1
|
Bekić S, Petri E, Krstić S, Ćelić A, Jovanović-Šanta S. Detection of isoflavones and phytoestrogen-rich plant extracts binding to estrogen receptor β using a yeast-based fluorescent assay. Anal Biochem 2024; 690:115529. [PMID: 38582243 DOI: 10.1016/j.ab.2024.115529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Alchemilla vulgaris L., Trifolium pratense L. and Glycyrrhiza glabra L. are important remedies in traditional medicine, known for many usages, including treating gynecological diseases. Despite folkloric use of the plant materials, there is a lack of scientific data to support their therapeutic application. The aims of the present study were to evaluate the relative binding affinities (RBAs) of plant-derived phytoestrogens for estrogen receptor β (ERβ) using fluorescent biosensor in yeast and to apply this assay for the assessment of the potential of plant materials towards ERs and treatment of estrogen-related disorders. Ligand-binding domain of ERβ fused with yellow fluorescent protein (ERβ LBD-YFP) was expressed in S. cerevisiae and fluorescence was detected by fluorimetry and fluorescence microscopy. Structural basis for experimental results was explored by molecular docking. Yeast-based fluorescent assay was successfully optimized and applied for identification of natural phenolic compounds and phytoestrogen-rich plant extracts that interact with ERβ-LBD, making this biosensor a valuable tool for screening estrogenic potential of a variety of plant extracts. This assay can be used for preliminary testing of plant-derived or fungal extracts, but also other sources of environmental substances with ER-modulating activity in order to assess their possible effects on the female reproductive system.
Collapse
Affiliation(s)
- Sofija Bekić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia.
| | - Edward Petri
- Department of Biology and Ecology, Faculty of Sciences University of Novi Sad, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia.
| | - Sanja Krstić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia; Institute of Pharmaceutical Sciences, University of Graz, Beethovenstraße 8, 8010, Graz, Austria.
| | - Andjelka Ćelić
- Department of Biology and Ecology, Faculty of Sciences University of Novi Sad, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia.
| | - Suzana Jovanović-Šanta
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia.
| |
Collapse
|
2
|
Hwang Y, Hwang HG, Lee JY, Jung GY. Systematic Engineering of Genistein Biosynthetic Pathway through Genetic Regulators and Combinatorial Enzyme Screening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5842-5848. [PMID: 38441872 DOI: 10.1021/acs.jafc.3c09687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Microbial production of genistein, an isoflavonoid primarily found in soybeans, is gaining prominence in the food industry due to its significant nutritional and health benefits. However, challenges arise in redesigning strains due to intricate regulatory nodes between cell growth and genistein production and in systematically exploring core enzymes involving genistein biosynthesis. To address this, this study devised a strategy that simultaneously and precisely rewires flux at both acetyl-CoA and malonyl-CoA nodes toward genistein synthesis. In particular, naringenin, the primary precursor of genistein, was accumulated 2.6 times more than the unoptimized strain through transcriptional repressor-based genetic regulators. Building upon this, a combination of isoflavone synthase and cytochrome P450 reductase with the remarkable conversion of naringenin to genistein was screened from enzyme homologue libraries. The integrated metabolic engineering strategy yields the highest reported production (98 mg/L of genistein) to date, providing a framework for the biosynthesis of diverse flavonoids, including genistein.
