1
|
Ruiz D, Inzunza C, Barría J, Baeza C, Molina A, Cubillos FA, Salinas F. Optogenetic Modification of Glycerol Production in Wine Yeast. ACS Synth Biol 2025. [PMID: 39951366 DOI: 10.1021/acssynbio.4c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
The wine strains of Saccharomyces cerevisiae transform glucose into ethanol and other byproducts such as glycerol and acetate. The balance of these metabolites is important during the fermentation process, which impacts the organoleptic properties of wines. Ethanol and glycerol productions are mainly controlled by the ADH1 and GPD1 genes, which encode for the alcohol dehydrogenase and glycerol-3-phosphate-dehydrogenase enzymes, respectively. Genetic modification of these genes can thus be used to alter the levels of the corresponding metabolites and to reroute fermentation. In this work, we used an optogenetic system named FUN-LOV (FUNgal-Light Oxygen Voltage) to regulate the expression of ADH1 and GPD1 in a wine yeast strain using light. Initially, we confirmed the light-controlled expression of GPD1 and ADH1 in the engineered strains via RT-qPCR and a translational reporter, respectively. To characterize the generated yeast strains, we performed growth curve assays and laboratory-scale fermentations, observing phenotypic differences between illumination conditions that confirm the optogenetic control of the target genes. We also monitored glucose consumption and ethanol and glycerol productions during a fermentation time course, observing that the optogenetic control of GPD1 increased glycerol production under constant illumination without affecting ethanol production. Interestingly, the optogenetic control of ADH1 showed an inverted phenotype, where glycerol production increased under constant darkness conditions. Altogether, our results highlight the feasibility of using optogenetic tools to control yeast fermentation in a wine yeast strain, which allows changing the balance of metabolic products of interest in a light-dependent manner.
Collapse
Affiliation(s)
- Diego Ruiz
- Laboratorio de Genómica Funcional, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- ANID-Millennium Science Initiative-Millennium Institute for Integrative Biology (iBIO), Santiago 8331150, Chile
| | - Claudia Inzunza
- Laboratorio de Genómica Funcional, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- ANID-Millennium Science Initiative-Millennium Institute for Integrative Biology (iBIO), Santiago 8331150, Chile
| | - Javiera Barría
- Laboratorio de Genómica Funcional, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- ANID-Millennium Science Initiative-Millennium Institute for Integrative Biology (iBIO), Santiago 8331150, Chile
| | - Camila Baeza
- Laboratorio de Genómica Funcional, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- ANID-Millennium Science Initiative-Millennium Institute for Integrative Biology (iBIO), Santiago 8331150, Chile
| | - Antonio Molina
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Francisco A Cubillos
- ANID-Millennium Science Initiative-Millennium Institute for Integrative Biology (iBIO), Santiago 8331150, Chile
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
- ANID-Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia 5090000, Chile
| | - Francisco Salinas
- Laboratorio de Genómica Funcional, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- ANID-Millennium Science Initiative-Millennium Institute for Integrative Biology (iBIO), Santiago 8331150, Chile
| |
Collapse
|
2
|
Muench P, Fiumara M, Southern N, Coda D, Aschenbrenner S, Correia B, Gräff J, Niopek D, Mathony J. A modular toolbox for the optogenetic deactivation of transcription. Nucleic Acids Res 2025; 53:gkae1237. [PMID: 39676667 PMCID: PMC11797043 DOI: 10.1093/nar/gkae1237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
Light-controlled transcriptional activation is a commonly used optogenetic strategy that allows researchers to regulate gene expression with high spatiotemporal precision. The vast majority of existing tools are, however, limited to light-triggered induction of gene expression. Here, we inverted this mode of action and created optogenetic systems capable of efficiently terminating transcriptional activation in response to blue light. First, we designed highly compact regulators by photo-controlling the VP16 (pcVP16) transactivation peptide. Then, applying a two-hybrid strategy, we engineered LOOMINA (light off-operated modular inductor of transcriptional activation), a versatile transcriptional control platform for mammalian cells that is compatible with various effector proteins. Leveraging the flexibility of CRISPR systems, we combined LOOMINA with dCas9 to control transcription with blue light from endogenous promoters with exceptionally high dynamic ranges in multiple cell lines. Functionally and mechanistically, the versatile LOOMINA platform and the exceptionally compact pcVP16 transactivator represent valuable additions to the optogenetic repertoire for transcriptional regulation.
