1
|
Khandare K, Kumar S, Sharma SC, Goswami S. Green synthesis of silver nanoparticles from supercritical CO 2 mediated Lagerstroemia speciosa extract: Characterization, antimicrobial and antibiofilm activity. Biochem Biophys Res Commun 2024; 739:150967. [PMID: 39541925 DOI: 10.1016/j.bbrc.2024.150967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/05/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
In the current study, optimal supercritical fluid extract (SFE) of Lagerstroemia speciosa (LS) leaves at pressure 29.59 MPa (MPa), temperature 89.50 °C and extraction time 53.85 min was used to extract phenolic compounds for the synthesis of silver nanoparticles (AgNPs). The synthesis was studied for 0-20 h. Initially the synthesis of nanoparticles (SFELS-AgNPs) was confirmed using UV -spectroscopy. It demonstrated a maximum surface plasmon resonance at 430 nm. The crystallite dimension of nanoparticles was determined using X-ray diffraction (XRD) (13.47 nm), Transmission electron microscopy (TEM), zeta potential analysis and energy-dispersive X-ray analysis (EDAX) were used to analyze the morphology, surface charge and presence of differential elements in SFELS-AgNPs respectively. Developed nanoparticles revealed antimicrobial activity against 2 g-positive viz. Staphylococcus aureus and Bacillus cereus, and 3 g-negative bacteria viz. Klebsiella pneumonia, Pseudomonas aeruginosa and Escherichia coli. The nanoparticle showed a minimum inhibitory concentration (MIC) of 64 μg/ml whereas the minimum bactericidal concentration (MBC) 128 μg/ml against K. pneumonia. They significantly inhibited K. pneumonia biofilm formation which was confirmed using scanning electron microscopy (SEM). The results were encouraging compared to the standards drug Chloramphenicol and other controls. The generated nanoparticles have highly effective antimicrobial properties against pathogenic bacteria.
Collapse
Affiliation(s)
- Kiran Khandare
- Center of Innovative and Applied Bioprocessing, Mohali, Punjab, India; Department of Biochemistry, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Shekhar Kumar
- Center of Innovative and Applied Bioprocessing, Mohali, Punjab, India
| | - Sukesh Chander Sharma
- Department of Biochemistry, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Saswata Goswami
- Center of Innovative and Applied Bioprocessing, Mohali, Punjab, India.
| |
Collapse
|
2
|
Zheng X, Yan Y, Li X, Liu M, Zhao X, He J, Zhuang X. Microbial characteristics of bile in gallstone patients: a comprehensive analysis of 9,939 cases. Front Microbiol 2024; 15:1481112. [PMID: 39749136 PMCID: PMC11693992 DOI: 10.3389/fmicb.2024.1481112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction The exact triggers of gallstone formation remain incompletely understood, but research indicates that microbial infection is a significant factor and can interfere with treatment. There is no consensus on the bile microbial culture profiles in previous studies, and determining the microbial profile could aid in targeted prevention and treatment. The primary aim of this study is to investigate the differences in microbial communities cultured from bile specimens of patients with gallstones. Methods We collected the clinical characteristics and bile microbial status of 9,939 gallstone patients. Statistical analysis was employed to assess the relationship between microbes and clinical features, and a random forest model was utilized to predict recurrence. Results Results showed a higher proportion of females among patients, with the age group of 60-74 years being the most prevalent. The most common type of gallstone was solitary gallbladder stones. A total of 76 microbes were cultured from 5,153 patients, with Escherichia coli, Klebsiella pneumoniae, and Enterococcus faecalis being the most frequently identified. Significant differences in microbial diversity and positive detection rates were observed across different age groups, types of gallstones, and recurrence status. Positive frequencies of E. coli, Enterococcus faecium, and K. pneumoniae varied significantly by age group and gallstone type. The microbial diversity in the recurrence group was significantly lower compared to the non-recurrence group. The recurrence rate was significantly higher in the group with single microbial species compared to those with no microbes or multiple microbes. For the recurrence group, there were significant differences in the frequencies of seven microbes (Aeromonas hydrophila, Enterococcus casseliflavus, Enterococcus faecium, E. coli, K. pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa) before and after recurrence, with these microbes appearing in a higher number of patients after recurrence. Regression analysis identified patient age, stone size, diabetes, venous thrombosis, liver cirrhosis, malignancy, coronary heart disease, and the number of microbial species as important predictors of recurrence. A random forest model constructed using these variables demonstrated good performance and high predictive ability (ROC-AUC = 0.862). Discussion These findings highlight the significant role of microbial communities in gallstone formation and recurrence. Furthermore, the identified predictors of recurrence, including clinical factors and microbial diversity, may help develop personalized prevention and recurrence strategies for gallstone patients.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, China
| | - Yunjun Yan
- Jinan Dian Medical Laboratory CO., LTD, Jinan, China
| | - Xin Li
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Mimin Liu
- Jinan Dian Medical Laboratory CO., LTD, Jinan, China
| | - Xiaoyue Zhao
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jing He
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xuewei Zhuang
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, China
- Jinan Key Laboratory for Precision Medicine, Jinan, Shandong, China
| |
Collapse
|
3
|
Kabotso DEK, Neglo D, Gaba SE, Danyo EK, Dayie AD, Asantewaa AA, Kotey FCN, Dayie NTKD. In Vitro Evaluation of Rosemary Essential Oil: GC-MS Profiling, Antibacterial Synergy, and Biofilm Inhibition. Pharmaceuticals (Basel) 2024; 17:1653. [DOI: 10.3390/ph17121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Background: Antimicrobial resistance (AMR) has become precarious, warranting investments in antimicrobial discovery. Aim: To investigate the antibacterial activity of rosemary essential oil (REO), alone and in combination with selected conventional antibiotics. Methods: REO was subjected to antimicrobial susceptibility testing (including minimum bactericidal concentration (MBC) and minimum inhibitory concentration (MIC) determination) and investigation of anti-pre-biofilm and antibiofilm activities. Results: The phytochemical composition of the REO was eucalyptol (42.68%), bornanone (33.20%), endo-borneol (9.37%), α-terpeneol (7.95%), linalool (2.10%), bornyl acetate (1.81%), caryophyllene (1.09%), 4-terpeneol (0.94%), and anethole (0.87%). The antibacterial inhibition zones generally increased with increasing REO concentration (i.e., 10, 20, 50, 100, and 200 mg/mL). The MIC and MBC ranges of REO for all bacteria were 3.13–6.25 mg/mL and 3.12–12.5 mg/mL, respectively. The MICs (in µg/mL) of ciprofloxacin, chloramphenicol, streptomycin, tetracycline, and ampicillin, respectively, were Escherichia coli (0.98, 3.92, 1.96, 7.81, and 250), Klebsiella pneumoniae (1.25, 7.81, 125, 7.81, and 1000), MRSA (62.5, 7.81, 3.91, 7.81, and 250), Streptococcus mutans and Bacillus subtilis (125, 15.68, 250, 31.25, and 1000), Pseudomonas aeruginosa (125, 31.25, 500, 31.25, and 1000), and Salmonella Typhi (0.98, 15.68, 125, 1.96, and 1000). The MBC-MIC ratios of REO against all bacteria were in the range 1–2, indicating bactericidal effects. Mainly synergy (FICI = 0.16–0.37) was observed between REO and the conventional antibiotics. The IC50 values (in µg/mL) of REO against the bacteria, pre-biofilm vs. biofilm formation, were E. coli (1342.00 vs. 4.00), K. pneumoniae (106.00 vs. 3.00), MRSA (134.00 vs. 6.00), S. mutans (7259.00 vs. 7.00), B. subtilis (120.00 vs. 7.00), P. aeruginosa (4989.00 vs. 7.00), and S. Typhi (10.00 vs. 2.00). Conclusions: Rosemary essential oil had significant bactericidal effects on the bacteria tested, and its MIC and MBC values were low. Overall, it was synergistic with known conventional antibiotics and, thus, has encouraging prospects in combination therapy involving conventional antibiotics, even in the treatment of infections with multidrug-resistant bacteria, including biofilm-forming ones.
Collapse
Affiliation(s)
- Daniel E. K. Kabotso
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, PMB 31, Ho 00233, Ghana
| | - David Neglo
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, PMB 31, Ho 00233, Ghana
| | - Sarah E. Gaba
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, PMB 31, Ho 00233, Ghana
| | - Emmanuel K. Danyo
- Department of Technologies for Organic Synthesis, Institute of Chemical Technology, Ural Federal University, Mira Street 28, 620002 Ekaterinburg, Russia
| | - Alberta D. Dayie
- Department of Chemistry, University of Cape Coast, Cape Coast 00233, Ghana
| | - Anastasia A. Asantewaa
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra 00233, P.O. Box KB 4236, Ghana
| | - Fleischer C. N. Kotey
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra 00233, P.O. Box KB 4236, Ghana
| | - Nicholas T. K. D. Dayie
- Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, Accra 00233, P.O. Box KB 4236, Ghana
| |
Collapse
|
4
|
Antunes Filho S, Pizzorno Backx B, Foguel D. Green nanotechnology in phytosynthesis and its efficiency in inhibiting bacterial biofilm formation: implications for medicine. BIOFOULING 2024; 40:645-659. [PMID: 39319552 DOI: 10.1080/08927014.2024.2407036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/07/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Nanotechnology is used in several biomedical applications, including antimicrobial and antibiofilm applications using nanomaterials. Bacterial biofilm varies according to the strain; the matrix is very strong and resistant. In this sense, phytosynthesis is an important method for combating bacterial biofilms through the use of metallic nanoparticles (silver, gold, or copper) with increased marketing and technical-scientific potential. In this review, we seek to gather the leading publications on the use of phytosynthesized metallic nanoparticles against bacterial biofilms. Furthermore, this study aims to understand the main characteristics and parameters of these nanomaterials, their antibiofilm efficiency, and the presence or absence of cytotoxicity in these developed technologies.
Collapse
Affiliation(s)
- Sérgio Antunes Filho
- NUMPEX - UFRJ, Universidade Federal do Rio de Janeiro, Duque de Caxias, Brazil
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Débora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Lariviere PJ, Ashraf AHMZ, Gifford I, Tanguma SL, Barrick JE, Moran NA. Virulence-linked adhesin drives mutualist colonization of the bee gut via biofilm formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618124. [PMID: 39464101 PMCID: PMC11507737 DOI: 10.1101/2024.10.14.618124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Bacterial biofilms are stable multicellular structures that can enable long term host association. Yet, the role of biofilms in supporting gut mutualism is still not fully understood. Here, we investigate Snodgrassella alvi, a beneficial bacterial symbiont of honey bees, and find that biofilm formation is required for its colonization of the bee gut. We constructed fifteen S. alvi mutants containing knockouts of genes known to promote colonization with putative roles in biofilm formation. Genes required for colonization included staA and staB, encoding trimeric autotransporter adhesins (TAAs) and mltA, encoding a lytic transglycosylase. Intriguingly, TAAs are considered virulence factors in pathogens but support mutualism by the symbiont S. alvi. In vitro, biofilm formation was reduced in ΔstaB cells and abolished in the other two mutants. Loss of staA also reduced auto-aggregation and cell-cell connections. Based on structural predictions, StaA/B are massive (>300 nm) TAAs with many repeats in their stalk regions. Further, we find that StaA/B are conserved across Snodgrassella species, suggesting that StaA/B-dependent colonization is characteristic of this symbiont lineage. Finally, staA deletion increases sensitivity to bactericidal antimicrobials, suggesting that the biofilm indirectly buffers against antibiotic stress. In all, the inability of two biofilm-deficient strains (ΔstaA and ΔmltA) to effectively mono-colonize bees indicates that S. alvi biofilm formation is required for colonization of the bee gut. We envision the bee gut system as a genetically tractable model for studying the physical basis of biofilm-mutualist-gut interactions.
Collapse
Affiliation(s)
- Patrick J. Lariviere
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - A. H. M. Zuberi Ashraf
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Isaac Gifford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sylvia L. Tanguma
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey E. Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nancy A. Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
6
|
Brito GS, Dutra RP, Fernandes Pereira AL, Ferreira AGN, Neto MS, Holanda CA, Fidelis QC. Nanoemulsions of essential oils against multi-resistant microorganisms: An integrative review. Microb Pathog 2024; 195:106837. [PMID: 39103128 DOI: 10.1016/j.micpath.2024.106837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Microbial resistance to drugs continues to be a global public health issue that demands substantial investment in research and development of new antimicrobial agents. Essential oils (EO) have demonstrated satisfactory and safe antimicrobial action, being used in pharmaceutical, cosmetic, and food formulations. In order to improve solubility, availability, and biological action, EO have been converted into nanoemulsions (NE). This review identified scientific evidence corroborating the antimicrobial action of nanoemulsions of essential oils (NEEO) against antibiotic-resistant pathogens. Using integrative review methodology, eleven scientific articles evaluating the antibacterial or antifungal assessment of NEEO were selected. The synthesis of evidence indicates that NEEO are effective in combating multidrug-resistant microorganisms and in the formation of their biofilms. Factors such as NE droplet size, chemical composition of essential oils, and the association of NE with antibiotics are discussed. Furthermore, NEEO showed satisfactory results in vitro and in vivo evaluations against resistant clinical isolates, making them promising for the development of new antimicrobial and antivirulence drugs.
