1
|
Gantz M, Mathis SV, Nintzel FEH, Lio P, Hollfelder F. On synergy between ultrahigh throughput screening and machine learning in biocatalyst engineering. Faraday Discuss 2024; 252:89-114. [PMID: 39133073 PMCID: PMC11318516 DOI: 10.1039/d4fd00065j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/23/2024] [Indexed: 08/13/2024]
Abstract
Protein design and directed evolution have separately contributed enormously to protein engineering. Without being mutually exclusive, the former relies on computation from first principles, while the latter is a combinatorial approach based on chance. Advances in ultrahigh throughput (uHT) screening, next generation sequencing and machine learning may create alternative routes to engineered proteins, where functional information linked to specific sequences is interpreted and extrapolated in silico. In particular, the miniaturisation of functional tests in water-in-oil emulsion droplets with picoliter volumes and their rapid generation and analysis (>1 kHz) allows screening of >107-membered libraries in a day. Subsequently, decoding the selected clones by short or long-read sequencing methods leads to large sequence-function datasets that may allow extrapolation from experimental directed evolution to further improved mutants beyond the observed hits. In this work, we explore experimental strategies for how to draw up 'fitness landscapes' in sequence space with uHT droplet microfluidics, review the current state of AI/ML in enzyme engineering and discuss how uHT datasets may be combined with AI/ML to make meaningful predictions and accelerate biocatalyst engineering.
Collapse
Affiliation(s)
- Maximilian Gantz
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Simon V Mathis
- Department of Computer Science, University of Cambridge, 15 JJ Thomson Avenue, Cambridge CB3 0FD, UK
| | - Friederike E H Nintzel
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Pietro Lio
- Department of Computer Science, University of Cambridge, 15 JJ Thomson Avenue, Cambridge CB3 0FD, UK
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| |
Collapse
|
2
|
Jiang X, Peng Z, Zhang J. Starting with screening strains to construct synthetic microbial communities (SynComs) for traditional food fermentation. Food Res Int 2024; 190:114557. [PMID: 38945561 DOI: 10.1016/j.foodres.2024.114557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 07/02/2024]
Abstract
With the elucidation of community structures and assembly mechanisms in various fermented foods, core communities that significantly influence or guide fermentation have been pinpointed and used for exogenous restructuring into synthetic microbial communities (SynComs). These SynComs simulate ecological systems or function as adjuncts or substitutes in starters, and their efficacy has been widely verified. However, screening and assembly are still the main limiting factors for implementing theoretic SynComs, as desired strains cannot be effectively obtained and integrated. To expand strain screening methods suitable for SynComs in food fermentation, this review summarizes the recent research trends in using SynComs to study community evolution or interaction and improve the quality of food fermentation, as well as the specific process of constructing synthetic communities. The potential for novel screening modalities based on genes, enzymes and metabolites in food microbial screening is discussed, along with the emphasis on strategies to optimize assembly for facilitating the development of synthetic communities.
Collapse
Affiliation(s)
- Xinyi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Vladisaljević GT. Droplet Microfluidics for High-Throughput Screening and Directed Evolution of Biomolecules. MICROMACHINES 2024; 15:971. [PMID: 39203623 PMCID: PMC11356158 DOI: 10.3390/mi15080971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024]
Abstract
Directed evolution is a powerful technique for creating biomolecules such as proteins and nucleic acids with tailor-made properties for therapeutic and industrial applications by mimicking the natural evolution processes in the laboratory. Droplet microfluidics improved classical directed evolution by enabling time-consuming and laborious steps in this iterative process to be performed within monodispersed droplets in a highly controlled and automated manner. Droplet microfluidic chips can generate, manipulate, and sort individual droplets at kilohertz rates in a user-defined microchannel geometry, allowing new strategies for high-throughput screening and evolution of biomolecules. In this review, we discuss directed evolution studies in which droplet-based microfluidic systems were used to screen and improve the functional properties of biomolecules. We provide a systematic overview of basic on-chip fluidic operations, including reagent mixing by merging continuous fluid streams and droplet pairs, reagent addition by picoinjection, droplet generation, droplet incubation in delay lines, chambers and hydrodynamic traps, and droplet sorting techniques. Various microfluidic strategies for directed evolution using single and multiple emulsions and biomimetic materials (giant lipid vesicles, microgels, and microcapsules) are highlighted. Completely cell-free microfluidic-assisted in vitro compartmentalization methods that eliminate the need to clone DNA into cells after each round of mutagenesis are also presented.
Collapse
Affiliation(s)
- Goran T Vladisaljević
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
4
|
Schnettler JD, Wang MS, Gantz M, Bunzel HA, Karas C, Hollfelder F, Hecht MH. Selection of a promiscuous minimalist cAMP phosphodiesterase from a library of de novo designed proteins. Nat Chem 2024; 16:1200-1208. [PMID: 38702405 PMCID: PMC11230910 DOI: 10.1038/s41557-024-01490-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/27/2024] [Indexed: 05/06/2024]
Abstract
The ability of unevolved amino acid sequences to become biological catalysts was key to the emergence of life on Earth. However, billions of years of evolution separate complex modern enzymes from their simpler early ancestors. To probe how unevolved sequences can develop new functions, we use ultrahigh-throughput droplet microfluidics to screen for phosphoesterase activity amidst a library of more than one million sequences based on a de novo designed 4-helix bundle. Characterization of hits revealed that acquisition of function involved a large jump in sequence space enriching for truncations that removed >40% of the protein chain. Biophysical characterization of a catalytically active truncated protein revealed that it dimerizes into an α-helical structure, with the gain of function accompanied by increased structural dynamics. The identified phosphodiesterase is a manganese-dependent metalloenzyme that hydrolyses a range of phosphodiesters. It is most active towards cyclic AMP, with a rate acceleration of ~109 and a catalytic proficiency of >1014 M-1, comparable to larger enzymes shaped by billions of years of evolution.
Collapse
Affiliation(s)
| | - Michael S Wang
- Department of Chemistry, Princeton University, Princeton, USA
| | - Maximilian Gantz
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - H Adrian Bunzel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Christina Karas
- Department of Molecular Biology, Princeton University, Princeton, USA
| | | | - Michael H Hecht
- Department of Chemistry, Princeton University, Princeton, USA.
| |
Collapse
|
5
|
Jain A, Stavrakis S, deMello A. Droplet-based microfluidics and enzyme evolution. Curr Opin Biotechnol 2024; 87:103097. [PMID: 38430713 DOI: 10.1016/j.copbio.2024.103097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Enzymes are widely used as catalysts in the chemical and pharmaceutical industries. While successful in many situations, they must usually be adapted to operate efficiently under nonnatural conditions. Enzyme engineering allows the creation of novel enzymes that are stable at elevated temperatures or have higher activities and selectivities. Current enzyme engineering techniques require the production and testing of enzyme variant libraries to identify members with desired attributes. Unfortunately, traditional screening methods cannot screen such large mutagenesis libraries in a robust and timely manner. Droplet-based microfluidic systems can produce, process, and sort picoliter droplets at kilohertz rates and have emerged as powerful tools for library screening and thus enzyme engineering. We describe how droplet-based microfluidics has been used to advance directed evolution.
Collapse
Affiliation(s)
- Ankit Jain
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | - Andrew deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland.
| |
Collapse
|
6
|
Enders A, Grünberger A, Bahnemann J. Towards Small Scale: Overview and Applications of Microfluidics in Biotechnology. Mol Biotechnol 2024; 66:365-377. [PMID: 36515858 PMCID: PMC10881759 DOI: 10.1007/s12033-022-00626-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/26/2022] [Indexed: 12/15/2022]
Abstract
Thanks to recent and continuing technological innovations, modern microfluidic systems are increasingly offering researchers working across all fields of biotechnology exciting new possibilities (especially with respect to facilitating high throughput analysis, portability, and parallelization). The advantages offered by microfluidic devices-namely, the substantially lowered chemical and sample consumption they require, the increased energy and mass transfer they offer, and their comparatively small size-can potentially be leveraged in every sub-field of biotechnology. However, to date, most of the reported devices have been deployed in furtherance of healthcare, pharmaceutical, and/or industrial applications. In this review, we consider examples of microfluidic and miniaturized systems across biotechnology sub-fields. In this context, we point out the advantages of microfluidics for various applications and highlight the common features of devices and the potential for transferability to other application areas. This will provide incentives for increased collaboration between researchers from different disciplines in the field of biotechnology.
Collapse
Affiliation(s)
- Anton Enders
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstraße 5, 30167, Hannover, Germany
| | - Alexander Grünberger
- Institute of Process Engineering in Life Sciences: Microsystems in Bioprocess Engineering, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Janina Bahnemann
- Institute of Physics, University of Augsburg, Universitätsstraße 1, 86159, Augsburg, Germany.
| |
Collapse
|
7
|
Dramé-Maigné A, Espada R, McCallum G, Sieskind R, Gines G, Rondelez Y. In Vitro Enzyme Self-Selection Using Molecular Programs. ACS Synth Biol 2024; 13:474-484. [PMID: 38206581 DOI: 10.1021/acssynbio.3c00385] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Directed evolution provides a powerful route for in vitro enzyme engineering. State-of-the-art techniques functionally screen up to millions of enzyme variants using high throughput microfluidic sorters, whose operation remains technically challenging. Alternatively, in vitro self-selection methods, analogous to in vivo complementation strategies, open the way to even higher throughputs, but have been demonstrated only for a few specific activities. Here, we leverage synthetic molecular networks to generalize in vitro compartmentalized self-selection processes. We introduce a programmable circuit architecture that can link an arbitrary target enzymatic activity to the replication of its encoding gene. Microencapsulation of a bacterial expression library with this autonomous selection circuit results in the single-step and screening-free enrichment of genetic sequences coding for programmed enzymatic phenotypes. We demonstrate the potential of this approach for the nicking enzyme Nt.BstNBI (NBI). We applied autonomous selection conditions to enrich for thermostability or catalytic efficiency, manipulating up to 107 microcompartments and 5 × 105 variants at once. Full gene reads of the libraries using nanopore sequencing revealed detailed mutational activity landscapes, suggesting a key role of electrostatic interactions with DNA in the enzyme's turnover. The most beneficial mutations, identified after a single round of self-selection, provided variants with, respectively, 20 times and 3 °C increased activity and thermostability. Based on a modular molecular programming architecture, this approach does not require complex instrumentation and can be repurposed for other enzymes, including those that are not related to DNA chemistry.