Collapse
Affiliation(s)
- Philipp Muench
- Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt 64287, Germany
| | - Matteo Fiumara
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), SV 2513 (Bâtiment SV) - Station 19, Lausanne CH-1015, Switzerland
| | - Nicholas Southern
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Faculty of Engineering Sciences, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| | - Davide Coda
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), SV 2513 (Bâtiment SV) - Station 19, Lausanne CH-1015, Switzerland
| | - Sabine Aschenbrenner
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Faculty of Engineering Sciences, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| | - Bruno Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, AI 3138 (Bâtiment AI) – Station 19, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics (SIB), AI 3138 (Bâtiment AI) – Station 19, Lausanne CH-1015, Switzerland
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), SV 2513 (Bâtiment SV) - Station 19, Lausanne CH-1015, Switzerland
| | - Dominik Niopek
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Faculty of Engineering Sciences, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| | - Jan Mathony
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Faculty of Engineering Sciences, Heidelberg University, Im Neuenheimer Feld 364, Heidelberg 69120, Germany
| |
Collapse
|
3
|
Panigaj M, Basu Roy T, Skelly E, Chandler MR, Wang J, Ekambaram S, Bircsak K, Dokholyan NV, Afonin KA. Autonomous Nucleic Acid and Protein Nanocomputing Agents Engineered to Operate in Living Cells. ACS NANO 2025; 19:1865-1883. [PMID: 39760461 PMCID: PMC11757000 DOI: 10.1021/acsnano.4c13663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
In recent years, the rapid development and employment of autonomous technology have been observed in many areas of human activity. Autonomous technology can readily adjust its function to environmental conditions and enable an efficient operation without human control. While applying the same concept to designing advanced biomolecular therapies would revolutionize nanomedicine, the design approaches to engineering biological nanocomputing agents for predefined operations within living cells remain a challenge. Autonomous nanocomputing agents made of nucleic acids and proteins are an appealing idea, and two decades of research has shown that the engineered agents act under real physical and biochemical constraints in a logical manner. Throughout all domains of life, nucleic acids and proteins perform a variety of vital functions, where the sequence-defined structures of these biopolymers either operate on their own or efficiently function together. This programmability and synergy inspire massive research efforts that utilize the versatility of nucleic and amino acids to encode functions and properties that otherwise do not exist in nature. This Perspective covers the key concepts used in the design and application of nanocomputing agents and discusses potential limitations and paths forward.
Collapse
Affiliation(s)
- Martin Panigaj
- Nanoscale
Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Tanaya Basu Roy
- Department
of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Elizabeth Skelly
- Nanoscale
Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | | | - Jian Wang
- Department
of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Srinivasan Ekambaram
- Department
of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Kristin Bircsak
- MIMETAS
US, INC, Gaithersburg, Maryland 20878, United States
| | - Nikolay V. Dokholyan
- Department
of Pharmacology, Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Kirill A. Afonin
- Nanoscale
Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
4
|
Tang AY, Jung S, Carrasco-López C, Avalos JL. Light-Induced Nanobody-Mediated Targeted Protein Degradation for Metabolic Flux Control. ACS Synth Biol 2024; 13:4110-4118. [PMID: 39527810 DOI: 10.1021/acssynbio.4c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In metabolic engineering, increasing chemical production usually involves manipulating the expression levels of key enzymes. However, limited synthetic tools exist for modulating enzyme activity beyond the transcription level. Inspired by natural post-translational mechanisms, we present targeted enzyme degradation mediated by optically controlled nanobodies. We applied this method to a branched biosynthetic pathway, deoxyviolacein, and observed enhanced product specificity and yield. We then extend the biosynthesis pathway to violacein and show how simultaneous degradation of two target enzymes can further shift production profiles. Through the redirection of metabolic flux, we demonstrate how targeted enzyme degradation can be used to minimize unwanted intermediates and boost the formation of desired products.
Collapse
Affiliation(s)
- Allison Y Tang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Seyi Jung
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - César Carrasco-López
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - José L Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
- High Meadows Environmental Institute, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
5
|
Stohr AM, Ma D, Chen W, Blenner M. Engineering conditional protein-protein interactions for dynamic cellular control. Biotechnol Adv 2024; 77:108457. [PMID: 39343083 DOI: 10.1016/j.biotechadv.2024.108457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/28/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Conditional protein-protein interactions enable dynamic regulation of cellular activity and are an attractive approach to probe native protein interactions, improve metabolic engineering of microbial factories, and develop smart therapeutics. Conditional protein-protein interactions have been engineered to respond to various chemical, light, and nucleic acid-based stimuli. These interactions have been applied to assemble protein fragments, build protein scaffolds, and spatially organize proteins in many microbial and higher-order hosts. To foster the development of novel conditional protein-protein interactions that respond to new inputs or can be utilized in alternative settings, we provide an overview of the process of designing new engineered protein interactions while showcasing many recently developed computational tools that may accelerate protein engineering in this space.