Collapse
Affiliation(s)
- Gabriel Sousa Brito
- Program in Health and Technology, Imperatriz Science Center, Federal University of Maranhão, Imperatriz, 65915-240, Brazil
| | - Richard Pereira Dutra
- Program in Health and Technology, Imperatriz Science Center, Federal University of Maranhão, Imperatriz, 65915-240, Brazil
| | - Ana Lúcia Fernandes Pereira
- Program in Health and Technology, Imperatriz Science Center, Federal University of Maranhão, Imperatriz, 65915-240, Brazil
| | | | - Marcelino Santos Neto
- Program in Health and Technology, Imperatriz Science Center, Federal University of Maranhão, Imperatriz, 65915-240, Brazil
| | - Carlos Alexandre Holanda
- Program in Health and Technology, Imperatriz Science Center, Federal University of Maranhão, Imperatriz, 65915-240, Brazil
| | - Queli Cristina Fidelis
- Program in Health and Technology, Imperatriz Science Center, Federal University of Maranhão, Imperatriz, 65915-240, Brazil.
| |
Collapse
|
7
|
Tyagi A, Kumar V, Joshi N, Dhingra HK. Combinatorial Effects of Ursodeoxycholic Acid and Antibiotic in Combating Staphylococcus aureus Biofilm: The Roles of ROS and Virulence Factors. Microorganisms 2024; 12:1956. [PMID: 39458266 PMCID: PMC11509559 DOI: 10.3390/microorganisms12101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Staphylococcus aureus is a biofilm-forming bacterium responsible for various human infections, one particularly challenging to treat due to its antibiotic resistance. Biofilms can form on both soft tissues and medical devices, leading to persistent and hard-to-treat infections. Combining multiple antimicrobials is a potential approach to overcoming this resistance. This study explored the effects of ursodeoxycholic acid (UDCA) combined with the antibiotic ciprofloxacin against S. aureus biofilms, aiming to evaluate any synergistic effects. Results showed that UDCA and ciprofloxacin co-treatment significantly reduced biofilm formation and disrupted pre-formed biofilms more effectively than either agent alone (p < 0.01). The combination also displayed a slight synergistic effect, with a fractional inhibitory concentration of 0.65. Additionally, the treatment reduced the production of extracellular polymeric substances, increased reactive oxygen species production, decreased metabolic activity, altered cell membrane permeability, and lowered cell surface hydrophobicity in S. aureus. Furthermore, it diminished biofilm-associated pathogenic factors, including proteolytic activity and staphyloxanthin production. Overall, the UDCA-ciprofloxacin combination shows considerable promise as a strategy to combat infections related to staphylococcal biofilms, offering a potential solution to the healthcare challenges posed by antibiotic-resistant S. aureus.
Collapse
Affiliation(s)
- Anuradha Tyagi
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh 332311, Rajasthan, India; (A.T.); (N.J.)
| | - Vinay Kumar
- Department of Medicine, Pennsylvania State University, Hershey Medical Center, Hershey, PA 17033, USA
| | - Navneet Joshi
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh 332311, Rajasthan, India; (A.T.); (N.J.)
| | - Harish Kumar Dhingra
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh 332311, Rajasthan, India; (A.T.); (N.J.)
| |
Collapse
|
8
|
Manu P, Nketia PB, Osei-Poku P, Kwarteng A. Computational Mutagenesis and Inhibition of Staphylococcus aureus AgrA LytTR Domain Using Phenazine Scaffolds: Insight From a Biophysical Study. BIOMED RESEARCH INTERNATIONAL 2024; 2024:8843954. [PMID: 39328594 PMCID: PMC11424843 DOI: 10.1155/2024/8843954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
Biofilm formation by Staphylococcus aureus is a major challenge in clinical settings due to its role in persistent infections. The AgrA protein, a key regulator in biofilm development, is a promising target for therapeutic intervention. This study investigates the antibiofilm potential of halogenated phenazine compounds by targeting AgrA and explores their molecular interactions to provide insights for drug development. We employed molecular docking, molecular dynamics simulations, and computational mutagenesis to evaluate the binding of halogenated phenazine compounds (C1 to C7, HP, and HP-14) to AgrA. Binding free energy analysis was performed to assess the affinity of these compounds for the AgrA-DNA complex. Additionally, the impact of these compounds on AgrA's structural conformation and salt bridge interactions was examined. The binding-free energy analysis revealed that all compounds enhance binding affinity compared to the Apo form of AgrA, which has a ΔGbind of -80.75 kcal/mol. The strongest binding affinities were observed with compounds C7 (-113.84 kcal/mol), HP-14 (-115.23 kcal/mol), and HP (-112.28 kcal/mol), highlighting their effectiveness. Molecular dynamics simulations demonstrated that these compounds bind at the hydrophobic cleft of AgrA, disrupting essential salt bridge interactions between His174-Glu163 and His174-Glu226. This disruption led to structural conformational changes and reduced DNA binding affinity, aligning with experimental findings on biofilm inhibition. The halogenated phenazine compounds effectively inhibit biofilm formation by targeting AgrA, disrupting its DNA-binding function. The study supports the potential of these compounds as antibiofilm agents and provides a foundation for rational drug design targeting the AgrA-DNA interaction. Future research should focus on further optimizing these lead compounds and exploring additional active sites on AgrA to develop novel treatments for biofilm-associated infections.
Collapse
Affiliation(s)
- Prince Manu
- Department of ChemistryKwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical MedicineKwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Prisca Baah Nketia
- Department of ChemistryKwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical MedicineKwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Priscilla Osei-Poku
- Kumasi Centre for Collaborative Research in Tropical MedicineKwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Biochemistry and BiotechnologyKwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alexander Kwarteng
- Kumasi Centre for Collaborative Research in Tropical MedicineKwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Biochemistry and BiotechnologyKwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
9
|
Aydemir D, Çakır S, Özdemir N, Ulusu NN. Evaluation of the Antimicrobial Activity of Triple Enzyme-Embedded Organic-Inorganic Hybrid Nanoflowers (hNFs) in Comparison with Powerful Antimicrobial Agent Chitosan. Curr Microbiol 2024; 81:359. [PMID: 39287689 DOI: 10.1007/s00284-024-03884-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
Organic-inorganic hybrid nanoflowers (hNFs) have high stability, reusability, low production cost, and overcome substrate/product inhibition. Antimicrobial activity of various hNFs has been reported to overcome environmental microbial contaminations and infections, which are considered major public health problems. α-amylase, protease, and lipase are the most common industrial enzymes exerting antimicrobial activity; therefore, we synthesized triple enzyme (α-amylase, protease, and lipase)-embedded hNFs by using pancreatin to evaluate their antimicrobial activity in comparison with one of the most potent antimicrobial polymer chitosan. The broad spectrum of the antimicrobial properties of chitosan is used in industrial products, including cosmetics, food, agriculture, pharmaceuticals, and textiles. SEM analysis, thermogravimetric analysis (TGA), and the degree of deacetylation (%DD) were performed for chitosan characterization, where SEM, FTIR, EDX, and XRD analyses were performed for the characterization of hNFs. The catalytic activity of pancreatin and hNFs was evaluated by measuring lipase, α-amylase, and protease enzyme activities at 37 °C. Antibacterial activities of hNFs, pancreatin, and chitosan were tested on gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria, compared to the pancreatin and chitosan via agar and broth dilution methods. hNFs showed enhanced catalytic activity for protease, lipase, and α-amylase compared to pancreatin at different pH values (pH 8, 9). hNFs showed catalytic activity after being washed and reused up to six times, indicating their reusability and recoverability. hNFs showed significant antimicrobial activity, such as chitosan, Staphylococcus aureus, and Escherichia coli, compared to pancreatin. Our novel hNFs can be used to develop antimicrobial technologies to fight against environmental microbial contaminations and antibiotic resistance-driven environmental pathogens.
Collapse
Affiliation(s)
- Duygu Aydemir
- Department of Medical Biochemistry, School of Medicine, Koc University, Rumelifeneri Yolu, 34450, Sariyer, Istanbul, Turkey
- Koc University Research Center for Translational Medicine (KUTTAM), 34450, Sariyer, Istanbul, Turkey
| | - Seda Çakır
- Biotechnology Department, Institute of Graduate Education, Nisantasi University, Sarıyer, Istanbul, Turkey
| | - Nalan Özdemir
- Biochemistry Division, Chemistry Department, Faculty of Science, Erciyes University, 38039, Kayseri, Turkey
| | - Nuriye Nuray Ulusu
- Department of Medical Biochemistry, School of Medicine, Koc University, Rumelifeneri Yolu, 34450, Sariyer, Istanbul, Turkey.
- Koc University Research Center for Translational Medicine (KUTTAM), 34450, Sariyer, Istanbul, Turkey.
| |
Collapse
|
10
|
Lee H, Hwang SH, Shin H, Ha NC, Wang Q, Choi SH. Identification and characterization of a small molecule BFstatin inhibiting BrpR, the transcriptional regulator for biofilm formation of Vibrio vulnificus. Front Microbiol 2024; 15:1468567. [PMID: 39314881 PMCID: PMC11416940 DOI: 10.3389/fmicb.2024.1468567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Many pathogenic bacteria form biofilms that are resistant to not only host immune defenses but also antibiotics, posing a need for the development of strategies to control biofilms. In this study, to prevent biofilm formation of the fulminating foodborne pathogen Vibrio vulnificus, chemical libraries were extensively screened to identify a small molecule inhibiting the activity of BrpR, a transcriptional regulator for biofilm genes. Accordingly, the BrpR inhibitor BFstatin [N1-(2-chloro-5-fluorophenyl)-N3-propylmalonamide], with a half-maximal effective concentration of 8.01 μM, was identified. BFstatin did not interfere with bacterial growth or exhibit cytotoxicity to the human epithelial cell line. BFstatin directly bound to BrpR and interrupted its binding to the target promoter DNAs of the downstream genes. Molecular dynamics simulation of the interaction between BFstatin and BrpR proposed that BFstatin modifies the structure of BrpR, especially the DNA-binding domain. Transcriptomic analyses revealed that BFstatin reduces the expression of the BrpR regulon including the cabABC operon and brp locus which contribute to the production of biofilm matrix of V. vulnificus. Accordingly, BFstatin diminished the biofilm levels of V. vulnificus by inhibiting the matrix development in a concentration-dependent manner. Altogether, BFstatin could be an anti-biofilm agent targeting BrpR, thereby rendering V. vulnificus more susceptible to host immune defenses and antibiotics.
Collapse
Affiliation(s)
- Hojun Lee
- Department of Agricultural Biotechnology, National Research Laboratory of Molecular Microbiology and Toxicology, Seoul National University, Seoul, Republic of Korea
| | - Seung-Ho Hwang
- Department of Agricultural Biotechnology, National Research Laboratory of Molecular Microbiology and Toxicology, Seoul National University, Seoul, Republic of Korea
| | - Hyunwoo Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Sang Ho Choi
- Department of Agricultural Biotechnology, National Research Laboratory of Molecular Microbiology and Toxicology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
11
|
He Y, Bright R, Vasilev K, Zilm P. Development of "Intelligent particles" for the treatment of dental caries. Eur J Pharm Biopharm 2024; 202:114374. [PMID: 38942176 DOI: 10.1016/j.ejpb.2024.114374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 06/30/2024]
Abstract
Dental caries is one of the most prevalent non-communicable diseases worldwide, mediated by a multispecies biofilm that consists of high levels of acidogenic bacteria which ferment sugar to acid and cause teeth demineralization. Current treatment practice remains insufficient in addressing 1) rapid clearance of therapeutic agents from the oral environment 2) destroying bacteria that contribute to the healthy oral microbiome. In addition, increasing concerns over antibiotic resistance calls for innovative alternatives. In this study, we developed a pH responsive nano-carrier for delivery of polycationic silver nanoparticles. Branched-PEI capped silver nanoparticles (BPEI-AgNPs) were encapsulated in a tannic acid - Fe (III) complex-modified poly(D,L-lactic-co-glycolic acid) (PLGA) particle (Fe(III)-TA/PLGA@BPEI-AgNPs) to enhance binding to the plaque biofilm and demonstrate "intelligence" by releasing BPEI-AgNPs under acidic conditions that promote dental caries The constructed Fe(III)-TA/PLGA@BPEI-AgNPs (intelligent particles - IPs) exhibited significant binding to an axenic S. mutans biofilm grown on hydroxyapatite. Ag+ ions were released faster from the IPs at pH 4.0 (cariogenic pH) compared to pH 7.4. The antibiofilm results indicated that IPs can significantly reduce S. mutans biofilm volume and viability under acidic conditions. Cytotoxicity on differentiated Caco-2 cells and human gingival fibroblasts indicated that IPs were not cytotoxic. These findings demonstrate great potential of IPs in the treatment of dental caries.