Collapse
Affiliation(s)
- Adèle Dramé-Maigné
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| | - Rocío Espada
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| | - Giselle McCallum
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| | - Rémi Sieskind
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| | - Guillaume Gines
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| | - Yannick Rondelez
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| |
Collapse
|
8
|
Monserrat Lopez D, Rottmann P, Puebla-Hellmann G, Drechsler U, Mayor M, Panke S, Fussenegger M, Lörtscher E. Direct electrification of silicon microfluidics for electric field applications. MICROSYSTEMS & NANOENGINEERING 2023; 9:81. [PMID: 37342556 PMCID: PMC10277806 DOI: 10.1038/s41378-023-00552-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023]
Abstract
Microfluidic systems are widely used in fundamental research and industrial applications due to their unique behavior, enhanced control, and manipulation opportunities of liquids in constrained geometries. In micrometer-sized channels, electric fields are efficient mechanisms for manipulating liquids, leading to deflection, injection, poration or electrochemical modification of cells and droplets. While PDMS-based microfluidic devices are used due to their inexpensive fabrication, they are limited in terms of electrode integration. Using silicon as the channel material, microfabrication techniques can be used to create nearby electrodes. Despite the advantages that silicon provides, its opacity has prevented its usage in most important microfluidic applications that need optical access. To overcome this barrier, silicon-on-insulator technology in microfluidics is introduced to create optical viewports and channel-interfacing electrodes. More specifically, the microfluidic channel walls are directly electrified via selective, nanoscale etching to introduce insulation segments inside the silicon device layer, thereby achieving the most homogeneous electric field distributions and lowest operation voltages feasible across microfluidic channels. These ideal electrostatic conditions enable a drastic energy reduction, as effectively shown via picoinjection and fluorescence-activated droplet sorting applications at voltages below 6 and 15 V, respectively, facilitating low-voltage electric field applications in next-generation microfluidics.
Collapse
Affiliation(s)
- Diego Monserrat Lopez
- IBM Research Europe - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Philipp Rottmann
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Gabriel Puebla-Hellmann
- IBM Research Europe - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Ute Drechsler
- IBM Research Europe - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| | - Marcel Mayor
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
- Institute for Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany
| | - Sven Panke
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Martin Fussenegger
- ETH Zürich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
- University of Basel, Faculty of Life Science, Basel, Switzerland
| | - Emanuel Lörtscher
- IBM Research Europe - Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| |
Collapse
|
9
|
Gantz M, Neun S, Medcalf EJ, van Vliet LD, Hollfelder F. Ultrahigh-Throughput Enzyme Engineering and Discovery in In Vitro Compartments. Chem Rev 2023; 123:5571-5611. [PMID: 37126602 PMCID: PMC10176489 DOI: 10.1021/acs.chemrev.2c00910] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Indexed: 05/03/2023]
Abstract
Novel and improved biocatalysts are increasingly sourced from libraries via experimental screening. The success of such campaigns is crucially dependent on the number of candidates tested. Water-in-oil emulsion droplets can replace the classical test tube, to provide in vitro compartments as an alternative screening format, containing genotype and phenotype and enabling a readout of function. The scale-down to micrometer droplet diameters and picoliter volumes brings about a >107-fold volume reduction compared to 96-well-plate screening. Droplets made in automated microfluidic devices can be integrated into modular workflows to set up multistep screening protocols involving various detection modes to sort >107 variants a day with kHz frequencies. The repertoire of assays available for droplet screening covers all seven enzyme commission (EC) number classes, setting the stage for widespread use of droplet microfluidics in everyday biochemical experiments. We review the practicalities of adapting droplet screening for enzyme discovery and for detailed kinetic characterization. These new ways of working will not just accelerate discovery experiments currently limited by screening capacity but profoundly change the paradigms we can probe. By interfacing the results of ultrahigh-throughput droplet screening with next-generation sequencing and deep learning, strategies for directed evolution can be implemented, examined, and evaluated.
Collapse
Affiliation(s)
| | | | | | | | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, U.K.
| |
Collapse
|
10
|
McCully AL, Loop Yao M, Brower KK, Fordyce PM, Spormann AM. Double emulsions as a high-throughput enrichment and isolation platform for slower-growing microbes. ISME COMMUNICATIONS 2023; 3:47. [PMID: 37160952 PMCID: PMC10169782 DOI: 10.1038/s43705-023-00241-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
Our understanding of in situ microbial physiology is primarily based on physiological characterization of fast-growing and readily-isolatable microbes. Microbial enrichments to obtain novel isolates with slower growth rates or physiologies adapted to low nutrient environments are plagued by intrinsic biases for fastest-growing species when using standard laboratory isolation protocols. New cultivation tools to minimize these biases and enrich for less well-studied taxa are needed. In this study, we developed a high-throughput bacterial enrichment platform based on single cell encapsulation and growth within double emulsions (GrowMiDE). We showed that GrowMiDE can cultivate many different microorganisms and enrich for underrepresented taxa that are never observed in traditional batch enrichments. For example, preventing dominance of the enrichment by fast-growing microbes due to nutrient privatization within the double emulsion droplets allowed cultivation of slower-growing Negativicutes and Methanobacteria from stool samples in rich media enrichment cultures. In competition experiments between growth rate and growth yield specialist strains, GrowMiDE enrichments prevented competition for shared nutrient pools and enriched for slower-growing but more efficient strains. Finally, we demonstrated the compatibility of GrowMiDE with commercial fluorescence-activated cell sorting (FACS) to obtain isolates from GrowMiDE enrichments. Together, GrowMiDE + DE-FACS is a promising new high-throughput enrichment platform that can be easily applied to diverse microbial enrichments or screens.
Collapse
Affiliation(s)
- Alexandra L McCully
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA
| | - McKenna Loop Yao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Kara K Brower
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Polly M Fordyce
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Alfred M Spormann
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA.
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Jiang J, Yang G, Ma F. Fluorescence coupling strategies in fluorescence-activated droplet sorting (FADS) for ultrahigh-throughput screening of enzymes, metabolites, and antibodies. Biotechnol Adv 2023; 66:108173. [PMID: 37169102 DOI: 10.1016/j.biotechadv.2023.108173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
Fluorescence-activated droplet sorting (FADS) has emerged as a powerful tool for ultrahigh-throughput screening of enzymes, metabolites, and antibodies. Fluorescence coupling strategies (FCSs) are key to the development of new FADS methods through their coupling of analyte properties such as concentration, activities, and affinity with fluorescence signals. Over the last decade, a series of FCSs have been developed, greatly expanding applications of FADS. Here, we review recent advances in FCS for different analyte types, providing a critical comparison of the available FCSs and further classification into four categories according to their principles. We also summarize successful FADS applications employing FCSs in enzymes, metabolites, and antibodies. Further, we outline possible future developments in this area.
Collapse
Affiliation(s)
- Jingjie Jiang
- Medical Enzyme Engineering Center, CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Guangyu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Fuqiang Ma
- Medical Enzyme Engineering Center, CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China.
| |
Collapse
|
12
|
Research progress on the degradation mechanism and modification of keratinase. Appl Microbiol Biotechnol 2023; 107:1003-1017. [PMID: 36633625 DOI: 10.1007/s00253-023-12360-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
Keratin is regarded as the main component of feathers and is difficult to be degraded by conventional proteases, leading to substantial abandonment. Keratinase is the only enzyme with the most formidable potential for degrading feathers. Although there have been in-depth studies in recent years, the large-scale application of keratinase is still associated with many problems. It is relatively challenging to find keratinase not only with high activity but could also meet the industrial application environment, so it is urgent to exploit keratinase with high acid and temperature resistance, strong activity, and low price. Therefore, researchers have been keen to explore the degradation mechanism of keratinases and the modification of existing keratinases for decades. This review critically introduces the basic properties and mechanism of keratinase, and focuses on the current situation of keratinase modification and the direction and strategy of its future application and modification. KEY POINTS: •The research status and mechanism of keratinase were reviewed. •The new direction of keratinase application and modification is discussed. •The existing modification methods and future modification strategies of keratinases are reviewed.
Collapse
|
13
|
Seo K, Hagino K, Ichihashi N. Progresses in Cell-Free In Vitro Evolution. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 186:121-140. [PMID: 37306699 DOI: 10.1007/10_2023_219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biopolymers, such as proteins and RNA, are integral components of living organisms and have evolved through a process of repeated mutation and selection. The technique of "cell-free in vitro evolution" is a powerful experimental approach for developing biopolymers with desired functions and structural properties. Since Spiegelman's pioneering work over 50 years ago, biopolymers with a wide range of functions have been developed using in vitro evolution in cell-free systems. The use of cell-free systems offers several advantages, including the ability to synthesize a wider range of proteins without the limitations imposed by cytotoxicity, and the capacity for higher throughput and larger library sizes than cell-based evolutionary experiments. In this chapter, we provide a comprehensive overview of the progress made in the field of cell-free in vitro evolution by categorizing evolution into directed and undirected. The biopolymers produced by these methods are valuable assets in medicine and industry, and as a means of exploring the potential of biopolymers.
Collapse
Affiliation(s)
- Kaito Seo
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Tokyo, Japan
| | - Katsumi Hagino
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Tokyo, Japan
| | - Norikazu Ichihashi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, Tokyo, Japan.
- Komaba Institute for Science, The University of Tokyo, Tokyo, Japan.