Collapse
Affiliation(s)
- Anthony M Stohr
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Derron Ma
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Mark Blenner
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
6
|
Harmer Z, Thompson JC, Cole DL, Venturelli OS, Zavala VM, McClean MN. Dynamic Multiplexed Control and Modeling of Optogenetic Systems Using the High-Throughput Optogenetic Platform, Lustro. ACS Synth Biol 2024; 13:1424-1433. [PMID: 38684225 PMCID: PMC11106771 DOI: 10.1021/acssynbio.3c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/31/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
The ability to control cellular processes using optogenetics is inducer-limited, with most optogenetic systems responding to blue light. To address this limitation, we leverage an integrated framework combining Lustro, a powerful high-throughput optogenetics platform, and machine learning tools to enable multiplexed control over blue light-sensitive optogenetic systems. Specifically, we identify light induction conditions for sequential activation as well as preferential activation and switching between pairs of light-sensitive split transcription factors in the budding yeast, Saccharomyces cerevisiae. We use the high-throughput data generated from Lustro to build a Bayesian optimization framework that incorporates data-driven learning, uncertainty quantification, and experimental design to enable the prediction of system behavior and the identification of optimal conditions for multiplexed control. This work lays the foundation for designing more advanced synthetic biological circuits incorporating optogenetics, where multiple circuit components can be controlled using designer light induction programs, with broad implications for biotechnology and bioengineering.
Collapse
Affiliation(s)
- Zachary
P. Harmer
- Department
of Biomedical Engineering, University of
Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jaron C. Thompson
- Department
of Chemical and Biological Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department
of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - David L. Cole
- Department
of Chemical and Biological Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Ophelia S. Venturelli
- Department
of Biomedical Engineering, University of
Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department
of Chemical and Biological Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department
of Biochemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Department
of Bacteriology, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Victor M. Zavala
- Department
of Chemical and Biological Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
- Mathematics
and Computer Science Division, Argonne National
Laboratory, Lemont, Illinois 60439. United States
| | - Megan N. McClean
- Department
of Biomedical Engineering, University of
Wisconsin−Madison, Madison, Wisconsin 53706, United States
- University
of Wisconsin Carbone Cancer Center, University
of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Bacsa B, Hopl V, Derler I. Synthetic Biology Meets Ca 2+ Release-Activated Ca 2+ Channel-Dependent Immunomodulation. Cells 2024; 13:468. [PMID: 38534312 PMCID: PMC10968988 DOI: 10.3390/cells13060468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Many essential biological processes are triggered by the proximity of molecules. Meanwhile, diverse approaches in synthetic biology, such as new biological parts or engineered cells, have opened up avenues to precisely control the proximity of molecules and eventually downstream signaling processes. This also applies to a main Ca2+ entry pathway into the cell, the so-called Ca2+ release-activated Ca2+ (CRAC) channel. CRAC channels are among other channels are essential in the immune response and are activated by receptor-ligand binding at the cell membrane. The latter initiates a signaling cascade within the cell, which finally triggers the coupling of the two key molecular components of the CRAC channel, namely the stromal interaction molecule, STIM, in the ER membrane and the plasma membrane Ca2+ ion channel, Orai. Ca2+ entry, established via STIM/Orai coupling, is essential for various immune cell functions, including cytokine release, proliferation, and cytotoxicity. In this review, we summarize the tools of synthetic biology that have been used so far to achieve precise control over the CRAC channel pathway and thus over downstream signaling events related to the immune response.