Collapse
Affiliation(s)
- Yanping He
- Adelaide Dental School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Richard Bright
- College of Medicine and Public Health, Flinders University, Bedford Park SA 5042, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park SA 5042, Australia
| | - Peter Zilm
- Adelaide Dental School, University of Adelaide, Adelaide, SA 5000, Australia.
| |
Collapse
|
12
|
Power AD, Mok WWK. Agar and agarose used for Staphylococcus aureus biofilm cultivation impact fluoroquinolone tolerance. J Appl Microbiol 2024; 135:lxae191. [PMID: 39066496 DOI: 10.1093/jambio/lxae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 07/28/2024]
Abstract
AIMS Staphylococcus aureus is an opportunistic pathogen whose treatment is further complicated by its ability to form biofilms. In this study, we examine the impact of growing S. aureus biofilms on different polymerizing surfaces, specifically agar and agarose, on the pathogen's tolerance to fluoroquinolones. METHODS AND RESULTS Biofilms of two methicillin-resistant strains of S. aureus were grown on agar or agarose in the presence of the same added nutrients, and their antibiotic susceptibility to two fluoroquinolones, moxifloxacin (MXF) and delafloxacin (DLX), were measured. We also compared the metabolism and extracellular polymeric substances (EPS) production of biofilms that were grown on agar and agarose. CONCLUSIONS Biofilms that were grown on agarose were consistently more susceptible to antibiotics than those grown on agar. We found that in biofilms that were grown on agar, extracellular protein composition was higher, and adding EPS to agarose-grown biofilms increased their tolerance to DLX to levels that were comparable to agar-grown biofilms.
Collapse
Affiliation(s)
- Angela D Power
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, CT 06032, United States
| | - Wendy W K Mok
- Department of Molecular Biology & Biophysics, UConn Health, Farmington, CT 06032, United States
| |
Collapse
|
13
|
Mishra A, Aggarwal A, Khan F. Medical Device-Associated Infections Caused by Biofilm-Forming Microbial Pathogens and Controlling Strategies. Antibiotics (Basel) 2024; 13:623. [PMID: 39061305 PMCID: PMC11274200 DOI: 10.3390/antibiotics13070623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Hospital-acquired infections, also known as nosocomial infections, include bloodstream infections, surgical site infections, skin and soft tissue infections, respiratory tract infections, and urinary tract infections. According to reports, Gram-positive and Gram-negative pathogenic bacteria account for up to 70% of nosocomial infections in intensive care unit (ICU) patients. Biofilm production is a main virulence mechanism and a distinguishing feature of bacterial pathogens. Most bacterial pathogens develop biofilms at the solid-liquid and air-liquid interfaces. An essential requirement for biofilm production is the presence of a conditioning film. A conditioning film provides the first surface on which bacteria can adhere and fosters the growth of biofilms by creating a favorable environment. The conditioning film improves microbial adherence by delivering chemical signals or generating microenvironments. Microorganisms use this coating as a nutrient source. The film gathers both inorganic and organic substances from its surroundings, or these substances are generated by microbes in the film. These nutrients boost the initial growth of the adhering bacteria and facilitate biofilm formation by acting as a food source. Coatings with combined antibacterial efficacy and antifouling properties provide further benefits by preventing dead cells and debris from adhering to the surfaces. In the present review, we address numerous pathogenic microbes that form biofilms on the surfaces of biomedical devices. In addition, we explore several efficient smart antiadhesive coatings on the surfaces of biomedical device-relevant materials that manage nosocomial infections caused by biofilm-forming microbial pathogens.
Collapse
Affiliation(s)
- Akanksha Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, Punjab, India;
| | - Ashish Aggarwal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, Punjab, India;
| | - Fazlurrahman Khan
- Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
14
|
Rizo J, Encarnación-Guevara S. Bacterial protein acetylation: mechanisms, functions, and methods for study. Front Cell Infect Microbiol 2024; 14:1408947. [PMID: 39027134 PMCID: PMC11254643 DOI: 10.3389/fcimb.2024.1408947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Lysine acetylation is an evolutionarily conserved protein modification that changes protein functions and plays an essential role in many cellular processes, such as central metabolism, transcriptional regulation, chemotaxis, and pathogen virulence. It can alter DNA binding, enzymatic activity, protein-protein interactions, protein stability, or protein localization. In prokaryotes, lysine acetylation occurs non-enzymatically and by the action of lysine acetyltransferases (KAT). In enzymatic acetylation, KAT transfers the acetyl group from acetyl-CoA (AcCoA) to the lysine side chain. In contrast, acetyl phosphate (AcP) is the acetyl donor of chemical acetylation. Regardless of the acetylation type, the removal of acetyl groups from acetyl lysines occurs only enzymatically by lysine deacetylases (KDAC). KATs are grouped into three main superfamilies based on their catalytic domain sequences and biochemical characteristics of catalysis. Specifically, members of the GNAT are found in eukaryotes and prokaryotes and have a core structural domain architecture. These enzymes can acetylate small molecules, metabolites, peptides, and proteins. This review presents current knowledge of acetylation mechanisms and functional implications in bacterial metabolism, pathogenicity, stress response, translation, and the emerging topic of protein acetylation in the gut microbiome. Additionally, the methods used to elucidate the biological significance of acetylation in bacteria, such as relative quantification and stoichiometry quantification, and the genetic code expansion tool (CGE), are reviewed.
Collapse
Affiliation(s)
| | - Sergio Encarnación-Guevara
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
15
|
Ridha DM, Al-Awady MJ, Abd Al-Zwaid AJ, Balakit AA, Al-Dahmoshi HOM, Alotaibi MH, El-Hiti GA. Antibacterial and antibiofilm activities of selenium nanoparticles-antibiotic conjugates against anti-multidrug-resistant bacteria. Int J Pharm 2024; 658:124214. [PMID: 38723732 DOI: 10.1016/j.ijpharm.2024.124214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
The crucial demand to overcome the issue of multidrug resistance is required to refine the performance of antibiotics. Such a process can be achieved by fastening them to compatible nanoparticles to obtain effective pharmaceuticals at a low concentration. Thus, selenium nanoparticles (Se NPs) are considered biocompatible agents that are applied to prevent infections resulting from bacterial resistance to multi-antibiotics. The current evaluated the effectiveness of Se NPs and their conjugates with antibiotics such as amikacin (AK), levofloxacin (LEV), and piperacillin (PIP) against Pseudomonas aeruginosa (P. aeruginosa). In addition, the study determined the antibacterial and antibiofilm properties of Se NPs and their conjugates with LEV against urinary tract pathogens such as Staphylococcus aureus (S. aureus), Enterococcus faecalis (E. faecalis), P. aeruginosa, and Escherichia coli (E. coli). The result of minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) for eight isolates of P. aeruginosa revealed that the conjugation of Se NPs with AK, LEV, and PIP resulted in a reduction in the concentration of antibiotic-conjugated Se NPs. The concentration was found to be about 10-20 times lower than that of bare antibiotics. The MIC of the Se NPs with LEV (i.e., Se NPs:LEV) for S. aureus, E. faecalis, P. aeruginosa, and E. coli was found to be 1.4:0.5, 0.7:0.25, 22:8, and 11:4 µg/mL, respectively. The results of the half-maximal inhibitory concentration (IC50) demonstrated that Se NPs:LEV conjugate have inhibited 50 % of the mature biofilms of S. aureus, E. faecalis, P. aeruginosa, and E. coli at a concentration of 27.5 ± 10.5, 18.8 ± 3.1, 40.6 ± 10.7, and 21.6 ± 3.3 µg/mL, respectively compared to the control. It has been suggested that the antibiotic-conjugated Se NPs have great potential for biomedical applications. The conjugation of Se NPs with AK, LEV, and PIP increases the antibacterial potency against resistant pathogens at a low concentration.
Collapse
Affiliation(s)
- Dalal M Ridha
- Department of Biology, College of Science, University of Babylon, Iraq
| | - Mohammed J Al-Awady
- Department of Medical Biotechnology Faculty of Biotechnology, Al Qasim Green University Babylon, Iraq
| | - Afrah J Abd Al-Zwaid
- Mirjan Teaching Hospital, Babylon, Iraq; Medical Laboratories Techniques Department, College of Health and Medical Technologies, Al-Mustaqbal University, Babylon 51001, Iraq
| | - Asim A Balakit
- College of Pharmacy, University of Babylon, Babylon, Iraq
| | | | - Mohammad Hayal Alotaibi
- Institute of Waste Management and Recycling Technologies, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Gamal A El-Hiti
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
16
|
Arabestani MR, Bigham A, Kamarehei F, Dini M, Gorjikhah F, Shariati A, Hosseini SM. Solid lipid nanoparticles and their application in the treatment of bacterial infectious diseases. Biomed Pharmacother 2024; 174:116433. [PMID: 38508079 DOI: 10.1016/j.biopha.2024.116433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/02/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Nano pharmacology is considered an effective, safe, and applicable approach for drug delivery applications. Solid lipid nanoparticle (SLNs) colloids contain biocompatible lipids which are capable of encapsulating and maintaining hydrophilic or hydrophobic drugs in the solid matrix followed by releasing the drug in a sustained manner in the target site. SLNs have more promising potential than other drug delivery systems for various purposes. Nowadays, the SLNs are used as a carrier for antibiotics, chemotherapeutic drugs, nucleic acids, herbal compounds, etc. The SLNs have been widely applied in biomedicine because of their non-toxicity, biocompatibility, and simple production procedures. In this review, the complications related to the optimization, preparation process, routes of transplantation, uptake and delivery system, and release of the loaded drug along with the advantages of SLNs as therapeutic agents were discussed.
Collapse
Affiliation(s)
- Mohammad Reza Arabestani
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ashkan Bigham
- Institute of Polymers, Composites, and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, Naples 80125, Italy
| | - Farideh Kamarehei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahya Dini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Gorjikhah
- University reference laboratory, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of medical sciences, Arak, Iran
| | - Seyed Mostafa Hosseini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
17
|
Jothi Nayaki S, Roja A, Ravindhiran R, Sivarajan K, Arunachalam M, Dhandapani K. Pillar[ n]arenes in the Fight against Biofilms: Current Developments and Future Perspectives. ACS Infect Dis 2024; 10:1080-1096. [PMID: 38546344 DOI: 10.1021/acsinfecdis.3c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The global surge in bacterial infections, compounded by the alarming escalation of drug-resistant strains, has evolved into a critical public health crisis. Among the challenges posed, biofilms stand out due to their formidable resistance to conventional antibiotics. This review delves into the burgeoning potential of pillar[n]arenes, distinctive macrocyclic host molecules, as promising anti-biofilm agents. The review is structured into two main sections, each dedicated to exploring distinct facets of pillar[n]arene applications. The first section scrutinizes functionalized pillar[n]arenes with a particular emphasis on cationic derivatives. This analysis reveals their significant efficacy in inhibiting biofilm formation, underscoring the pivotal role of specific chemical attributes in combating microbial communities. The second section of the review shifts its focus to inclusion complexes, elucidating how pillar[n]arenes serve as encapsulation platforms for antibiotics. This encapsulation enhances the stability of antibiotics and enables a controlled release, thereby amplifying their antibacterial activity. The examination of inclusion complexes provides valuable insights into the potential synergy between pillar[n]arenes and traditional antibiotics, offering a novel avenue for overcoming biofilm resistance. This comprehensive review highlights the escalating global threat of bacterial infections and the urgent need for innovative strategies to counteract drug-resistant biofilms. The unique properties of pillar[n]arenes, both as functionalized molecules and as inclusion complex hosts, position them as promising candidates in the quest for effective anti-biofilm agents. The exploration of their distinct mechanisms opens new avenues for research and development in the ongoing battle against bacterial infections and biofilm-related health challenges.