- Universal Biology Institute, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
14
|
Li B, Ma X, Cheng J, Tian T, Guo J, Wang Y, Pang L. Droplets microfluidics platform-A tool for single cell research. Front Bioeng Biotechnol 2023; 11:1121870. [PMID: 37152651 PMCID: PMC10154550 DOI: 10.3389/fbioe.2023.1121870] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Cells are the most basic structural and functional units of living organisms. Studies of cell growth, differentiation, apoptosis, and cell-cell interactions can help scientists understand the mysteries of living systems. However, there is considerable heterogeneity among cells. Great differences between individuals can be found even within the same cell cluster. Cell heterogeneity can only be clearly expressed and distinguished at the level of single cells. The development of droplet microfluidics technology opens up a new chapter for single-cell analysis. Microfluidic chips can produce many nanoscale monodisperse droplets, which can be used as small isolated micro-laboratories for various high-throughput, precise single-cell analyses. Moreover, gel droplets with good biocompatibility can be used in single-cell cultures and coupled with biomolecules for various downstream analyses of cellular metabolites. The droplets are also maneuverable; through physical and chemical forces, droplets can be divided, fused, and sorted to realize single-cell screening and other related studies. This review describes the channel design, droplet generation, and control technology of droplet microfluidics and gives a detailed overview of the application of droplet microfluidics in single-cell culture, single-cell screening, single-cell detection, and other aspects. Moreover, we provide a recent review of the application of droplet microfluidics in tumor single-cell immunoassays, describe in detail the advantages of microfluidics in tumor research, and predict the development of droplet microfluidics at the single-cell level.
Collapse
Affiliation(s)
- Bixuan Li
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an, China
- School of Basic Medicine, Xi’an Medical University, Xi’an, China
| | - Xi Ma
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an, China
- School of Basic Medicine, Xi’an Medical University, Xi’an, China
| | - Jianghong Cheng
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an, China
- School of Basic Medicine, Xi’an Medical University, Xi’an, China
| | - Tian Tian
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an, China
- School of Basic Medicine, Xi’an Medical University, Xi’an, China
| | - Jiao Guo
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an, China
- School of Basic Medicine, Xi’an Medical University, Xi’an, China
| | - Yang Wang
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an, China
- School of Basic Medicine, Xi’an Medical University, Xi’an, China
- *Correspondence: Yang Wang,
| | - Long Pang
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an, China
- School of Basic Medicine, Xi’an Medical University, Xi’an, China
| |
Collapse
|
15
|
Vallapurackal J, Stucki A, Liang AD, Klehr J, Dittrich PS, Ward TR. Ultrahigh-Throughput Screening of an Artificial Metalloenzyme using Double Emulsions. Angew Chem Int Ed Engl 2022; 61:e202207328. [PMID: 36130864 PMCID: PMC9828110 DOI: 10.1002/anie.202207328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 01/12/2023]
Abstract
The potential for ultrahigh-throughput compartmentalization renders droplet microfluidics an attractive tool for the directed evolution of enzymes. Importantly, it ensures maintenance of the phenotype-genotype linkage, enabling reliable identification of improved mutants. Herein, we report an approach for ultrahigh-throughput screening of an artificial metalloenzyme in double emulsion droplets (DEs) using commercially available fluorescence-activated cell sorters (FACS). This protocol was validated by screening a 400 double-mutant streptavidin library for ruthenium-catalyzed deallylation of an alloc-protected aminocoumarin. The most active variants, identified by next-generation sequencing, were in good agreement with hits obtained using a 96-well plate procedure. These findings pave the way for the systematic implementation of FACS for the directed evolution of (artificial) enzymes and will significantly expand the accessibility of ultrahigh-throughput DE screening protocols.
Collapse
Affiliation(s)
- Jaicy Vallapurackal
- Department of ChemistryUniversity of BaselMattenstrasse 24a4058BaselSwitzerland,National Competence Center in Research (NCCR) Molecular Systems EngineeringBaselSwitzerland
| | - Ariane Stucki
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 264058BaselSwitzerland,National Competence Center in Research (NCCR) Molecular Systems EngineeringBaselSwitzerland
| | - Alexandria Deliz Liang
- Department of ChemistryUniversity of BaselMattenstrasse 24a4058BaselSwitzerland,National Competence Center in Research (NCCR) Molecular Systems EngineeringBaselSwitzerland
| | - Juliane Klehr
- Department of ChemistryUniversity of BaselMattenstrasse 24a4058BaselSwitzerland,National Competence Center in Research (NCCR) Molecular Systems EngineeringBaselSwitzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 264058BaselSwitzerland,National Competence Center in Research (NCCR) Molecular Systems EngineeringBaselSwitzerland
| | - Thomas R. Ward
- Department of ChemistryUniversity of BaselMattenstrasse 24a4058BaselSwitzerland,National Competence Center in Research (NCCR) Molecular Systems EngineeringBaselSwitzerland
| |
Collapse
|
16
|
Samlali K, Alves CL, Jezernik M, Shih SCC. Droplet digital microfluidic system for screening filamentous fungi based on enzymatic activity. MICROSYSTEMS & NANOENGINEERING 2022; 8:123. [PMID: 36438986 PMCID: PMC9681769 DOI: 10.1038/s41378-022-00456-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/24/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Fungal cell-wall-degrading enzymes have great utility in the agricultural and food industries. These cell-wall-degrading enzymes are known to have functions that can help defend against pathogenic organisms. The existing methods used to discover these enzymes are not well adapted to fungi culture and morphology, which prevents the proper evaluation of these enzymes. We report the first droplet-based microfluidic method capable of long-term incubation and low-voltage conditions to sort filamentous fungi inside nanoliter-sized droplets. The new method was characterized and validated in solid-phase media based on colloidal chitin such that the incubation of single spores in droplets was possible over multiple days (2-4 days) and could be sorted without droplet breakage. With long-term culture, we examined the activity of cell-wall-degrading enzymes produced by fungi during solid-state droplet fermentation using three highly sensitive fluorescein-based substrates. We also used the low-voltage droplet sorter to select clones with highly active cell-wall-degrading enzymes, such as chitinases, β-glucanases, and β-N-acetylgalactosaminidases, from a filamentous fungi droplet library that had been incubated for >4 days. The new system is portable, affordable for any laboratory, and user-friendly compared to classical droplet-based microfluidic systems. We propose that this system will be useful for the growing number of scientists interested in fungal microbiology who are seeking high-throughput methods to incubate and sort a large library of fungal cells.
Collapse
Affiliation(s)
- Kenza Samlali
- Department of Electrical and Computer Engineering, Concordia University, Montréal, QC Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC Canada
| | - Chiara Leal Alves
- Department of Electrical and Computer Engineering, Concordia University, Montréal, QC Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC Canada
| | - Mara Jezernik
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON Canada
| | - Steve C. C. Shih
- Department of Electrical and Computer Engineering, Concordia University, Montréal, QC Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, QC Canada
- Department of Biology, Concordia University, Montréal, QC Canada
| |
Collapse
|
17
|
Anyaduba TD, Otoo JA, Schlappi TS. Picoliter Droplet Generation and Dense Bead-in-Droplet Encapsulation via Microfluidic Devices Fabricated via 3D Printed Molds. MICROMACHINES 2022; 13:1946. [PMID: 36363966 PMCID: PMC9695966 DOI: 10.3390/mi13111946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Picoliter-scale droplets have many applications in chemistry and biology, such as biomolecule synthesis, drug discovery, nucleic acid quantification, and single cell analysis. However, due to the complicated processes used to fabricate microfluidic channels, most picoliter (pL) droplet generation methods are limited to research in laboratories with cleanroom facilities and complex instrumentation. The purpose of this work is to investigate a method that uses 3D printing to fabricate microfluidic devices that can generate droplets with sizes <100 pL and encapsulate single dense beads mechanistically. Our device generated monodisperse droplets as small as ~48 pL and we demonstrated the usefulness of this droplet generation technique in biomolecule analysis by detecting Lactobacillus acidophillus 16s rRNA via digital loop-mediated isothermal amplification (dLAMP). We also designed a mixer that can be integrated into a syringe to overcome dense bead sedimentation and found that the bead-in-droplet (BiD) emulsions created from our device had <2% of the droplets populated with more than 1 bead. This study will enable researchers to create devices that generate pL-scale droplets and encapsulate dense beads with inexpensive and simple instrumentation (3D printer and syringe pump). The rapid prototyping and integration ability of this module with other components or processes can accelerate the development of point-of-care microfluidic devices that use droplet-bead emulsions to analyze biological or chemical samples with high throughput and precision.
Collapse
Affiliation(s)
- Tochukwu D. Anyaduba
- Keck Graduate Institute, Riggs School of Applied Life Sciences, Claremont, CA 91711, USA
- Abbott Rapid Diagnostics, 4545 Towne Center Ct, La Jolla, San Diego, CA 92121, USA
| | - Jonas A. Otoo
- Keck Graduate Institute, Riggs School of Applied Life Sciences, Claremont, CA 91711, USA
| | - Travis S. Schlappi
- Keck Graduate Institute, Riggs School of Applied Life Sciences, Claremont, CA 91711, USA
| |
Collapse
|
18
|
Recent advances of integrated microfluidic systems for fungal and bacterial analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Eenink BDG, Kaminski TS, Bornberg-Bauer E, Jose J, Hollfelder F, van Loo B. Vector redesign and in-droplet cell-growth improves enrichment and recovery in live Escherichia coli. Microb Biotechnol 2022; 15:2845-2853. [PMID: 36099491 PMCID: PMC9618318 DOI: 10.1111/1751-7915.14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 08/23/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Directed evolution (DE) is a widely used method for improving the function of biomolecules via multiple rounds of mutation and selection. Microfluidic droplets have emerged as an important means to screen the large libraries needed for DE, but this approach was so far partially limited by the need to lyse cells, recover DNA, and retransform into cells for the next round, necessitating the use of a high‐copy number plasmid or oversampling. The recently developed live cell recovery avoids some of these limitations by directly regrowing selected cells after sorting. However, repeated sorting cycles used to further enrich the most active variants ultimately resulted in unfavourable recovery of empty plasmid vector‐containing cells over those expressing the protein of interest. In this study, we found that engineering of the original expression vector solved the problem of false positives (i.e. plasmids lacking an insert) cells containing empty vectors. Five approaches to measure activity of cell‐displayed enzymes in microdroplets were compared. By comparing various cell treatment methods prior to droplet sorting two things were found. Substrate encapsulation from the start, that is prior to expression of enzyme, showed no disadvantage to post‐induction substrate addition by pico‐injection with respect to recovery of true positive variants. Furthermore in‐droplet cell growth prior to induction of enzyme production improves the total amount of cells retrieved (recovery) and proportion of true positive variants (enrichment) after droplet sorting.