Collapse
Affiliation(s)
- Bernadett Bacsa
- Division of Medical Physics und Biophysics, Medical University of Graz, A-8010 Graz, Austria;
| | - Valentina Hopl
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
8
|
Espinosa-Martínez M, Alcázar-Fabra M, Landeira D. The molecular basis of cell memory in mammals: The epigenetic cycle. SCIENCE ADVANCES 2024; 10:eadl3188. [PMID: 38416817 PMCID: PMC10901381 DOI: 10.1126/sciadv.adl3188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/26/2024] [Indexed: 03/01/2024]
Abstract
Cell memory refers to the capacity of cells to maintain their gene expression program once the initiating environmental signal has ceased. This exceptional feature is key during the formation of mammalian organisms, and it is believed to be in part mediated by epigenetic factors that can endorse cells with the landmarks required to maintain transcriptional programs upon cell duplication. Here, we review current literature analyzing the molecular basis of epigenetic memory in mammals, with a focus on the mechanisms by which transcriptionally repressive chromatin modifications such as methylation of DNA and histone H3 are propagated through mitotic cell divisions. The emerging picture suggests that cellular memory is supported by an epigenetic cycle in which reversible activities carried out by epigenetic regulators in coordination with cell cycle transition create a multiphasic system that can accommodate both maintenance of cell identity and cell differentiation in proliferating stem cell populations.
Collapse
Affiliation(s)
- Mencía Espinosa-Martínez
- Centre for Genomics and Oncological Research (GENYO), Avenue de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - María Alcázar-Fabra
- Centre for Genomics and Oncological Research (GENYO), Avenue de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - David Landeira
- Centre for Genomics and Oncological Research (GENYO), Avenue de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
9
|
Fenelon KD, Krause J, Koromila T. Opticool: Cutting-edge transgenic optical tools. PLoS Genet 2024; 20:e1011208. [PMID: 38517915 PMCID: PMC10959397 DOI: 10.1371/journal.pgen.1011208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Only a few short decades have passed since the sequencing of GFP, yet the modern repertoire of transgenically encoded optical tools implies an exponential proliferation of ever improving constructions to interrogate the subcellular environment. A myriad of tags for labeling proteins, RNA, or DNA have arisen in the last few decades, facilitating unprecedented visualization of subcellular components and processes. Development of a broad array of modern genetically encoded sensors allows real-time, in vivo detection of molecule levels, pH, forces, enzyme activity, and other subcellular and extracellular phenomena in ever expanding contexts. Optogenetic, genetically encoded optically controlled manipulation systems have gained traction in the biological research community and facilitate single-cell, real-time modulation of protein function in vivo in ever broadening, novel applications. While this field continues to explosively expand, references are needed to assist scientists seeking to use and improve these transgenic devices in new and exciting ways to interrogate development and disease. In this review, we endeavor to highlight the state and trajectory of the field of in vivo transgenic optical tools.
Collapse
Affiliation(s)
- Kelli D. Fenelon
- Department of Biology, University of Texas at Arlington, Arlington, Texas, United States of America
| | - Julia Krause
- Department of Biology, University of Texas at Arlington, Arlington, Texas, United States of America
| | - Theodora Koromila
- Department of Biology, University of Texas at Arlington, Arlington, Texas, United States of America
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
10
|
Hoffmann SA, Cai Y. Engineering stringent genetic biocontainment of yeast with a protein stability switch. Nat Commun 2024; 15:1060. [PMID: 38316765 PMCID: PMC10844650 DOI: 10.1038/s41467-024-44988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Synthetic biology holds immense promise to tackle key problems in resource use, environmental remediation, and human health care. However, comprehensive safety measures are lacking to employ engineered microorganisms in open-environment applications. Genetically encoded biocontainment systems may solve this issue. Here, we describe such a system based on conditional stability of essential proteins. We used a destabilizing domain degron stabilized by estradiol addition (ERdd). We ERdd-tagged 775 essential genes and screened for strains with estradiol dependent growth. Three genes, SPC110, DIS3 and RRP46, were found to be particularly suitable targets. Respective strains showed no growth defect in the presence of estradiol and strong growth inhibition in its absence. SPC110-ERdd offered the most stringent containment, with an escape frequency of <5×10-7. Removal of its C-terminal domain decreased the escape frequency further to <10-8. Being based on conditional protein stability, the presented approach is mechanistically orthogonal to previously reported genetic biocontainment systems.
Collapse
Affiliation(s)
- Stefan A Hoffmann
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
11
|
Bittner E, Stehlik T, Lam J, Dimitrov L, Heimerl T, Schöck I, Harberding J, Dornes A, Heymons N, Bange G, Schuldiner M, Zalckvar E, Bölker M, Schekman R, Freitag J. Proteins that carry dual targeting signals can act as tethers between peroxisomes and partner organelles. PLoS Biol 2024; 22:e3002508. [PMID: 38377076 PMCID: PMC10906886 DOI: 10.1371/journal.pbio.3002508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/01/2024] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
Peroxisomes are organelles with crucial functions in oxidative metabolism. To correctly target to peroxisomes, proteins require specialized targeting signals. A mystery in the field is the sorting of proteins that carry a targeting signal for peroxisomes and as well as for other organelles, such as mitochondria or the endoplasmic reticulum (ER). Exploring several of these proteins in fungal model systems, we observed that they can act as tethers bridging organelles together to create contact sites. We show that in Saccharomyces cerevisiae this mode of tethering involves the peroxisome import machinery, the ER-mitochondria encounter structure (ERMES) at mitochondria and the guided entry of tail-anchored proteins (GET) pathway at the ER. Our findings introduce a previously unexplored concept of how dual affinity proteins can regulate organelle attachment and communication.