Collapse
Affiliation(s)
- Yunhee Hwang
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Hyun Gyu Hwang
- Institute of Environmental and Energy Technology, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Ji Yeon Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
3
|
Wang Z, Li X, Dai Y, Yin L, Azi F, Zhou J, Dong M, Xia X. Sustainable production of genistin from glycerol by constructing and optimizing Escherichia coli. Metab Eng 2022; 74:206-219. [DOI: 10.1016/j.ymben.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/05/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
4
|
Sajid M, Stone SR, Kaur P. Phylogenetic Analysis and Protein Modelling of Isoflavonoid Synthase Highlights Key Catalytic Sites towards Realising New Bioengineering Endeavours. Bioengineering (Basel) 2022; 9:bioengineering9110609. [PMID: 36354520 PMCID: PMC9687675 DOI: 10.3390/bioengineering9110609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/01/2022] Open
Abstract
Isoflavonoid synthase (IFS) is a critical enzyme for the biosynthesis of over 2400 isoflavonoids. Isoflavonoids are an important class of plant secondary metabolites that have a range of pharmaceutical and nutraceutical properties. With growing interest in isoflavonoids from both research and industrial perspectives, efforts are being forwarded to enhance isoflavonoid production in-planta and ex-planta; therefore, in-silico analysis and characterisation of available IFS protein sequences are needed. The present study is the first-ever attempt toward phylogenetic analysis and protein modelling of available IFS protein sequences. Phylogenetic analysis has shown that IFS amino acid sequences have 86.4% pairwise identity and 26.5% identical sites, and the sequences were grouped into six different clades. The presence of a β-hairpin and extra loop at catalytic sites of Trifolium pratense, Beta vulgaris and Medicago truncatula, respectively, compared with Glycyrrhiza echinata are critical structural differences that may affect catalytic function. Protein docking highlighted the preference of selected IFS for liquiritigenin compared with naringenin and has listed T. pratense as the most efficient candidate for heterologous biosynthesis of isoflavonoids. The in-silico characterisation of IFS represented in this study is vital in realising the new bioengineering endeavours and will help in the characterisation and selection of IFS candidate enzymes for heterologous biosynthesis of isoflavonoids.
Collapse
|
5
|
Modular Engineering of Saccharomyces cerevisiae for De Novo Biosynthesis of Genistein. Microorganisms 2022; 10:microorganisms10071402. [PMID: 35889121 PMCID: PMC9319343 DOI: 10.3390/microorganisms10071402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 01/06/2023] Open
Abstract
Genistein, a nutraceutical isoflavone, has various pharmaceutical and biological activities which benefit human health via soy-containing food intake. This study aimed to construct Saccharomyces cerevisiae to produce genistein from sugar via a modular engineering strategy. In the midstream module, various sources of chalcone synthases and chalcone isomerase-like proteins were tested which enhanced the naringenin production from p-coumaric acid by decreasing the formation of the byproduct. The upstream module was reshaped to enhance the metabolic flux to p-coumaric acid from glucose by overexpressing the genes in the tyrosine biosynthetic pathway and deleting the competing genes. The downstream module was rebuilt to produce genistein from naringenin by pairing various isoflavone synthases and cytochrome P450 reductases. The optimal pair was used for the de novo biosynthesis of genistein with a titer of 31.02 mg/L from sucrose at 25 °C. This is the first report on the de novo biosynthesis of genistein in engineered S. cerevisiae to date. This work shows promising potential for producing flavonoids and isoflavonoids by modular metabolic engineering.
