1
|
Song J, Zhai T, Hahm HS, Li Y, Mao H, Wang X, Jo J, Chang JW. Development of a Dual-Factor Activatable Covalent Targeted Photoacoustic Imaging Probe for Tumor Imaging. Angew Chem Int Ed Engl 2024; 63:e202410645. [PMID: 38935405 DOI: 10.1002/anie.202410645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 06/28/2024]
Abstract
Photoacoustic imaging (PAI) is an emerging modality in biomedical imaging with superior imaging depth and specificity. However, PAI still has significant limitations, such as the background noise from endogenous chromophores. To overcome these limitations, we developed a covalent activity-based PAI probe, NOx-JS013, targeting NCEH1. NCEH1, a highly expressed and activated serine hydrolase in aggressive cancers, has the potential to be employed for the diagnosis of cancers. We show that NOx-JS013 labels active NCEH1 in live cells with high selectivity relative to other serine hydrolases. NOx-JS013 also presents its efficacy as a hypoxia-responsive imaging probe in live cells. Finally, NOx-JS013 successfully visualizes aggressive prostate cancer tumors in mouse models of PC3, while being negligibly detected in tumors of non-aggressive LNCaP mouse models. These findings show that NOx-JS013 has the potential to be used to develop precision PAI reagents for detecting metastatic progression in various cancers.
Collapse
Affiliation(s)
- Jiho Song
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, 30322, United States
| | - Tianqu Zhai
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Heung Sik Hahm
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, 30322, United States
| | - Yuancheng Li
- Department of Radiology and Imaging Science, Emory University, Atlanta, Georgia, 30322, United States
| | - Hui Mao
- Department of Radiology and Imaging Science, Emory University, Atlanta, Georgia, 30322, United States
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Janggun Jo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jae Won Chang
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, 30322, United States
- Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia, 30322, United States
- Winship Cancer Institute, Emory University, Atlanta, Georgia, 30322, United States
| |
Collapse
|
2
|
Niphakis MJ, Cravatt BF. Ligand discovery by activity-based protein profiling. Cell Chem Biol 2024; 31:1636-1651. [PMID: 39303700 DOI: 10.1016/j.chembiol.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Genomic technologies have led to massive gains in our understanding of human gene function and disease relevance. Chemical biologists are a primary beneficiary of this information, which can guide the prioritization of proteins for chemical probe and drug development. The vast functional and structural diversity of disease-relevant proteins, however, presents challenges for conventional small molecule screening libraries and assay development that in turn raise questions about the broader "druggability" of the human proteome. Here, we posit that activity-based protein profiling (ABPP), by generating global maps of small molecule-protein interactions in native biological systems, is well positioned to address major obstacles in human biology-guided chemical probe and drug discovery. We will support this viewpoint with case studies highlighting a range of small molecule mechanisms illuminated by ABPP that include the disruption and stabilization of biomolecular (protein-protein/nucleic acid) interactions and underscore allostery as a rich source of chemical tools for historically "undruggable" protein classes.
Collapse
|
3
|
Urmeneta-Ortíz MF, Tejeda-Martínez AR, González-Reynoso O, Flores-Soto ME. Potential Neuroprotective Effect of the Endocannabinoid System on Parkinson's Disease. PARKINSON'S DISEASE 2024; 2024:5519396. [PMID: 39104613 PMCID: PMC11300097 DOI: 10.1155/2024/5519396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by alterations in motor capacity resulting from a decrease in the neurotransmitter dopamine due to the selective death of dopaminergic neurons of the nigrostriatal pathway. Unfortunately, conventional pharmacological treatments fail to halt disease progression; therefore, new therapeutic strategies are needed, and currently, some are being investigated. The endocannabinoid system (ECS), highly expressed in the basal ganglia (BG) circuit, undergoes alterations in response to dopaminergic depletion, potentially contributing to motor symptoms and the etiopathogenesis of PD. Substantial evidence supports the neuroprotective role of the ECS through various mechanisms, including anti-inflammatory, antioxidative, and antiapoptotic effects. Therefore, the ECS emerges as a promising target for PD treatment. This review provides a comprehensive summary of current clinical and preclinical evidence concerning ECS alterations in PD, along with potential pharmacological targets that may exert the protection of dopaminergic neurons.
Collapse
Affiliation(s)
- María Fernanda Urmeneta-Ortíz
- Chemical Engineering Department, University Center for Exact and Engineering SciencesUniversity of Guadalajara, Blvd. M. García Barragán # 1451, Guadalajara C.P. 44430, Jalisco, Mexico
- Cellular and Molecular Neurobiology LaboratoryNeurosciences DivisionWestern Biomedical Research Center (CIBO)Mexican Social Security Institute, Sierra Mojada #800, Independencia Oriente, Guadalajara 44340, Jalisco, Mexico
| | - Aldo Rafael Tejeda-Martínez
- Cellular and Molecular Neurobiology LaboratoryNeurosciences DivisionWestern Biomedical Research Center (CIBO)Mexican Social Security Institute, Sierra Mojada #800, Independencia Oriente, Guadalajara 44340, Jalisco, Mexico
| | - Orfil González-Reynoso
- Chemical Engineering Department, University Center for Exact and Engineering SciencesUniversity of Guadalajara, Blvd. M. García Barragán # 1451, Guadalajara C.P. 44430, Jalisco, Mexico
| | - Mario Eduardo Flores-Soto
- Cellular and Molecular Neurobiology LaboratoryNeurosciences DivisionWestern Biomedical Research Center (CIBO)Mexican Social Security Institute, Sierra Mojada #800, Independencia Oriente, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
4
|
Kanwal H, Sangineto M, Ciarnelli M, Castaldo P, Villani R, Romano AD, Serviddio G, Cassano T. Potential Therapeutic Targets to Modulate the Endocannabinoid System in Alzheimer's Disease. Int J Mol Sci 2024; 25:4050. [PMID: 38612861 PMCID: PMC11012768 DOI: 10.3390/ijms25074050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disease (NDD), is characterized by chronic neuronal cell death through progressive loss of cognitive function. Amyloid beta (Aβ) deposition, neuroinflammation, oxidative stress, and hyperphosphorylated tau proteins are considered the hallmarks of AD pathology. Different therapeutic approaches approved by the Food and Drug Administration can only target a single altered pathway instead of various mechanisms that are involved in AD pathology, resulting in limited symptomatic relief and almost no effect in slowing down the disease progression. Growing evidence on modulating the components of the endocannabinoid system (ECS) proclaimed their neuroprotective effects by reducing neurochemical alterations and preventing cellular dysfunction. Recent studies on AD mouse models have reported that the inhibitors of the fatty acid amide hydrolase (FAAH) and monoacylglycerol (MAGL), hydrolytic enzymes for N-arachidonoyl ethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), respectively, might be promising candidates as therapeutical intervention. The FAAH and MAGL inhibitors alone or in combination seem to produce neuroprotection by reversing cognitive deficits along with Aβ-induced neuroinflammation, oxidative responses, and neuronal death, delaying AD progression. Their exact signaling mechanisms need to be elucidated for understanding the brain intrinsic repair mechanism. The aim of this review was to shed light on physiology and pathophysiology of AD and to summarize the experimental data on neuroprotective roles of FAAH and MAGL inhibitors. In this review, we have also included CB1R and CB2R modulators with their diverse roles to modulate ECS mediated responses such as anti-nociceptive, anxiolytic, and anti-inflammatory actions in AD. Future research would provide the directions in understanding the molecular mechanisms and development of new therapeutic interventions for the treatment of AD.
Collapse
Affiliation(s)
- Hina Kanwal
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Moris Sangineto
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Martina Ciarnelli
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Pasqualina Castaldo
- Department of Biomedical Sciences and Public Health, School of Medicine, University “Politecnica delle Marche”, 60126 Ancona, Italy;
| | - Rosanna Villani
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Antonino Davide Romano
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| | - Tommaso Cassano
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.S.); (M.C.); (R.V.); (A.D.R.); (G.S.); (T.C.)
| |
Collapse
|
5
|
Aydogan Kirmizi D, Başer E, Kaymak E, Kılıc D, Onat T, Ozkut MM. 2-Arachidonoylglycerol Activity in Over Ischemia Reperfusion Damage: Can Endocannabinoids Protect Ovarian Reserve? Cannabis Cannabinoid Res 2024; 9:591-600. [PMID: 36749133 DOI: 10.1089/can.2022.0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Objective: The present study aimed to demonstrate the possible effects of increased 2-arachidonoylglycerol (2-AG) by applying the monoacylglycerol lipase inhibitor KML-29 on rats with ovarian ischemia-reperfusion (IR) model. Methods: Forty-eight female Wistar albino rats were divided into six groups. Group 1: Sham, Group 2: Ischemia, Group 3: IR, Group 4: IR + KML-29 (2 mg/kg), Group 5: IR + KML-29 (20 mg/kg), and Group 6: IR + vehicle (dimethyl sulfoxide). Three hours of ischemia followed by 3 h of reperfusion. Two different doses of KML-29 (2 and 10 mg/kg) were administered intraperitoneally in Groups 4 and 5, 30 min before reperfusion. Ovarian IR injury and ovarian reserve were evaluated histopathological and by using nuclear factor (NF)-κB, interleukin (IL)-1β, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β1, superoxide dismutase, glutathione peroxidase pre-/postoperative blood antimullerian hormone, and inhibin B. Results: In the KML-1 and KML-2 groups, this damage was significantly reduced compared to the ischemia group. NF-κB, IL-1β, TNF-α, and TGF-β1 immunoreactivities increased statistically significantly in the ischemia group compared to the control group (p<0.001). Immunoreactivities of these proteins were significantly decreased in the KML-1 and KML-2 groups (p<0.001). It was observed that the number of these apoptotic cells decreased significantly in the KML-1 and KML-2 groups compared to the ischemia group (p<0.001). The postoperative inhibin level showed a significant decrease in the ischemia group compared to the sham group, while a significant increase was observed in the KML-1 and KML-2 groups compared to the ischemia group. Conclusion: It was seen that anti-inflammatory, antioxidant, and antiapoptotic activity was formed, and the ovarian reserve was preserved with 2-AG in ovarian IR damage. The protective effect of endocannabinoids on the ovaries may create a promising new treatment strategy for many pathologies that will affect the ovarian reserve.
Collapse
Affiliation(s)
- Demet Aydogan Kirmizi
- Department of Obstetrics and Gynecology, and Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Emre Başer
- Department of Obstetrics and Gynecology, and Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Emin Kaymak
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Derya Kılıc
- Department of Obstetrics and Gynecology, Pamukkale University, Denizli, Turkey
| | - Taylan Onat
- Department of Obstetrics and Gynecology, and Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Mahmud Mustafa Ozkut
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
6
|
Liu J, Fike KR, Dapper C, Klemba M. Metabolism of host lysophosphatidylcholine in Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci U S A 2024; 121:e2320262121. [PMID: 38349879 PMCID: PMC10895272 DOI: 10.1073/pnas.2320262121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
The human malaria parasite Plasmodium falciparum requires exogenous fatty acids to support its growth during the pathogenic, asexual erythrocytic stage. Host serum lysophosphatidylcholine (LPC) is a significant fatty acid source, yet the metabolic processes responsible for the liberation of free fatty acids from exogenous LPC are unknown. Using an assay for LPC hydrolysis in P. falciparum-infected erythrocytes, we have identified small-molecule inhibitors of key in situ lysophospholipase activities. Competitive activity-based profiling and generation of a panel of single-to-quadruple knockout parasite lines revealed that two enzymes of the serine hydrolase superfamily, termed exported lipase (XL) 2 and exported lipase homolog (XLH) 4, constitute the dominant lysophospholipase activities in parasite-infected erythrocytes. The parasite ensures efficient exogenous LPC hydrolysis by directing these two enzymes to distinct locations: XL2 is exported to the erythrocyte, while XLH4 is retained within the parasite. While XL2 and XLH4 were individually dispensable with little effect on LPC hydrolysis in situ, loss of both enzymes resulted in a strong reduction in fatty acid scavenging from LPC, hyperproduction of phosphatidylcholine, and an enhanced sensitivity to LPC toxicity. Notably, growth of XL/XLH-deficient parasites was severely impaired when cultured in media containing LPC as the sole exogenous fatty acid source. Furthermore, when XL2 and XLH4 activities were ablated by genetic or pharmacologic means, parasites were unable to proliferate in human serum, a physiologically relevant fatty acid source, revealing the essentiality of LPC hydrolysis in the host environment and its potential as a target for anti-malarial therapy.