Collapse
Affiliation(s)
- Elena Bittner
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Thorsten Stehlik
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Jason Lam
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Lazar Dimitrov
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Thomas Heimerl
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Isabelle Schöck
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Jannik Harberding
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Anita Dornes
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Nikola Heymons
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Einat Zalckvar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Bölker
- Department of Biology, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Randy Schekman
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Johannes Freitag
- Department of Biology, Philipps-University Marburg, Marburg, Germany
- Department of Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| |
Collapse
|
12
|
Tague N, Coriano-Ortiz C, Sheets MB, Dunlop MJ. Light-inducible protein degradation in E. coli with the LOVdeg tag. eLife 2024; 12:RP87303. [PMID: 38270583 PMCID: PMC10945698 DOI: 10.7554/elife.87303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Molecular tools for optogenetic control allow for spatial and temporal regulation of cell behavior. In particular, light-controlled protein degradation is a valuable mechanism of regulation because it can be highly modular, used in tandem with other control mechanisms, and maintain functionality throughout growth phases. Here, we engineered LOVdeg, a tag that can be appended to a protein of interest for inducible degradation in Escherichia coli using blue light. We demonstrate the modularity of LOVdeg by using it to tag a range of proteins, including the LacI repressor, CRISPRa activator, and the AcrB efflux pump. Additionally, we demonstrate the utility of pairing the LOVdeg tag with existing optogenetic tools to enhance performance by developing a combined EL222 and LOVdeg system. Finally, we use the LOVdeg tag in a metabolic engineering application to demonstrate post-translational control of metabolism. Together, our results highlight the modularity and functionality of the LOVdeg tag system and introduce a powerful new tool for bacterial optogenetics.
Collapse
Affiliation(s)
- Nathan Tague
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
- Biological Design Center, Boston UniversityBostonUnited States
| | - Cristian Coriano-Ortiz
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
- Biological Design Center, Boston UniversityBostonUnited States
| | - Michael B Sheets
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
- Biological Design Center, Boston UniversityBostonUnited States
| | - Mary J Dunlop
- Department of Biomedical Engineering, Boston UniversityBostonUnited States
- Biological Design Center, Boston UniversityBostonUnited States
| |
Collapse
|
13
|
Ubeysinghe S, Kankanamge D, Thotamune W, Wijayaratna D, Mohan TM, Karunarathne A. Spatiotemporal Optical Control of Gαq-PLCβ Interactions. ACS Synth Biol 2024; 13:242-258. [PMID: 38092428 DOI: 10.1021/acssynbio.3c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Cells experience time-varying and spatially heterogeneous chemokine signals in vivo, activating cell surface proteins including G protein-coupled receptors (GPCRs). The Gαq pathway activation by GPCRs is a major signaling axis with broad physiological and pathological significance. Compared with other Gα members, GαqGTP activates many crucial effectors, including PLCβ (Phospholipase Cβ) and Rho GEFs (Rho guanine nucleotide exchange factors). PLCβ regulates many key processes, such as hematopoiesis, synaptogenesis, and cell cycle, and is therefore implicated in terminal-debilitating diseases, including cancer, epilepsy, Huntington's Disease, and Alzheimer's Disease. However, due to a lack of genetic and pharmacological tools, examining how the dynamic regulation of PLCβ signaling controls cellular physiology has been difficult. Since activated PLCβ induces several abrupt cellular changes, including cell morphology, examining how the other pathways downstream of Gq-GPCRs contribute to the overall signaling has also been difficult. Here we show the engineering, validation, and application of a highly selective and efficient optogenetic inhibitor (Opto-dHTH) to completely disrupt GαqGTP-PLCβ interactions reversibly in user-defined cellular-subcellular regions on optical command. Using this newly gained PLCβ signaling control, our data indicate that the molecular competition between RhoGEFs and PLCβ for GαqGTP determines the potency of Gq-GPCR-governed directional cell migration.