Collapse
Affiliation(s)
- Bernard D G Eenink
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Tomasz S Kaminski
- Department of Biochemistry, University of Cambridge, Cambridge, UK.,Department of Environmental Microbiology and Biotechnology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.,Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | | | - Bert van Loo
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.,Department of Applied Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| |
Collapse
|
20
|
Biocompatible amphiphilic Janus nanoparticles with enhanced interfacial properties for colloidal surfactants. J Colloid Interface Sci 2022; 616:488-498. [DOI: 10.1016/j.jcis.2022.02.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/28/2022] [Accepted: 02/18/2022] [Indexed: 11/23/2022]
|
21
|
Gimeno‐Pérez M, Finnigan JD, Echeverria C, Charnock SJ, Hidalgo A, Mate DM. A Coupled Ketoreductase-Diaphorase Assay for the Detection of Polyethylene Terephthalate-Hydrolyzing Activity. CHEMSUSCHEM 2022; 15:e202102750. [PMID: 35315974 PMCID: PMC9321771 DOI: 10.1002/cssc.202102750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/22/2022] [Indexed: 06/14/2023]
Abstract
In the last two decades, several PET-degrading enzymes from already known microorganisms or metagenomic sources have been discovered to face the growing environmental concern of polyethylene terephthalate (PET) accumulation. However, there is a limited number of high-throughput screening protocols for PET-hydrolyzing activity that avoid the use of surrogate substrates. Herein, a microplate fluorescence screening assay was described. It was based on the coupled activity of ketoreductases (KREDs) and diaphorase to release resorufin in the presence of the products of PET degradation. Six KREDs were identified in a commercial panel that were able to use the PET building block, ethylene glycol, as substrate. The most efficient KRED, KRED61, was combined with the diaphorase from Clostridium kluyveri to monitor the PET degradation reaction catalyzed by the thermostable variant of the cutinase-type polyesterase from Saccharomonospora viridis AHK190. The PET degradation products were measured both fluorimetrically and by HPLC, with excellent correlation between both methods.
Collapse
Affiliation(s)
- María Gimeno‐Pérez
- Department of Molecular BiologyUniversidad Autónoma de MadridCampus de CantoblancoMadrid28049Spain
- Center of Molecular Biology “Severo Ochoa” (UAM-CSIC)Nicolás Cabrera 1Madrid28049Spain
- Institute for Molecular Biology-IUBMUniversidad Autónoma de MadridCampus de CantoblancoMadrid28049Spain
| | | | - Coro Echeverria
- Institute of Polymer Science and TechnologySpanish Research CouncilJuan de la Cierva 328006MadridSpain
| | | | - Aurelio Hidalgo
- Department of Molecular BiologyUniversidad Autónoma de MadridCampus de CantoblancoMadrid28049Spain
- Center of Molecular Biology “Severo Ochoa” (UAM-CSIC)Nicolás Cabrera 1Madrid28049Spain
- Institute for Molecular Biology-IUBMUniversidad Autónoma de MadridCampus de CantoblancoMadrid28049Spain
| | - Diana M. Mate
- Department of Molecular BiologyUniversidad Autónoma de MadridCampus de CantoblancoMadrid28049Spain
- Center of Molecular Biology “Severo Ochoa” (UAM-CSIC)Nicolás Cabrera 1Madrid28049Spain
- Institute for Molecular Biology-IUBMUniversidad Autónoma de MadridCampus de CantoblancoMadrid28049Spain
| |
Collapse
|
22
|
Vasina M, Velecký J, Planas-Iglesias J, Marques SM, Skarupova J, Damborsky J, Bednar D, Mazurenko S, Prokop Z. Tools for computational design and high-throughput screening of therapeutic enzymes. Adv Drug Deliv Rev 2022; 183:114143. [PMID: 35167900 DOI: 10.1016/j.addr.2022.114143] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 12/16/2022]
Abstract
Therapeutic enzymes are valuable biopharmaceuticals in various biomedical applications. They have been successfully applied for fibrinolysis, cancer treatment, enzyme replacement therapies, and the treatment of rare diseases. Still, there is a permanent demand to find new or better therapeutic enzymes, which would be sufficiently soluble, stable, and active to meet specific medical needs. Here, we highlight the benefits of coupling computational approaches with high-throughput experimental technologies, which significantly accelerate the identification and engineering of catalytic therapeutic agents. New enzymes can be identified in genomic and metagenomic databases, which grow thanks to next-generation sequencing technologies exponentially. Computational design and machine learning methods are being developed to improve catalytically potent enzymes and predict their properties to guide the selection of target enzymes. High-throughput experimental pipelines, increasingly relying on microfluidics, ensure functional screening and biochemical characterization of target enzymes to reach efficient therapeutic enzymes.
Collapse
Affiliation(s)
- Michal Vasina
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic
| | - Jan Velecký
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Joan Planas-Iglesias
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic
| | - Sergio M Marques
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic
| | - Jana Skarupova
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic; Enantis, INBIT, Kamenice 34, Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic.
| | - Stanislav Mazurenko
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic.
| | - Zbynek Prokop
- Loschmidt Laboratories, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Loschmidt Laboratories, RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital, Pekarska 53, Brno, Czech Republic.
| |
Collapse
|
23
|
Zachos I, Genth R, Sutiono S, Marczynski M, Lieleg O, Sieber V. Hot Flows: Evolving an Archaeal Glucose Dehydrogenase for Ultrastable Carba-NADP+ Using Microfluidics at Elevated Temperatures. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ioannis Zachos
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, Straubing 94315, Germany
| | - Robert Genth
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, Straubing 94315, Germany
| | - Samuel Sutiono
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, Straubing 94315, Germany
| | - Matthias Marczynski
- TUM School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching 85748, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Straße 8, Garching 85748, Germany
| | - Oliver Lieleg
- TUM School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching 85748, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Straße 8, Garching 85748, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Schulgasse 16, Straubing 94315, Germany
- Catalytic Research Center, Technical University of Munich, Ernst-Otto-Fischer-Straße 1, Garching 85748, Germany
- SynBiofoundry@TUM, Technical University of Munich, Straubing 94315, Germany
- School of Chemistry and Molecular Biosciences, The University of Queensland, 68 Copper Road, St. Lucia 4072, Australia
| |
Collapse
|
24
|
Cecchini DA, Sánchez-Costa M, Orrego AH, Fernández-Lucas J, Hidalgo A. Ultrahigh-Throughput Screening of Metagenomic Libraries Using Droplet Microfluidics. Methods Mol Biol 2022; 2397:19-32. [PMID: 34813057 DOI: 10.1007/978-1-0716-1826-4_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Droplet microfluidics enables the ultrahigh-throughput screening of the natural or man-made genetic diversity for industrial enzymes, with reduced reagent consumption and lower costs than conventional robotic alternatives. Here we describe an example of metagenomic screening for nucleoside 2'-deoxyribosyl transferases using FACS as a more widespread and accessible alternative than microfluidic on-chip sorters. This protocol can be easily adapted to directed evolution libraries by replacing the library construction steps and to other enzyme activities, e.g., oxidases, by replacing the proposed coupled assay.
Collapse
Affiliation(s)
- Davide Agostino Cecchini
- Department of Molecular Biology, Center for Molecular Biology "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Mercedes Sánchez-Costa
- Department of Molecular Biology, Center for Molecular Biology "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Alejandro H Orrego
- Department of Molecular Biology, Center for Molecular Biology "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Aurelio Hidalgo
- Department of Molecular Biology, Center for Molecular Biology "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
25
|
Jackson C, Toth-Petroczy A, Kolodny R, Hollfelder F, Fuxreiter M, Caroline Lynn Kamerlin S, Tokuriki N. Adventures on the routes of protein evolution — in memoriam Dan Salah Tawfik (1955 - 2021). J Mol Biol 2022; 434:167462. [DOI: 10.1016/j.jmb.2022.167462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 12/21/2022]
|
26
|
Tran TM, Kim SC, Modavi C, Abate AR. Robotic automation of droplet microfluidics. BIOMICROFLUIDICS 2022; 16:014102. [PMID: 35145570 PMCID: PMC8816516 DOI: 10.1063/5.0064265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Droplet microfluidics enables powerful analytic capabilities but often requires workflows involving macro- and microfluidic processing steps that are cumbersome to perform manually. Here, we demonstrate the automation of droplet microfluidics with commercial fluid-handling robotics. The workflows incorporate common microfluidic devices including droplet generators, mergers, and sorters and utilize the robot's native capabilities for thermal control, incubation, and plate scanning. The ability to automate microfluidic devices using commercial fluid handling will speed up the integration of these methods into biological workflows.
Collapse
Affiliation(s)
- Tuan M. Tran
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, USA
| | - Samuel C. Kim
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, USA
| | - Cyrus Modavi
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, USA
| | | |
Collapse
|
27
|
Kaczmarek JA, Prather KLJ. Effective use of biosensors for high-throughput library screening for metabolite production. J Ind Microbiol Biotechnol 2021; 48:6339276. [PMID: 34347108 PMCID: PMC8788864 DOI: 10.1093/jimb/kuab049] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/19/2021] [Indexed: 11/14/2022]
Abstract
The development of fast and affordable microbial production from recombinant pathways is a challenging endeavor, with targeted improvements difficult to predict due to the complex nature of living systems. To address the limitations in biosynthetic pathways, much work has been done to generate large libraries of various genetic parts (promoters, RBSs, enzymes, etc.) to discover library members that bring about significantly improved levels of metabolite production. To evaluate these large libraries, high throughput approaches are necessary, such as those that rely on biosensors. There are various modes of operation to apply biosensors to library screens that are available at different scales of throughput. The effectiveness of each biosensor-based method is dependent on the pathway or strain to which it is applied, and all approaches have strengths and weaknesses to be carefully considered for any high throughput library screen. In this review, we discuss the various approaches used in biosensor screening for improved metabolite production, focusing on transcription factor-based biosensors.