Collapse
Affiliation(s)
- Jiapeng Liu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
| | | | - Christie Dapper
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
| | - Michael Klemba
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
| |
Collapse
|
7
|
Mohammad I, Liebmann KL, Miller SC. Firefly luciferin methyl ester illuminates the activity of multiple serine hydrolases. Chem Commun (Camb) 2023; 59:8552-8555. [PMID: 37337906 PMCID: PMC10347678 DOI: 10.1039/d3cc02540c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Firefly luciferin methyl ester is hydrolyzed by monoacylglycerol lipase MAGL, amidase FAAH, poorly-characterized hydrolase ABHD11, and hydrolases known for S-depalmitoylation (LYPLA1/2), not just esterase CES1. This enables activity-based bioluminescent assays for serine hydrolases and suggests that the 'esterase activity' responsible for hydrolyzing ester prodrugs is more diverse than previously supposed.
Collapse
Affiliation(s)
- Innus Mohammad
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation St., Worcester, MA 01605, USA.
| | - Kate L Liebmann
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation St., Worcester, MA 01605, USA.
| | - Stephen C Miller
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation St., Worcester, MA 01605, USA.
| |
Collapse
|
8
|
Liu J, Dapper C, Klemba M. Metabolism of host lysophosphatidylcholine in Plasmodium falciparum-infected erythrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537066. [PMID: 37131712 PMCID: PMC10153170 DOI: 10.1101/2023.04.17.537066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The human malaria parasite Plasmodium falciparum requires exogenous fatty acids to support its growth during the pathogenic, asexual erythrocytic stage. Host serum lysophosphatidylcholine (LPC) is a significant fatty acid source, yet the metabolic processes responsible for the liberation of free fatty acids from exogenous LPC are unknown. Using a novel assay for LPC hydrolysis in P. falciparum-infected erythrocytes, we have identified small-molecule inhibitors of key in situ lysophospholipase activities. Competitive activity-based profiling and generation of a panel of single-to-quadruple knockout parasite lines revealed that two enzymes of the serine hydrolase superfamily, termed exported lipase (XL) 2 and exported lipase homolog (XLH) 4, are the dominant lysophospholipase activities in parasite-infected erythrocytes. The parasite ensures efficient exogenous LPC hydrolysis by directing these two enzymes to distinct locations: XL2 is exported to the erythrocyte, while XLH4 is retained within the parasite. While XL2 and XLH4 were individually dispensable with little effect on LPC hydrolysis in situ, loss of both enzymes resulted in a strong reduction in fatty acid scavenging from LPC, hyperproduction of phosphatidylcholine, and an enhanced sensitivity to LPC toxicity. Notably, growth of XL/XLH-deficient parasites was severely impaired when cultured in media containing LPC as the sole exogenous fatty acid source. Furthermore, when XL2 and XLH4 activities were ablated by genetic or pharmacologic means, parasites were unable to proliferate in human serum, a physiologically-relevant fatty acid source, revealing the essentiality of LPC hydrolysis in the host environment and its potential as a target for anti-malarial therapy.
Collapse
Affiliation(s)
- Jiapeng Liu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061
| | - Christie Dapper
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061
| | - Michael Klemba
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061
| |
Collapse
|
9
|
Mangiatordi GF, Cavalluzzi MM, Delre P, Lamanna G, Lumuscio MC, Saviano M, Majoral JP, Mignani S, Duranti A, Lentini G. Endocannabinoid Degradation Enzyme Inhibitors as Potential Antipsychotics: A Medicinal Chemistry Perspective. Biomedicines 2023; 11:biomedicines11020469. [PMID: 36831006 PMCID: PMC9953700 DOI: 10.3390/biomedicines11020469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
The endocannabinoid system (ECS) plays a very important role in numerous physiological and pharmacological processes, such as those related to the central nervous system (CNS), including learning, memory, emotional processing, as well pain control, inflammatory and immune response, and as a biomarker in certain psychiatric disorders. Unfortunately, the half-life of the natural ligands responsible for these effects is very short. This perspective describes the potential role of the inhibitors of the enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL), which are mainly responsible for the degradation of endogenous ligands in psychic disorders and related pathologies. The examination was carried out considering both the impact that the classical exogenous ligands such as Δ9-tetrahydrocannabinol (THC) and (-)-trans-cannabidiol (CBD) have on the ECS and through an analysis focused on the possibility of predicting the potential toxicity of the inhibitors before they are subjected to clinical studies. In particular, cardiotoxicity (hERG liability), probably the worst early adverse reaction studied during clinical studies focused on acute toxicity, was predicted, and some of the most used and robust metrics available were considered to select which of the analyzed compounds could be repositioned as possible oral antipsychotics.
Collapse
Affiliation(s)
| | - Maria Maddalena Cavalluzzi
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Pietro Delre
- Institute of Crystallography, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Giuseppe Lamanna
- Institute of Crystallography, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Maria Cristina Lumuscio
- Institute of Crystallography, National Research Council of Italy, Via G. Amendola 122/O, 70126 Bari, Italy
| | - Michele Saviano
- Institute of Crystallography, National Research Council of Italy, Via Vivaldi 43, 81100 Caserta, Italy
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
- Université Toulouse, 118 Route de Narbonne, CEDEX 4, 31077 Toulouse, France
| | - Serge Mignani
- CERMN (Centre d’Etudes et de Recherche sur le Médicament de Normandie), Université de Caen, 14032 Caen, France
- CQM—Centro de Química da Madeira, MMRG (Molecular Materials Research Group), Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, Italy
- Correspondence: ; Tel.: +39-0722-303501
| | - Giovanni Lentini
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
10
|
Honeder SE, Tomin T, Schinagl M, Pfleger R, Hoehlschen J, Darnhofer B, Schittmayer M, Birner‐Gruenberger R. Research Advances Through Activity‐Based Lipid Hydrolase Profiling. Isr J Chem 2023. [DOI: 10.1002/ijch.202200078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sophie Elisabeth Honeder
- Research and Diagnostic Institute of Pathology Medical University of Graz Stiftingtalstraße 6 8036 Graz Austria
| | - Tamara Tomin
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| | - Maximilian Schinagl
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| | - Raphael Pfleger
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| | - Julia Hoehlschen
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| | - Barbara Darnhofer
- Core Facility Mass Spectrometry Center for Medical Research Medical University of Graz Neue Stiftingtalstraße 24 8036 Graz Austria
| | - Matthias Schittmayer
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| | - Ruth Birner‐Gruenberger
- Research and Diagnostic Institute of Pathology Medical University of Graz Stiftingtalstraße 6 8036 Graz Austria
- Institute of Chemical Technologies and Analytics University of Technology Vienna Getreidemarkt 9 1060 Wien Austria
| |
Collapse
|
11
|
Understanding and Targeting the Endocannabinoid System with Activity‐Based Protein Profiling. Isr J Chem 2023. [DOI: 10.1002/ijch.202200115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Duranti A, Beldarrain G, Álvarez A, Sbriscia M, Carloni S, Balduini W, Alonso-Alconada D. The Endocannabinoid System as a Target for Neuroprotection/Neuroregeneration in Perinatal Hypoxic-Ischemic Brain Injury. Biomedicines 2022; 11:biomedicines11010028. [PMID: 36672536 PMCID: PMC9855621 DOI: 10.3390/biomedicines11010028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The endocannabinoid (EC) system is a complex cell-signaling system that participates in a vast number of biological processes since the prenatal period, including the development of the nervous system, brain plasticity, and circuit repair. This neuromodulatory system is also involved in the response to endogenous and environmental insults, being of special relevance in the prevention and/or treatment of vascular disorders, such as stroke and neuroprotection after neonatal brain injury. Perinatal hypoxia-ischemia leading to neonatal encephalopathy is a devastating condition with no therapeutic approach apart from moderate hypothermia, which is effective only in some cases. This overview, therefore, gives a current description of the main components of the EC system (including cannabinoid receptors, ligands, and related enzymes), to later analyze the EC system as a target for neonatal neuroprotection with a special focus on its neurogenic potential after hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence: (A.D.); (D.A.-A.); Tel.: +39-0722-303501 (A.D.); +34-946-013294 (D.A.-A.)
| | - Gorane Beldarrain
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Antonia Álvarez
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Matilde Sbriscia
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Walter Balduini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Daniel Alonso-Alconada
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Correspondence: (A.D.); (D.A.-A.); Tel.: +39-0722-303501 (A.D.); +34-946-013294 (D.A.-A.)
| |
Collapse
|
13
|
Cheng R, Fujinaga M, Yang J, Rong J, Haider A, Ogasawara D, Van RS, Shao T, Chen Z, Zhang X, Calderon Leon ER, Zhang Y, Mori W, Kumata K, Yamasaki T, Xie L, Sun S, Wang L, Ran C, Shao Y, Cravatt B, Josephson L, Zhang MR, Liang SH. A novel monoacylglycerol lipase-targeted 18F-labeled probe for positron emission tomography imaging of brown adipose tissue in the energy network. Acta Pharmacol Sin 2022; 43:3002-3010. [PMID: 35513432 PMCID: PMC9622914 DOI: 10.1038/s41401-022-00912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/13/2022] [Indexed: 11/09/2022] Open
Abstract
Monoacylglycerol lipase (MAGL) constitutes a serine hydrolase that orchestrates endocannabinoid homeostasis and exerts its function by catalyzing the degradation of 2-arachidonoylglycerol (2-AG) to arachidonic acid (AA). As such, selective inhibition of MAGL represents a potential therapeutic and diagnostic approach to various pathologies including neurodegenerative disorders, metabolic diseases and cancers. Based on a unique 4-piperidinyl azetidine diamide scaffold, we developed a reversible and peripheral-specific radiofluorinated MAGL PET ligand [18F]FEPAD. Pharmacokinetics and binding studies on [18F]FEPAD revealed its outstanding specificity and selectivity towards MAGL in brown adipose tissue (BAT) - a tissue that is known to be metabolically active. We employed [18F]FEPAD in PET studies to assess the abundancy of MAGL in BAT deposits of mice and found a remarkable degree of specific tracer binding in the BAT, which was confirmed by post-mortem tissue analysis. Given the negative regulation of endocannabinoids on the metabolic BAT activity, our study supports the concept that dysregulation of MAGL is likely linked to metabolic disorders. Further, we now provide a suitable imaging tool that allows non-invasive assessment of MAGL in BAT deposits, thereby paving the way for detailed mechanistic studies on the role of BAT in endocannabinoid system (ECS)-related pathologies.
Collapse
Affiliation(s)
- Ran Cheng
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Masayuki Fujinaga
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Jing Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02125, USA
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Daisuke Ogasawara
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Richard S Van
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Tuo Shao
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Xiaofei Zhang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Erick R Calderon Leon
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Yiding Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Wakana Mori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Katsushi Kumata
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Tomoteru Yamasaki
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Lin Xie
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Shaofa Sun
- Hubei Collaborative Innovation Centre for Non-power Nuclear Technology, College of Nuclear Technology & Chemistry and Biology, Hubei University of Science and Technology, Xianning, Hubei Province, 437100, China
| | - Lu Wang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02125, USA
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Benjamin Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan.
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
14
|
Jaiswal S, Gupta G, Ayyannan SR. Synthesis and evaluation of carbamate derivatives as fatty acid amide hydrolase and monoacylglycerol lipase inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200081. [PMID: 35924298 DOI: 10.1002/ardp.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 11/06/2022]
Abstract
Fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) are the primary catabolic enzymes for endocannabinoids, anandamide (AEA), and 2-arachidonoyl glycerol. Numerous studies have shown that FAAH and MAGL play an important role in modulating various central nervous system activities; hence, the development of small molecule FAAH/MAGL inhibitors is an active area of research. Several small molecules possessing the carbamate scaffold are documented as potential FAAH/MAGL inhibitors. Here, we designed and synthesized a series of open chain and cyclic carbamates and evaluated their dual FAAH-MAGL inhibition properties. Phenyl [4-(piperidin-1-ylmethyl)phenyl]carbamate (2e) emerged as the most potent MAGL inhibitor (IC50 = 19 nM), benzyl (1H-benzo[d]imidazol-2-yl)carbamate (3h) was the most potent FAAH inhibitor (IC50 = 55 nM), and phenyl (6-fluorobenzo[d]thiazol-2-yl)carbamate (2i) egressed as a nonselective dual FAAH-MAGL inhibitor (FAAH: 82 nM, MAGL: 72 nM). The enzyme kinetics experiments revealed that the compounds inhibit FAAH/MAGL in a covalent-reversible manner, with a mixed binding mode of action. Moreover, the lead compounds were found suitable for blood-brain permeation in the parallel artificial membrane permeation assay. Furthermore, docking simulation experiments suggested that the potency of the lead compounds was governed by hydrogen bonds and hydrophobic interactions with the enzyme active sites. In silico drug-likeness and ADMETox prediction studies provided useful information on the compounds' oral absorption, metabolism, and toxicity profiles. In summary, this study afforded potent multifunctional carbamates with appreciable pharmacokinetic profiles meriting further investigation.