Collapse
Affiliation(s)
- Sekar Jothi Nayaki
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641 043, India
| | - Arivazhagan Roja
- Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University), Dindigul, Tamil Nadu 624 302, India
| | - Ramya Ravindhiran
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641 043, India
| | - Karthiga Sivarajan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641 043, India
| | - Murugan Arunachalam
- Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University), Dindigul, Tamil Nadu 624 302, India
| | - Kavitha Dhandapani
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641 043, India
| |
Collapse
|
18
|
Rosa DS, Oliveira SADS, Souza RDFS, de França CA, Pires IC, Tavares MRS, de Oliveira HP, da Silva Júnior FAG, Moreira MAS, de Barros M, de Menezes GB, Antunes MM, Azevedo VADC, Naue CR, da Costa MM. Antimicrobial and antibiofilm activity of highly soluble polypyrrole against methicillin-resistant Staphylococcus aureus. J Appl Microbiol 2024; 135:lxae072. [PMID: 38503568 DOI: 10.1093/jambio/lxae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024]
Abstract
AIMS The purpose was to evaluate the antimicrobial activity of highly soluble polypyrrole (Hs-PPy), alone or combined with oxacillin, as well as its antibiofilm potential against methicillin-resistant Staphylococcus aureus strains. Furthermore, the in silico inhibitory mechanism in efflux pumps was also investigated. METHODS AND RESULTS Ten clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and two reference strains were used. Antimicrobial activity was determined by broth microdilution, and the combination effect with oxacillin was evaluated by the checkerboard assay. The biofilm formation capacity of MRSA and the interference of Hs-PPy were evaluated. The inhibitory action of Hs-PPy on the efflux pump was evaluated in silico through molecular docking. Hs-PPy showed activity against the isolates, with inhibitory action between 62.5 and 125 µg ml-1 and bactericidal action at 62.5 µg ml-1, as well as synergism in association with oxacillin. The isolates ranged from moderate to strong biofilm producers, and Hs-PPy interfered with the formation of this structure, but not with mature biofilm. There was no in silico interaction with the efflux protein EmrD, the closest homolog to NorA. CONCLUSIONS Hs-PPy interferes with biofilm formation by MRSA, has synergistic potential, and is an efflux pump inhibitor.
Collapse
Affiliation(s)
- Danillo Sales Rosa
- Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco 56300-000, Brazil
| | | | | | | | | | | | | | | | | | - Mariana de Barros
- Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | | | - Maísa Mota Antunes
- Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | | - Carine Rosa Naue
- Hospital Universitário da Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco 56304-205, Brazil
| | | |
Collapse
|
19
|
He Q, Zheng Y, Yan K, Tang J, Yang F, Tian Y, Yang L, Dou B, Chen Y, Gu J, Chen H, Yuan F, Bei W. The cAMP receptor protein gene contributes to growth, stress resistance, and colonization of Actinobacillus pleuropneumoniae. Vet Microbiol 2024; 290:110006. [PMID: 38308931 DOI: 10.1016/j.vetmic.2024.110006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024]
Abstract
Porcine infectious pleuropneumonia (PCP) is a severe disease of porcine caused by Actinobacillus pleuropneumoniae (APP). The spread of PCP remains a threat to the porcine farms and has been known to cause severe economic losses. The cAMP receptor protein (CRP) serves as a pivotal player in helping bacteria adapt to shifts in their environment, particularly when facing the challenges posed by bacterial infections. In this study, we investigated the role of CRP in APP. Our results revealed that crp mutant (Δcrp) strains were more sensitive to acidic and osmotic stress resistance and had lower biofilm formation ability than wild-type (WT) strains. Furthermore, the Δcrp strains showed deficiencies in anti-phagocytosis, adhesion, and invasion upon interaction with host cells. Mice infected with the Δcrp strains demonstrated reduced bacterial loads in their lungs compared to those infected with the WT strains. This study reveals the pivotal role of crp gene expression in regulating pleuropneumonia growth, stress resistance, iron utilization, biofilm formation, phagocytosis, adhesion, invasion and colonization. Our discoveries offer novel perspectives on understanding the development and progression of APP infections.
Collapse
Affiliation(s)
- Qiyun He
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Yaxuan Zheng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Kang Yan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Jia Tang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Fengming Yang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Yanhong Tian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Lijun Yang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Beibei Dou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Yunpeng Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Jun Gu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Weicheng Bei
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine,Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
20
|
Chen L, Li J, Xiao B. The role of sialidases in the pathogenesis of bacterial vaginosis and their use as a promising pharmacological target in bacterial vaginosis. Front Cell Infect Microbiol 2024; 14:1367233. [PMID: 38495652 PMCID: PMC10940449 DOI: 10.3389/fcimb.2024.1367233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Bacterial vaginosis (BV) is an infection of the genital tract characterized by disturbance of the normally Lactobacilli-dominated vaginal flora due to the overgrowth of Gardnerella and other anaerobic bacteria. Gardnerella vaginalis, an anaerobic pathogen and the major pathogen of BV, produces sialidases that cleave terminal sialic acid residues off of human glycans. By desialylation, sialidases not only alter the function of sialic acid-containing glycoconjugates but also play a vital role in the attachment, colonization and spread of many other vaginal pathogens. With known pathogenic effects, excellent performance of sialidase-based diagnostic tests, and promising therapeutic potentials of sialidase inhibitors, sialidases could be used as a biomarker of BV. This review explores the sources of sialidases and their role in vaginal dysbiosis, in aims to better understand their participation in the pathogenesis of BV and their value in the diagnosis and treatment of BV.
Collapse
Affiliation(s)
- Liuyan Chen
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Jiayue Li
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Bingbing Xiao
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| |
Collapse
|
21
|
Ankudze B, Neglo D, Nsiah F. Green synthesis of silver nanoparticles from discarded shells of velvet tamarind (Dialium cochinchinense) and their antimicrobial synergistic potentials and biofilm inhibition properties. Biometals 2024; 37:143-156. [PMID: 37695459 DOI: 10.1007/s10534-023-00534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
In the field of nanomedicine, biogenic metal nanoparticles are commonly synthesized using edible plant products as bio-reducing or stabilizing agents. In this study, discarded shell of velvet tamarind fruit is explored as a potent reducing agent for biogenic synthesis of silver nanoparticles (VeV-AgNPs). Silver nanoparticles were formed in minutes under sunlight exposure, which was considerably fast compared to under ambient conditions. The optical, structural and morphological studies revealed that the nanoparticle colloidal solution consisted of particles with quasi-spherical and rodlike morphologies. To investigate antimicrobial properties, eight microorganisms were exposed to the VeV-AgNPs. The results indicated that VeV-AgNPs had enhanced antimicrobial activity, with a recorded minimum inhibitory concentration (MIC) of 3.9 µg/mL against E. coli. Further studies were conducted to examine the biofilm inhibition properties and synergistic effect of the VeV-AgNPs. The findings showed a biofilm inhibition potential of around 98% against E. coli, and the particles were also found to increase the efficacy of standard antimicrobial agents. The combinatory effect with standard antifungal and antibacterial agents ranged from synergistic to antagonistic effects against the tested microorganisms. These results suggest that silver nanoparticles produced from discarded shells of velvet tamarind are potent and could be used as a potential drug candidate to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Bright Ankudze
- Department of Chemistry Education, University of Education, P. O. Box 25, Winneba, Ghana.
| | - David Neglo
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Francis Nsiah
- Department of Chemistry, School of Physical Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
22
|
Carneiro DG, Pereira Aguilar A, Mantovani HC, Mendes TADO, Vanetti MCD. The quorum sensing molecule C12-HSL promotes biofilm formation and increases adrA expression in Salmonella Enteritidis under anaerobic conditions. BIOFOULING 2024; 40:14-25. [PMID: 38254292 DOI: 10.1080/08927014.2024.2305385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024]
Abstract
Acyl-homoserine lactones (AHLs) are quorum-sensing signaling molecules in Gram-negative bacteria and positively regulate biofilm formation in Salmonella under specific conditions. In this study, biofilm formation in Salmonella enterica was evaluated at 28 and 37 °C, under aerobic and anaerobic conditions. Additionally, the influence of the N-dodecanoyl-DL-homoserine lactone (C12-HSL) on biofilm formation and the expression of genes related to the synthesis of structural components, regulation, and quorum sensing was assessed under anaerobiosis at 28 and 37 °C. Biofilm formation was found not to be influenced by the atmospheric conditions at 28 °C. However, it was reduced at 37 °C under anaerobiosis. C12-HSL enhanced biofilm formation at 37 °C under anaerobiosis and increased the expression of the adrA and luxS genes, suggesting an increase in c-di-GMP, a second messenger that controls essential physiological functions in bacteria. These results provide new insights into the regulation of biofilm formation in Salmonella under anaerobic conditions.
Collapse
Affiliation(s)
| | - Ananda Pereira Aguilar
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
| | - Hilário Cuquetto Mantovani
- Department of Microbiology, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
- Department of Animal and Dairy Sciences, University of WI, Madison, USA
| | | | | |
Collapse
|
23
|
Huq M, Wahid SUH, Istivan T. Biofilm Formation in Campylobacter concisus: The Role of the luxS Gene. Microorganisms 2023; 12:46. [PMID: 38257873 PMCID: PMC10820981 DOI: 10.3390/microorganisms12010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Campylobacter concisus is a bacterium that inhabits human oral cavities and is an emerging intestinal tract pathogen known to be a biofilm producer and one of the bacterial species found in dental plaque. In this study, biofilms of oral and intestinal C. concisus isolates were phenotypically characterized. The role of the luxS gene, which is linked to the regulation of biofilm formation in other pathogens, was assessed in relation to the pathogenic potential of this bacterium. Biofilm formation capacity was assessed using phenotypic assays. Oral strains were shown to be the highest producers. A luxS mutant was created by inserting a kanamycin cassette within the luxS gene of the highest biofilm-forming isolate. The loss of the polar flagellum was observed with scanning and transmission electron microscopy (SEM and TEM). Furthermore, the luxS mutant exhibited a significant reduction (p < 0.05) in biofilm formation, motility, and its expression of flaB, in addition to the capability to invade intestinal epithelial cells, compared to the parental strain. The study concluded that C. concisus oral isolates are significantly higher biofilm producers than the intestinal isolates and that LuxS plays a role in biofilm formation, invasion, and motility in this bacterium.
Collapse
Affiliation(s)
- Mohsina Huq
- School of Science, STEM College, RMIT University, Bundoora, Melbourne, VIC 3083, Australia
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | | | - Taghrid Istivan
- School of Science, STEM College, RMIT University, Bundoora, Melbourne, VIC 3083, Australia
| |
Collapse
|
24
|
Li JG, Chen XF, Lu TY, Zhang J, Dai SH, Sun J, Liu YH, Liao XP, Zhou YF. Increased Activity of β-Lactam Antibiotics in Combination with Carvacrol against MRSA Bacteremia and Catheter-Associated Biofilm Infections. ACS Infect Dis 2023; 9:2482-2493. [PMID: 38019707 DOI: 10.1021/acsinfecdis.3c00338] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
β-Lactam antibiotics are the mainstay for the treatment of staphylococcal infections, but their utility is greatly limited by the emergence and rapid dissemination of methicillin-resistant Staphylococcus aureus (MRSA). Herein, we evaluated the ability of the plant-derived monoterpene carvacrol to act as an antibiotic adjuvant, revitalizing the anti-MRSA activity of β-lactam antibiotics. Increased susceptibility of MRSA to β-lactam antibiotics and significant synergistic activities were observed with carvacrol-based combinations. Carvacrol significantly inhibited MRSA biofilms and reduced the production of exopolysaccharide, polysaccharide intercellular adhesin, and extracellular DNA and showed synergistic biofilm inhibition in combination with β-lactams. Transcriptome analysis revealed profound downregulation in the expression of genes involved in two-component systems and S. aureus infection. Mechanistic studies indicate that carvacrol inhibits the expression of staphylococcal accessory regulator sarA and interferes with SarA-mecA promoter binding that decreases mecA-mediated β-lactam resistance. Consistently, the in vivo experiment also supported that carvacrol restored MRSA sensitivity to β-lactam antibiotic treatments in both murine models of bacteremia and biofilm-associated infection. Our results indicated that carvacrol has a potential role as a combinatorial partner with β-lactam antibiotics to address MRSA infections.