Collapse
Affiliation(s)
- Sithurandi Ubeysinghe
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Dinesh Kankanamge
- Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Waruna Thotamune
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Dhanushan Wijayaratna
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Thomas M Mohan
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Ajith Karunarathne
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| |
Collapse
|
14
|
Zhou P, Gao C, Song W, Wei W, Wu J, Liu L, Chen X. Engineering status of protein for improving microbial cell factories. Biotechnol Adv 2024; 70:108282. [PMID: 37939975 DOI: 10.1016/j.biotechadv.2023.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/23/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
With the development of metabolic engineering and synthetic biology, microbial cell factories (MCFs) have provided an efficient and sustainable method to synthesize a series of chemicals from renewable feedstocks. However, the efficiency of MCFs is usually limited by the inappropriate status of protein. Thus, engineering status of protein is essential to achieve efficient bioproduction with high titer, yield and productivity. In this review, we summarize the engineering strategies for metabolic protein status, including protein engineering for boosting microbial catalytic efficiency, protein modification for regulating microbial metabolic capacity, and protein assembly for enhancing microbial synthetic capacity. Finally, we highlight future challenges and prospects of improving microbial cell factories by engineering status of protein.
Collapse
Affiliation(s)
- Pei Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Wanqing Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
15
|
Harmer ZP, Thompson JC, Cole DL, Zavala VM, McClean MN. Dynamic Multiplexed Control and Modeling of Optogenetic Systems Using the High-Throughput Optogenetic Platform, Lustro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572411. [PMID: 38187522 PMCID: PMC10769237 DOI: 10.1101/2023.12.19.572411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The ability to control cellular processes using optogenetics is inducer-limited, with most optogenetic systems responding to blue light. To address this limitation we leverage an integrated framework combining Lustro, a powerful high-throughput optogenetics platform, and machine learning tools to enable multiplexed control over blue light-sensitive optogenetic systems. Specifically, we identify light induction conditions for sequential activation as well as preferential activation and switching between pairs of light-sensitive spit transcription factors in the budding yeast, Saccharomyces cerevisiae . We use the high-throughput data generated from Lustro to build a Bayesian optimization framework that incorporates data-driven learning, uncertainty quantification, and experimental design to enable the prediction of system behavior and the identification of optimal conditions for multiplexed control. This work lays the foundation for designing more advanced synthetic biological circuits incorporating optogenetics, where multiple circuit components can be controlled using designer light induction programs, with broad implications for biotechnology and bioengineering. Graphical abstract
Collapse
|
16
|
Tague N, Coriano-Ortiz C, Sheets MB, Dunlop MJ. Light inducible protein degradation in E. coli with the LOVdeg tag. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.530042. [PMID: 36865169 PMCID: PMC9980293 DOI: 10.1101/2023.02.25.530042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Molecular tools for optogenetic control allow for spatial and temporal regulation of cell behavior. In particular, light controlled protein degradation is a valuable mechanism of regulation because it can be highly modular, used in tandem with other control mechanisms, and maintain functionality throughout growth phases. Here, we engineered LOVdeg, a tag that can be appended to a protein of interest for inducible degradation in Escherichia coli using blue light. We demonstrate the modularity of LOVdeg by using it to tag a range of proteins, including the LacI repressor, CRISPRa activator, and the AcrB efflux pump. Additionally, we demonstrate the utility of pairing the LOVdeg tag with existing optogenetic tools to enhance performance by developing a combined EL222 and LOVdeg system. Finally, we use the LOVdeg tag in a metabolic engineering application to demonstrate post-translational control of metabolism. Together, our results highlight the modularity and functionality of the LOVdeg tag system, and introduce a powerful new tool for bacterial optogenetics.
Collapse
|
17
|
Bezold F, Scheffer J, Wendering P, Razaghi-Moghadam Z, Trauth J, Pook B, Nußhär H, Hasenjäger S, Nikoloski Z, Essen LO, Taxis C. Optogenetic control of Cdc48 for dynamic metabolic engineering in yeast. Metab Eng 2023; 79:97-107. [PMID: 37422133 DOI: 10.1016/j.ymben.2023.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
Dynamic metabolic engineering is a strategy to switch key metabolic pathways in microbial cell factories from biomass generation to accumulation of target products. Here, we demonstrate that optogenetic intervention in the cell cycle of budding yeast can be used to increase production of valuable chemicals, such as the terpenoid β-carotene or the nucleoside analog cordycepin. We achieved optogenetic cell-cycle arrest in the G2/M phase by controlling activity of the ubiquitin-proteasome system hub Cdc48. To analyze the metabolic capacities in the cell cycle arrested yeast strain, we studied their proteomes by timsTOF mass spectrometry. This revealed widespread, but highly distinct abundance changes of metabolic key enzymes. Integration of the proteomics data in protein-constrained metabolic models demonstrated modulation of fluxes directly associated with terpenoid production as well as metabolic subsystems involved in protein biosynthesis, cell wall synthesis, and cofactor biosynthesis. These results demonstrate that optogenetically triggered cell cycle intervention is an option to increase the yields of compounds synthesized in a cellular factory by reallocation of metabolic resources.