Collapse
Affiliation(s)
- Shivani Jaiswal
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Garima Gupta
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Senthil R Ayyannan
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| |
Collapse
|
15
|
Inhibiting Endocannabinoid Hydrolysis as Emerging Analgesic Strategy Targeting a Spectrum of Ion Channels Implicated in Migraine Pain. Int J Mol Sci 2022; 23:ijms23084407. [PMID: 35457225 PMCID: PMC9027089 DOI: 10.3390/ijms23084407] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 12/23/2022] Open
Abstract
Migraine is a disabling neurovascular disorder characterized by severe pain with still limited efficient treatments. Endocannabinoids, the endogenous painkillers, emerged, alternative to plant cannabis, as promising analgesics against migraine pain. In this thematic review, we discuss how inhibition of the main endocannabinoid-degrading enzymes, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), could raise the level of endocannabinoids (endoCBs) such as 2-AG and anandamide in order to alleviate migraine pain. We describe here: (i) migraine pain signaling pathways, which could serve as specific targets for antinociception; (ii) a divergent distribution of MAGL and FAAH activities in the key regions of the PNS and CNS implicated in migraine pain signaling; (iii) a complexity of anti-nociceptive effects of endoCBs mediated by cannabinoid receptors and through a direct modulation of ion channels in nociceptive neurons; and (iv) the spectrum of emerging potent MAGL and FAAH inhibitors which efficiently increase endoCBs levels. The specific distribution and homeostasis of endoCBs in the main regions of the nociceptive system and their generation ‘on demand’, along with recent availability of MAGL and FAAH inhibitors suggest new perspectives for endoCBs-mediated analgesia in migraine pain.
Collapse
|
16
|
Hattori Y, Seki C, Maeda J, Nagai Y, Aoyama K, Zhang MR, Minamimoto T, Koike T, Higuchi M. Quantification of monoacylglycerol lipase and its occupancy by an exogenous ligand in rhesus monkey brains using [ 18F]T-401 and PET. J Cereb Blood Flow Metab 2022; 42:656-666. [PMID: 34727758 PMCID: PMC8943622 DOI: 10.1177/0271678x211058285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Monoacylglycerol lipase (MAGL) is a cytosolic serine hydrolase that cleaves monoacylglycerols into fatty acids and is a potential target for the novel treatment of CNS disorders related to the endocannabinoid system and neuroinflammation. We have developed [18F]T-401 as a selective Positron emission tomography (PET) imaging agent for MAGL. In this study, we determined an analytical method to quantify MAGL availability and its occupancy by an exogenous inhibitor in rhesus monkey brains using [18F]T-401-PET. In rhesus monkeys, regional time-activity curves were described well when using an extended 2-tissue compartment model that accommodated the formation of a radiometabolite in the brain. This model yielded reliable estimates of the total distribution volume (VT), and the rank order of VT was consistent with known regional activity of MAGL enzyme in primates. The pretreatment of monkeys with JW642 resulted in a dose-dependent reduction of [18F]T-401 retentions in the brain, and VT. Lassen's graphical analysis indicated a VND of 0.69 mL/cm3 and a plasma JW642 concentration of 126 ng/mL for inhibiting the specific binding by 50%. [18F]T-401 and the method established can be used for quantification of MAGL in healthy brain and in disease conditions, and is suitable for evaluations of target engagement at cerebral MAGL.
Collapse
Affiliation(s)
| | - Chie Seki
- National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Jun Maeda
- National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuji Nagai
- National Institutes for Quantum Science and Technology, Chiba, Japan
| | | | - Ming-Rong Zhang
- National Institutes for Quantum Science and Technology, Chiba, Japan
| | | | - Tatsuki Koike
- Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Makoto Higuchi
- National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
17
|
Bogale K, Raup-Konsavage W, Dalessio S, Vrana K, Coates MD. Cannabis and Cannabis Derivatives for Abdominal Pain Management in Inflammatory Bowel Disease. Med Cannabis Cannabinoids 2022; 4:97-106. [PMID: 35224429 DOI: 10.1159/000517425] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/22/2021] [Indexed: 12/15/2022] Open
Abstract
For centuries, cannabis and its components have been used to manage a wide variety of symptoms associated with many illnesses. Gastrointestinal (GI) diseases are no exception in this regard. Individuals suffering from inflammatory bowel disease (IBD) are among those who have sought out the ameliorating properties of this plant. As legal limitations of its use have eased, interest has grown from both patients and their providers regarding the potential of cannabis to be used in the clinical setting. Similarly, a growing number of animal and human studies have been undertaken to evaluate the impact of cannabis and cannabinoid signaling elements on the natural history of IBD and its associated complications. There is little clinical evidence supporting the ability of cannabis or related products to treat the GI inflammation underlying these disorders. However, 1 recurring theme from both animal and human studies is that these agents have a significant impact on several IBD-related symptoms, including abdominal pain. In this review, we discuss the role of cannabis and cannabinoid signaling in visceral pain perception, what is currently known regarding the efficacy of cannabis and its derivatives for managing pain, related symptoms and inflammation in IBD, and what work remains to effectively utilize cannabis and its derivatives in the clinical setting.
Collapse
Affiliation(s)
- Kaleb Bogale
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Wesley Raup-Konsavage
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Shannon Dalessio
- Division of Gastroenterology & Hepatology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Kent Vrana
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Matthew D Coates
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA.,Division of Gastroenterology & Hepatology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
18
|
Grams RJ, Hsu KL. Reactive chemistry for covalent probe and therapeutic development. Trends Pharmacol Sci 2022; 43:249-262. [PMID: 34998611 PMCID: PMC8840975 DOI: 10.1016/j.tips.2021.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 02/06/2023]
Abstract
Bioactive small molecules that form covalent bonds with a target protein are important tools for basic research and can be highly effective drugs. This review highlights reactive groups found in a collection of thiophilic and oxophilic drugs that mediate pharmacological activity through a covalent mechanism of action (MOA). We describe the application of advanced proteomic and bioanalytical methodologies for assessing selectivity of these covalent agents to guide and inspire the search for additional electrophiles suitable for covalent probe and therapeutic development. While the emphasis is on chemistry for modifying catalytic serine, threonine or cysteine residues, we devote a substantial fraction of the review to a collection of exploratory reactive groups of understudied residues on proteins.
Collapse
Affiliation(s)
- R. Justin Grams
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA22908, USA; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA; University of Virginia Cancer Center, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
19
|
Kashyap A, Kumar S, Dutt R. A review on structurally diversified synthesized molecules as monoacylglycerol lipase inhibitors and their therapeutic uses. Curr Drug Res Rev 2022; 14:96-115. [PMID: 35232358 DOI: 10.2174/2589977514666220301111457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/24/2021] [Accepted: 12/15/2021] [Indexed: 11/22/2022]
Abstract
Monoacylglycerol is a metabolic key serine hydrolase, engaged in the regulation of signalling network system of endocannabinoids, which is associated with various physiological processes like pain, inflammation, feeding cognition and neurodegenerative diseases like Alzheimer, Parkinson's disease. The monoacylglycerol also found to act as a regulator and the free fatty acid provider in the proliferation of cancer cells, numerous aggressive tumours such as colorectal cancer, neuroblastoma and nasopharyngeal carcinoma. It also played an important role in increasing the concentration of specific lipids derived from free fatty acids like phosphatidic acid, lysophosphatidic acid, sphingosine-1-phosphate and prostaglandin E2. These signalling lipids are associated with cell proliferation, survival, tumour cell migration, contributing to tumour development, maturation and metastases. In the present study here, we are presenting a review on structurally diverse MAGL inhibitors, their development and their evaluation for different pharmacological activities.
Collapse
Affiliation(s)
- Abhishek Kashyap
- Pharmaceutical Chemistry Department (Ph.D. Scholar), School of Medical and Allied Sciences, GD Goenka University, Sohna, India
| | - Suresh Kumar
- Pharmaceutical Chemistry Department (Ph.D. Scholar), School of Medical and Allied Sciences, GD Goenka University, Sohna, India
| | - Rohit Dutt
- Pharmaceutical Chemistry Department, School of Medical and Allied Sciences, GD Goenka University, Sohna, India
| |
Collapse
|
20
|
Jemas A, Xie Y, Pigga JE, Caplan JL, am Ende CW, Fox JM. Catalytic Activation of Bioorthogonal Chemistry with Light (CABL) Enables Rapid, Spatiotemporally Controlled Labeling and No-Wash, Subcellular 3D-Patterning in Live Cells Using Long Wavelength Light. J Am Chem Soc 2022; 144:1647-1662. [PMID: 35072462 PMCID: PMC9364228 DOI: 10.1021/jacs.1c10390] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Described is the spatiotemporally controlled labeling and patterning of biomolecules in live cells through the catalytic activation of bioorthogonal chemistry with light, referred to as "CABL". Here, an unreactive dihydrotetrazine (DHTz) is photocatalytically oxidized in the intracellular environment by ambient O2 to produce a tetrazine that immediately reacts with a trans-cyclooctene (TCO) dienophile. 6-(2-Pyridyl)dihydrotetrazine-3-carboxamides were developed as stable, cell permeable DHTz reagents that upon oxidation produce the most reactive tetrazines ever used in live cells with Diels-Alder kinetics exceeding k2 of 106 M-1 s-1. CABL photocatalysts are based on fluorescein or silarhodamine dyes with activation at 470 or 660 nm. Strategies for limiting extracellular production of singlet oxygen are described that increase the cytocompatibility of photocatalysis. The HaloTag self-labeling platform was used to introduce DHTz tags to proteins localized in the nucleus, mitochondria, actin, or cytoplasm, and high-yielding subcellular activation and labeling with a TCO-fluorophore were demonstrated. CABL is light-dose dependent, and two-photon excitation promotes CABL at the suborganelle level to selectively pattern live cells under no-wash conditions. CABL was also applied to spatially resolved live-cell labeling of an endogenous protein target by using TIRF microscopy to selectively activate intracellular monoacylglycerol lipase tagged with DHTz-labeled small molecule covalent inhibitor. Beyond spatiotemporally controlled labeling, CABL also improves the efficiency of "ordinary" tetrazine ligations by rescuing the reactivity of commonly used 3-aryl-6-methyltetrazine reporters that become partially reduced to DHTzs inside cells. The spatiotemporal control and fast rates of photoactivation and labeling of CABL should enable a range of biomolecular labeling applications in living systems.
Collapse
Affiliation(s)
- Andrew Jemas
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Yixin Xie
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Jessica E. Pigga
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Jeffrey L. Caplan
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA
| | - Christopher W. am Ende
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Joseph M. Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
21
|
Papa A, Pasquini S, Contri C, Gemma S, Campiani G, Butini S, Varani K, Vincenzi F. Polypharmacological Approaches for CNS Diseases: Focus on Endocannabinoid Degradation Inhibition. Cells 2022; 11:cells11030471. [PMID: 35159280 PMCID: PMC8834510 DOI: 10.3390/cells11030471] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
Polypharmacology breaks up the classical paradigm of “one-drug, one target, one disease” electing multitarget compounds as potential therapeutic tools suitable for the treatment of complex diseases, such as metabolic syndrome, psychiatric or degenerative central nervous system (CNS) disorders, and cancer. These diseases often require a combination therapy which may result in positive but also negative synergistic effects. The endocannabinoid system (ECS) is emerging as a particularly attractive therapeutic target in CNS disorders and neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), stroke, traumatic brain injury (TBI), pain, and epilepsy. ECS is an organized neuromodulatory network, composed by endogenous cannabinoids, cannabinoid receptors type 1 and type 2 (CB1 and CB2), and the main catabolic enzymes involved in the endocannabinoid inactivation such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). The multiple connections of the ECS with other signaling pathways in the CNS allows the consideration of the ECS as an optimal source of inspiration in the development of innovative polypharmacological compounds. In this review, we focused our attention on the reported polypharmacological examples in which FAAH and MAGL inhibitors are involved.