Collapse
Affiliation(s)
- Jian-Guo Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Feng Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Ting-Yin Lu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Yantai Fushan Center for Animal Disease Control and Prevention, Fushan, Yantai, Shandong 265500, China
| | - Shu-He Dai
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Ya-Hong Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiao-Ping Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Feng Zhou
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
25
|
Thuy LT, Kim SY, Dongquoc V, Kim Y, Choi JS, Cho WK. Coordination-driven robust antibacterial coatings using catechol-conjugated carboxymethyl chitosan. Int J Biol Macromol 2023; 249:126090. [PMID: 37541478 DOI: 10.1016/j.ijbiomac.2023.126090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
To prevent bacterial contamination on solid surfaces, a simple yet efficient antibacterial coating was developed in a substrate-independent manner by using the catechol-conjugated carboxymethyl chitosan (CMC-DOPA). The CMC-DOPA was firstly synthesized via an aza-Michael reaction with methyl acrylate and the subsequent acyl substitution with dopamine. The coating strategy consists of spin-coating-assisted deposition of CMC-DOPA on polydopamine-coated substrates and coordination-driven crosslinks between catechol groups and Fe3+ ions in sequence, producing the multilayered CMC-DOPA films. The film thickness was controllable depending on the concentration of CMC-DOPA. Compared to bare controls, the CMC-DOPA-coated substrates reduced the bacterial adhesion by up to 99.8 % and 96.2 % for E. coli and S. aureus, respectively. It is demonstrated that the CMC-DOPA coating can be a robust antibacterial coating across various pH environments, inhibiting bacterial adhesion by 78.7 %, 95.1 %, and 93.2 %, respectively, compared to the control, even after 7 days of acidic, physiological, and alkaline pH treatment. The current coating approach could be applied to various substrates including silicon dioxide, titanium dioxide, and polyurethane. Given its simple and versatile coating capability, we think that the coordination-driven CMC-DOPA coating could be useful for various medical devices and implants.
Collapse
Affiliation(s)
- Le Thi Thuy
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Su Youn Kim
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Viet Dongquoc
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Younjin Kim
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Joon Sig Choi
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Woo Kyung Cho
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
26
|
Peng Q, Tang X, Dong W, Zhi Z, Zhong T, Lin S, Ye J, Qian X, Chen F, Yuan W. Carvacrol inhibits bacterial polysaccharide intracellular adhesin synthesis and biofilm formation of mucoid Staphylococcus aureus: an in vitro and in vivo study. RSC Adv 2023; 13:28743-28752. [PMID: 37807974 PMCID: PMC10552078 DOI: 10.1039/d3ra02711b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is one of the important human pathogens and causes both superficial and systemic infections. More importantly, the formation of S. aureus biofilms, a main cause of its pathogenicity and drug resistance, has been a critical challenge in clinical treatment. Carvacrol, a plant-based natural product, has gained great interest for therapeutic purposes due to its effective biological activity with low cytotoxicity. The present study aimed to investigate the effect of carvacrol on anti-biofilm activity. Growth curve analysis showed that applying a sub-inhibitory concentration of carvacrol (4 μg mL-1) was not lethal to S. aureus SYN; however, the inhibition rate of biofilm formation was as high as 63.6%, and the clearance rate of mature biofilms was as high as 30.7%. In addition, carvacrol effectively reduced the production of biofilm-associated extracellular polysaccharides and showed no effect on eDNA release. Furthermore, qPCR analysis revealed that carvacrol significantly down-regulated the expression of icaA, icaB, icaC, agrA, and sarA (P < 0.05). The in vivo efficacy of carvacrol against biofilm infection was further verified with a biological model of G. mellonella larvae. The results showed that carvacrol was non-toxic to the larvae and can effectively increase the survival rate of the larvae infected with S. aureus strain SYN.
Collapse
Affiliation(s)
- Qi Peng
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| | - Xiaohua Tang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University Guangzhou 510150 PR China
| | - Wanyang Dong
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| | - Ziling Zhi
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| | - Tian Zhong
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| | - Shunan Lin
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| | - Jingyi Ye
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| | - Xiping Qian
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| | - Fu Chen
- Panyu District Health Management Center Guangzhou 511450 PR China
| | - Wenchang Yuan
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University Guangzhou 510180 PR China
| |
Collapse
|
27
|
Jeyaraman M, Jeyaraman N, Nallakumarasamy A, Iyengar KP, Jain VK, Potty AG, Gupta A. Silver nanoparticle technology in orthopaedic infections. World J Orthop 2023; 14:662-668. [PMID: 37744720 PMCID: PMC10514710 DOI: 10.5312/wjo.v14.i9.662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/24/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
The irrational and prolonged use of antibiotics in orthopaedic infections poses a major threat to the development of antimicrobial resistance. To combat antimicrobial resistance, researchers have implemented various novel and innovative modalities to curb infections. Nanotechnology involves doping ions/metals onto the scaffolds to reach the target site to eradicate the infective foci. In this connotation, we reviewed silver nanoparticle technology in terms of mechanism of action, clinical applications, toxicity, and regulatory guidelines to treat orthopaedic infections.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Orthopaedics, South Texas Orthopaedic Research Institute, Laredo, TX 78045, United States
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
| | - Arulkumar Nallakumarasamy
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
| | - Karthikeyan P Iyengar
- Department of Trauma and Orthopaedics, Southport & Ormskirk Hosp NHS Trust Southport, Richmond PR8 6PN, Southport, United Kingdom
| | - Vijay Kumar Jain
- Department of Orthopaedics, Atal Bihari Vajpayee Institute of Medical Sciences, Dr Ram Manohar Lohia Hospital, Delhi 110001, New Delhi, India
| | - Anish G Potty
- Department of Orthopaedics, South Texas Orthopaedic Research Institute, Laredo, TX 78045, United States
| | - Ashim Gupta
- Department of Orthopaedics, South Texas Orthopaedic Research Institute, Laredo, TX 78045, United States
- Department of Regenerative Medicine, Regenerative Orthopaedics, Noida 201301, Uttar Pradesh, India
- Department of Regenerative Medicine, Future Biologics, Lawrenceville, GA 30043, United States
- Department of Regenerative Medicine, BioIntegarte, Lawrenceville, GA 30043, United States
| |
Collapse
|
28
|
Wang S, Zhao Y, Breslawec AP, Liang T, Deng Z, Kuperman LL, Yu Q. Strategy to combat biofilms: a focus on biofilm dispersal enzymes. NPJ Biofilms Microbiomes 2023; 9:63. [PMID: 37679355 PMCID: PMC10485009 DOI: 10.1038/s41522-023-00427-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
Bacterial biofilms, which consist of three-dimensional extracellular polymeric substance (EPS), not only function as signaling networks, provide nutritional support, and facilitate surface adhesion, but also serve as a protective shield for the residing bacterial inhabitants against external stress, such as antibiotics, antimicrobials, and host immune responses. Biofilm-associated infections account for 65-80% of all human microbial infections that lead to serious mortality and morbidity. Tremendous effort has been spent to address the problem by developing biofilm-dispersing agents to discharge colonized microbial cells to a more vulnerable planktonic state. Here, we discuss the recent progress of enzymatic eradicating strategies against medical biofilms, with a focus on dispersal mechanisms. Particularly, we review three enzyme classes that have been extensively investigated, namely glycoside hydrolases, proteases, and deoxyribonucleases.
Collapse
Affiliation(s)
- Shaochi Wang
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yanteng Zhao
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Alexandra P Breslawec
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20740, USA
| | - Tingting Liang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University Jinming Campus, 475004, Kaifeng, Henan, China
| | - Zhifen Deng
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Laura L Kuperman
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20740, USA.
- Mirimus Inc., 760 Parkside Avenue, Brooklyn, NY, 11226, USA.
| | - Qiuning Yu
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| |
Collapse
|
29
|
Sharma S, Mohler J, Mahajan SD, Schwartz SA, Bruggemann L, Aalinkeel R. Microbial Biofilm: A Review on Formation, Infection, Antibiotic Resistance, Control Measures, and Innovative Treatment. Microorganisms 2023; 11:1614. [PMID: 37375116 PMCID: PMC10305407 DOI: 10.3390/microorganisms11061614] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Biofilm is complex and consists of bacterial colonies that reside in an exopolysaccharide matrix that attaches to foreign surfaces in a living organism. Biofilm frequently leads to nosocomial, chronic infections in clinical settings. Since the bacteria in the biofilm have developed antibiotic resistance, using antibiotics alone to treat infections brought on by biofilm is ineffective. This review provides a succinct summary of the theories behind the composition of, formation of, and drug-resistant infections attributed to biofilm and cutting-edge curative approaches to counteract and treat biofilm. The high frequency of medical device-induced infections due to biofilm warrants the application of innovative technologies to manage the complexities presented by biofilm.
Collapse
Affiliation(s)
- Satish Sharma
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.S.); (S.A.S.)
| | - James Mohler
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA;
| | - Supriya D. Mahajan
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
| | - Stanley A. Schwartz
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.S.); (S.A.S.)
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
- Department of Medicine, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Liana Bruggemann
- Department of Biomedical Informatics, University at Buffalo, Buffalo, NY 14260, USA;
| | - Ravikumar Aalinkeel
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.S.); (S.A.S.)
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
- Department of Medicine, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| |
Collapse
|
30
|
Hajiagha MN, Kafil HS. Efflux pumps and microbial biofilm formation. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023:105459. [PMID: 37271271 DOI: 10.1016/j.meegid.2023.105459] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023]
Abstract
Biofilm-related infections are resistant forms of pathogens that are regarded as a medical problem, particularly due to the spread of multiple drug resistance. One of the factors associated with biofilm drug resistance is the presence of various types of efflux pumps in bacteria. Efflux pumps also play a role in biofilm formation by influencing Physical-chemical interactions, mobility, gene regulation, quorum sensing (QS), extracellular polymeric substances (EPS), and toxic compound extrusion. According to the findings of studies based on efflux pump expression analysis, their role in the anatomical position within the biofilm will differ depending on the biofilm formation stage, encoding gene expression level, the type and concentration of substrate. In some cases, the function of the efflux pumps can overlap with each other, so it seems necessary to accurate identify the efflux pumps of biofilm-forming bacteria along with their function in this process. Such studies will help to choose treatment strategy, at least in combination with antibiotics. Furthermore, if the goal of treatment is an efflux pump manipulation, we should not limit it to inhibition.
Collapse
Affiliation(s)
- Mahdyeh Neghabi Hajiagha
- Department of Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
31
|
He L, Lv H, Wang Y, Jiang F, Liu Q, Zhang F, Wang H, Shen H, Otto M, Li M. Antibiotic treatment can exacerbate biofilm-associated infection by promoting quorum cheater development. NPJ Biofilms Microbiomes 2023; 9:26. [PMID: 37202425 DOI: 10.1038/s41522-023-00394-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/27/2023] [Indexed: 05/20/2023] Open
Abstract
Quorum cheating, a socio-microbiological process that is based on mutations in cell density-sensing (quorum-sensing) systems, has emerged as an important contributor to biofilm-associated infection in the leading human pathogen Staphylococcus aureus. This is because inactivation of the staphylococcal Agr quorum-sensing system leads to pronounced biofilm formation, increasing resistance to antibiotics and immune defense mechanisms. Since biofilm infections in the clinic usually progress under antibiotic treatment, we here investigated whether such treatment promotes biofilm infection via the promotion of quorum cheating. Quorum cheater development was stimulated by several antibiotics used in the treatment of staphylococcal biofilm infections more strongly in biofilm than in the planktonic mode of growth. Sub-inhibitory concentrations of levofloxacin and vancomycin were investigated for their impact on biofilm-associated (subcutaneous catheter-associated and prosthetic joint-associated infection), where in contrast to a non-biofilm-associated subcutaneous skin infection model, a significant increase of the bacterial load and development of agr mutants was observed. Our results directly demonstrate the development of Agr dysfunctionality in animal biofilm-associated infection models and reveal that inappropriate antibiotic treatment can be counterproductive for such infections as it promotes quorum cheating and the associated development of biofilms.
Collapse
Affiliation(s)
- Lei He
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Huiying Lv
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Yanan Wang
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Feng Jiang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Feiyang Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Hua Wang
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Hao Shen
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, MD, 20814, USA.
| | - Min Li
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
- Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
32
|
Theis TJ, Daubert TA, Kluthe KE, Brodd KL, Nuxoll AS. Staphylococcus aureus persisters are associated with reduced clearance in a catheter-associated biofilm infection. Front Cell Infect Microbiol 2023; 13:1178526. [PMID: 37228667 PMCID: PMC10203555 DOI: 10.3389/fcimb.2023.1178526] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Background Staphylococcus aureus causes a wide variety of infections, many of which are chronic or relapsing in nature. Antibiotic therapy is often ineffective against S. aureus biofilm-mediated infections. Biofilms are difficult to treat partly due to their tolerance to antibiotics, however the underlying mechanism responsible for this remains unknown. One possible explanation is the presence of persister cells-dormant-like cells that exhibit tolerance to antibiotics. Recent studies have shown a connection between a fumC (fumarase C, a gene in the tricarboxylic acid cycle) knockout strain and increased survival to antibiotics, antimicrobial peptides, and in a Drosophila melanogaster model. Objective It remained unclear whether a S. aureus high persister strain would have a survival advantage in the presence of innate and adaptive immunity. To further investigate this, a fumC knockout and wild type strains were examined in a murine catheter-associated biofilm model. Results Interestingly, mice struggled to clear both S. aureus wild type and the fumC knockout strains. We reasoned both biofilm-mediated infections predominantly consisted of persister cells. To determine the persister cell population within biofilms, expression of a persister cell marker (Pcap5A::dsRED) in a biofilm was examined. Cell sorting of biofilms challenged with antibiotics revealed cells with intermediate and high expression of cap5A had 5.9-and 4.5-fold higher percent survival compared to cells with low cap5A expression. Based on previous findings that persisters are associated with reduced membrane potential, flow cytometry analysis was used to examine the metabolic state of cells within a biofilm. We confirmed cells within biofilms had reduced membrane potential compared to both stationary phase cultures (2.5-fold) and exponential phase cultures (22.4-fold). Supporting these findings, cells within a biofilm still exhibited tolerance to antibiotic challenge following dispersal of the matrix through proteinase K. Conclusion Collectively, these data show that biofilms are largely comprised of persister cells, and this may explain why biofilm infections are often chronic and/or relapsing in clinical settings.