Collapse
Affiliation(s)
- Jennifer A Kaczmarek
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge 02142, USA
| | - Kristala L J Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge 02142, USA
| |
Collapse
|
28
|
Manteca A, Gadea A, Van Assche D, Cossard P, Gillard-Bocquet M, Beneyton T, Innis CA, Baret JC. Directed Evolution in Drops: Molecular Aspects and Applications. ACS Synth Biol 2021; 10:2772-2783. [PMID: 34677942 PMCID: PMC8609573 DOI: 10.1021/acssynbio.1c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 11/29/2022]
Abstract
The process of optimizing the properties of biological molecules is paramount for many industrial and medical applications. Directed evolution is a powerful technique for modifying and improving biomolecules such as proteins or nucleic acids (DNA or RNA). Mimicking the mechanism of natural evolution, one can enhance a desired property by applying a suitable selection pressure and sorting improved variants. Droplet-based microfluidic systems offer a high-throughput solution to this approach by helping to overcome the limiting screening steps and allowing the analysis of variants within increasingly complex libraries. Here, we review cases where successful evolution of biomolecules was achieved using droplet-based microfluidics, focusing on the molecular processes involved and the incorporation of microfluidics to the workflow. We highlight the advantages and limitations of these microfluidic systems compared to low-throughput methods and show how the integration of these systems into directed evolution workflows can open new avenues to discover or improve biomolecules according to user-defined conditions.
Collapse
Affiliation(s)
- Aitor Manteca
- Univ.
Bordeaux, Institut National de la Santé et de la Recherche
Médicale, Centre National de la Recherche Scientifique, ARNA,
U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600 Pessac, France
| | - Alejandra Gadea
- Univ.
Bordeaux, CNRS, CRPP, UMR 5031, F-33610, Pessac, France
| | | | - Pauline Cossard
- Univ.
Bordeaux, Institut National de la Santé et de la Recherche
Médicale, Centre National de la Recherche Scientifique, ARNA,
U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600 Pessac, France
| | - Mélanie Gillard-Bocquet
- Univ.
Bordeaux, Institut National de la Santé et de la Recherche
Médicale, Centre National de la Recherche Scientifique, ARNA,
U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600 Pessac, France
| | - Thomas Beneyton
- Univ.
Bordeaux, CNRS, CRPP, UMR 5031, F-33610, Pessac, France
| | - C. Axel Innis
- Univ.
Bordeaux, Institut National de la Santé et de la Recherche
Médicale, Centre National de la Recherche Scientifique, ARNA,
U1212, UMR 5320, Institut Européen de Chimie et Biologie, F-33600 Pessac, France
| | - Jean-Christophe Baret
- Univ.
Bordeaux, CNRS, CRPP, UMR 5031, F-33610, Pessac, France
- Institut
Universitaire de France, F-75231 Paris, France
| |
Collapse
|
29
|
Amirifar L, Besanjideh M, Nasiri R, Shamloo A, Nasrollahi F, de Barros NR, Davoodi E, Erdem A, Mahmoodi M, Hosseini V, Montazerian H, Jahangiry J, Darabi MA, Haghniaz R, Dokmeci MR, Annabi N, Ahadian S, Khademhosseini A. Droplet-based microfluidics in biomedical applications. Biofabrication 2021; 14. [PMID: 34781274 DOI: 10.1088/1758-5090/ac39a9] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/15/2021] [Indexed: 11/11/2022]
Abstract
Droplet-based microfluidic systems have been employed to manipulate discrete fluid volumes with immiscible phases. Creating the fluid droplets at microscale has led to a paradigm shift in mixing, sorting, encapsulation, sensing, and designing high throughput devices for biomedical applications. Droplet microfluidics has opened many opportunities in microparticle synthesis, molecular detection, diagnostics, drug delivery, and cell biology. In the present review, we first introduce standard methods for droplet generation (i.e., passive and active methods) and discuss the latest examples of emulsification and particle synthesis approaches enabled by microfluidic platforms. Then, the applications of droplet-based microfluidics in different biomedical applications are detailed. Finally, a general overview of the latest trends along with the perspectives and future potentials in the field are provided.
Collapse
Affiliation(s)
- Leyla Amirifar
- Mechanical Engineering, Sharif University of Technology, Tehran, Iran, Tehran, 11365-11155, Iran (the Islamic Republic of)
| | - Mohsen Besanjideh
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Tehran, 11365-11155, Iran (the Islamic Republic of)
| | - Rohollah Nasiri
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Tehran, 11365-11155, Iran (the Islamic Republic of)
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Tehran, 11365-11155, Iran (the Islamic Republic of)
| | | | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Elham Davoodi
- Bioengineering, University of California - Los Angeles, Los Angeles, Los Angeles, 90095, UNITED STATES
| | - Ahmet Erdem
- Bioengineering, University of California - Los Angeles, Los Angeles, Los Angeles, 90095, UNITED STATES
| | | | - Vahid Hosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Hossein Montazerian
- Bioengineering, University of California - Los Angeles, Los Angeles, Los Angeles, 90095, UNITED STATES
| | - Jamileh Jahangiry
- University of California - Los Angeles, Los Angeles, Los Angeles, 90095, UNITED STATES
| | | | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Nasim Annabi
- Chemical Engineering, UCLA, Los Angeles, Los Angeles, California, 90095, UNITED STATES
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| |
Collapse
|
30
|
Stucki A, Vallapurackal J, Ward TR, Dittrich PS. Droplet Microfluidics and Directed Evolution of Enzymes: An Intertwined Journey. Angew Chem Int Ed Engl 2021; 60:24368-24387. [PMID: 33539653 PMCID: PMC8596820 DOI: 10.1002/anie.202016154] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Evolution is essential to the generation of complexity and ultimately life. It relies on the propagation of the properties, traits, and characteristics that allow an organism to survive in a challenging environment. It is evolution that shaped our world over about four billion years by slow and iterative adaptation. While natural evolution based on selection is slow and gradual, directed evolution allows the fast and streamlined optimization of a phenotype under selective conditions. The potential of directed evolution for the discovery and optimization of enzymes is mostly limited by the throughput of the tools and methods available for screening. Over the past twenty years, versatile tools based on droplet microfluidics have been developed to address the need for higher throughput. In this Review, we provide a chronological overview of the intertwined development of microfluidics droplet-based compartmentalization methods and in vivo directed evolution of enzymes.
Collapse
Affiliation(s)
- Ariane Stucki
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Jaicy Vallapurackal
- Department of ChemistryUniversity of BaselMattenstrasse 24aCH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Thomas R. Ward
- Department of ChemistryUniversity of BaselMattenstrasse 24aCH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| |
Collapse
|
31
|
Xiang L, Kaspar F, Schallmey A, Constantinou I. Two-Phase Biocatalysis in Microfluidic Droplets. BIOSENSORS 2021; 11:bios11110407. [PMID: 34821623 PMCID: PMC8616014 DOI: 10.3390/bios11110407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 05/24/2023]
Abstract
This Perspective discusses the literature related to two-phase biocatalysis in microfluidic droplets. Enzymes used as catalysts in biocatalysis are generally less stable in organic media than in their native aqueous environments; however, chemical and pharmaceutical compounds are often insoluble in water. The use of aqueous/organic two-phase media provides a solution to this problem and has therefore become standard practice for multiple biotransformations. In batch, two-phase biocatalysis is limited by mass transport, a limitation that can be overcome with the use of microfluidic systems. Although, two-phase biocatalysis in laminar flow systems has been extensively studied, microfluidic droplets have been primarily used for enzyme screening. In this Perspective, we summarize the limited published work on two-phase biocatalysis in microfluidic droplets and discuss the limitations, challenges, and future perspectives of this technology.
Collapse
Affiliation(s)
- Lanting Xiang
- Institute for Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany;
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany;
| | - Felix Kaspar
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, 38106 Braunschweig, Germany;
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, 13355 Berlin, Germany
| | - Anett Schallmey
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany;
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, 38106 Braunschweig, Germany;
- Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Iordania Constantinou
- Institute for Microtechnology, Technische Universität Braunschweig, 38124 Braunschweig, Germany;
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany;
| |
Collapse
|
32
|
Klaus M, Zurek PJ, Kaminski TS, Pushpanath A, Neufeld K, Hollfelder F. Ultrahigh-Throughput Detection of Enzymatic Alcohol Dehydrogenase Activity in Microfluidic Droplets with a Direct Fluorogenic Assay. Chembiochem 2021; 22:3292-3299. [PMID: 34643305 PMCID: PMC9291573 DOI: 10.1002/cbic.202100322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/13/2021] [Indexed: 12/02/2022]
Abstract
The exploration of large DNA libraries of metagenomic or synthetic origin is greatly facilitated by ultrahigh‐throughput assays that use monodisperse water‐in‐oil emulsion droplets as sequestered reaction compartments. Millions of samples can be generated and analysed in microfluidic devices at kHz speeds, requiring only micrograms of reagents. The scope of this powerful platform for the discovery of new sequence space is, however, hampered by the limited availability of assay substrates, restricting the functions and reaction types that can be investigated. Here, we broaden the scope of detectable biochemical transformations in droplet microfluidics by introducing the first fluorogenic assay for alcohol dehydrogenases (ADHs) in this format. We have synthesized substrates that release a pyranine fluorophore (8‐hydroxy‐1,3,6‐pyrenetrisulfonic acid, HPTS) when enzymatic turnover occurs. Pyranine is well retained in droplets for >6 weeks (i. e. 14‐times longer than fluorescein), avoiding product leakage and ensuring excellent assay sensitivity. Product concentrations as low as 100 nM were successfully detected, corresponding to less than one turnover per enzyme molecule on average. The potential of our substrate design was demonstrated by efficient recovery of a bona fide ADH with an >800‐fold enrichment. The repertoire of droplet screening is enlarged by this sensitive and direct fluorogenic assay to identify dehydrogenases for biocatalytic applications.
Collapse
Affiliation(s)
- Miriam Klaus
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK.,Current address: ICB Nuvisan GmbH, Müllerstraße 178, 13353, Berlin, Germany
| | - Paul Jannis Zurek
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK.,Johnson Matthey Plc, 260 Cambridge Science Park, CB4 0WE, Cambridge, UK.,Current address: BioNTech Cell & Gene Therapies GmbH, An der Goldgrube 12, 55131, Mainz, Germany
| | - Tomasz S Kaminski
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK.,Current address: Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Ahir Pushpanath
- Johnson Matthey Plc, 260 Cambridge Science Park, CB4 0WE, Cambridge, UK
| | - Katharina Neufeld
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK.,Johnson Matthey Plc, 260 Cambridge Science Park, CB4 0WE, Cambridge, UK.,Current address: Janssen Pharmaceutica, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA, Cambridge, UK
| |
Collapse
|
33
|
Directed Evolution Methods for Enzyme Engineering. Molecules 2021; 26:molecules26185599. [PMID: 34577070 PMCID: PMC8470892 DOI: 10.3390/molecules26185599] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022] Open
Abstract
Enzymes underpin the processes required for most biotransformations. However, natural enzymes are often not optimal for biotechnological uses and must be engineered for improved activity, specificity and stability. A rich and growing variety of wet-lab methods have been developed by researchers over decades to accomplish this goal. In this review such methods and their specific attributes are examined.