Collapse
Affiliation(s)
- Alessandro Papa
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Silvia Pasquini
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
- Correspondence: ; Tel.: +39-0577-234161
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| |
Collapse
|
22
|
Barth M, Rudolph S, Kampschulze J, Meyer zu Vilsendorf I, Hanekamp W, Mulac D, Langer K, Lehr M. Hexafluoroisopropyl carbamates as selective MAGL and dual MAGL/FAAH inhibitors: biochemical and physicochemical properties. ChemMedChem 2022; 17:e202100757. [PMID: 35072346 PMCID: PMC9303458 DOI: 10.1002/cmdc.202100757] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/13/2022] [Indexed: 11/29/2022]
Abstract
A series of hexafluoroisopropyl carbamates with indolylalkyl‐ and azaindolylalkyl‐substituents at the carbamate nitrogen was synthesized and evaluated for inhibition of the endocannabinoid degrading enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). The synthesized derivatives with butyl to heptyl spacers between the heteroaryl and the carbamate moiety were inhibitors of both enzymes. For investigated compounds in which the alkyl chain was partially incorporated into a piperidine ring, different results were obtained. Compounds with a methylene spacer between the piperidine ring and the heteroaromatic system were found to be selective MAGL inhibitors, while an extension of the alkyl spacer to two to four atoms resulted in dual inhibition of FAAH/MAGL. The only small change in enzyme inhibitory activity with variation of the heteroaromatic system indicates that the reactive hexafluoroisopropyl carbamate group is mainly responsible for the strength of the inhibitory effect of the compounds. Selected derivatives were also tested for hydrolytic stability in aqueous solution, liver homogenate and blood plasma as well as for aqueous solubility and for permeability in a Caco‐2 cell model. Some compounds showed a slightly higher MAGL inhibitory effect than the known selective MAGL inhibitor ABX‐1431 and also partly surpassed this substance with regard to certain physicochemical and biochemical properties such as water solubility and cell permeability.
Collapse
Affiliation(s)
- Maximilian Barth
- University of Münster: Westfalische Wilhelms-Universitat Munster Institute of Pharmaceutical and Medicinal Chemistry GERMANY
| | - Stefan Rudolph
- University of Münster: Westfalische Wilhelms-Universitat Munster Institute of Pharmaceutical and Medicinal Chemistry GERMANY
| | - Jan Kampschulze
- University of Münster: Westfalische Wilhelms-Universitat Munster Institute of Pharmaceutical and Medicinal Chemistry GERMANY
| | - Imke Meyer zu Vilsendorf
- University of Münster: Westfalische Wilhelms-Universitat Munster Institute of Pharmaceutical and Medicinal Chemistry GERMANY
| | - Walburga Hanekamp
- University of Münster: Westfalische Wilhelms-Universitat Munster Institute of Pharmaceutical and Medicinal Chemistry GERMANY
| | - Dennis Mulac
- University of Münster: Westfalische Wilhelms-Universitat Munster Institute of Pharmaceutical Technology and Biopharmacy GERMANY
| | - Klaus Langer
- University of Münster: Westfalische Wilhelms-Universitat Munster Institute of Pharmaceutical Technology and Biopharmacy GERMANY
| | - Matthias Lehr
- University of Münster Institute of Pharmaceutical and Medicinal Chemistry Corrensstrasse 48 48149 Münster GERMANY
| |
Collapse
|
23
|
Sun H, Xue Q, Zhang C, Wu H, Feng P. Derivatization based on tetrazine scaffolds: synthesis of tetrazine derivatives and their biomedical applications. Org Chem Front 2022. [DOI: 10.1039/d1qo01324f] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The recent advances in tetrazine scaffold-based derivatizations have been summarized. The advantages and limitations of derivatization methods and applications of the developed tetrazine derivatives in bioorthogonal chemistry have been highlighted.
Collapse
Affiliation(s)
- Hongbao Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qinghe Xue
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chang Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haoxing Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Feng
- Clinical Trial Center, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
24
|
Shao T, Chen Z, Rong J, Belov V, Chen J, Jeyarajan A, Deng X, Fu H, Yu Q, Rwema SH, Lin W, Papisov M, Josephson L, Chung RT, Liang SH. [ 18F]MAGL-4-11 positron emission tomography molecular imaging of monoacylglycerol lipase changes in preclinical liver fibrosis models. Acta Pharm Sin B 2022; 12:308-315. [PMID: 35127387 PMCID: PMC8799882 DOI: 10.1016/j.apsb.2021.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/06/2021] [Accepted: 07/01/2021] [Indexed: 01/11/2023] Open
Abstract
Monoacylglycerol lipase (MAGL) is a pivotal enzyme in the endocannabinoid system, which metabolizes 2-arachidonoylglycerol (2-AG) into the proinflammatory eicosanoid precursor arachidonic acid (AA). MAGL and other endogenous cannabinoid (EC) degrading enzymes are involved in the fibrogenic signaling pathways that induce hepatic stellate cell (HSC) activation and ECM accumulation during chronic liver disease. Our group recently developed an 18F-labeled MAGL inhibitor ([18F]MAGL-4-11) for PET imaging and demonstrated highly specific binding in vitro and in vivo. In this study, we determined [18F]MAGL-4-11 PET enabled imaging MAGL levels in the bile duct ligation (BDL) and carbon tetrachloride (CCl4) models of liver cirrhosis; we also assessed the hepatic gene expression of the enzymes involved with EC system including MAGL, NAPE-PLD, FAAH and DAGL that as a function of disease severity in these models; [18F]MAGL-4-11 autoradiography was performed to assess tracer binding in frozen liver sections both in animal and human. [18F]MAGL-4-11 demonstrated reduced PET signals in early stages of fibrosis and further significantly decreased with disease progression compared with control mice. We confirmed MAGL and FAAH expression decreases with fibrosis severity, while its levels in normal liver tissue are high; in contrast, the EC synthetic enzymes NAPE-PLD and DAGL are enhanced in these different fibrosis models. In vitro autoradiography further supported that [18F]MAGL-4-11 bound specifically to MAGL in both animal and human fibrotic liver tissues. Our PET ligand [18F]MAGL-4-11 shows excellent sensitivity and specificity for MAGL visualization in vivo and accurately reflects the histological stages of liver fibrosis in preclinical models and human liver tissues.
Collapse
Affiliation(s)
- Tuo Shao
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA,Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Vasily Belov
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA,Shriners Hospitals for Children-Boston Boston, MA 02114, USA
| | - Jiahui Chen
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Andre Jeyarajan
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Xiaoyun Deng
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hualong Fu
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Qingzhen Yu
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Steve H. Rwema
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Wenyu Lin
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mikhail Papisov
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA,Shriners Hospitals for Children-Boston Boston, MA 02114, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Raymond T. Chung
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA,Corresponding authors. Tel.: +1 617 724 7562, fax: +1 617 643 0446 (Raymond T. Chung); Tel.: +1 617 726 6107, fax: +1 617 726 6165 (Steven H. Liang).
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA,Corresponding authors. Tel.: +1 617 724 7562, fax: +1 617 643 0446 (Raymond T. Chung); Tel.: +1 617 726 6107, fax: +1 617 726 6165 (Steven H. Liang).
| |
Collapse
|
25
|
On the Biomedical Properties of Endocannabinoid Degradation and Reuptake Inhibitors: Pre-clinical and Clinical Evidence. Neurotox Res 2021; 39:2072-2097. [PMID: 34741755 DOI: 10.1007/s12640-021-00424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 10/19/2022]
Abstract
The endocannabinoid system (ECS) is composed of endogenous cannabinoids; components involved in their synthesis, transport, and degradation; and an expansive variety of cannabinoid receptors. Hypofunction or deregulation of the ECS is related to pathological conditions. Consequently, endogenous enhancement of endocannabinoid levels and/or regulation of their metabolism represent promising therapeutic approaches. Several major strategies have been suggested for the modulation of the ECS: (1) blocking endocannabinoids degradation, (2) inhibition of endocannabinoid cellular uptake, and (3) pharmacological modulation of cannabinoid receptors as potential therapeutic targets. Here, we focused in this review on degradation/reuptake inhibitors over cannabinoid receptor modulators in order to provide an updated synopsis of contemporary evidence advancing mechanisms of endocannabinoids as pharmacological tools with therapeutic properties for the treatment of several disorders. For this purpose, we revisited the available literature and reported the latest advances regarding the biomedical properties of fatty acid amide hydrolase and monoacylglycerol lipase inhibitors in pre-clinical and clinical studies. We also highlighted anandamide and 2-arachidonoylglycerol reuptake inhibitors with promising results in pre-clinical studies using in vitro and animal models as an outlook for future research in clinical trials.
Collapse
|
26
|
Rong J, Mori W, Xia X, Schafroth MA, Zhao C, Van RS, Yamasaki T, Chen J, Xiao Z, Haider A, Ogasawara D, Hiraishi A, Shao T, Zhang Y, Chen Z, Pang F, Hu K, Xie L, Fujinaga M, Kumata K, Gou Y, Fang Y, Gu S, Wei H, Bao L, Xu H, Collier TL, Shao Y, Carson RE, Cravatt BF, Wang L, Zhang MR, Liang SH. Novel Reversible-Binding PET Ligands for Imaging Monoacylglycerol Lipase Based on the Piperazinyl Azetidine Scaffold. J Med Chem 2021; 64:14283-14298. [PMID: 34569803 DOI: 10.1021/acs.jmedchem.1c00747] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Monoacylglycerol lipase (MAGL) is a 33 kDa serine protease primarily responsible for hydrolyzing 2-arachidonoylglycerol into the proinflammatory eicosanoid precursor arachidonic acid in the central nervous system. Inhibition of MAGL constitutes an attractive therapeutic concept for treating psychiatric disorders and neurodegenerative diseases. Herein, we present the design and synthesis of multiple reversible MAGL inhibitor candidates based on a piperazinyl azetidine scaffold. Compounds 10 and 15 were identified as the best-performing reversible MAGL inhibitors by pharmacological evaluations, thus channeling their radiolabeling with fluorine-18 in high radiochemical yields and favorable molar activity. Furthermore, evaluation of [18F]10 and [18F]15 ([18F]MAGL-2102) by autoradiography and positron emission tomography (PET) imaging in rodents and nonhuman primates demonstrated favorable brain uptakes, heterogeneous radioactivity distribution, good specific binding, and adequate brain kinetics, and [18F]15 demonstrated a better performance. In conclusion, [18F]15 was found to be a suitable PET radioligand for the visualization of MAGL, harboring potential for the successful translation into humans.
Collapse
Affiliation(s)
- Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Wakana Mori
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Xiaotian Xia
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Michael A Schafroth
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chunyu Zhao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Richard S Van
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Jiahui Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Zhiwei Xiao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Daisuke Ogasawara
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Atsuto Hiraishi
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Tuo Shao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Fuwen Pang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Kuan Hu
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Lin Xie
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Katsushi Kumata
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Yuancheng Gou
- Chemshuttle Incorporation, 1699 Huishan Blvd., Wuxi, Jiangsu 214174, China
| | - Yang Fang
- Chemshuttle Incorporation, 1699 Huishan Blvd., Wuxi, Jiangsu 214174, China
| | - Shuyin Gu
- Chemshuttle Incorporation, 1699 Huishan Blvd., Wuxi, Jiangsu 214174, China
| | - Huiyi Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Liang Bao
- Chemshuttle Incorporation, 1699 Huishan Blvd., Wuxi, Jiangsu 214174, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Thomas L Collier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
27
|
Zanfirescu A, Ungurianu A, Mihai DP, Radulescu D, Nitulescu GM. Targeting Monoacylglycerol Lipase in Pursuit of Therapies for Neurological and Neurodegenerative Diseases. Molecules 2021; 26:5668. [PMID: 34577139 PMCID: PMC8468992 DOI: 10.3390/molecules26185668] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Neurological and neurodegenerative diseases are debilitating conditions, and frequently lack an effective treatment. Monoacylglycerol lipase (MAGL) is a key enzyme involved in the metabolism of 2-AG (2-arachidonoylglycerol), a neuroprotective endocannabinoid intimately linked to the generation of pro- and anti-inflammatory molecules. Consequently, synthesizing selective MAGL inhibitors has become a focus point in drug design and development. The purpose of this review was to summarize the diverse synthetic scaffolds of MAGL inhibitors concerning their potency, mechanisms of action and potential therapeutic applications, focusing on the results of studies published in the past five years. The main irreversible inhibitors identified were derivatives of hexafluoroisopropyl alcohol carbamates, glycol carbamates, azetidone triazole ureas and benzisothiazolinone, whereas the most promising reversible inhibitors were derivatives of salicylketoxime, piperidine, pyrrolidone and azetidinyl amides. We reviewed the results of in-depth chemical, mechanistic and computational studies on MAGL inhibitors, in addition to the results of in vitro findings concerning selectivity and potency of inhibitors, using the half maximal inhibitory concentration (IC50) as an indicator of their effect on MAGL. Further, for highlighting the potential usefulness of highly selective and effective inhibitors, we examined the preclinical in vivo reports regarding the promising therapeutic applications of MAGL pharmacological inhibition.