Collapse
|
33
|
Zhang S, Van Haesebroeck J, Yang Q, Defoirdt T. Indole-3-acetic acid increases the survival of brine shrimp challenged with vibrios belonging to the Harveyi clade. JOURNAL OF FISH DISEASES 2023; 46:477-486. [PMID: 36656658 DOI: 10.1111/jfd.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Vibrios belonging to the Harveyi clade (including closely related species such as Vibrio campbellii, Vibrio harveyi and Vibrio parahaemolyticus) are important pathogens of aquatic organisms. In this study, we investigated the use of indole-3-acetic acid to control disease caused by Harveyi clade vibrios. Indole-3-acetic acid, which can be produced by various seaweeds and microalgae, was added to the rearing water of brine shrimp larvae challenged with 12 different Harveyi clade Vibrio strains. Indole-3-acetic acid significantly decreased the virulence of 10 of the strains without any effect on their growth. The latter is important as it will minimize the selective pressure for resistance development. The survival rate of brine shrimp larvae increased from 1.2-fold to 4.8-fold upon treatment with 400 μM indole-3-acetic acid. Additionally, indole-3-acetic acid significantly decreased the swimming motility in 10 of the strains and biofilm formation in eight of the strains. The mRNA levels of the pirA and pirB toxin genes were decreased to 46% and 42% by indole-3-acetic acid in the AHPND-causing strain V. parahaemolyticus M0904. Hence, our data demonstrate that indole-3-acetic acid has the potential to be an effective virulence inhibitor to control infections in aquaculture.
Collapse
Affiliation(s)
- Shanshan Zhang
- Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
| | - Jana Van Haesebroeck
- Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
| | - Qian Yang
- Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
| | - Tom Defoirdt
- Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
| |
Collapse
|
34
|
Dorcioman G, Grumezescu V, Stan GE, Chifiriuc MC, Gradisteanu GP, Miculescu F, Matei E, Popescu-Pelin G, Zgura I, Craciun V, Oktar FN, Duta L. Hydroxyapatite Thin Films of Marine Origin as Sustainable Candidates for Dental Implants. Pharmaceutics 2023; 15:pharmaceutics15041294. [PMID: 37111781 PMCID: PMC10142946 DOI: 10.3390/pharmaceutics15041294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Novel biomaterials with promising bone regeneration potential, derived from rich, renewable, and cheap sources, are reported. Thus, thin films were synthesized from marine-derived (i.e., from fish bones and seashells) hydroxyapatite (MdHA) by pulsed laser deposition (PLD) technique. Besides the physical-chemical and mechanical investigations, the deposited thin films were also evaluated in vitro using dedicated cytocompatibility and antimicrobial assays. The morphological examination of MdHA films revealed the fabrication of rough surfaces, which were shown to favor good cell adhesion, and furthermore could foster the in-situ anchorage of implants. The strong hydrophilic behavior of the thin films was evidenced by contact angle (CA) measurements, with values in the range of 15-18°. The inferred bonding strength adherence values were superior (i.e., ~49 MPa) to the threshold established by ISO regulation for high-load implant coatings. After immersion in biological fluids, the growth of an apatite-based layer was noted, which indicated the good mineralization capacity of the MdHA films. All PLD films exhibited low cytotoxicity on osteoblast, fibroblast, and epithelial cells. Moreover, a persistent protective effect against bacterial and fungal colonization (i.e., 1- to 3-log reduction of E. coli, E. faecalis, and C. albicans growth) was demonstrated after 48 h of incubation, with respect to the Ti control. The good cytocompatibility and effective antimicrobial activity, along with the reduced fabrication costs from sustainable sources (available in large quantities), should, therefore, recommend the MdHA materials proposed herein as innovative and viable solutions for the development of novel coatings for metallic dental implants.
Collapse
Affiliation(s)
- Gabriela Dorcioman
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - George E Stan
- National Institute of Materials Physics, 077125 Magurele, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- Earth, Environmental and Life Sciences Division, Research Institute of the University of Bucharest (ICUB), 060101 Bucharest, Romania
- Romanian Academy, 010071 Bucharest, Romania
| | - Gratiela Pircalabioru Gradisteanu
- Earth, Environmental and Life Sciences Division, Research Institute of the University of Bucharest (ICUB), 060101 Bucharest, Romania
- Academy of Romanian Scientists, 051157 Bucharest, Romania
| | - Florin Miculescu
- Faculty of Materials Science and Engineering, Politehnica University of Bucharest, 060042 Bucharest, Romania
| | - Elena Matei
- National Institute of Materials Physics, 077125 Magurele, Romania
| | - Gianina Popescu-Pelin
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Irina Zgura
- National Institute of Materials Physics, 077125 Magurele, Romania
| | - Valentin Craciun
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Faik Nüzhet Oktar
- Department of Bioengineering, Faculty of Engineering, University of Marmara, 34722 Istanbul, Turkey
- Advanced Nanomaterials Research Laboratory (ANRL), University of Marmara, 34722 Istanbul, Turkey
| | - Liviu Duta
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| |
Collapse
|
35
|
Young BC, Dudareva M, Vicentine MP, Hotchen AJ, Ferguson J, McNally M. Microbial Persistence, Replacement and Local Antimicrobial Therapy in Recurrent Bone and Joint Infection. Antibiotics (Basel) 2023; 12:antibiotics12040708. [PMID: 37107070 PMCID: PMC10135193 DOI: 10.3390/antibiotics12040708] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
We report microbiological results from a cohort of recurrent bone and joint infection to define the contributions of microbial persistence or replacement. We also investigated for any association between local antibiotic treatment and emerging antimicrobial resistance. Microbiological cultures and antibiotic treatments were reviewed for 125 individuals with recurrent infection (prosthetic joint infection, fracture-related infection, and osteomyelitis) at two UK centres between 2007 and 2021. At re-operation, 48/125 (38.4%) individuals had an organism from the same bacterial species as at their initial operation for infection. In 49/125 (39.2%), only new species were isolated in culture. In 28/125 (22.4%), re-operative cultures were negative. The most commonly persistent species were Staphylococcus aureus (46.3%), coagulase-negative Staphylococci (50.0%), and Pseudomonas aeruginosa (50.0%). Gentamicin non-susceptible organisms were common, identified at index procedure in 51/125 (40.8%) and at re-operation in 40/125 (32%). Gentamicin non-susceptibility at re-operation was not associated with previous local aminoglycoside treatment (21/71 (29.8%) vs. 19/54 (35.2%); p = 0.6). Emergence of new aminoglycoside resistance at recurrence was uncommon and did not differ significantly between those with and without local aminoglycoside treatment (3/71 (4.2%) vs. 4/54 (7.4%); p = 0.7). Culture-based diagnostics identified microbial persistence and replacement at similar rates in patients who re-presented with infection. Treatment for orthopaedic infection with local antibiotics was not associated with the emergence of specific antimicrobial resistance.
Collapse
Affiliation(s)
- Bernadette C. Young
- Bone Infection Unit, Nuffield Orthopaedic Centre, Oxford University Hospitals, Oxford OX3 7LD, UK
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Maria Dudareva
- Bone Infection Unit, Nuffield Orthopaedic Centre, Oxford University Hospitals, Oxford OX3 7LD, UK
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Margarete P. Vicentine
- Bone Infection Unit, Nuffield Orthopaedic Centre, Oxford University Hospitals, Oxford OX3 7LD, UK
| | - Andrew J. Hotchen
- Bone Infection Unit, Nuffield Orthopaedic Centre, Oxford University Hospitals, Oxford OX3 7LD, UK
| | - Jamie Ferguson
- Bone Infection Unit, Nuffield Orthopaedic Centre, Oxford University Hospitals, Oxford OX3 7LD, UK
| | - Martin McNally
- Bone Infection Unit, Nuffield Orthopaedic Centre, Oxford University Hospitals, Oxford OX3 7LD, UK
| |
Collapse
|
36
|
Prakashkumar N, Pugazhendhi A, Brindhadevi K, Garalleh HA, Garaleh M, Suganthy N. Comparative study of zinc oxide nanoparticles synthesized through biogenic and chemical route with reference to antibacterial, antibiofilm and anticancer activities. ENVIRONMENTAL RESEARCH 2023; 220:115136. [PMID: 36584851 DOI: 10.1016/j.envres.2022.115136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/27/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The present focused on comparative study on synthesis of ZnO nanoparticles (ZnO NPs) using chemical method via alkaline precipitation method (ZnO(A) NPs) using NaOH and biogenic method using termite mound extract (ZnO(B) NPs). GC-MS analysis revealed that D-limonene present in termite mound extract might be responsible for the synthesis of ZnO(B) NPs. XRD patterns confirmed hexagonal crystalline structure of ZnO(A) and (B) NPs. Results of antibacterial activity illustrated that ZnO(B) NPs showed its potential against Pseudomonas aeruginosa, ESBL-1, ESBL-2 and EBSL-3. Antibiofilm studies revealed that ZnO(B) NPs exhibited optimum decline in MRSA biofilm formation than ZnO(A) NPs. In addition, ZnO(B) NPs showed potent cytotoxic effect against lung cancer cell lines A549 with IC50 of 35.16 ± 0.10 μg/mL in comparison with ZnO(A) NPs (IC50- 55.09 ± 0.30 μg/mL). Overall, the results revealed that biogenic synthesis of ZnO NPs ensures its biosafety level and enhanced biological activity when compared to chemical synthesis method.
Collapse
Affiliation(s)
- Nallasamy Prakashkumar
- Department of Nanoscience and Technology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, India.
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Hakim Al Garalleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia
| | - Mazen Garaleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia; Department of Applied Chemistry, Faculty of Science, Tafila Technical University, Tafila, 66141, Jordan
| | - Natarajan Suganthy
- Department of Nanoscience and Technology, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
37
|
Gummalla VS, Zhang Y, Liao YT, Wu VCH. The Role of Temperate Phages in Bacterial Pathogenicity. Microorganisms 2023; 11:541. [PMID: 36985115 PMCID: PMC10052878 DOI: 10.3390/microorganisms11030541] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Bacteriophages are viruses that infect bacteria and archaea and are classified as virulent or temperate phages based on their life cycles. A temperate phage, also known as a lysogenic phage, integrates its genomes into host bacterial chromosomes as a prophage. Previous studies have indicated that temperate phages are beneficial to their susceptible bacterial hosts by introducing additional genes to bacterial chromosomes, creating a mutually beneficial relationship. This article reviewed three primary ways temperate phages contribute to the bacterial pathogenicity of foodborne pathogens, including phage-mediated virulence gene transfer, antibiotic resistance gene mobilization, and biofilm formation. This study provides insights into mechanisms of phage-bacterium interactions in the context of foodborne pathogens and provokes new considerations for further research to avoid the potential of phage-mediated harmful gene transfer in agricultural environments.
Collapse
Affiliation(s)
| | | | | | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA 94710, USA
| |
Collapse
|
38
|
Balducci E, Papi F, Capialbi DE, Del Bino L. Polysaccharides' Structures and Functions in Biofilm Architecture of Antimicrobial-Resistant (AMR) Pathogens. Int J Mol Sci 2023; 24:ijms24044030. [PMID: 36835442 PMCID: PMC9965654 DOI: 10.3390/ijms24044030] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Bacteria and fungi have developed resistance to the existing therapies such as antibiotics and antifungal drugs, and multiple mechanisms are mediating this resistance. Among these, the formation of an extracellular matrix embedding different bacterial cells, called biofilm, is an effective strategy through which bacterial and fungal cells are establishing a relationship in a unique environment. The biofilm provides them the possibility to transfer genes conferring resistance, to prevent them from desiccation and to impede the penetration of antibiotics or antifungal drugs. Biofilms are formed of several constituents including extracellular DNA, proteins and polysaccharides. Depending on the bacteria, different polysaccharides form the biofilm matrix in different microorganisms, some of them involved in the first stage of cells' attachment to surfaces and to each other, and some responsible for giving the biofilm structure resistance and stability. In this review, we describe the structure and the role of different polysaccharides in bacterial and fungal biofilms, we revise the analytical methods to characterize them quantitatively and qualitatively and finally we provide an overview of potential new antimicrobial therapies able to inhibit biofilm formation by targeting exopolysaccharides.