Collapse
|
6
|
Rencoret J, Rosado MJ, Kim H, Timokhin VI, Gutiérrez A, Bausch F, Rosenau T, Potthast A, Ralph J, del Río JC. Flavonoids naringenin chalcone, naringenin, dihydrotricin, and tricin are lignin monomers in papyrus. PLANT PHYSIOLOGY 2022; 188:208-219. [PMID: 34662399 PMCID: PMC8774827 DOI: 10.1093/plphys/kiab469] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/02/2021] [Indexed: 05/26/2023]
Abstract
Recent studies demonstrate that several polyphenolic compounds produced from beyond the canonical monolignol biosynthetic pathways can behave as lignin monomers, participating in radical coupling reactions and being incorporated into lignin polymers. Here, we show various classes of flavonoids, the chalconoid naringenin chalcone, the flavanones naringenin and dihydrotricin, and the flavone tricin, incorporated into the lignin polymer of papyrus (Cyperus papyrus L.) rind. These flavonoids were released from the rind lignin by Derivatization Followed by Reductive Cleavage (DFRC), a chemical degradative method that cleaves the β-ether linkages, indicating that at least a fraction of each was integrated into the lignin as β-ether-linked structures. Due to the particular structure of tricin and dihydrotricin, whose C-3' and C-5' positions at their B-rings are occupied by methoxy groups, these compounds can only be incorporated into the lignin through 4'-O-β bonds. However, naringenin chalcone and naringenin have no substituents at these positions and can therefore form additional carbon-carbon linkages, including 3'- or 5'-β linkages that form phenylcoumaran structures not susceptible to cleavage by DFRC. Furthermore, Nuclear Magnetic Resonance analysis indicated that naringenin chalcone can also form additional linkages through its conjugated double bond. The discovery expands the range of flavonoids incorporated into natural lignins, further broadens the traditional definition of lignin, and enhances the premise that any phenolic compound present at the cell wall during lignification could be oxidized and potentially integrated into the lignin structure, depending only on its chemical compatibility. This study indicates that papyrus lignin has a unique structure, as it is the only lignin known to date that integrates such a diversity of phenolic compounds from different classes of flavonoids. This discovery will open up new ways to engineer and design lignins with specific properties and for enhanced value.
Collapse
Affiliation(s)
- Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avda. Reina Mercedes, 10, 41012-Seville, Spain
| | - Mario J Rosado
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avda. Reina Mercedes, 10, 41012-Seville, Spain
| | - Hoon Kim
- Department of Energy Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA
| | - Vitaliy I Timokhin
- Department of Energy Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avda. Reina Mercedes, 10, 41012-Seville, Spain
| | - Florian Bausch
- Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Straße 24, A-3430 Tulln, Austria
| | - Thomas Rosenau
- Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Straße 24, A-3430 Tulln, Austria
| | - Antje Potthast
- Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Straße 24, A-3430 Tulln, Austria
| | - John Ralph
- Department of Energy Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - José C del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Avda. Reina Mercedes, 10, 41012-Seville, Spain
| |
Collapse
|
7
|
Liu Q, Liu Y, Li G, Savolainen O, Chen Y, Nielsen J. De novo biosynthesis of bioactive isoflavonoids by engineered yeast cell factories. Nat Commun 2021; 12:6085. [PMID: 34667183 PMCID: PMC8526750 DOI: 10.1038/s41467-021-26361-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/30/2021] [Indexed: 11/09/2022] Open
Abstract
Isoflavonoids comprise a class of plant natural products with great nutraceutical, pharmaceutical and agricultural significance. Their low abundance in nature and structural complexity however hampers access to these phytochemicals through traditional crop-based manufacturing or chemical synthesis. Microbial bioproduction therefore represents an attractive alternative. Here, we engineer the metabolism of Saccharomyces cerevisiae to become a platform for efficient production of daidzein, a core chemical scaffold for isoflavonoid biosynthesis, and demonstrate its application towards producing bioactive glucosides from glucose, following the screening-reconstruction-application engineering framework. First, we rebuild daidzein biosynthesis in yeast and its production is then improved by 94-fold through screening biosynthetic enzymes, identifying rate-limiting steps, implementing dynamic control, engineering substrate trafficking and fine-tuning competing metabolic processes. The optimized strain produces up to 85.4 mg L-1 of daidzein and introducing plant glycosyltransferases in this strain results in production of bioactive puerarin (72.8 mg L-1) and daidzin (73.2 mg L-1). Our work provides a promising step towards developing synthetic yeast cell factories for de novo biosynthesis of value-added isoflavonoids and the multi-phased framework may be extended to engineer pathways of complex natural products in other microbial hosts.