Collapse
Affiliation(s)
| | - Anca Ungurianu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (A.Z.); (D.P.M.); (D.R.); (G.M.N.)
| | | | | | | |
Collapse
|
28
|
Tung MC, Fung KM, Hsu HM, Tseng TS. Discovery of 8-prenylnaringenin from hop ( Humulus lupulus L.) as a potent monoacylglycerol lipase inhibitor for treatments of neuroinflammation and Alzheimer's disease. RSC Adv 2021; 11:31062-31072. [PMID: 35498911 PMCID: PMC9041313 DOI: 10.1039/d1ra05311f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022] Open
Abstract
Monoacylglycerol lipase (MAGL), a serine hydrolase, converts endocannabinoid 2-arachidonoylglycerol (2-AG) to arachidonic acid (AA) and glycerol in the brain and plays a bidirectional role in controlling nueroinflammation. MAGL, involved in Alzheimer's and Parkinson's diseases, is a promising target for treatment of neurodegenerative disorders. However, the irreversible inhibitors of MAGL lead to the desensitization of CB1 receptors further impairing the benefits associated with the indirect CB1 stimulation. Therefore, development of potent reversible inhibitors from natural products (NPs) and traditional chinese medicines (TCMs) are safer and free from adverse side effects and feasible to avoid drawbacks which irreversible inhibitors cause. Here, we employed pharmacophore-based screening of drug candidates coupled with molecular docking, biochemical assay and Ligplot analyses to identify and characterize inhibitors targeting human MAGL (hMAGL). The built pharmacophore model, Phar-MAGL successfully identified inhibitors NP-2 (IC50 = 9.5 ± 1.2 μM), NP-5 (IC50 = 14.5 ± 1.3 μM), and NP-3 (IC50 = 15.2 ± 1.4 μM), which apparently attenuated the activities of hMAGL in vitro. The evident activities of the identified inhibitors against hMAGL showed that the pharmacophore model, Phar-MAGL is reliable and efficient in screening inhibitors against hMAGL. Our study successfully identified a natrual product inhibitor, NP-2 (8-PN), from the plant Humulus lupulus L. (hops) and its positive effects in neurogenesis and neurodifferentiation along with the evident inhibitory potency against hMAGL revealed the potential for further optimizing and developing into drugs to treat neuroinflammation, Alzheimer's and Parkinson's diseases. Discovery of natural product inhibitors against human monoacylglycerol lipase by pharmacophore-based drug screening, LibDock molecular docking and in vitro biochemical examinations.![]()
Collapse
Affiliation(s)
- Min-Che Tung
- Division of Urology, Department of Surgery, Tungs' Taichung MetroHarbor Hospital Taichung 435 Taiwan
| | - Kit-Man Fung
- Institute of Biological Chemistry, Academia Sinica Taipei 115 Taiwan
| | - Hsin-Mie Hsu
- Institute of Molecular Biology, National Chung Hsing University Taichung Taiwan
| | - Tien-Sheng Tseng
- Institute of Molecular Biology, National Chung Hsing University Taichung Taiwan
| |
Collapse
|
29
|
League AF, Gorman BL, Hermes DJ, Johnson CT, Jacobs IR, Yadav-Samudrala BJ, Poklis JL, Niphakis MJ, Cravatt BF, Lichtman AH, Ignatowska-Jankowska BM, Fitting S. Monoacylglycerol Lipase Inhibitor MJN110 Reduces Neuronal Hyperexcitability, Restores Dendritic Arborization Complexity, and Regulates Reward-Related Behavior in Presence of HIV-1 Tat. Front Neurol 2021; 12:651272. [PMID: 34484091 PMCID: PMC8415271 DOI: 10.3389/fneur.2021.651272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022] Open
Abstract
While current therapeutic strategies for people living with human immunodeficiency virus type 1 (HIV-1) suppress virus replication peripherally, viral proteins such as transactivator of transcription (Tat) enter the central nervous system early upon infection and contribute to chronic inflammatory conditions even alongside antiretroviral treatment. As demand grows for supplemental strategies to combat virus-associated pathology presenting frequently as HIV-associated neurocognitive disorders (HAND), the present study aimed to characterize the potential utility of inhibiting monoacylglycerol lipase (MAGL) activity to increase inhibitory activity at cannabinoid receptor-type 1 receptors through upregulation of 2-arachidonoylglycerol (2-AG) and downregulation of its degradation into proinflammatory metabolite arachidonic acid (AA). The MAGL inhibitor MJN110 significantly reduced intracellular calcium and increased dendritic branching complexity in Tat-treated primary frontal cortex neuron cultures. Chronic MJN110 administration in vivo increased 2-AG levels in the prefrontal cortex (PFC) and striatum across Tat(+) and Tat(–) groups and restored PFC N-arachidonoylethanolamine (AEA) levels in Tat(+) subjects. While Tat expression significantly increased rate of reward-related behavioral task acquisition in a novel discriminative stimulus learning and cognitive flexibility assay, MJN110 altered reversal acquisition specifically in Tat(+) mice to rates indistinguishable from Tat(–) controls. Collectively, our results suggest a neuroprotective role of MAGL inhibition in reducing neuronal hyperexcitability, restoring dendritic arborization complexity, and mitigating neurocognitive alterations driven by viral proteins associated with latent HIV-1 infection.
Collapse
Affiliation(s)
- Alexis F League
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin L Gorman
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Douglas J Hermes
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Clare T Johnson
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Ian R Jacobs
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Barkha J Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Micah J Niphakis
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, United States
| | - Benjamin F Cravatt
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, United States
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
30
|
Bajaj S, Jain S, Vyas P, Bawa S, Vohora D. The role of endocannabinoid pathway in the neuropathology of Alzheimer's disease: Can the inhibitors of MAGL and FAAH prove to be potential therapeutic targets against the cognitive impairment associated with Alzheimer's disease? Brain Res Bull 2021; 174:305-322. [PMID: 34217798 DOI: 10.1016/j.brainresbull.2021.06.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease is a neurodegenerative disease characterized by progressive decline of cognitive function in combination with neuronal death. Current approved treatment target single dysregulated pathway instead of multiple mechanism, resulting in lack of efficacy in slowing down disease progression. The proclivity of endocannabinoid system to exert neuroprotective action and mitigate symptoms of neurodegeneration condition has received substantial interest. Growing evidence suggest the endocannabinoids (eCB) system, viz. anadamide (AEA) and arachidonoyl glycerol (2-AG), as potential therapeutic targets with the ability to modify Alzheimer's pathology by targeting the inflammatory, neurodegenerative and cognitive aspects of the disease. In order to modulate endocannabinoid system, number of agents have been reported amongst which are inhibitors of the monoacylglycerol (MAGL) and fatty acid amide hydrolase (FAAH), the enzymes that hydrolyses 2-AG and AEA respectively. However, little is known regarding the exact mechanistic signalling and their effects on pathophysiology and cognitive decline associated with Alzheimer's disease. Both MAGL and FAAH inhibitors possess fascinating properties that may offer a multi-faceted approach for the treatment of Alzheimer's disease such as potential to protect neurons from deleterious effect of amyloid-β, reducing phosphorylation of tau, reducing amyloid-β induced oxidative stress, stimulating neurotrophin to support brain intrinsic repair mechanism etc. Based on empirical evidence, MAGL and FAAH inhibitors might have potential for therapeutic efficacy against cognitive impairment associated with Alzheimer's disease. The aim of this review is to summarize the experimental studies demonstrating the polyvalent properties of MAGL or FAAH inhibitor compounds for the treatment of Alzheimer's disease, and also effect of these on learning and types of memories, which together encourage to study these compounds over other therapeutics targets. Further research in this direction would enhance the molecular mechanisms and development of applicable interventions for the treatment of Alzheimer's disease, which nevertheless stay as the primary unmet need.
Collapse
Affiliation(s)
- Shivanshu Bajaj
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shreshta Jain
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Preeti Vyas
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sandhya Bawa
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
31
|
Abstract
In this review, the state of the art for compounds affecting the endocannabinoid (eCB) system is described with a focus on the treatment of pain. Amongst directly acting CB receptor ligands, clinical experience with ∆9 -tetrahydracannabinol and medical cannabis in chronic non-cancer pain indicates that there are differences between the benefits perceived by patients and the at best modest effect seen in meta-analyses of randomized controlled trials. The reason for this difference is not known but may involve differences in the type of patients that are recruited, the study conditions that are chosen and the degree to which biases such as reporting bias are operative. Other directly acting CB receptor ligands such as biased agonists and allosteric receptor modulators have not yet reached the clinic. Amongst indirectly acting compounds targeting the enzymes responsible for the synthesis and catabolism of the eCBs anandamide and 2-arachidonoylglycerol, fatty acid amide hydrolase (FAAH) inhibitors have been investigated clinically but were per se not useful for the treatment of pain, although they may be useful for the treatment of post-traumatic stress disorder and cannabis use disorder. Dual-acting compounds targeting this enzyme and other targets such as cyclooxygenase-2 or transient potential vanilloid receptor 1 may be a way forward for the treatment of pain.
Collapse
Affiliation(s)
- C J Fowler
- From the, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
32
|
Mehrabian Z, Guo Y, Miller NR, Henderson AD, Roth S, Bernstein SL. Approaches to Potentiated Neuroprotective Treatment in the Rodent Model of Ischemic Optic Neuropathy. Cells 2021; 10:cells10061440. [PMID: 34207618 PMCID: PMC8228425 DOI: 10.3390/cells10061440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022] Open
Abstract
Nonarteritic anterior ischemic optic neuropathy (NAION) commonly causes sudden optic nerve (ON)-related vision loss. The rodent NAION model (rAION) closely resembles NAION in presentation and physiological responses. We identified early rAION-associated optic nerve head (ONH) inflammatory gene expression responses and the anti-inflammatory prostaglandin PGJ2’s effects on those responses. We hypothesized that blocking pro-inflammatory prostaglandin (PGE2) production by inhibiting monoacylglycerol lipase or cyclooxygenase activity and co-administering PGJ2 would potentiate RGC survival following ischemic neuropathy. Deep sequencing was performed on vehicle- and PGJ2-treated ONHs 3d post-rAION induction. Results were compared against responses from a retinal ischemia model. Animals were treated with PGJ2 and MAGL inhibitor KML29, or PGJ2 + COX inhibitor meloxicam. RGC survival was quantified by stereology. Tissue PG levels were quantified by ELISA. Gene expression was confirmed by qPCR. PGJ2 treatment nonselectively reduced inflammatory gene expression post-rAION. KML29 did not reduce PGE2 1d post-induction and KML29 alone increased RGC loss after rAION. Combined treatments did not improve ONH edema and RGC survival better than reported with PGJ2 alone. KML29′s failure to suppress PGE2 ocular synthesis, despite its purported effects in other CNS tissues may result from alternative PG synthesis pathways. Neither KML29 nor meloxicam treatment significantly improved RGC survival compared with vehicle. While exogenous PGJ2 has been shown to be neuroprotective, treatments combining PGJ2 with these PG synthesis inhibitors do not enhance PGJ2’s neuroprotection.
Collapse
Affiliation(s)
- Zara Mehrabian
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Maryland at Baltimore (UMB), 10 S. Pine St., MSTF Room 5-77B, Baltimore, MD 21201, USA; (Z.M.); (Y.G.)
| | - Yan Guo
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Maryland at Baltimore (UMB), 10 S. Pine St., MSTF Room 5-77B, Baltimore, MD 21201, USA; (Z.M.); (Y.G.)
| | - Neil R. Miller
- Division of Neuro-Ophthalmology, Wilmer Eye Institute, School of Medicine, Johns Hopkins University, 600 N. Wolfe St., Wilmer 233, Baltimore, MD 21287, USA; (N.R.M.); (A.D.H.)
| | - Amanda D. Henderson
- Division of Neuro-Ophthalmology, Wilmer Eye Institute, School of Medicine, Johns Hopkins University, 600 N. Wolfe St., Wilmer 233, Baltimore, MD 21287, USA; (N.R.M.); (A.D.H.)
| | - Steven Roth
- Department of Anesthesiology, College of Medicine, University of Illinois, Chicago, IL 20212, USA;
| | - Steven L. Bernstein
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Maryland at Baltimore (UMB), 10 S. Pine St., MSTF Room 5-77B, Baltimore, MD 21201, USA; (Z.M.); (Y.G.)