Collapse
Affiliation(s)
- Filipp Bezold
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-University Marburg, 35032, Marburg, Germany
| | - Johannes Scheffer
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-University Marburg, 35032, Marburg, Germany
| | - Philipp Wendering
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany; Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Zahra Razaghi-Moghadam
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany; Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Jonathan Trauth
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-University Marburg, 35032, Marburg, Germany
| | - Bastian Pook
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-University Marburg, 35032, Marburg, Germany
| | - Hagen Nußhär
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-University Marburg, 35032, Marburg, Germany
| | - Sophia Hasenjäger
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-University Marburg, 35032, Marburg, Germany
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany; Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Lars-Oliver Essen
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-University Marburg, 35032, Marburg, Germany.
| | - Christof Taxis
- Department of Biology/Genetics, Philipps-University Marburg, 35032, Marburg, Germany; School of Science and Technology, University Siegen, 57076, Siegen, Germany.
| |
Collapse
|
18
|
Hasenjäger S, Bologna A, Essen LO, Spadaccini R, Taxis C. C-terminal sequence stability profiling in Saccharomyces cerevisiae reveals protective protein quality control pathways. J Biol Chem 2023; 299:105166. [PMID: 37595870 PMCID: PMC10493509 DOI: 10.1016/j.jbc.2023.105166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/22/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023] Open
Abstract
Protein quality control (PQC) mechanisms are essential for degradation of misfolded or dysfunctional proteins. An essential part of protein homeostasis is recognition of defective proteins by PQC components and their elimination by the ubiquitin-proteasome system, often concentrating on protein termini as indicators of protein integrity. Changes in amino acid composition of C-terminal ends arise through protein disintegration, alternative splicing, or during the translation step of protein synthesis from premature termination or translational stop-codon read-through. We characterized reporter protein stability using light-controlled exposure of the random C-terminal peptide collection (CtPC) in budding yeast revealing stabilizing and destabilizing features of amino acids at positions -5 to -1 of the C terminus. The (de)stabilization properties of CtPC-degrons depend on amino acid identity, position, as well as composition of the C-terminal sequence and are transferable. Evolutionary pressure toward stable proteins in yeast is evidenced by amino acid residues under-represented in cytosolic and nuclear proteins at corresponding C-terminal positions, but over-represented in unstable CtPC-degrons, and vice versa. Furthermore, analysis of translational stop-codon read-through peptides suggested that such extended proteins have destabilizing C termini. PQC pathways targeting CtPC-degrons involved the ubiquitin-protein ligase Doa10 and the cullin-RING E3 ligase SCFDas1 (Skp1-Cullin-F-box protein). Overall, our data suggest a proteome protection mechanism that targets proteins with unnatural C termini by recognizing a surprisingly large number of C-terminal sequence variants.
Collapse
Affiliation(s)
- Sophia Hasenjäger
- Department of Biology/Genetics, Philipps-University Marburg, Marburg, Germany
| | - Andrea Bologna
- Department of Science and Technology, Universita' Degli Studi Del Sannio, Benevento, Italy
| | - Lars-Oliver Essen
- Department of Chemistry/Biochemistry, Philipps-University Marburg, Marburg, Germany
| | - Roberta Spadaccini
- Department of Science and Technology, Universita' Degli Studi Del Sannio, Benevento, Italy; Department of Chemistry/Biochemistry, Philipps-University Marburg, Marburg, Germany
| | - Christof Taxis
- Department of Medicine, Health and Medical University, Erfurt, Germany.