Collapse
Affiliation(s)
- Quanli Liu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Yi Liu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Gang Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Otto Savolainen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden.,Chalmers Mass Spectrometry Infrastructure, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, FI-70211, Kuopio, Finland
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark. .,BioInnovation Institute, Ole Maaløes vej 3, 2200, Copenhagen N, Denmark.
| |
Collapse
|
8
|
Basson AR, Ahmed S, Almutairi R, Seo B, Cominelli F. Regulation of Intestinal Inflammation by Soybean and Soy-Derived Compounds. Foods 2021; 10:foods10040774. [PMID: 33916612 PMCID: PMC8066255 DOI: 10.3390/foods10040774] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Environmental factors, particularly diet, are considered central to the pathogenesis of the inflammatory bowel diseases (IBD), Crohn’s disease and ulcerative colitis. In particular, the Westernization of diet, characterized by high intake of animal protein, saturated fat, and refined carbohydrates, has been shown to contribute to the development and progression of IBD. During the last decade, soybean, as well as soy-derived bioactive compounds (e.g., isoflavones, phytosterols, Bowman-Birk inhibitors) have been increasingly investigated because of their anti-inflammatory properties in animal models of IBD. Herein we provide a scoping review of the most studied disease mechanisms associated with disease induction and progression in IBD rodent models after feeding of either the whole food or a bioactive present in soybean.
Collapse
Affiliation(s)
- Abigail Raffner Basson
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
- Correspondence:
| | - Saleh Ahmed
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
| | - Rawan Almutairi
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Brian Seo
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
| | - Fabio Cominelli
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
| |
Collapse
|
9
|
|
10
|
Cravens A, Payne J, Smolke CD. Synthetic biology strategies for microbial biosynthesis of plant natural products. Nat Commun 2019; 10:2142. [PMID: 31086174 PMCID: PMC6513858 DOI: 10.1038/s41467-019-09848-w] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/04/2019] [Indexed: 12/26/2022] Open
Abstract
Metabolic engineers endeavor to create a bio-based manufacturing industry using microbes to produce fuels, chemicals, and medicines. Plant natural products (PNPs) are historically challenging to produce and are ubiquitous in medicines, flavors, and fragrances. Engineering PNP pathways into new hosts requires finding or modifying a suitable host to accommodate the pathway, planning and implementing a biosynthetic route to the compound, and discovering or engineering enzymes for missing steps. In this review, we describe recent developments in metabolic engineering at the level of host, pathway, and enzyme, and discuss how the field is approaching ever more complex biosynthetic opportunities.
Collapse
Affiliation(s)
- Aaron Cravens
- Department of Bioengineering, Stanford University, 443 Via Ortega, MC 4245, Stanford, CA, 94305, USA
| | - James Payne
- Department of Bioengineering, Stanford University, 443 Via Ortega, MC 4245, Stanford, CA, 94305, USA
| | - Christina D Smolke
- Department of Bioengineering, Stanford University, 443 Via Ortega, MC 4245, Stanford, CA, 94305, USA. .,Chan Zuckerberg Biohub, 499 Illinois St, San Francisco, CA, 94158, USA.
| |
Collapse
|
11
|
Genistein: is the multifarious botanical a natural anthelmintic too? J Parasit Dis 2018; 42:151-161. [PMID: 29844617 DOI: 10.1007/s12639-018-0984-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 02/26/2018] [Indexed: 01/03/2023] Open
Abstract
Genistein (4',5,7-trihydroxyisoflavone) is naturally present in plants of the soy family and is known to have various pharmacological activities, such as anti-cancer, anti-diabetic, anti-oxidant, etc. The phytoestrogen is one of the major isoflavones found in some medicinal plants having anthelmintic properties. This review describes the putative role of genistein as an anthelmintic, which has been tested on some helminth parasites in vitro. Genistein has been shown to cause paralysis and alterations in the tegument and tegumental enzymes (acid phosphatase, alkaline phosphatase, adenosine triphosphatase, and 5'-nucleotidase) of helminth parasites. Alterations in the activities of several enzymes associated with the coordination system (specifically non-specific esterases, acetylcholine esterase, and nitric oxide synthase), and changes in the concentration of nitric oxide, cGMP, free amino acid pool, and tissue ammonia are observed in helminth parasites treated with genistein. The phytoestrogen also affects the carbohydrate metabolism by altering the activities of key enzymes involved in glycogen- and glucose-metabolism of a cestode parasite. Considering the significance of phosphoenolpyruvate carboxykinase (PEPCK) in glycolysis of the cestode parasite, Ki of the phytoestrogen for PEPCK in the parasite has been determined, and molecular docking of genistein into the active site of the enzyme has also been described. The potential beneficial role of genistein as a natural alternative in management of helminth parasites needs to be further explored, particularly considering its in vivo efficacy and pharmacokinetics.