- Correspondence: ; Tel.: +410-706-3712
| |
Collapse
|
33
|
Chen Z, Mori W, Rong J, Schafroth MA, Shao T, Van RS, Ogasawara D, Yamasaki T, Hiraishi A, Hatori A, Chen J, Zhang Y, Hu K, Fujinaga M, Sun J, Yu Q, Collier TL, Shao Y, Cravatt BF, Josephson L, Zhang MR, Liang SH. Development of a highly-specific 18F-labeled irreversible positron emission tomography tracer for monoacylglycerol lipase mapping. Acta Pharm Sin B 2021; 11:1686-1695. [PMID: 34221877 PMCID: PMC8245801 DOI: 10.1016/j.apsb.2021.01.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/18/2020] [Accepted: 01/25/2021] [Indexed: 12/02/2022] Open
Abstract
As a serine hydrolase, monoacylglycerol lipase (MAGL) is principally responsible for the metabolism of 2-arachidonoylglycerol (2-AG) in the central nervous system (CNS), leading to the formation of arachidonic acid (AA). Dysfunction of MAGL has been associated with multiple CNS disorders and symptoms, including neuroinflammation, cognitive impairment, epileptogenesis, nociception and neurodegenerative diseases. Inhibition of MAGL provides a promising therapeutic direction for the treatment of these conditions, and a MAGL positron emission tomography (PET) probe would greatly facilitate preclinical and clinical development of MAGL inhibitors. Herein, we design and synthesize a small library of fluoropyridyl-containing MAGL inhibitor candidates. Pharmacological evaluation of these candidates by activity-based protein profiling identified 14 as a lead compound, which was then radiolabeled with fluorine-18 via a facile SNAr reaction to form 2-[18F]fluoropyridine scaffold. Good blood–brain barrier permeability and high in vivo specific binding was demonstrated for radioligand [18F]14 (also named as [18F]MAGL-1902). This work may serve as a roadmap for clinical translation and further design of potent 18F-labeled MAGL PET tracers.
Collapse
|
34
|
Analgesic and Anticancer Activity of Benzoxazole Clubbed 2-Pyrrolidinones as Novel Inhibitors of Monoacylglycerol Lipase. Molecules 2021; 26:molecules26082389. [PMID: 33924091 PMCID: PMC8074287 DOI: 10.3390/molecules26082389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Ten benzoxazole clubbed 2-pyrrolidinones (11–20) as human monoacylglycerol lipase inhibitors were designed on the criteria fulfilling the structural requirements and on the basis of previously reported inhibitors. The designed, synthesized, and characterized compounds (11–20) were screened against monoacylglycerol lipase (MAGL) in order to find potential inhibitors. Compounds 19 (4-NO2 derivative) and 20 (4-SO2NH2 derivative), with an IC50 value of 8.4 and 7.6 nM, were found most active, respectively. Both of them showed micromolar potency (IC50 value above 50 µM) against a close analogue, fatty acid amide hydrolase (FAAH), therefore considered as selective inhibitors of MAGL. Molecular docking studies of compounds 19 and 20 revealed that carbonyl of 2-pyrrolidinone moiety sited at the oxyanion hole of catalytic site of the enzyme stabilized with three hydrogen bonds (~2 Å) with Ala51, Met123, and Ser122, the amino acid residues responsible for the catalytic function of the enzyme. Remarkably, the physiochemical and pharmacokinetic properties of compounds 19 and 20, computed by QikProp, were found to be in the qualifying range as per the proposed guideline for good orally bioactive CNS drugs. In formalin-induced nociception test, compound 20 reduced the pain response in acute and late stages in a dose-dependent manner. They significantly demonstrated the reduction in pain response, having better potency than the positive control gabapentin (GBP), at 30 mg/kg dose. Compounds 19 and 20 were submitted to NCI, USA, for anticancer activity screening. Compounds 19 (NSC: 778839) and 20 (NSC: 778842) were found to have good anticancer activity on SNB-75 cell line of CNS cancer, exhibiting 35.49 and 31.88% growth inhibition (% GI), respectively.
Collapse
|
35
|
Druggable Targets in Endocannabinoid Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1274:177-201. [PMID: 32894511 DOI: 10.1007/978-3-030-50621-6_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cannabis and cannabinoid-based extracts have long been utilized for their perceived therapeutic value, and support for the legalization of cannabis for medicinal purposes continues to increase worldwide. Since the discovery of Δ9-tetrahydrocannabinol (THC) as the primary psychoactive component of cannabis over 50 years ago, substantial effort has been directed toward detection of endogenous mediators of cannabinoid activity. The discovery of anandamide and 2-arachidonoylglycerol as two endogenous lipid mediators of cannabinoid-like effects (endocannabinoids) has inspired exponential growth in our understanding of this essential pathway, as well as the pathological conditions that result from dysregulated endocannabinoid signaling. This review examines current knowledge of the endocannabinoid system including metabolic enzymes involved in biosynthesis and degradation and their receptors, and evaluates potential druggable targets for therapeutic intervention.
Collapse
|
36
|
Xie Y, Fang Y, Huang Z, Tallon AM, am Ende CW, Fox JM. Divergent Synthesis of Monosubstituted and Unsymmetrical 3,6‐Disubstituted Tetrazines from Carboxylic Ester Precursors. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yixin Xie
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| | - Yinzhi Fang
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| | - Zhen Huang
- Pfizer Worldwide Research and Development 1 Portland Street Cambridge MA 02139 USA
| | - Amanda M. Tallon
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| | | | - Joseph M. Fox
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| |
Collapse
|
37
|
Xie Y, Fang Y, Huang Z, Tallon AM, Am Ende CW, Fox JM. Divergent Synthesis of Monosubstituted and Unsymmetrical 3,6-Disubstituted Tetrazines from Carboxylic Ester Precursors. Angew Chem Int Ed Engl 2020; 59:16967-16973. [PMID: 32559350 PMCID: PMC7733736 DOI: 10.1002/anie.202005569] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/02/2020] [Indexed: 11/06/2022]
Abstract
Since tetrazines are important tools to the field of bioorthogonal chemistry, there is a need for new approaches to synthesize unsymmetrical and 3-monosubstituted tetrazines. Described here is a general, one-pot method for converting (3-methyloxetan-3-yl)methyl carboxylic esters into 3-thiomethyltetrazines. These versatile intermediates were applied to the synthesis of unsymmetrical tetrazines through Pd-catalyzed cross-coupling and in the first catalytic thioether reduction to access monosubstituted tetrazines. This method enables the development of new tetrazine compounds possessing a favorable combination of kinetics, small size, and hydrophilicity. It was applied to a broad range of aliphatic and aromatic ester precursors and to the synthesis of heterocycles including BODIPY fluorophores and biotin. In addition, a series of tetrazine probes for monoacylglycerol lipase (MAGL) were synthesized and the most reactive one was applied to the labeling of endogenous MAGL in live cells.
Collapse
Affiliation(s)
- Yixin Xie
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Yinzhi Fang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Zhen Huang
- Pfizer Worldwide Research and Development, 1 Portland Street, Cambridge, MA, 02139, USA
| | - Amanda M Tallon
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Christopher W Am Ende
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT, 06340, USA
| | - Joseph M Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
38
|
Maramai S, Brindisi M. Targeting Endocannabinoid Metabolism: an Arrow with Multiple Tips Against Multiple Sclerosis. ChemMedChem 2020; 15:1985-2003. [PMID: 32762071 DOI: 10.1002/cmdc.202000310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/24/2020] [Indexed: 12/19/2022]
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated disease of the central nervous system. At present, there is no definitive cure, and the few available disease-modifying options display either poor efficacy or life-threatening side effects. There is clear evidence that relapsing-remitting clinical attacks in MS are driven by inflammatory demyelination and that the subsequent disease steps, being irresponsive to immunotherapy, result from neurodegeneration. The endocannabinoid system (ECS) stands halfway between three key pathomechanisms underlying MS, namely inflammation, neurodegeneration and oxidative stress, thus representing a kingpin for the identification of novel therapeutic targets in MS. This review summarizes the current state of the art in the field of endocannabinoid metabolism modulators and their in vivo effects on relevant animal models. We also highlight key molecular underpinnings of their therapeutic efficacy as well as the potential to turn them into promising clinical candidates.
Collapse
Affiliation(s)
- Samuele Maramai
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Margherita Brindisi
- Department of Excellence of Pharmacy, University of Naples Federico II, Via D. Montesano, 49, 80131, Naples, Italy
| |
Collapse
|
39
|
Ayoub SM, Smoum R, Farag M, Atwal H, Collins SA, Rock EM, Limebeer CL, Piscitelli F, Iannotti FA, Lichtman AH, Leri F, Di Marzo V, Mechoulam R, Parker LA. Oleoyl alanine (HU595): a stable monomethylated oleoyl glycine interferes with acute naloxone precipitated morphine withdrawal in male rats. Psychopharmacology (Berl) 2020; 237:2753-2765. [PMID: 32556401 DOI: 10.1007/s00213-020-05570-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/25/2020] [Indexed: 10/24/2022]
Abstract
RATIONALE Oleoyl glycine, a little studied fatty acid amide similar in structure to anandamide, interferes with nicotine addiction in mice and acute naloxone-precipitated morphine withdrawal (MWD) in rats. Because endogenous oleoyl glycine is subject to rapid enzymatic deactivation, we evaluated the potential of more stable analogs to interfere with opiate withdrawal. OBJECTIVES The potential of monomethylated oleoyl glycine (oleoyl alanine, HU595) to interfere with somatic and aversive effects of acute naloxone-precipitated MWD, its duration, and mechanism of action was assessed in male Sprague Dawley rats. The potential of dimethylated oleoyl glycine (HU596) to interfere with the aversive effects of naloxone-precipitated MWD was also investigated. RESULTS Oleoyl alanine (HU595) interfered with somatic and aversive effects produced by naloxone-precipitated MWD at equivalent doses (1 and 5 mg/kg, i.p.) as we have reported for oleoyl glycine; however, oleoyl alanine produced a longer lasting (60 min) interference, yet did not produce rewarding or aversive effects on its own and did not modify locomotor activity. HU596 was not effective. The interference with aversive effects of naloxone-precipitated MWD by oleoyl alanine was prevented by both a PPARα antagonist and a CB1 receptor antagonist. Accordingly, the compound was found to inhibit FAAH and activate PPARα in vitro. Finally, oleoyl alanine also reduced acute naloxone-precipitated MWD anhedonia, as measured by decreased saccharin preference. CONCLUSIONS Oleoyl alanine (also an endogenous fatty acid) may be a more stable and effective treatment for opiate withdrawal than oleoyl glycine.
Collapse
Affiliation(s)
- Samantha M Ayoub
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Reem Smoum
- Institute of Drug Research, Medical Faculty, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mathew Farag
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Harkirat Atwal
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Stephen A Collins
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Erin M Rock
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Cheryl L Limebeer
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, Endocannabinoid Research Group, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy
| | - Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry, Endocannabinoid Research Group, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Francesco Leri
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, Endocannabinoid Research Group, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy.,Canada Excellence Research Chair on the Microbiome/Endocannabinoid Axis in Metabolomic Health, Université Laval, Quebec City, Canada
| | - Raphael Mechoulam
- Institute of Drug Research, Medical Faculty, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
40
|
Rojo-Bustamante E, Íñigo-Marco I, Abellanas MA, Vinueza-Gavilanes R, Baltanás A, Luquin E, Arrasate M, Aymerich MS. CB2 Receptors and Neuron-Glia Interactions Modulate Neurotoxicity Generated by MAGL Inhibition. Biomolecules 2020; 10:biom10081198. [PMID: 32824740 PMCID: PMC7464766 DOI: 10.3390/biom10081198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
Monoacylglycerol lipase inhibition (MAGL) has emerged as an interesting therapeutic target for neurodegenerative disease treatment due to its ability to modulate the endocannabinoid system and to prevent the production of proinflammatory mediators. To obtain a beneficial response, it is necessary to understand how this inhibition affects the neuron-glia crosstalk and neuron viability. In this study, the effect of MAGL inhibition by KML29 was evaluated in two types of rat cortical primary cultures; mixed cultures, including neuron and glial cells, and neuron-enriched cultures. The risk of neuronal death was estimated by longitudinal survival analysis. The spontaneous neuronal risk of death in culture was higher in the absence of glial cells, a process that was enhanced by KML29 addition. In contrast, neuronal survival was not compromised by MAGL inhibition in the presence of glial cells. Blockade of cannabinoid type 2 (CB2) receptors expressed mainly by microglial cells did not affect the spontaneous neuronal death risk but decreased neuronal survival when KML29 was added. Modulation of cannabinoid type 1 (CB1) receptors did not affect neuronal survival. Our results show that neuron-glia interactions are essential for neuronal survival. CB2 receptors play a key role in these protective interactions when neurons are exposed to toxic conditions.