Collapse
Affiliation(s)
| | | | - Daniela Eloisa Capialbi
- GSK, 53100 Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | | |
Collapse
|
39
|
Ugalde-Arbizu M, Aguilera-Correa JJ, García-Almodóvar V, Ovejero-Paredes K, Díaz-García D, Esteban J, Páez PL, Prashar S, San Sebastian E, Filice M, Gómez-Ruiz S. Dual Anticancer and Antibacterial Properties of Silica-Based Theranostic Nanomaterials Functionalized with Coumarin343, Folic Acid and a Cytotoxic Organotin(IV) Metallodrug. Pharmaceutics 2023; 15:pharmaceutics15020560. [PMID: 36839883 PMCID: PMC9962538 DOI: 10.3390/pharmaceutics15020560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Five different silica nanoparticles functionalized with vitamin B12, a derivative of coumarin found in green plants and a minimum content of an organotin(IV) fragment (1-MSN-Sn, 2-MSN-Sn, 2-SBA-Sn, 2-FSPm-Sn and 2-FSPs-Sn), were identified as excellent anticancer agents against triple negative breast cancer, one of the most diagnosed and aggressive cancerous tumors, with very poor prognosis. Notably, compound 2-MSN-Sn shows selectivity for cancer cells and excellent luminescent properties detectable by imaging techniques once internalized. The same compound is also able to interact with and nearly eradicate biofilms of Staphylococcus aureus, the most common bacteria isolated from chronic wounds and burns, whose treatment is a clinical challenge. 2-MSN-Sn is efficiently internalized by bacteria in a biofilm state and destroys the latter through reactive oxygen species (ROS) generation. Its internalization by bacteria was also efficiently monitored by fluorescence imaging. Since silica nanoparticles are particularly suitable for oral or topical administration, and considering both its anticancer and antibacterial activity, 2-MSN-Sn represents a new dual-condition theranostic agent, based primarily on natural products or their derivatives and with only a minimum amount of a novel metallodrug.
Collapse
Affiliation(s)
- Maider Ugalde-Arbizu
- Departamento de Química Aplicada, Facultad de Química, Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel Lardizabal 3, 20018 Donostia San Sebastián, Spain
- Clinical Microbiology Department, IIS-Fundación Jiménez Diaz, UAM, Avenida Reyes 15 Católicos 2, 28037 Madrid, Spain
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - John Jairo Aguilera-Correa
- Clinical Microbiology Department, IIS-Fundación Jiménez Diaz, UAM, Avenida Reyes 15 Católicos 2, 28037 Madrid, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, 28029 Madrid, Spain
- Correspondence: (J.J.A.-C.); (M.F.); (S.G.-R.)
| | - Victoria García-Almodóvar
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Karina Ovejero-Paredes
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Diana Díaz-García
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Jaime Esteban
- Clinical Microbiology Department, IIS-Fundación Jiménez Diaz, UAM, Avenida Reyes 15 Católicos 2, 28037 Madrid, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Paulina L. Páez
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Sanjiv Prashar
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Eider San Sebastian
- Departamento de Química Aplicada, Facultad de Química, Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel Lardizabal 3, 20018 Donostia San Sebastián, Spain
| | - Marco Filice
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, 28029 Madrid, Spain
- Correspondence: (J.J.A.-C.); (M.F.); (S.G.-R.)
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
- Correspondence: (J.J.A.-C.); (M.F.); (S.G.-R.)
| |
Collapse
|
40
|
Chatterjee S, Das S, Paul P, Chakraborty P, Sarkar S, Das A, Tribedi P. Synergistic interaction of cuminaldehyde and tobramycin: a potential strategy for the efficient management of biofilm caused by Pseudomonas aeruginosa. Folia Microbiol (Praha) 2023; 68:151-163. [PMID: 36192618 DOI: 10.1007/s12223-022-01005-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/19/2022] [Indexed: 11/04/2022]
Abstract
Pseudomonas aeruginosa, an opportunistic pathogen, has been found to cause several chronic and acute infections in human. Moreover, it often shows drug-tolerance and poses a severe threat to public healthcare through biofilm formation. In this scenario, two molecules, namely, cuminaldehyde and tobramycin, were used separately and in combination for the efficient management of biofilm challenge. The minimum inhibitory concentration (MIC) of cuminaldehyde and tobramycin was found to be 150 µg/mL and 1 µg/mL, respectively, against Pseudomonas aeruginosa. The checkerboard assay revealed that the fractional inhibitory concentration (FIC) index of cuminaldehyde and tobramycin was 0.36 suggesting a synergistic association between them. The sub-MIC dose of cuminaldehyde (60 µg/mL) or tobramycin (0.06 µg/mL) individually did not show any effect on the microbial growth curve. However, the same combinations could affect microbial growth curve of Pseudomonas aeruginosa efficiently. In connection to biofilm management, it was observed that the synergistic interaction between cuminaldehyde and tobramycin could inhibit biofilm formation more efficiently than their single use (p < 0.01). Further investigation revealed that the combinations of cuminaldehyde and tobramycin could generate reactive oxygen species (ROS) that resulted in the increase of membrane permeability of bacterial cells leading to the efficient inhibition of microbial biofilm formation. Besides, the synergistic interaction between cuminaldehyde (20 µg/mL) and tobramycin (0.03 µg/mL) also showed significant biofilm dispersal of the test microorganism (p < 0.01). Hence, the results suggested that synergistic action of cuminaldehyde and tobramycin could be applied for the efficient management of microbial biofilm.
Collapse
Affiliation(s)
- Sudipta Chatterjee
- Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Sharmistha Das
- Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Payel Paul
- Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Poulomi Chakraborty
- Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Sarita Sarkar
- Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Amlan Das
- National Institute of Biomedical Genomics, Kalyani, West Bengal, 741251, India
| | - Prosun Tribedi
- Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| |
Collapse
|
41
|
Breslawec AP, Wang S, Monahan KN, Barry LL, Poulin MB. The endoglycosidase activity of Dispersin B is mediated through electrostatic interactions with cationic poly-β-(1→6)-N-acetylglucosamine. FEBS J 2023; 290:1049-1059. [PMID: 36083143 DOI: 10.1111/febs.16624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/28/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022]
Abstract
Bacterial biofilms consist of bacterial cells embedded within a self-produced extracellular polymeric substance (EPS) composed of exopolysaccharides, extra cellular DNA, proteins and lipids. The enzyme Dispersin B (DspB) is a CAZy type 20 β-hexosaminidase enzyme that catalyses the hydrolysis of poly-N-acetylglucosamine (PNAG), a major biofilm polysaccharide produced by a wide variety of biofilm-forming bacteria. Native PNAG is partially de-N-acetylated, and the degree of deacetylation varies between species and dependent on the environment. We have previously shown that DspB is able to perform both endo- and exo-glycosidic bond cleavage of PNAG depending on the de-N-acetylation patterns present in the PNAG substrate. Here, we used a combination of synthetic PNAG substrate analogues, site-directed mutagenesis and in vitro biofilm dispersal assay to investigate the molecular basis for the endo-glycosidic cleavage activity of DspB and the importance of this activity for dispersal of PNAG-dependent Staphylococcus epidermidis biofilms. We found that D242 contributes to the endoglycosidase activity of DspB through electrostatic interactions with cationic substrates in the -2 binding site. A DspBD242N mutant was highly deficient in endoglycosidase activity while maintaining exoglycosidase activity. When used to disperse S. epidermidis biofilms, this DspBD242N mutant resulted in an increase in residual biofilm biomass after treatment when compared to wild-type DspB. These results suggest that the de-N-acetylation of PNAG in S. epidermidis biofilms is not uniformly distributed and that the endoglycosidase activity of DspB is required for efficient biofilm dispersal.
Collapse
Affiliation(s)
- Alexandra P Breslawec
- Department of Chemistry and Biochemistry, University of Maryland at College Park, MD, USA
| | - Shaochi Wang
- Department of Chemistry and Biochemistry, University of Maryland at College Park, MD, USA
| | - Kathleen N Monahan
- Department of Chemistry and Biochemistry, University of Maryland at College Park, MD, USA
| | - Lucas L Barry
- Department of Chemistry and Biochemistry, University of Maryland at College Park, MD, USA
| | - Myles B Poulin
- Department of Chemistry and Biochemistry, University of Maryland at College Park, MD, USA
| |
Collapse
|
42
|
Antimicrobial and Biofilm Formation Inhibition Properties of Biogenic Silver Nanoparticles Synthesised Using Tuber Extract of Cyperus esculentus. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01061-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
43
|
Tuon FF, Suss PH, Telles JP, Dantas LR, Borges NH, Ribeiro VST. Antimicrobial Treatment of Staphylococcus aureus Biofilms. Antibiotics (Basel) 2023; 12:87. [PMID: 36671287 PMCID: PMC9854895 DOI: 10.3390/antibiotics12010087] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Staphylococcus aureus is a microorganism frequently associated with implant-related infections, owing to its ability to produce biofilms. These infections are difficult to treat because antimicrobials must cross the biofilm to effectively inhibit bacterial growth. Although some antibiotics can penetrate the biofilm and reduce the bacterial load, it is important to understand that the results of routine sensitivity tests are not always valid for interpreting the activity of different drugs. In this review, a broad discussion on the genes involved in biofilm formation, quorum sensing, and antimicrobial activity in monotherapy and combination therapy is presented that should benefit researchers engaged in optimizing the treatment of infections associated with S. aureus biofilms.
Collapse
Affiliation(s)
- Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Paula Hansen Suss
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Joao Paulo Telles
- AC Camargo Cancer Center, Infectious Diseases Department, São Paulo 01525-001, São Paulo, Brazil
| | - Leticia Ramos Dantas
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Nícolas Henrique Borges
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Victoria Stadler Tasca Ribeiro
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| |
Collapse
|
44
|
Ouyang Q, Zeng Y, Yu Y, Tan L, Liu X, Zheng Y, Wu S. Ultrasound-Responsive Microneedles Eradicate Deep-Layered Wound Biofilm Based on TiO 2 Crystal Phase Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205292. [PMID: 36408892 DOI: 10.1002/smll.202205292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Wound biofilm infection has an inherent resistance to antibiotics, requiring physical debridement combined with chemical reagents or antibiotics in clinical treatment, but it is invasive and may exist as incomplete debridement. So, a new type of noninvasive and efficient treatment is needed to address this problem. Here, the crystal phase engineering of TiO2 is presented to explore the sonocatalytic properties of TiO2 nanoparticles with different phases, and find that the anatase-brookite TiO2 (AB) has the best antibacterial efficiency of 99.94% against S. aureus under 15 min of ultrasound (US) irradiation. The type II homojunction of AB not only enhances the adsorption and decreases the activation energy of O2 , respectively, but also has a great interfacial charge transfer efficiency under US, which can produce more reactive oxygen species than other types of TiO2 . The microneedles (MN) penetrate the biofilm in wound tissue and quickly disperse the loaded AB into the biofilm because the ultrasonic cavitation accelerates the dissolution of microneedles, which non-invasively and efficiently eradicates the deep-layered biofilm under US. This work explores the relationship between the phase composition of TiO2 and sonocatalytic property for the first time, and provides a new treatment strategy for wound biofilm infection through US-assisted microneedles therapy.