Collapse
|
12
|
Shi J, Wang J, Yu L, Yang L, Zhao S, Wang Z. Rapidly directional biotransformation of tauroursodeoxycholic acid through engineered Escherichia coli. J Ind Microbiol Biotechnol 2017; 44:1073-1082. [PMID: 28332050 DOI: 10.1007/s10295-017-1935-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/12/2017] [Indexed: 12/12/2022]
Abstract
Bear bile powder is a precious medicinal material. It is characterized by high content of tauroursodeoxycholic acid (TUDCA) at a ratio of 1.0-1.5 to taurochenodeoxycholic acid (TCDCA). Here, we reported the biotransformation of tauroursodeoxycholic acid (TUDCA) through Escherichia coli engineered with a two-step mimic biosynthetic pathway of TUDCA from taurochenodeoxycholic acid (TCDCA). Two 7α-hydroxysteroid dehydrogenase (7α-HSDH) and two 7β-hydroxysteroid dehydrogenase (7β-HSDH) genes (named as α1, α2, β1, and β2) were selected and synthesized to create four pathway variants using ePathBrick. All could convert TCDCA to TUDCA and the one harboring α1 and β2 (pα1β2) showed the strongest capability. Utilizing the oxidative and reductive properties of 7α- and 7β-HSDH, an ideal balance between TUDCA and TCDCA was established by optimizing the fermentation conditions. By applying the optimal condition, E. coli containing pα1β2 (BL-pα1β2) produced up to 1.61 ± 0.13 g/L of TUDCA from 3.23 g/L of TCDCA at a ratio of 1.3 to TCDCA. This study provides a potential approach for bear bile substitute production from cheap and readily available chicken bile.
Collapse
Affiliation(s)
- Jie Shi
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jie Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lu Yu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Li Yang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shujuan Zhao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhengtao Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
13
|
Pandey RP, Parajuli P, Koffas MA, Sohng JK. Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology. Biotechnol Adv 2016; 34:634-662. [DOI: 10.1016/j.biotechadv.2016.02.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 12/18/2022]
|
14
|
Zhang X, Khalidi O, Kim SY, Wang R, Schultz V, Cress BF, Gross RA, Koffas MAG, Linhardt RJ. Synthesis and biological evaluation of 5,7-dihydroxyflavanone derivatives as antimicrobial agents. Bioorg Med Chem Lett 2016; 26:3089-3092. [PMID: 27210435 PMCID: PMC7927313 DOI: 10.1016/j.bmcl.2016.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/25/2022]
Abstract
A series of 5,7-dihydroxyflavanone derivatives were efficiently synthesized. Their antimicrobial efficacy on Gram-negative, Gram-positive bacteria and yeast were evaluated. Among these compounds, most of the halogenated derivatives exhibited the best antimicrobial activity against Gram-positive bacteria, the yeast Saccharomyces cerevisiae, and the Gram-negative bacterium Vibrio cholerae. The cytotoxicities of these compounds were low as evaluated on HepG2 cells using a cell viability assay. This study suggests that halogenated flavanones might represent promising pharmacological candidates for further drug development.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Omar Khalidi
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - So Young Kim
- Biochemistry and Biophysics Graduate Program, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Ruitong Wang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Victor Schultz
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Brady F Cress
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Richard A Gross
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Mattheos A G Koffas
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Biochemistry and Biophysics Graduate Program, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
15
|
Affiliation(s)
- Sarah E. O'Connor
- The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom;
| |
Collapse
|
16
|
Bhan N, Li L, Cai C, Xu P, Linhardt RJ, Koffas MAG. Enzymatic formation of a resorcylic acid by creating a structure-guided single-point mutation in stilbene synthase. Protein Sci 2015; 24:167-73. [PMID: 25402946 PMCID: PMC4315654 DOI: 10.1002/pro.2600] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/04/2014] [Indexed: 11/10/2022]
Abstract
A novel C17 resorcylic acid was synthesized by a structure-guided Vitis vinifera stilbene synthase (STS) mutant, in which threonine 197 was replaced with glycine (T197G). Altering the architecture of the coumaroyl binding and cyclization pocket of the enzyme led to the attachment of an extra acetyl unit, derived from malonyl-CoA, to p-coumaroyl-CoA. The resulting novel pentaketide can be produced strictly by STS-like enzymes and not by Chalcone synthase-like type III polyketide synthases; due to the unique thioesterase like activity of STS-like enzymes. We utilized a liquid chromatography mass spectrometry-based data analysis approach to directly compare the reaction products of the mutant and wild type STS. The findings suggest an easy to employ platform for precursor-directed biosynthesis and identification of unnatural polyketides by structure-guided mutation of STS-like enzymes.
