aalborg University; Aalborg Denmark
| |
Collapse
|
45
|
Brock C, Gregersen H, Gyawali CP, Lottrup C, Furnari M, Savarino E, Novais L, Frøkjaer JB, Bor S, Drewes AM. The sensory system of the esophagus--what do we know? Ann N Y Acad Sci 2016; 1380:91-103. [DOI: 10.1111/nyas.13205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Christina Brock
- Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg University Hospital and Clinical Institute; Aalborg University; Aalborg Denmark
| | - Hans Gregersen
- GIOME and the Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering; Chongqing University; Chongqing China
| | - C. Prakash Gyawali
- Division of Gastroenterology; Washington University School of Medicine; St. Louis Missouri
| | - Christian Lottrup
- Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg University Hospital and Clinical Institute; Aalborg University; Aalborg Denmark
- Department of Medicine; North Jutland Regional Hospital; Hjørring Denmark
| | - Manuele Furnari
- Division of Gastroenterology, Department of Internal Medicine; University of Genoa; Genoa Italy
| | - Edoardo Savarino
- Division of Gastroenterology, Department of Surgery, Oncology and Gastroenterology; University of Padua; Padua Italy
| | - Luis Novais
- Neurogastroenterology and Gastrointestinal Motility Laboratory, Nova Medical School; Universidade Nova de Lisboa; Lisbon Portugal
| | - Jens Brøndum Frøkjaer
- Mech-Sense, Department of Radiology, Aalborg University Hospital and Clinical Institute; Aalborg University; Aalborg Denmark
| | - Serhat Bor
- Department of Gastroenterology; Ege University School of Medicine; Bornova Izmir Turkey
| | - Asbjørn Mohr Drewes
- Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg University Hospital and Clinical Institute; Aalborg University; Aalborg Denmark
| |
Collapse
|
46
|
Farmer AD, Brock C, Frøkjaer JB, Gregersen H, Khan S, Lelic D, Lottrup C, Drewes AM. Understanding the sensory irregularities of esophageal disease. Expert Rev Gastroenterol Hepatol 2016; 10:907-14. [PMID: 26890720 DOI: 10.1586/17474124.2016.1155984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Symptoms relating to esophageal sensory abnormalities can be encountered in the clinical environment. Such sensory abnormalities may be present in demonstrable disease, such as erosive esophagitis, and in the ostensibly normal esophagus, such as non-erosive reflux disease or functional chest pain. In this review, the authors discuss esophageal sensation and the esophageal pain system. In addition, the authors provide a primer concerning the techniques that are available for investigating the autonomic nervous system, neuroimaging and neurophysiology of esophageal sensory function. Such technological advances, whilst not readily available in the clinic may facilitate the stratification and individualization of therapy in disorders of esophageal sensation in the future.
Collapse
Affiliation(s)
- Adam D Farmer
- a Mech-Sense , University Hospital Aalborg , Aalborg , Denmark.,b Centre for Digestive Diseases, Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London , London , UK.,c Department of Gastroenterology , University Hospitals of North Midlands , Stoke on Trent , UK
| | - Christina Brock
- a Mech-Sense , University Hospital Aalborg , Aalborg , Denmark
| | - Jens Brøndum Frøkjaer
- a Mech-Sense , University Hospital Aalborg , Aalborg , Denmark.,d Department of Radiology , Aalborg University Hospital , Aalborg , Denmark
| | - Hans Gregersen
- e GIOME, Key Laboratory for Biorheological Science and Technology , College of Bioengineering, Chongqing University , Chongqing , China
| | - Sheeba Khan
- c Department of Gastroenterology , University Hospitals of North Midlands , Stoke on Trent , UK
| | - Dina Lelic
- a Mech-Sense , University Hospital Aalborg , Aalborg , Denmark
| | | | | |
Collapse
|
47
|
Anderson MA, Akshintala V, Albers KM, Amann ST, Belfer I, Brand R, Chari S, Cote G, Davis BM, Frulloni L, Gelrud A, Guda N, Humar A, Liddle RA, Slivka A, Gupta RS, Szigethy E, Talluri J, Wassef W, Wilcox CM, Windsor J, Yadav D, Whitcomb DC. Mechanism, assessment and management of pain in chronic pancreatitis: Recommendations of a multidisciplinary study group. Pancreatology 2016; 16:83-94. [PMID: 26620965 PMCID: PMC4761301 DOI: 10.1016/j.pan.2015.10.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/29/2015] [Accepted: 10/31/2015] [Indexed: 12/11/2022]
Abstract
DESCRIPTION Pain in patients with chronic pancreatitis (CP) remains the primary clinical complaint and source of poor quality of life. However, clear guidance on evaluation and treatment is lacking. METHODS Pancreatic Pain working groups reviewed information on pain mechanisms, clinical pain assessment and pain treatment in CP. Levels of evidence were assigned using the Oxford system, and consensus was based on GRADE. A consensus meeting was held during PancreasFest 2012 with substantial post-meeting discussion, debate, and manuscript refinement. RESULTS Twelve discussion questions and proposed guidance statements were presented. Conference participates concluded: Disease Mechanism: Pain etiology is multifactorial, but data are lacking to effectively link symptoms with pathologic feature and molecular subtypes. Assessment of Pain: Pain should be assessed at each clinical visit, but evidence to support an optimal approach to assessing pain character, frequency and severity is lacking. MANAGEMENT There was general agreement on the roles for endoscopic and surgical therapies, but less agreement on optimal patient selection for medical, psychological, endoscopic, surgical and other therapies. CONCLUSIONS Progress is occurring in pain biology and treatment options, but pain in patients with CP remains a major problem that is inadequately understood, measured and managed. The growing body of information needs to be translated into more effective clinical care.