Collapse
|
34
|
Alex Wong CF, van Vliet L, Bhujbal SV, Guo C, Sletmoen M, Stokke BT, Hollfelder F, Lale R. A Titratable Cell Lysis-on-Demand System for Droplet-Compartmentalized Ultrahigh-Throughput Screening in Functional Metagenomics and Directed Evolution. ACS Synth Biol 2021; 10:1882-1894. [PMID: 34260196 PMCID: PMC8383311 DOI: 10.1021/acssynbio.1c00084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Water-in-oil emulsion
droplets are an attractive format for ultrahigh-throughput
screening in functional metagenomics and directed evolution applications
that allow libraries with more than 107 members to be characterized
in a day. Single library members are compartmentalized in droplets
that are generated in microfluidic devices and tested for the presence
of target biocatalysts. The target proteins can be produced intracellularly,
for example, in bacterial hosts in-droplet cell lysis is therefore
necessary to allow the enzymes to encounter the substrate to initiate
an activity assay. Here, we present a titratable lysis-on-demand (LoD)
system enabling the control of the cell lysis rate in Escherichia
coli. We demonstrate that the rate of cell lysis can be controlled
by adjusting the externally added inducer concentration. This LoD
system is evaluated both at the population level (by optical density
measurements) and at the single-cell level (on single-cell arrays
and in alginate microbeads). Additionally, we validate the LoD system
by droplet screening of a phosphotriesterase expressed from E. coli, with cell lysis triggered by inducer concentrations
in the μM range. The LoD system yields sufficient release of
the intracellularly produced enzymes to bring about a detectable quantity
of product (measured by fluorescence in flow cytometry of double emulsions),
while leaving viable cells for the downstream recovery of the genetic
material.
Collapse
Affiliation(s)
- Che Fai Alex Wong
- Department of Biotechnology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Liisa van Vliet
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Swapnil Vilas Bhujbal
- Department of Biotechnology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Chengzhi Guo
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Marit Sletmoen
- Department of Biotechnology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Bjørn Torger Stokke
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Rahmi Lale
- Department of Biotechnology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| |
Collapse
|
35
|
Chowdhury MS, Zheng W, Singh AK, Ong ILH, Hou Y, Heyman JA, Faghani A, Amstad E, Weitz DA, Haag R. Linear triglycerol-based fluorosurfactants show high potential for droplet-microfluidics-based biochemical assays. SOFT MATTER 2021; 17:7260-7267. [PMID: 34337643 DOI: 10.1039/d1sm00890k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fluorosurfactants have expanded the landscape of high-value biochemical assays in microfluidic droplets, but little is known about how the spatial geometries and polarity of the head group contribute to the performance of fluorosurfactants. To decouple this, we design, synthesize, and characterize two linear and two dendritic glycerol- or tris-based surfactants with a common perfluoropolyether tail. To reveal the influence of spatial geometry, we choose inter-droplet cargo transport as a stringent test case. Using surfactants with linear di- and triglycerol, we show that the inter-droplet cargo transport is minimal compared with their dendritic counterparts. When we encapsulated a less-leaky sodium fluorescent dye into the droplets, quantitatively, we find that the mean fluorescence intensity of the PFPE-dTG stabilized PBS-only droplets after 72 h was ∼3 times that of the signal detected in PBS-only droplets stabilized by PFPE-lTG. We also demonstrate that the post-functionalization of PFPE-lTG having a linear geometry and four hydroxy groups enables the 'from-Droplet' fishing of the biotin-streptavidin protein complex without the trade-off between fishing efficiency and droplet stability. Thus, our approach to design user-friendly surfactants reveals the aspects of spatial geometry and facile tunability of the polar head groups that have not been captured or exploited before.
Collapse
Affiliation(s)
- Mohammad Suman Chowdhury
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.
| | - Wenshan Zheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Abhishek Kumar Singh
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.
| | - Irvine Lian Hao Ong
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Yong Hou
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.
| | - John A Heyman
- School of Engineering and Applied Sciences, Department of Physics, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA
| | - Abbas Faghani
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - David A Weitz
- School of Engineering and Applied Sciences, Department of Physics, Harvard University, 29 Oxford Street, Cambridge, MA 02138, USA
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.
| |
Collapse
|
36
|
Yi D, Bayer T, Badenhorst CPS, Wu S, Doerr M, Höhne M, Bornscheuer UT. Recent trends in biocatalysis. Chem Soc Rev 2021; 50:8003-8049. [PMID: 34142684 PMCID: PMC8288269 DOI: 10.1039/d0cs01575j] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Indexed: 12/13/2022]
Abstract
Biocatalysis has undergone revolutionary progress in the past century. Benefited by the integration of multidisciplinary technologies, natural enzymatic reactions are constantly being explored. Protein engineering gives birth to robust biocatalysts that are widely used in industrial production. These research achievements have gradually constructed a network containing natural enzymatic synthesis pathways and artificially designed enzymatic cascades. Nowadays, the development of artificial intelligence, automation, and ultra-high-throughput technology provides infinite possibilities for the discovery of novel enzymes, enzymatic mechanisms and enzymatic cascades, and gradually complements the lack of remaining key steps in the pathway design of enzymatic total synthesis. Therefore, the research of biocatalysis is gradually moving towards the era of novel technology integration, intelligent manufacturing and enzymatic total synthesis.
Collapse
Affiliation(s)
- Dong Yi
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Thomas Bayer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Christoffel P. S. Badenhorst
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Shuke Wu
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Mark Doerr
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Matthias Höhne
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| | - Uwe T. Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University GreifswaldFelix-Hausdorff-Str. 4D-17487 GreifswaldGermany
| |
Collapse
|
37
|
Stucki A, Vallapurackal J, Ward TR, Dittrich PS. Droplet Microfluidics and Directed Evolution of Enzymes: An Intertwined Journey. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ariane Stucki
- Department of Biosystems Science and Engineering ETH Zurich Mattenstrasse 26 CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Jaicy Vallapurackal
- Department of Chemistry University of Basel Mattenstrasse 24a CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Thomas R. Ward
- Department of Chemistry University of Basel Mattenstrasse 24a CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering ETH Zurich Mattenstrasse 26 CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| |
Collapse
|
38
|
Conchouso D, Al-Ma'abadi A, Behzad H, Alarawi M, Hosokawa M, Nishikawa Y, Takeyama H, Mineta K, Gojobori T. Integration of Droplet Microfluidic Tools for Single-Cell Functional Metagenomics: An Engineering Head Start. GENOMICS, PROTEOMICS & BIOINFORMATICS 2021; 19:504-518. [PMID: 34952209 PMCID: PMC8864243 DOI: 10.1016/j.gpb.2021.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 02/09/2021] [Accepted: 03/09/2021] [Indexed: 11/25/2022]
Abstract
Droplet microfluidic techniques have shown promising outcome to study single cells at high throughput. However, their adoption in laboratories studying “-omics” sciences is still irrelevant due to the complex and multidisciplinary nature of the field. To facilitate their use, here we provide engineering details and organized protocols for integrating three droplet-based microfluidic technologies into the metagenomic pipeline to enable functional screening of bioproducts at high throughput. First, a device encapsulating single cells in droplets at a rate of ∼250 Hz is described considering droplet size and cell growth. Then, we expand on previously reported fluorescence-activated droplet sorting systems to integrate the use of 4 independent fluorescence-exciting lasers (i.e., 405, 488, 561, and 637 nm) in a single platform to make it compatible with different fluorescence-emitting biosensors. For this sorter, both hardware and software are provided and optimized for effortlessly sorting droplets at 60 Hz. Then, a passive droplet merger is also integrated into our pipeline to enable adding new reagents to already-made droplets at a rate of 200 Hz. Finally, we provide an optimized recipe for manufacturing these chips using silicon dry-etching tools. Because of the overall integration and the technical details presented here, our approach allows biologists to quickly use microfluidic technologies and achieve both single-cell resolution and high-throughput capability (>50,000 cells/day) for mining and bioprospecting metagenomic data
Collapse
Affiliation(s)
- David Conchouso
- Department of Industrial and Mechanical Engineering, Universidad de las Américas Puebla, Puebla 72810, Mexico; Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Amani Al-Ma'abadi
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Hayedeh Behzad
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mohammed Alarawi
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Masahito Hosokawa
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo 162-0041, Japan; Department of Life Science and Medical Bioscience, Waseda University, Tokyo 162-8480, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Yohei Nishikawa
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo 162-0041, Japan; Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, Tokyo 169-0072, Japan
| | - Haruko Takeyama
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo 162-0041, Japan; Department of Life Science and Medical Bioscience, Waseda University, Tokyo 162-8480, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan; Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, Tokyo 169-0072, Japan
| | - Katsuhiko Mineta
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Computer, Electrical, and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Takashi Gojobori
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
39
|
Hu B, Xu P, Ma L, Chen D, Wang J, Dai X, Huang L, Du W. One cell at a time: droplet-based microbial cultivation, screening and sequencing. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:169-188. [PMID: 37073344 PMCID: PMC10077293 DOI: 10.1007/s42995-020-00082-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/22/2020] [Indexed: 05/03/2023]
Abstract
Microbes thrive and, in turn, influence the earth's environment, but most are poorly understood because of our limited capacity to reveal their natural diversity and function. Developing novel tools and effective strategies are critical to ease this dilemma and will help to understand their roles in ecology and human health. Recently, droplet microfluidics is emerging as a promising technology for microbial studies with value in microbial cultivating, screening, and sequencing. This review aims to provide an overview of droplet microfluidics techniques for microbial research. First, some critical points or steps in the microfluidic system are introduced, such as droplet stabilization, manipulation, and detection. We then highlight the recent progress of droplet-based methods for microbiological applications, from high-throughput single-cell cultivation, screening to the targeted or whole-genome sequencing of single cells.