Collapse
Affiliation(s)
- Namita Bhan
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary StudiesTroy, New York
| | - Lingyun Li
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary StudiesTroy, New York
| | - Chao Cai
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary StudiesTroy, New York
| | - Peng Xu
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary StudiesTroy, New York
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary StudiesTroy, New York
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary StudiesTroy, New York
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary StudiesTroy, New York
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary StudiesTroy, New York
| | - Mattheos A G Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary StudiesTroy, New York
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary StudiesTroy, New York
| |
Collapse
|
17
|
Pathway and protein engineering approaches to produce novel and commodity small molecules. Curr Opin Biotechnol 2013; 24:1137-43. [DOI: 10.1016/j.copbio.2013.02.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/07/2013] [Accepted: 02/20/2013] [Indexed: 11/19/2022]
|
18
|
Lin Y, Jain R, Yan Y. Microbial production of antioxidant food ingredients via metabolic engineering. Curr Opin Biotechnol 2013; 26:71-8. [PMID: 24679261 DOI: 10.1016/j.copbio.2013.10.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/05/2013] [Accepted: 10/04/2013] [Indexed: 10/26/2022]
Abstract
Antioxidants are biological molecules with the ability to protect vital metabolites from harmful oxidation. Due to this fascinating role, their beneficial effects on human health are of paramount importance. Traditional approaches using solvent-based extraction from food/non-food sources and chemical synthesis are often expensive, exhaustive, and detrimental to the environment. With the advent of metabolic engineering tools, the successful reconstitution of heterologous pathways in Escherichia coli and other microorganisms provides a more exciting and amenable alternative to meet the increasing demand of natural antioxidants. In this review, we elucidate the recent progress in metabolic engineering efforts for the microbial production of antioxidant food ingredients - polyphenols, carotenoids, and antioxidant vitamins.
Collapse
Affiliation(s)
- Yuheng Lin
- College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Rachit Jain
- College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- BioChemical Engineering Program, College of Engineering, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
19
|
Mora-Pale M, Sanchez-Rodriguez SP, Linhardt RJ, Dordick JS, Koffas MAG. Metabolic engineering and in vitro biosynthesis of phytochemicals and non-natural analogues. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 210:10-24. [PMID: 23849109 DOI: 10.1016/j.plantsci.2013.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 06/02/2023]
Abstract
Over the years, natural products from plants and their non-natural derivatives have shown to be active against different types of chronic diseases. However, isolation of such natural products can be limited due to their low bioavailability, and environmental restrictions. To address these issues, in vivo and in vitro reconstruction of plant metabolic pathways and the metabolic engineering of microbes and plants have been used to generate libraries of compounds. Significant advances have been made through metabolic engineering of microbes and plant cells to generate a variety of compounds (e.g. isoprenoids, flavonoids, or stilbenes) using a diverse array of methods to optimize these processes (e.g. host selection, operational variables, precursor selection, gene modifications). These approaches have been used also to generate non-natural analogues with different bioactivities. In vitro biosynthesis allows the synthesis of intermediates as well as final products avoiding post-translational limitations. Moreover, this strategy allows the use of substrates and the production of metabolites that could be toxic for cells, or expand the biosynthesis into non-conventional media (e.g. organic solvents, supercritical fluids). A perspective is also provided on the challenges for generating novel chemical structures and the potential of combining metabolic engineering and in vitro biocatalysis to produce metabolites with more potent biological activities.