Collapse
Affiliation(s)
- Qunle Ouyang
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Yuxuan Zeng
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Yi Yu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Lei Tan
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, P. R. China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Xiangmei Liu
- School of Life Science and Health Engineering, Hebei University of Technology, Xiping Avenue 5340, Tianjin, 300401, P. R. China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, P. R. China
| | - Shuilin Wu
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, P. R. China
| |
Collapse
|
45
|
Ankudze B, Neglo D. Green synthesis of silver nanoparticles from peel extract of Chrysophyllum albidum fruit and their antimicrobial synergistic potentials and biofilm inhibition properties. Biometals 2022:10.1007/s10534-022-00483-5. [PMID: 36586061 DOI: 10.1007/s10534-022-00483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023]
Abstract
Current methods for green synthesis of metal nanoparticles often require continuous harvesting of fresh bio-materials for every synthesis cycle. Practices and procedures that economize bio-materials need to be employed if green synthesis could become a sustainable and eco-friendly method for synthesizing metal nanoparticles. This study explores Chrysophyllum albidum peels (mostly regarded as waste) to prepare silver nanoparticles (Alb-AgNPs). The technique employed in the synthesis allows repeated use of the peels, thus, reducing the heavy dependence on bio-materials. The optical and structural properties of the Alb-AgNPs were studied with Scanning electron microscope, Fourier transform infrared spectrometer, UV-Vis spectrophotometer and powder X-ray diffractometer. The antimicrobial properties of the Alb-AgNPs were studied with selected microorganisms namely; S. aureus, E. coli, K. pneumoniae, B. subtilis, S. mutans, P. aeruginosa, S. typhi, and Candida albicans. High inhibitory activity against the microorganisms were exhibited with MICs ranging from 15.62 to 1000 µg/mL. Again, the Alb-AgNPs showed the ability to enhance the efficacy of standard antimicrobial agents. The results of the combined interaction with standard antibacterial and antifungal agents ranged from synergistic to antagonistic effects against the tested microorganisms. In addition, the Alb-AgNPs could serve as a biofilm inhibitor with the highest percent inhibition of about 92% against methicillin-resistant Staphylococcus aureus. The results from this study thus provide access to the simple, sustainable, economic and eco-friendly synthesis of silver nanoparticles with efficient antimicrobial properties as drug candidates as a means of overcoming the prevailing antibiotic resistance menaces.
Collapse
Affiliation(s)
- Bright Ankudze
- Department of Chemistry Education, University of Education, P. O. Box 25, Winneba, Ghana.
| | - David Neglo
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of Health, PMB 31, Ho, Ghana
| |
Collapse
|
46
|
Peppoloni S, Colombari B, Tagliazucchi D, Odorici A, Ventrucci C, Meto A, Blasi E. Attenuation of Pseudomonas aeruginosa Virulence by Pomegranate Peel Extract. Microorganisms 2022; 10:microorganisms10122500. [PMID: 36557753 PMCID: PMC9784079 DOI: 10.3390/microorganisms10122500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen often responsible for biofilm-associated infections. The high adhesion of bacterial cells onto biotic/abiotic surfaces is followed by production of an extracellular polysaccharidic matrix and formation of a sessile community (the biofilm) by the release of specific quorum-sensing molecules, named autoinducers (AI). When the concentrations of AI reach a threshold level, they induce the expression of many virulence genes, including those involved in biofilm formation, motility, pyoverdine and pyocyanin release. P. aeruginosa embedded into biofilm becomes resistant to both conventional drugs and the host's immune response. Accordingly, biofilm-associated infections are a major clinical problem underlining the need for new antimicrobial therapies. In this study, we evaluated the effects of pomegranate peel extract (PomeGr) in vitro on P. aeruginosa growth and biofilm formation; moreover, the release of four AI was assessed. The phenolic profile of PomeGr, exposed or not to bacteria, was determined by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS) analysis. We found that bacterial growth, biofilm production and AI release were impaired upon PomeGr treatment. In addition, the PomeGr phenolic content was also markedly hampered following incubation with bacterial cells. In particular, punicalagin, punicalin, pedunculagin, granatin, di-(HHDP-galloyl-hexoside) pentoside and their isomers were highly consumed. Overall, these results provide novel insights on the ability of PomeGr to attenuate P. aeruginosa virulence; moreover, the AI impairment and the observed consumption of specific phenolic compounds may offer new tools in designing innovative therapeutic approaches against bacterial infections.
Collapse
Affiliation(s)
- Samuele Peppoloni
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Bruna Colombari
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Davide Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2—Pad. Besta, 42100 Reggio Emilia, Italy
| | - Alessandra Odorici
- Laboratory of Microbiology and Virology, School of Doctorate in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | | | - Aida Meto
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Department of Dentistry, Faculty of Dental Sciences, University of Aldent, 1007 Tirana, Albania
| | - Elisabetta Blasi
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Correspondence:
| |
Collapse
|
47
|
Xu W, Ceylan Koydemir H. Non-invasive biomedical sensors for early detection and monitoring of bacterial biofilm growth at the point of care. LAB ON A CHIP 2022; 22:4758-4773. [PMID: 36398687 DOI: 10.1039/d2lc00776b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bacterial infections have long been a serious global health issue. Biofilm formation complicates matters even more. The biofilm's extracellular polymeric substances (EPSs) matrix protects bacteria from the host's immune responses, yielding strong adhesion and drug resistance as the biofilm matures. Early bacterial biofilm detection and bacterial biofilm growth monitoring are crucial to treating biofilm-associated infections. Current detection methods are highly sensitive but not portable, are time-consuming, and require expensive equipment and complex operating procedures, limiting their use at the point of care. Therefore, there is an urgent need to develop affordable, on-body, and non-invasive biomedical sensors to continuously monitor and detect early biofilm growth at the point of care through personalized telemedicine. Herein, recent advances in developing non-invasive biomedical sensors for early detection and monitoring bacterial biofilm growth are comprehensively reviewed. First, biofilm's life cycle and its impact on the human body, such as biofilm-associated disease and infected medical devices, are introduced together with the challenges of biofilm treatment. Then, the current methods used in clinical and laboratory settings for biofilm detection and their challenges are discussed. Next, the current state of non-invasive sensors for direct and indirect detection of bacterial biofilms are summarized and highlighted with the detection parameters and their design details. Finally, commercially available products, challenges of current devices, and the further trend in biofilm detection sensors are discussed.
Collapse
Affiliation(s)
- Weiming Xu
- Department of Biomedical Engineering, Texas A&M University, College Station, 77843, Texas, USA.
- Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, 77843, TX, USA
| | - Hatice Ceylan Koydemir
- Department of Biomedical Engineering, Texas A&M University, College Station, 77843, Texas, USA.
- Center for Remote Health Technologies and Systems, Texas A&M Engineering Experiment Station, College Station, 77843, TX, USA
| |
Collapse
|
48
|
Su X, Yu H, Wang X, Zhang C, Wang H, Kong X, Qu Y, Luan Y, Meng Y, Guan J, Song G, Wang L, Song W, Zhao Y. Cyanidin chloride protects mice from methicillin-resistant Staphylococcus aureus-induced pneumonia by targeting Sortase A. Virulence 2022; 13:1434-1445. [PMID: 35983964 PMCID: PMC9397467 DOI: 10.1080/21505594.2022.2112831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has been developing rapidly in recent years. It poses a severe peril to global health care, and the new strategies to against the MRSA is urgently needed. Sortase A (SrtA) regulates the anchoring of many surface proteins. Compounds repress Staphylococcus aureus (S. aureus) cysteine transpeptidase SrtA are considered adequate potent virulence inhibitors. Then, we describe the identification of an effective SrtA inhibitor, cyanidin chloride, a bioflavonoid compound isolated from various plants. It has a reversible inhibitory effect on SrtA activity at an IC50 of 21.91 μg/mL. As a SrtA inhibitor, cyanidin chloride antagonizes SrtA-related virulence phenotypes due to its breadth and specificity, including fibrinogen adhesion, A549 cell invasion, biofilm formation, and surface protein (SpA) anchoring. Subsequently, molecular docking and fluorescence quenching revealed that SrtA and cyanidin chloride had robust mutual affinity. Further mechanistic studies revealed that Arg-197, Gly-167, and Sep-116 were the key-binding sites mediating the interaction between SrtA and cyanidin chloride. Notably, a significant therapeutic effect of cyanidin chloride in vivo was also observed on the mouse pneumonia model induced by MRSA. In conclusion, our study indicates that cyanidin chloride potentially represents a new candidate SrtA inhibitor for S. aureus and potentially be developed as a new antivirulence agent.
Collapse
Affiliation(s)
- Xin Su
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hangqian Yu
- Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xingye Wang
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chi Zhang
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Heming Wang
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Xiangri Kong
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China,College of Animal Science, Jilin University, Changchun, China
| | - Yishen Qu
- Endocrinology Department, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yanhe Luan
- College of Animal Science, Jilin University, Changchun, China
| | - Ying Meng
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jiyu Guan
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Guangqi Song
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Li Wang
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China,CONTACT Li Wang
| | - Wu Song
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China,Wu Song
| | - Yicheng Zhao
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China,Yicheng Zhao
| |
Collapse
|
49
|
Hu J, Ding Y, Tao B, Yuan Z, Yang Y, Xu K, Li X, liu P, Cai K. Surface modification of titanium substrate via combining photothermal therapy and quorum-sensing-inhibition strategy for improving osseointegration and treating biofilm-associated bacterial infection. Bioact Mater 2022; 18:228-241. [PMID: 35387171 PMCID: PMC8961458 DOI: 10.1016/j.bioactmat.2022.03.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
Insufficient osseointegration and biofilm-associated bacterial infection are important challenges for clinical application of titanium (Ti)-based implants. Here, we constructed mesoporous polydopamine (MPDA) nanoparticles (NPs) loaded with luteolin (LUT, a quorum sensing inhibitor), which were further coated with the shell of calcium phosphate (CaP) to construct MPDA-LUT@CaP nanosystem. Then, MPDA-LUT@CaP NPs were immobilized on the surface of Ti implants. Under acidic environment of bacterial biofilm-infection, the CaP shell of MPDA-LUT@CaP NPs was rapidly degraded and released LUT, Ca2+ and PO4 3- from the surface of Ti implant. LUT could effectively inhibit and disperse biofilm. Furthermore, under near-infrared irradiation (NIR), the thermotherapy induced by the photothermal conversion effect of MPDA destroyed the integrity of the bacterial membrane, and synergistically led to protein leakage and a decrease in ATP levels. Combined with photothermal therapy (PTT) and quorum-sensing-inhibition strategy, the surface-functionalized Ti substrate had an antibacterial rate of over 95.59% against Staphylococcus aureus and the elimination rate of the formed biofilm was as high as 90.3%, so as to achieve low temperature and efficient treatment of bacterial biofilm infection. More importantly, the modified Ti implant accelerated the growth of cell and the healing process of bone tissue due to the released Ca2+ and PO4 3-. In summary, this work combined PTT with quorum-sensing-inhibition strategy provides a new idea for surface functionalization of implant for achieving effective antibacterial and osseointegration capabilities.
Collapse
Affiliation(s)
- Jingwei Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yao Ding
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhang Yuan
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yulu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kun Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xuan Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Peng liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
50
|
Colombari B, Tagliazucchi D, Odorici A, Pericolini E, Foltran I, Pinetti D, Meto A, Peppoloni S, Blasi E. Pomegranate Extract Affects Fungal Biofilm Production: Consumption of Phenolic Compounds and Alteration of Fungal Autoinducers Release. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14146. [PMID: 36361021 PMCID: PMC9657062 DOI: 10.3390/ijerph192114146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Candida albicans expresses numerous virulence factors that contribute to pathogenesis, including its dimorphic transition and even biofilm formation, through the release of specific quorum sensing molecules, such as the autoinducers (AI) tyrosol and farnesol. In particular, once organized as biofilm, Candida cells can elude conventional antifungal therapies and the host's immune defenses as well. Accordingly, biofilm-associated infections become a major clinical challenge underlining the need of innovative antimicrobial approaches. The aim of this in vitro study was to assess the effects of pomegranate peel extract (PomeGr) on C. albicans growth and biofilm formation; in addition, the release of tyrosol and farnesol was investigated. The phenolic profile of PomeGr was assessed by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS) analysis before and after exposure to C. albicans. Here, we showed that fungal growth, biofilm formation and AI release were altered by PomeGr treatment. Moreover, the phenolic content of PomeGr was substantially hampered upon exposure to fungal cells; particularly pedunculagin, punicalin, punicalagin, granatin, di-(HHDP-galloyl-hexoside)-pentoside and their isomers as well as ellagic acid-hexoside appeared highly consumed, suggesting their role as bioactive molecules against Candida. Overall, these new insights on the anti-Candida properties of PomeGr and its potential mechanisms of action may represent a relevant step in the design of novel therapeutic approaches against fungal infections.
Collapse
Affiliation(s)
- Bruna Colombari
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Davide Tagliazucchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola, 2—Pad. Besta, 42100 Reggio Emilia, Italy
| | - Alessandra Odorici
- Laboratory of Microbiology and Virology, School of Doctorate in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Eva Pericolini
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Ismaela Foltran
- Incos-Cosmeceutica Industriale, Funo di Argelato, 40050 Bologna, Italy
| | - Diego Pinetti
- Centro Interdipartimentale Grandi Strumenti (C.I.G.S), University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Aida Meto
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Department of Dentistry, Faculty of Dental Sciences, University of Aldent, 1007 Tirana, Albania
| | - Samuele Peppoloni
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Elisabetta Blasi
- Laboratory of Microbiology and Virology, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| |
Collapse
|