Collapse
Affiliation(s)
| | | | - Kathryn M Albers
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Inna Belfer
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Randall Brand
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Suresh Chari
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Greg Cote
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Brian M Davis
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Luca Frulloni
- Department of Medicine, University of Verona, Verona, Italy
| | - Andres Gelrud
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Nalini Guda
- Department of Gastroenterology, Aurora St. Luke's Medical Center, Milwaukee, WI, USA
| | - Abhinav Humar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Adam Slivka
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Eva Szigethy
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jyothsna Talluri
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wahid Wassef
- Department of Medicine, University of Massachusetts, Worcester, MA, USA
| | - C Mel Wilcox
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John Windsor
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Dhiraj Yadav
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David C Whitcomb
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Cell Biology & Molecular Physiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
48
|
Atsawarungruangkit A, Pongprasobchai S. Current understanding of the neuropathophysiology of pain in chronic pancreatitis. World J Gastrointest Pathophysiol 2015; 6:193-202. [PMID: 26600977 PMCID: PMC4644883 DOI: 10.4291/wjgp.v6.i4.193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/22/2015] [Accepted: 09/16/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic pancreatitis (CP) is a chronic inflammatory disease of the pancreas. The main symptom of patients with CP is chronic and severe abdominal pain. However, the pathophysiology of pain in CP remains obscure. Traditionally, researchers believed that the pain was caused by anatomical changes in pancreatic structure. However, treatment outcomes based on such beliefs are considered unsatisfactory. The emerging explanations of pain in CP are trending toward neurobiological theories. This article aims to review current evidence regarding the neuropathophysiology of pain in CP and its potential implications for the development of new treatments for pain in CP.
Collapse
|
49
|
Abstract
Pancreatic nerves undergo prominent alterations during the evolution and progression of human chronic pancreatitis and pancreatic cancer. Intrapancreatic nerves increase in size (neural hypertrophy) and number (increased neural density). The proportion of autonomic and sensory fibres (neural remodelling) is switched, and are infiltrated by perineural inflammatory cells (pancreatic neuritis) or invaded by pancreatic cancer cells (neural invasion). These neuropathic alterations also correlate with neuropathic pain. Instead of being mere histopathological manifestations of disease progression, pancreatic neural plasticity synergizes with the enhanced excitability of sensory neurons, with Schwann cell recruitment toward cancer and with central nervous system alterations. These alterations maintain a bidirectional interaction between nerves and non-neural pancreatic cells, as demonstrated by tissue and neural damage inducing neuropathic pain, and activated neurons releasing mediators that modulate inflammation and cancer growth. Owing to the prognostic effects of pain and neural invasion in pancreatic cancer, dissecting the mechanism of pancreatic neuroplasticity holds major translational relevance. However, current in vivo models of pancreatic cancer and chronic pancreatitis contain many discrepancies from human disease that overshadow their translational value. The present Review discusses novel possibilities for mechanistically uncovering the role of the nervous system in pancreatic disease progression.
Collapse
Affiliation(s)
- Ihsan Ekin Demir
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Strasse 22, D-81675 Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Strasse 22, D-81675 Munich, Germany
| | - Güralp O Ceyhan
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Strasse 22, D-81675 Munich, Germany
| |
Collapse
|
50
|
Bao CH, Liu P, Liu HR, Wu LY, Shi Y, Chen WF, Qin W, Lu Y, Zhang JY, Jin XM, Wang XM, Zhao JM, Liu XM, Tian J, Wu HG. Alterations in brain grey matter structures in patients with crohn's disease and their correlation with psychological distress. J Crohns Colitis 2015; 9:532-40. [PMID: 25895879 DOI: 10.1093/ecco-jcc/jjv057] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/31/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Whether Crohn's disease [CD] is correlated with brain structural changes is unclear. This study examined changes in grey matter [GM] structures in CD patients and their correlation with psychological distress. METHODS A total of 45 CD patients and 33 healthy controls were scanned using magnetic resonance imaging [MRI]. Voxel-based morphometry and a cortical thickness analysis were used to determine brain GM volume and cortical thickness. RESULTS The GM volumes in the CD patients were significantly higher in the putamen, pallidum, thalamus, hippocampal cortex, amygdala, precuneus, posterior parietal cortex, periaqueductal grey, and cerebellum, but were lower in many other cortical regions. The cortical thicknesses of the insula, cingulate cortex, parahippocampal cortex, and other cortical regions were significantly reduced in CD patients. After controlling for psychological distress [anxiety and depression], the differences among several regions involved in emotional processing were not significant. The GM volumes of the right anterior cingulate cortex, dorsomedial prefrontal cortex, and left insula and the cortical thickness of the left insula and orbitofrontal cortex were negatively correlated with disease duration. CONCLUSIONS We suggest that the significant changes in GM structures in multiple brain regions of CD patients can be partially explained by the higher levels of anxiety and depression in these patients. Specific profiles of altered GM structures in CD patients were correlated with disease duration.
Collapse
Affiliation(s)
- Chun Hui Bao
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peng Liu
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Shaanxi, China
| | - Hui Rong Liu
- Outpatient Department, Shanghai Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Yi Wu
- Qigong Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yin Shi
- Outpatient Department, Shanghai Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Feng Chen
- Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Qin
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Shaanxi, China
| | - Yuan Lu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Ye Zhang
- Department of Radiology, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao Ming Jin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiao Mei Wang
- Outpatient Department, Shanghai Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ji Meng Zhao
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Ming Liu
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Shaanxi, China
| | - Jie Tian
- Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Shaanxi, China
| | - Huan Gan Wu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|