Collapse
Affiliation(s)
- Mauricio Mora-Pale
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, United States
| | | | | | | | | |
Collapse
|
20
|
Falcone Ferreyra ML, Rius SP, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. FRONTIERS IN PLANT SCIENCE 2012; 3:222. [PMID: 23060891 DOI: 10.3389/fpls.2012.0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/11/2012] [Indexed: 05/23/2023]
Abstract
Flavonoids are widely distributed secondary metabolites with different metabolic functions in plants. The elucidation of the biosynthetic pathways, as well as their regulation by MYB, basic helix-loop-helix (bHLH), and WD40-type transcription factors, has allowed metabolic engineering of plants through the manipulation of the different final products with valuable applications. The present review describes the regulation of flavonoid biosynthesis, as well as the biological functions of flavonoids in plants, such as in defense against UV-B radiation and pathogen infection, nodulation, and pollen fertility. In addition, we discuss different strategies and achievements through the genetic engineering of flavonoid biosynthesis with implication in the industry and the combinatorial biosynthesis in microorganisms by the reconstruction of the pathway to obtain high amounts of specific compounds.
Collapse
Affiliation(s)
- María L Falcone Ferreyra
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario Rosario, Santa Fe, Argentina
| | | | | |
Collapse
|
21
|
Falcone Ferreyra ML, Rius SP, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. FRONTIERS IN PLANT SCIENCE 2012; 3:222. [PMID: 23060891 PMCID: PMC3460232 DOI: 10.3389/fpls.2012.00222] [Citation(s) in RCA: 762] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/11/2012] [Indexed: 05/18/2023]
Abstract
Flavonoids are widely distributed secondary metabolites with different metabolic functions in plants. The elucidation of the biosynthetic pathways, as well as their regulation by MYB, basic helix-loop-helix (bHLH), and WD40-type transcription factors, has allowed metabolic engineering of plants through the manipulation of the different final products with valuable applications. The present review describes the regulation of flavonoid biosynthesis, as well as the biological functions of flavonoids in plants, such as in defense against UV-B radiation and pathogen infection, nodulation, and pollen fertility. In addition, we discuss different strategies and achievements through the genetic engineering of flavonoid biosynthesis with implication in the industry and the combinatorial biosynthesis in microorganisms by the reconstruction of the pathway to obtain high amounts of specific compounds.
Collapse
Affiliation(s)
| | | | - Paula Casati
- *Correspondence: Paula Casati, Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina. e-mail:
| |
Collapse
|
22
|
Construction and application of a functional library of cytochrome P450 monooxygenases from the filamentous fungus Aspergillus oryzae. Appl Environ Microbiol 2011; 77:3147-50. [PMID: 21378053 DOI: 10.1128/aem.02491-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A functional library of cytochrome P450 monooxygenases from Aspergillus oryzae (AoCYPs) was constructed in which 121 isoforms were coexpressed with yeast NADPH-cytochrome P450 oxidoreductase in Saccharomyces cerevisiae. Using this functional library, novel catalytic functions of AoCYPs, such as catalytic potentials of CYP57B3 against genistein, were elucidated for the first time. Comprehensive functional screening promises rapid characterization of catalytic potentials and utility of AoCYPs.
Collapse
|