Collapse
Affiliation(s)
- Estefania Rojo-Bustamante
- Facultad de Ciencias, Departamento de Bioquímica y Genética, Universidad de Navarra, 31008 Pamplona, Spain; (E.R.-B.); (M.A.A.)
| | - Ignacio Íñigo-Marco
- CIMA, Programa de Neurociencias, Universidad de Navarra, 31008 Pamplona, Spain; (I.Í.-M.); (R.V.-G.); (A.B.); (M.A.)
| | - Miguel Angel Abellanas
- Facultad de Ciencias, Departamento de Bioquímica y Genética, Universidad de Navarra, 31008 Pamplona, Spain; (E.R.-B.); (M.A.A.)
| | - Rodrigo Vinueza-Gavilanes
- CIMA, Programa de Neurociencias, Universidad de Navarra, 31008 Pamplona, Spain; (I.Í.-M.); (R.V.-G.); (A.B.); (M.A.)
| | - Ana Baltanás
- CIMA, Programa de Neurociencias, Universidad de Navarra, 31008 Pamplona, Spain; (I.Í.-M.); (R.V.-G.); (A.B.); (M.A.)
| | - Esther Luquin
- Facultad de Medicina, Departamento de Patología, Anatomía y Fisiología, Universidad de Navarra, 31008 Pamplona, Spain;
| | - Montserrat Arrasate
- CIMA, Programa de Neurociencias, Universidad de Navarra, 31008 Pamplona, Spain; (I.Í.-M.); (R.V.-G.); (A.B.); (M.A.)
- Facultad de Medicina, Departamento de Patología, Anatomía y Fisiología, Universidad de Navarra, 31008 Pamplona, Spain;
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
| | - Maria S. Aymerich
- Facultad de Ciencias, Departamento de Bioquímica y Genética, Universidad de Navarra, 31008 Pamplona, Spain; (E.R.-B.); (M.A.A.)
- CIMA, Programa de Neurociencias, Universidad de Navarra, 31008 Pamplona, Spain; (I.Í.-M.); (R.V.-G.); (A.B.); (M.A.)
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain
- Correspondence: ; Tel.: +34-948-194700; Fax: +34-948-194715
| |
Collapse
|
41
|
Montesdeoca N, López M, Ariza X, Herrero L, Makowski K. Inhibitors of lipogenic enzymes as a potential therapy against cancer. FASEB J 2020; 34:11355-11381. [PMID: 32761847 DOI: 10.1096/fj.202000705r] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/10/2020] [Accepted: 07/18/2020] [Indexed: 01/05/2023]
Abstract
Cancer cells rely on several metabolic pathways such as lipid metabolism to meet the increase in energy demand, cell division, and growth and successfully adapt to challenging environments. Fatty acid synthesis is therefore commonly enhanced in many cancer cell lines. Thus, relevant efforts are being made by the scientific community to inhibit the enzymes involved in lipid metabolism to disrupt cancer cell proliferation. We review the rapidly expanding body of inhibitors that target lipid metabolism, their side effects, and current status in clinical trials as potential therapeutic approaches against cancer. We focus on their molecular, biochemical and structural properties, selectivity and effectiveness and discuss their potential role as antitumor drugs.
Collapse
Affiliation(s)
- Nicolás Montesdeoca
- School of Chemical Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - Marta López
- School of Chemical Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - Xavier Ariza
- Department of Inorganic and Organic Chemistry, School of Chemistry, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Herrero
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Kamil Makowski
- School of Chemical Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| |
Collapse
|
42
|
Altamimi ASA, Bawa S, Athar F, Hassan MQ, Riadi Y, Afzal O. Pyrrolidin-2-one linked benzofused heterocycles as novel small molecule monoacylglycerol lipase inhibitors and antinociceptive agents. Chem Biol Drug Des 2020; 96:1418-1432. [PMID: 32575154 DOI: 10.1111/cbdd.13751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 12/14/2022]
Abstract
Eighteen pyrrolidin-2-one linked benzothiazole, and benzimidazole derivatives (10-27) were designed and synthesized. The structure of the compounds was confirmed by elemental and spectral (IR, 1 H-NMR and MS) data analysis. All the compounds were screened by human monoacylglycerol lipase (hMAGL) inhibition assay. Three benzimidazole compounds, 22 (4-Cl phenyl), 23 (3-Cl,4-F phenyl) and 25 (4-methoxy phenyl) were found to be the most potent, having an IC50 value of 8.6, 8.0 and 9.4 nm, respectively. Among them, the halogen-substituted phenyl derivatives, compound 22 (4-Cl phenyl) and compound 23 (3-Cl,4-F phenyl), showed micromolar potency against fatty acid amide hydrolase (FAAH), having an IC50 value of 35 and 24 µm, respectively. Benzimidazole derivative having 4-methoxyphenyl substitution (compound 25) was found to be a selective MAGL inhibitor (IC50 = 9.4 nm), with an IC50 value above 50 µm against FAAH. In the formalin-induced nociception test, compound 25 showed a dose-dependent reduction of pain response in both acute and late phases. At 30 mg/kg dose, it significantly reduced the pain response and showed greater potency than the reference drug gabapentin (GBP).
Collapse
Affiliation(s)
| | - Sandhya Bawa
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Fareeda Athar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Quamrul Hassan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, AlKharj, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, AlKharj, Saudi Arabia
| |
Collapse
|
43
|
Ho CP, Borazjani A, Ross MK, Wang C. Effects of the monoacylglycerol lipase inhibitor JZL184 on chickens infected with avian pathogenic Escherichia coli O78: A preliminary pharmacokinetic and infection study. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2020; 84:189-197. [PMID: 32801453 PMCID: PMC7301670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/17/2019] [Indexed: 06/11/2023]
Abstract
The endocannabinoid (eCB) system modulates the degree of injury caused by inflammation, while enhancing the activity of phagocytes that promote resolution of inflammation and tissue repair. In-vitro studies with the monoacylglycerol lipase (MAGL) inhibitor JZL184 have suggested that increased eCB signaling might enhance the ability of the host immune system to clear invading pathogens. Although the neurochemical effects of JZL184 on the eCB system in rodents are well-known, its immuneregulating effects are less clear, especially in chickens. The primary objective of this study was to explore whether modulating the eCB system affects immune responses in chickens. To do this, we administered JZL184 [10 and 40 mg/kg body weight (BW), intraperitoneal injection] into chickens prior to a challenge with avian pathogenic Escherichia coli (APEC) O78. Bacteria were isolated from livers, blood, air sacs, and hearts at 8, 28, and 56 h post-infection and the gross lesions in air sacs, livers, and hearts were also examined. Serum levels of JZL184 were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), which indicated that the drug was distributed systemically. The number of birds positive for airsacculitis after APEC O78 challenge was marginally higher in groups treated with JZL184 than in the control group (P = 0.064). Rather than augmenting host defense and enhancing pathogen clearance, these results suggested that JZL184 might have immunosuppressive effects that exacerbated APEC O78 infection in chickens.
Collapse
Affiliation(s)
- Cherry P Ho
- Department of Basic Sciences (Ho, Borazjani, Ross, Wang), Center for Environmental Health Sciences (Borazjani, Ross), College of Veterinary Medicine, Mississippi State University, 240 Wise Center Drive, P.O. Box 6100, Mississippi State, Mississippi, 39762 USA
| | - Abdolsamad Borazjani
- Department of Basic Sciences (Ho, Borazjani, Ross, Wang), Center for Environmental Health Sciences (Borazjani, Ross), College of Veterinary Medicine, Mississippi State University, 240 Wise Center Drive, P.O. Box 6100, Mississippi State, Mississippi, 39762 USA
| | - Matthew K Ross
- Department of Basic Sciences (Ho, Borazjani, Ross, Wang), Center for Environmental Health Sciences (Borazjani, Ross), College of Veterinary Medicine, Mississippi State University, 240 Wise Center Drive, P.O. Box 6100, Mississippi State, Mississippi, 39762 USA
| | - Chinling Wang
- Department of Basic Sciences (Ho, Borazjani, Ross, Wang), Center for Environmental Health Sciences (Borazjani, Ross), College of Veterinary Medicine, Mississippi State University, 240 Wise Center Drive, P.O. Box 6100, Mississippi State, Mississippi, 39762 USA
| |
Collapse
|
44
|
Deng H, Li W. Monoacylglycerol lipase inhibitors: modulators for lipid metabolism in cancer malignancy, neurological and metabolic disorders. Acta Pharm Sin B 2020; 10:582-602. [PMID: 32322464 PMCID: PMC7161712 DOI: 10.1016/j.apsb.2019.10.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/16/2019] [Accepted: 09/26/2019] [Indexed: 02/05/2023] Open
Abstract
Monoacylglycerol lipase (MAGL) is a serine hydrolase that plays a crucial role catalysing the hydrolysis of monoglycerides into glycerol and fatty acids. It links the endocannabinoid and eicosanoid systems together by degradation of the abundant endocannabinoid 2-arachidaoylglycerol into arachidonic acid, the precursor of prostaglandins and other inflammatory mediators. MAGL inhibitors have been considered as important agents in many therapeutic fields, including anti-nociceptive, anxiolytic, anti-inflammatory, and even anti-cancer. Currently, ABX-1431, a first-in-class inhibitor of MAGL, is entering clinical phase 2 studies for neurological disorders and other diseases. This review summarizes the diverse (patho)physiological roles of MAGL and will provide an overview on the development of MAGL inhibitors. Although a large number of MAGL inhibitors have been reported, novel inhibitors are still required, particularly reversible ones.
Collapse
Key Words
- 2-AG, 2-arachidonoyl glycerol
- 2-Arachidaoylglycerol
- 2-OG, 2-oleoylglycerol
- 4-NPA, 4-nitrophenylacetate
- 7-HCA, 7-hydroxycoumarinyl arachidonate
- AA, arachidonic acid
- ABHD6 and ABHD12, α/β-hydrolase 6 and 12
- ABP, activity-based probes
- ABPP, activity-based protein profiling
- AD, Alzheimer's disease
- AEA, anandamide
- Arachidonic acid
- BCRP, breast cancer resistant protein
- CB1R and CB2R, cannabinoid receptors
- CC-ABPP, click chemistry activity-based protein profiling
- CFA, complete Freund's adjuvant
- CNS, central nervous system
- COX, cyclooxygenases
- CYP, cytochrome P450 proteins
- Cancer
- DAG, diacylglycerol
- DAGLs, diacylglycerol lipases
- DTT, dithiothreitol
- Drug discovery
- EAE, encephalomyelitis
- EI, enzyme–inhibitor complex
- FAAH, amide hydrolase
- FFAs, free fatty acids
- FP, fluorophosphonate
- FP-Rh, fluorophosphonate-rhodamine
- FQ, fit quality
- HFD, high-fat diet
- HFIP, hexafluoroisopropyl
- LC–MS, liquid chromatographic mass spectrometry
- LFD, low-fat diet
- MAGL, monoacylglycerol lipase
- MAGs, monoglycerides
- MS, multiple sclerosis
- Metabolic syndrome
- Monoacylglycerol lipases
- NAM, N-arachidonoyl maleimide
- NHS, N-hydroxysuccinimidyl
- Neuroinflammation
- OCT2, organic cation transporter 2
- P-gp, P-glycoprotein
- PA, phosphatidic acid
- PD, Parkinson's disease
- PET, positron emission tomography
- PGE2, prostaglandin
- PGs, prostaglandins
- PK, pharmacokinetic
- PLA2G7, phospholipase A2 group VII
- SAR, structure–activity relationship
- SBDD, structure-based drug design
- SDS-PAGE, sodium dodecyl sulphate polyacrylamide gel electrophoresis
- THL, tetrahydrolipstatin
- cPLA2, cytosolic phospholipase A2
Collapse
Affiliation(s)
- Hui Deng
- Corresponding authors. Tel./fax: +86 28 85422197.
| | - Weimin Li
- Corresponding authors. Tel./fax: +86 28 85422197.
| |
Collapse
|
45
|
Yoo E, Schulze CJ, Stokes BH, Onguka O, Yeo T, Mok S, Gnädig NF, Zhou Y, Kurita K, Foe IT, Terrell SM, Boucher MJ, Cieplak P, Kumpornsin K, Lee MCS, Linington RG, Long JZ, Uhlemann AC, Weerapana E, Fidock DA, Bogyo M. The Antimalarial Natural Product Salinipostin A Identifies Essential α/β Serine Hydrolases Involved in Lipid Metabolism in P. falciparum Parasites. Cell Chem Biol 2020; 27:143-157.e5. [PMID: 31978322 PMCID: PMC8027986 DOI: 10.1016/j.chembiol.2020.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 12/15/2022]
Abstract
Salinipostin A (Sal A) is a potent antiplasmodial marine natural product with an undefined mechanism of action. Using a Sal A-derived activity-based probe, we identify its targets in the Plasmodium falciparum parasite. All of the identified proteins contain α/β serine hydrolase domains and several are essential for parasite growth. One of the essential targets displays a high degree of homology to human monoacylglycerol lipase (MAGL) and is able to process lipid esters including a MAGL acylglyceride substrate. This Sal A target is inhibited by the anti-obesity drug Orlistat, which disrupts lipid metabolism. Resistance selections yielded parasites that showed only minor reductions in sensitivity and that acquired mutations in a PRELI domain-containing protein linked to drug resistance in Toxoplasma gondii. This inability to evolve efficient resistance mechanisms combined with the non-essentiality of human homologs makes the serine hydrolases identified here promising antimalarial targets.