Collapse
Affiliation(s)
- Beiyu Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Peng Xu
- Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158 USA
| | - Liang Ma
- Department of Biomedical Devices, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510320 China
| | - Dongwei Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
| | - Jian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
| | - Xin Dai
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101 China
- Department of Biomedical Devices, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510320 China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100049 China
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
40
|
Lindenburg L, Hollfelder F. “NAD‐display”: Ultrahigh‐Throughput in Vitro Screening of NAD(H) Dehydrogenases Using Bead Display and Flow Cytometry. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Laurens Lindenburg
- Department of Biochemistry University of Cambridge Tennis Court Road Cambridge CB2 1GA UK
- Current address: Genmab Uppsalalaan 15 3584 CT Utrecht The Netherlands
| | - Florian Hollfelder
- Department of Biochemistry University of Cambridge Tennis Court Road Cambridge CB2 1GA UK
| |
Collapse
|
41
|
Yang J, Tu R, Yuan H, Wang Q, Zhu L. Recent advances in droplet microfluidics for enzyme and cell factory engineering. Crit Rev Biotechnol 2021; 41:1023-1045. [PMID: 33730939 DOI: 10.1080/07388551.2021.1898326] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Enzymes and cell factories play essential roles in industrial biotechnology for the production of chemicals and fuels. The properties of natural enzymes and cells often cannot meet the requirements of different industrial processes in terms of cost-effectiveness and high durability. To rapidly improve their properties and performances, laboratory evolution equipped with high-throughput screening methods and facilities is commonly used to tailor the desired properties of enzymes and cell factories, addressing the challenges of achieving high titer and the yield of the target products at high/low temperatures or extreme pH, in unnatural environments or in the presence of unconventional media. Droplet microfluidic screening (DMFS) systems have demonstrated great potential for exploring vast genetic diversity in a high-throughput manner (>106/h) for laboratory evolution and have been increasingly used in recent years, contributing to the identification of extraordinary mutants. This review highlights the recent advances in concepts and methods of DMFS for library screening, including the key factors in droplet generation and manipulation, signal sources for sensitive detection and sorting, and a comprehensive summary of success stories of DMFS implementation for engineering enzymes and cell factories during the past decade.
Collapse
Affiliation(s)
- Jianhua Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Ran Tu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Huiling Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Qinhong Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Leilei Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| |
Collapse
|
42
|
Lindenburg L, Hollfelder F. "NAD-display": Ultrahigh-Throughput in Vitro Screening of NAD(H) Dehydrogenases Using Bead Display and Flow Cytometry. Angew Chem Int Ed Engl 2021; 60:9015-9021. [PMID: 33470025 PMCID: PMC8048591 DOI: 10.1002/anie.202013486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/21/2020] [Indexed: 12/25/2022]
Abstract
NAD(H)‐utiliing enzymes have been the subject of directed evolution campaigns to improve their function. To enable access to a larger swath of sequence space, we demonstrate the utility of a cell‐free, ultrahigh‐throughput directed evolution platform for dehydrogenases. Microbeads (1.5 million per sample) carrying both variant DNA and an immobilised analogue of NAD+ were compartmentalised in water‐in‐oil emulsion droplets, together with cell‐free expression mixture and enzyme substrate, resulting in the recording of the phenotype on each bead. The beads’ phenotype could be read out and sorted for on a flow cytometer by using a highly sensitive fluorescent protein‐based sensor of the NAD+:NADH ratio. Integration of this “NAD‐display” approach with our previously described Split & Mix (SpliMLiB) method for generating large site‐saturation libraries allowed straightforward screening of fully balanced site saturation libraries of formate dehydrogenase, with diversities of 2×104. Based on modular design principles of synthetic biology NAD‐display offers access to sophisticated in vitro selections, avoiding complex technology platforms.
Collapse
Affiliation(s)
- Laurens Lindenburg
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK.,Current address: Genmab, Uppsalalaan 15, 3584 CT, Utrecht, The Netherlands
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| |
Collapse
|
43
|
Zurek PJ, Hours R, Schell U, Pushpanath A, Hollfelder F. Growth amplification in ultrahigh-throughput microdroplet screening increases sensitivity of clonal enzyme assays and minimizes phenotypic variation. LAB ON A CHIP 2021; 21:163-173. [PMID: 33242058 DOI: 10.1039/d0lc00830c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microfluidic ultrahigh-throughput screening of enzyme activities provides information on libraries with millions of variants in a day. Each individual library member is represented by a recombinant single cell, compartmentalised in an emulsion droplet, in which an activity assay is carried out. Key to the success of this approach is the precision and sensitivity of the assay. Assay quality is most profoundly challenged when initially weak, promiscuous activities are to be enhanced in early rounds of directed evolution or when entirely novel catalysts are to be identified from metagenomic sources. Implementation of measures to widen the dynamic range of clonal assays would increase the chances of finding and generating new biocatalysts. Here, we demonstrate that the assay sensitivity and DNA recovery can be improved by orders of magnitude by growth of initially singly compartmentalised cells in microdroplets. Homogeneous cell growth is achieved by continuous oxygenation and recombinant protein expression is regulated by diffusion of an inducer from the oil phase. Reaction conditions are adjusted by directed droplet coalescence to enable full control of buffer composition and kinetic incubation time, creating level playing field conditions for library selections. The clonal amplification multiplies the product readout because more enzyme is produced per compartment. At the same time, phenotypic variation is reduced by measuring monoclonal populations rather than single cells and recovery efficiency is increased. Consequently, this workflow increases the efficiency of lysate-based microfluidic enzyme assays and will make it easier for protein engineers to identify or evolve new enzymes for applications in synthetic and chemical biology.
Collapse
Affiliation(s)
- Paul Jannis Zurek
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, UK.
| | | | | | | | | |
Collapse
|
44
|
Zurek PJ, Knyphausen P, Neufeld K, Pushpanath A, Hollfelder F. UMI-linked consensus sequencing enables phylogenetic analysis of directed evolution. Nat Commun 2020; 11:6023. [PMID: 33243970 PMCID: PMC7691348 DOI: 10.1038/s41467-020-19687-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/12/2020] [Indexed: 11/09/2022] Open
Abstract
The success of protein evolution campaigns is strongly dependent on the sequence context in which mutations are introduced, stemming from pervasive non-additive interactions between a protein's amino acids ('intra-gene epistasis'). Our limited understanding of such epistasis hinders the correct prediction of the functional contributions and adaptive potential of mutations. Here we present a straightforward unique molecular identifier (UMI)-linked consensus sequencing workflow (UMIC-seq) that simplifies mapping of evolutionary trajectories based on full-length sequences. Attaching UMIs to gene variants allows accurate consensus generation for closely related genes with nanopore sequencing. We exemplify the utility of this approach by reconstructing the artificial phylogeny emerging in three rounds of directed evolution of an amine dehydrogenase biocatalyst via ultrahigh throughput droplet screening. Uniquely, we are able to identify lineages and their founding variant, as well as non-additive interactions between mutations within a full gene showing sign epistasis. Access to deep and accurate long reads will facilitate prediction of key beneficial mutations and adaptive potential based on in silico analysis of large sequence datasets.
Collapse
Affiliation(s)
- Paul Jannis Zurek
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- Johnson Matthey Plc, Cambridge, CB4 0WE, UK
| | - Philipp Knyphausen
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Katharina Neufeld
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- Johnson Matthey Plc, Cambridge, CB4 0WE, UK
| | | | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.
| |
Collapse
|
45
|
Ortseifen V, Viefhues M, Wobbe L, Grünberger A. Microfluidics for Biotechnology: Bridging Gaps to Foster Microfluidic Applications. Front Bioeng Biotechnol 2020; 8:589074. [PMID: 33282849 PMCID: PMC7691494 DOI: 10.3389/fbioe.2020.589074] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
Microfluidics and novel lab-on-a-chip applications have the potential to boost biotechnological research in ways that are not possible using traditional methods. Although microfluidic tools were increasingly used for different applications within biotechnology in recent years, a systematic and routine use in academic and industrial labs is still not established. For many years, absent innovative, ground-breaking and “out-of-the-box” applications have been made responsible for the missing drive to integrate microfluidic technologies into fundamental and applied biotechnological research. In this review, we highlight microfluidics’ offers and compare them to the most important demands of the biotechnologists. Furthermore, a detailed analysis in the state-of-the-art use of microfluidics within biotechnology was conducted exemplarily for four emerging biotechnological fields that can substantially benefit from the application of microfluidic systems, namely the phenotypic screening of cells, the analysis of microbial population heterogeneity, organ-on-a-chip approaches and the characterisation of synthetic co-cultures. The analysis resulted in a discussion of potential “gaps” that can be responsible for the rare integration of microfluidics into biotechnological studies. Our analysis revealed six major gaps, concerning the lack of interdisciplinary communication, mutual knowledge and motivation, methodological compatibility, technological readiness and missing commercialisation, which need to be bridged in the future. We conclude that connecting microfluidics and biotechnology is not an impossible challenge and made seven suggestions to bridge the gaps between those disciplines. This lays the foundation for routine integration of microfluidic systems into biotechnology research procedures.
Collapse
Affiliation(s)
- Vera Ortseifen
- Proteome and Metabolome Research, Faculty of Biology, Center for Biotechnology/CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Martina Viefhues
- Experimental Biophysics and Applied Nanosciences, Faculty of Physics, Bielefeld University, Bielefeld, Germany
| | - Lutz Wobbe
- Algae Biotechnology and Bioenergy Group, Faculty of Biology, Center for Biotechnology/CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Alexander Grünberger
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
46
|
Mutafopulos K, Lu PJ, Garry R, Spink P, Weitz DA. Selective cell encapsulation, lysis, pico-injection and size-controlled droplet generation using traveling surface acoustic waves in a microfluidic device. LAB ON A CHIP 2020; 20:3914-3921. [PMID: 32966482 DOI: 10.1039/d0lc00723d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We generate droplets in a microfluidic device using a traveling surface acoustic wave (TSAW), and control droplet size by adjusting TSAW power and duration. We combine droplet production and fluorescence detection to selectively-encapsulate cells and beads; with this active method, the overwhelming majority of single particles or cells are encapsulated individually into droplets, contrasting the Poisson distribution of encapsulation number that governs traditional, passive microfluidic encapsulation. In addition, we lyse cells before selective encapsulation, and pico-inject new materials into existing droplets.