Collapse
Affiliation(s)
- Euna Yoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christopher J Schulze
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Barbara H Stokes
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ouma Onguka
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nina F Gnädig
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yani Zhou
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - Kenji Kurita
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Ian T Foe
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephanie M Terrell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Michael J Boucher
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Piotr Cieplak
- Infectious & Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Marcus C S Lee
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
46
|
Dalton SE, Campos S. Covalent Small Molecules as Enabling Platforms for Drug Discovery. Chembiochem 2020; 21:1080-1100. [DOI: 10.1002/cbic.201900674] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Samuel E. Dalton
- Astex Pharmaceuticals 436 Cambridge Science Park Milton Road Cambridge CB4 0QA UK
| | - Sebastien Campos
- PharmaronDrug Discovery Services Europe Hertford Road Hoddesdon Hertfordshire EN11 9BU UK
| |
Collapse
|
47
|
Fucich EA, Stielper ZF, Cancienne HL, Edwards S, Gilpin NW, Molina PE, Middleton JW. Endocannabinoid degradation inhibitors ameliorate neuronal and synaptic alterations following traumatic brain injury. J Neurophysiol 2020; 123:707-717. [PMID: 31913777 PMCID: PMC7052644 DOI: 10.1152/jn.00570.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
Our previous work showed that lateral fluid percussion injury to the sensorimotor cortex (SMC) of anesthetized rats increased neuronal synaptic hyperexcitability in layer 5 (L5) neurons in ex vivo brain slices 10 days postinjury. Furthermore, endocannabinoid (EC) degradation inhibition via intraperitoneal JZL184 injection 30 min postinjury attenuated synaptic hyperexcitability. This study tested the hypothesis that traumatic brain injury (TBI) induces synaptic and intrinsic neuronal alterations of L5 SMC pyramidal neurons and that these alterations are significantly attenuated by in vivo post-TBI treatment with EC degradation inhibitors. We tested the effects of systemically administered EC degradation enzyme inhibitors (JZL184, MJN110, URB597, or JZL195) with differential selectivity for fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) on electrophysiological parameters in SMC neurons of TBI- and sham-treated rats 10 days post-TBI. We recorded intrinsic neuronal properties, including resting membrane voltage, input resistance, spike threshold, spiking responses to current input, voltage "sag" (rebound response to hyperpolarization-activated inward current), and burst firing. We also measured the frequency and amplitude of spontaneous excitatory postsynaptic currents. We then used the aggregate parameter sets (intrinsic + synaptic properties) to apply a machine learning classification algorithm to quantitatively compare neural population responses from each experimental group. Collectively, our electrophysiological and computational results indicate that sham neurons are the most distinguishable from TBI neurons. Administration of EC degradation inhibitors post-TBI exerted varying degrees of rescue, approximating the neuronal phenotype of sham neurons, with neurons from TBI/JZL195 (a dual MAGL/FAAH inhibitor) being most similar to neurons from sham rats.NEW & NOTEWORTHY This study elucidates neuronal properties altered by traumatic brain injury (TBI) in layer 5 of sensorimotor cortex, which may be implicated in post-TBI circuit dysfunction. We compared effects of systemic administration of four different endocannabinoid degradation inhibitors within a clinically relevant window postinjury. Electrophysiological measures and using a machine learning classification algorithm collectively suggest that pharmacological inhibitors targeting both monoacylglycerol lipase and fatty acid amide hydrolase (e.g., JZL195) may be most efficacious in attenuating TBI-induced neuronal dysfunction at site of injury.
Collapse
Affiliation(s)
- Elizabeth A Fucich
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Zachary F Stielper
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Heather L Cancienne
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Scott Edwards
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Patricia E Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jason W Middleton
- Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
48
|
Worley NB, Varela JA, Gaillardetz GP, Hill MN, Christianson JP. Monoacylglycerol lipase alpha inhibition alters prefrontal cortex excitability and blunts the consequences of traumatic stress in rat. Neuropharmacology 2020; 166:107964. [PMID: 31954713 DOI: 10.1016/j.neuropharm.2020.107964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/03/2020] [Accepted: 01/11/2020] [Indexed: 02/01/2023]
Abstract
Neural activity within the ventromedial prefrontal cortex (vmPFC) is a critical determinant of stressor-induced anxiety. Pharmacological activation of the vmPFC during stress protects against stress-induced social anxiety suggesting that altering the excitatory/inhibitory (E/I) tone in the vmPFC may promote stress resilience. E/I balance is maintained, in part, by endogenous cannabinoid (eCB) signaling with the calcium dependent retrograde release of 2-arachidonoylglycerol (2-AG) suppressing presynaptic neurotransmitter release. We hypothesized that raising 2-AG levels, via inhibition of its degradation enzyme monoacylglycerol lipase (MAGL) with KML29, would shift vmPFC E/I balance and promote resilience. In acute slice experiments, bath application of KML29 (100 nM) augmented evoked excitatory neurotransmission as evidenced by a left-shift in fEPSP I/O curve, and decreased sIPSC amplitude. In whole-cell recordings, KML29 increased resting membrane potential but reduced the after depolarization, bursting rate, membrane time constant and slow after hyperpolarization. Intra-vmPFC administration of KML29 (200ng/0.5μL/hemisphere) prior to inescapable stress (IS) exposure (25, 5s tail shocks) prevented stress induced anxiety as measured by juvenile social exploration 24 h after stressor exposure. Conversely, systemic administration of KML29 (40 mg/kg, i.p.) 2 h before IS exacerbated stress induced anxiety. MAGL inhibition in the vmPFC may promote resilience by augmenting the output of neurons that project to brainstem and limbic structures that mediate stress responses.
Collapse
Affiliation(s)
- N B Worley
- Department of Psychology, Boston College, Chestnut Hill, MA, 02467, USA.
| | - J A Varela
- Department of Psychology, Boston College, Chestnut Hill, MA, 02467, USA
| | - G P Gaillardetz
- Department of Psychology, Boston College, Chestnut Hill, MA, 02467, USA
| | - M N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N4N1, Canada
| | - J P Christianson
- Department of Psychology, Boston College, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
49
|
Wyatt RM, Fraser I, Welty N, Lord B, Wennerholm M, Sutton S, Ameriks MK, Dugovic C, Yun S, White A, Nguyen L, Koudriakova T, Tian G, Suarez J, Szewczuk L, Bonnette W, Ahn K, Ghosh B, Flores CM, Connolly PJ, Zhu B, Macielag MJ, Brandt MR, Chevalier K, Zhang SP, Lovenberg T, Bonaventure P. Pharmacologic Characterization of JNJ-42226314, [1-(4-Fluorophenyl)indol-5-yl]-[3-[4-(thiazole-2-carbonyl)piperazin-1-yl]azetidin-1-yl]methanone, a Reversible, Selective, and Potent Monoacylglycerol Lipase Inhibitor. J Pharmacol Exp Ther 2019; 372:339-353. [PMID: 31818916 DOI: 10.1124/jpet.119.262139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/01/2019] [Indexed: 12/14/2022] Open
Abstract
The serine hydrolase monoacylglycerol lipase (MAGL) is the rate-limiting enzyme responsible for the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG) into arachidonic acid and glycerol. Inhibition of 2-AG degradation leads to elevation of 2-AG, the most abundant endogenous agonist of the cannabinoid receptors (CBs) CB1 and CB2. Activation of these receptors has demonstrated beneficial effects on mood, appetite, pain, and inflammation. Therefore, MAGL inhibitors have the potential to produce therapeutic effects in a vast array of complex human diseases. The present report describes the pharmacologic characterization of [1-(4-fluorophenyl)indol-5-yl]-[3-[4-(thiazole-2-carbonyl)piperazin-1-yl]azetidin-1-yl]methanone (JNJ-42226314), a reversible and highly selective MAGL inhibitor. JNJ-42226314 inhibits MAGL in a competitive mode with respect to the 2-AG substrate. In rodent brain, the compound time- and dose-dependently bound to MAGL, indirectly led to CB1 occupancy by raising 2-AG levels, and raised norepinephrine levels in cortex. In vivo, the compound exhibited antinociceptive efficacy in both the rat complete Freund's adjuvant-induced radiant heat hypersensitivity and chronic constriction injury-induced cold hypersensitivity models of inflammatory and neuropathic pain, respectively. Though 30 mg/kg induced hippocampal synaptic depression, altered sleep onset, and decreased electroencephalogram gamma power, 3 mg/kg still provided approximately 80% enzyme occupancy, significantly increased 2-AG and norepinephrine levels, and produced neuropathic antinociception without synaptic depression or decreased gamma power. Thus, it is anticipated that the profile exhibited by this compound will allow for precise modulation of 2-AG levels in vivo, supporting potential therapeutic application in several central nervous system disorders. SIGNIFICANCE STATEMENT: Potentiation of endocannabinoid signaling activity via inhibition of the serine hydrolase monoacylglycerol lipase (MAGL) is an appealing strategy in the development of treatments for several disorders, including ones related to mood, pain, and inflammation. [1-(4-Fluorophenyl)indol-5-yl]-[3-[4-(thiazole-2-carbonyl)piperazin-1-yl]azetidin-1-yl]methanone is presented in this report to be a novel, potent, selective, and reversible noncovalent MAGL inhibitor that demonstrates dose-dependent enhancement of the major endocannabinoid 2-arachidonoylglycerol as well as efficacy in models of neuropathic and inflammatory pain.
Collapse
Affiliation(s)
- Ryan M Wyatt
- Janssen Research & Development, LLC, San Diego, California
| | - Ian Fraser
- Janssen Research & Development, LLC, San Diego, California
| | - Natalie Welty
- Janssen Research & Development, LLC, San Diego, California
| | - Brian Lord
- Janssen Research & Development, LLC, San Diego, California
| | | | - Steven Sutton
- Janssen Research & Development, LLC, San Diego, California
| | | | | | - Sujin Yun
- Janssen Research & Development, LLC, San Diego, California
| | - Allison White
- Janssen Research & Development, LLC, San Diego, California
| | - Leslie Nguyen
- Janssen Research & Development, LLC, San Diego, California
| | | | - Gaochao Tian
- Janssen Research & Development, LLC, San Diego, California
| | - Javier Suarez
- Janssen Research & Development, LLC, San Diego, California
| | | | | | - Kay Ahn
- Janssen Research & Development, LLC, San Diego, California
| | - Brahma Ghosh
- Janssen Research & Development, LLC, San Diego, California
| | | | | | - Bin Zhu
- Janssen Research & Development, LLC, San Diego, California
| | | | | | | | - Sui-Po Zhang
- Janssen Research & Development, LLC, San Diego, California
| | | | | |
Collapse
|
50
|
Functional annotation of serine hydrolases in the asexual erythrocytic stage of Plasmodium falciparum. Sci Rep 2019; 9:17532. [PMID: 31772212 PMCID: PMC6879560 DOI: 10.1038/s41598-019-54009-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
Enzymes of the serine hydrolase superfamily are ubiquitous, highly versatile catalysts that mediate a wide variety of metabolic reactions in eukaryotic cells, while also being amenable to selective inhibition. We have employed a fluorophosphonate-based affinity capture probe and mass spectrometry to explore the expression profile and metabolic roles of the 56-member P. falciparum serine hydrolase superfamily in the asexual erythrocytic stage of P. falciparum. This approach provided a detailed census of active serine hydrolases in the asexual parasite, with identification of 21 active serine hydrolases from α/β hydrolase, patatin, and rhomboid protease families. To gain insight into their functional roles and substrates, the pan-lipase inhibitor isopropyl dodecylfluorophosphonate was employed for competitive activity-based protein profiling, leading to the identification of seven serine hydrolases with potential lipolytic activity. We demonstrated how a chemoproteomic approach can provide clues to the specificity of serine hydrolases by using a panel of neutral lipase inhibitors to identify an enzyme that reacts potently with a covalent monoacylglycerol lipase inhibitor. In combination with existing phenotypic data, our studies define a set of serine hydrolases that likely mediate critical metabolic reactions in asexual parasites and enable rational prioritization of future functional characterization and inhibitor development efforts.
Collapse
|