Collapse
Affiliation(s)
- Kirk Mutafopulos
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | |
Collapse
|
47
|
Gerlt MS, Haidas D, Ratschat A, Suter P, Dittrich PS, Dual J. Manipulation of single cells inside nanoliter water droplets using acoustic forces. BIOMICROFLUIDICS 2020; 14:064112. [PMID: 33381252 PMCID: PMC7749759 DOI: 10.1063/5.0036407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/08/2020] [Indexed: 05/10/2023]
Abstract
Droplet microfluidics enables high-throughput screening of single cells and is particularly valuable for applications, where the secreted compounds are analyzed. Typically, optical methods are employed for analysis, which are limited in their applicability as labeling protocols are required. Alternative label-free methods such as mass spectrometry would broaden the range of assays but are harmful to the cells, which is detrimental for some applications such as directed evolution. In this context, separation of cells from supernatant is beneficial prior to the analysis to retain viable cells. In this work, we propose an in-droplet separation method based on contactless and label-free acoustic particle manipulation. In a microfluidic chip, nanoliter droplets containing particles are produced at a T-junction. The particles are trapped in the tip of the droplet by the interplay of acoustic forces in two dimensions and internal flow fields. The droplets are subsequently split at a second T-junction into two daughter droplets-one containing the supernatant and the other containing the corresponding particles. The separation efficiency is measured in detail for polystyrene (PS) beads as a function of droplet speed, size, split ratio, and particle concentration. Further, single-bead (PS) and single-cell (yeast) experiments were carried out. At a throughput of 114 droplets/min, a separation efficiency of 100% ± 0% was achieved for more than 150 droplets. Finally, mammalian cells and bacteria were introduced into the system to test its versatility. This work demonstrates a robust, non-invasive strategy to perform single yeast cell-supernatant sampling in nanoliter volumes.
Collapse
Affiliation(s)
- Michael S. Gerlt
- Department of Mechanical and Process Engineering, ETH Zurich, Institute for Mechanical Systems (IMES), Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - Dominik Haidas
- Department of Biosystems Science and Engineering, ETH Zurich, Bioanalytics Group, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Alexandre Ratschat
- Department of Mechanical and Process Engineering, ETH Zurich, Institute for Mechanical Systems (IMES), Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - Philipp Suter
- Department of Mechanical and Process Engineering, ETH Zurich, Institute for Mechanical Systems (IMES), Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, Bioanalytics Group, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Jürg Dual
- Department of Mechanical and Process Engineering, ETH Zurich, Institute for Mechanical Systems (IMES), Tannenstrasse 3, CH-8092 Zurich, Switzerland
| |
Collapse
|
48
|
Leonaviciene G, Leonavicius K, Meskys R, Mazutis L. Multi-step processing of single cells using semi-permeable capsules. LAB ON A CHIP 2020; 20:4052-4062. [PMID: 33006353 DOI: 10.1039/d0lc00660b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Droplet microfluidics technology provides a powerful approach to isolate and process millions of single cells simultaneously. Despite many exciting applications that have emerged based on this technology, workflows based on multi-step operations, including molecular biology and cell-based phenotypic screening assays, cannot be easily adapted to droplet format. Here, we present a microfluidics-based technique to isolate single cells, or biological samples, into semi-permeable hydrogel capsules and perform multi-step biological workflows on thousands to millions of individual cells simultaneously. The biochemical reactions are performed by changing the aqueous buffer surrounding the capsules, without needing sophisticated equipment. The semi-permeable nature of the capsules' shell retains large encapsulated biomolecules (such as genome) while allowing smaller molecules (such as proteins) to passively diffuse. In contrast to conventional hydrogel bead assays, the approach presented here improves bacterial cell retention during multi-step procedures as well as the efficiency of biochemical reactions. We showcase two examples of capsule use for single genome amplification of bacteria, and expansion of individual clones into isogenic microcolonies for later screening for biodegradable plastic production.
Collapse
Affiliation(s)
- Greta Leonaviciene
- Institute of Biotechnology, Life Science Centre, Vilnius University, 7 Sauletekio av., Vilnius, LT-10257, Lithuania.
| | - Karolis Leonavicius
- Institute of Biotechnology, Life Science Centre, Vilnius University, 7 Sauletekio av., Vilnius, LT-10257, Lithuania.
| | - Rolandas Meskys
- Institute of Biochemistry, Life Science Centre, Vilnius University, 7 Sauletekio av., Vilnius, LT-10257, Lithuania
| | - Linas Mazutis
- Institute of Biotechnology, Life Science Centre, Vilnius University, 7 Sauletekio av., Vilnius, LT-10257, Lithuania.
| |
Collapse
|
49
|
Tauzin AS, Pereira MR, Van Vliet LD, Colin PY, Laville E, Esque J, Laguerre S, Henrissat B, Terrapon N, Lombard V, Leclerc M, Doré J, Hollfelder F, Potocki-Veronese G. Investigating host-microbiome interactions by droplet based microfluidics. MICROBIOME 2020; 8:141. [PMID: 33004077 PMCID: PMC7531118 DOI: 10.1186/s40168-020-00911-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/23/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Despite the importance of the mucosal interface between microbiota and the host in gut homeostasis, little is known about the mechanisms of bacterial gut colonization, involving foraging for glycans produced by epithelial cells. The slow pace of progress toward understanding the underlying molecular mechanisms is largely due to the lack of efficient discovery tools, especially those targeting the uncultured fraction of the microbiota. RESULTS Here, we introduce an ultra-high-throughput metagenomic approach based on droplet microfluidics, to screen fosmid libraries. Thousands of bacterial genomes can be covered in 1 h of work, with less than ten micrograms of substrate. Applied to the screening of the mucosal microbiota for β-N-acetylgalactosaminidase activity, this approach allowed the identification of pathways involved in the degradation of human gangliosides and milk oligosaccharides, the structural homologs of intestinal mucin glycans. These pathways, whose prevalence is associated with inflammatory bowel diseases, could be the result of horizontal gene transfers with Bacteroides species. Such pathways represent novel targets to study the microbiota-host interactions in the context of inflammatory bowel diseases, in which the integrity of the mucosal barrier is impaired. CONCLUSION By compartmentalizing experiments inside microfluidic droplets, this method speeds up and miniaturizes by several orders of magnitude the screening process compared to conventional approaches, to capture entire metabolic pathways from metagenomic libraries. The method is compatible with all types of (meta)genomic libraries, and employs a commercially available flow cytometer instead of a custom-made sorting system to detect intracellular or extracellular enzyme activities. This versatile and generic workflow will accelerate experimental exploration campaigns in functional metagenomics and holobiomics studies, to further decipher host-microbiota relationships. Video Abstract.
Collapse
Affiliation(s)
- Alexandra S Tauzin
- TBI, CNRS, INRAE, INSAT, Université de Toulouse, F-31400, Toulouse, France
| | - Mariana Rangel Pereira
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- CAPES Foundation, Ministry of Education of Brazil, BrasÍlia, DF, 70040-020, Brazil
| | - Liisa D Van Vliet
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- Drop-Tech, Canterbury Court, Cambridge, CB4 3QU, UK
| | - Pierre-Yves Colin
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Elisabeth Laville
- TBI, CNRS, INRAE, INSAT, Université de Toulouse, F-31400, Toulouse, France
| | - Jeremy Esque
- TBI, CNRS, INRAE, INSAT, Université de Toulouse, F-31400, Toulouse, France
| | - Sandrine Laguerre
- TBI, CNRS, INRAE, INSAT, Université de Toulouse, F-31400, Toulouse, France
| | - Bernard Henrissat
- CNRS, UMR 7257, Aix-Marseille Université, F-13288, Marseille, France
- USC 1408 AFMB, INRAE, F-13288, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nicolas Terrapon
- CNRS, UMR 7257, Aix-Marseille Université, F-13288, Marseille, France
- USC 1408 AFMB, INRAE, F-13288, Marseille, France
| | - Vincent Lombard
- CNRS, UMR 7257, Aix-Marseille Université, F-13288, Marseille, France
- USC 1408 AFMB, INRAE, F-13288, Marseille, France
| | - Marion Leclerc
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, F-78350, Jouy-en-Josas, France
| | - Joël Doré
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, F-78350, Jouy-en-Josas, France
- Metagenopolis, INRAE, F-78350, Jouy-en-Josas, France
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK.
| | | |
Collapse
|
50
|
Hengoju S, Tovar M, Man DKW, Buchheim S, Rosenbaum MA. Droplet Microfluidics for Microbial Biotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 179:129-157. [PMID: 32888037 DOI: 10.1007/10_2020_140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Droplet microfluidics has recently evolved as a prominent platform for high-throughput experimentation for various research fields including microbiology. Key features of droplet microfluidics, like compartmentalization, miniaturization, and parallelization, have enabled many possibilities for microbiology including cultivation of microorganisms at a single-cell level, study of microbial interactions in a community, detection and analysis of microbial products, and screening of extensive microbial libraries with ultrahigh-throughput and minimal reagent consumptions. In this book chapter, we present several aspects and applications of droplet microfluidics for its implementation in various fields of microbial biotechnology. Recent advances in the cultivation of microorganisms in droplets including methods for isolation and domestication of rare microbes are reviewed. Similarly, a comparison of different detection and analysis techniques for microbial activities is summarized. Finally, several microbial applications are discussed with a focus on exploring new antimicrobials and high-throughput enzyme activity screening. We aim to highlight the advantages, limitations, and current developments in droplet microfluidics for microbial biotechnology while envisioning its enormous potential applications in the future.
Collapse
Affiliation(s)
- Sundar Hengoju
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University (FSU), Jena, Germany
| | - Miguel Tovar
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany
| | - DeDe Kwun Wai Man
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany
| | - Stefanie Buchheim
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University (FSU), Jena, Germany
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany. .,Faculty of Biological Sciences, Friedrich Schiller University (FSU), Jena, Germany.
| |
Collapse
|