| |
Collapse
|
19
|
Ubeysinghe S, Kankanamge D, Thotamune W, Wijayaratna D, Mohan TM, Karunarathne A. Spatiotemporal optical control of Gαq-PLCβ interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552801. [PMID: 37609229 PMCID: PMC10441412 DOI: 10.1101/2023.08.10.552801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Cells experience time-varying and spatially heterogeneous chemokine signals in vivo, activating cell surface proteins, including G protein-coupled receptors (GPCRs). The Gαq pathway activation by GPCRs is a major signaling axis with a broad physiological and pathological significance. Compared to other Gα members, GαqGTP activates many crucial effectors, including PLCβ (Phospholipase Cβ) and Rho GEFs (Rho guanine nucleotide exchange factors). PLCβ regulates many key processes, such as hematopoiesis, synaptogenesis, and cell cycle, and is therefore implicated in terminal - debilitating diseases, including cancer, epilepsy, Huntington's Disease, and Alzheimer's Disease. However, due to a lack of genetic and pharmacological tools, examining how the dynamic regulation of PLCβ signaling controls cellular physiology has been difficult. Since activated PLCβ induces several abrupt cellular changes, including cell morphology, examining how the other pathways downstream of Gq-GPCRs contribute to the overall signaling has also been difficult. Here we show the engineering, validation, and application of a highly selective and efficient optogenetic inhibitor (Opto-dHTH) to completely disrupt GαqGTP-PLCβ interactions reversibly in user-defined cellular-subcellular regions on optical command. Using this newly gained PLCβ signaling control, our data indicate that the molecular competition between RhoGEFs and PLCβ for GαqGTP determines the potency of Gq-GPCR-governed directional cell migration.
Collapse
|
20
|
Harmer Z, McClean MN. Lustro: High-Throughput Optogenetic Experiments Enabled by Automation and a Yeast Optogenetic Toolkit. ACS Synth Biol 2023; 12:1943-1951. [PMID: 37434272 PMCID: PMC10368012 DOI: 10.1021/acssynbio.3c00215] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Indexed: 07/13/2023]
Abstract
Optogenetic systems use genetically encoded light-sensitive proteins to control cellular processes. This provides the potential to orthogonally control cells with light; however, these systems require many design-build-test cycles to achieve a functional design and multiple illumination variables need to be laboriously tuned for optimal stimulation. We combine laboratory automation and a modular cloning scheme to enable high-throughput construction and characterization of optogenetic split transcription factors in Saccharomyces cerevisiae. We expand the yeast optogenetic toolkit to include variants of the cryptochromes and enhanced Magnets, incorporate these light-sensitive dimerizers into split transcription factors, and automate illumination and measurement of cultures in a 96-well microplate format for high-throughput characterization. We use this approach to rationally design and test an optimized enhanced Magnet transcription factor with improved light-sensitive gene expression. This approach is generalizable to the high-throughput characterization of optogenetic systems across a range of biological systems and applications.
Collapse
Affiliation(s)
- Zachary
P. Harmer
- Department
of Biomedical Engineering, University of
Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Megan N. McClean
- Department
of Biomedical Engineering, University of
Wisconsin−Madison, Madison, Wisconsin 53706, United States
- University
of Wisconsin Carbone Cancer Center, University
of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, United States
| |
Collapse
|
21
|
Nagasawa Y, Ueda HH, Kawabata H, Murakoshi H. LOV2-based photoactivatable CaMKII and its application to single synapses: Local Optogenetics. Biophys Physicobiol 2023; 20:e200027. [PMID: 38496236 PMCID: PMC10941968 DOI: 10.2142/biophysico.bppb-v20.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/02/2023] [Indexed: 03/19/2024] Open
Abstract
Optogenetic techniques offer a high spatiotemporal resolution to manipulate cellular activity. For instance, Channelrhodopsin-2 with global light illumination is the most widely used to control neuronal activity at the cellular level. However, the cellular scale is much larger than the diffraction limit of light (<1 μm) and does not fully exploit the features of the "high spatial resolution" of optogenetics. For instance, until recently, there were no optogenetic methods to induce synaptic plasticity at the level of single synapses. To address this, we developed an optogenetic tool named photoactivatable CaMKII (paCaMKII) by fusing a light-sensitive domain (LOV2) to CaMKIIα, which is a protein abundantly expressed in neurons of the cerebrum and hippocampus and essential for synaptic plasticity. Combining photoactivatable CaMKII with two-photon excitation, we successfully activated it in single spines, inducing synaptic plasticity (long-term potentiation) in hippocampal neurons. We refer to this method as "Local Optogenetics", which involves the local activation of molecules and measurement of cellular responses. In this review, we will discuss the characteristics of LOV2, the recent development of its derivatives, and the development and application of paCaMKII.
Collapse
Affiliation(s)
- Yutaro Nagasawa
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Hiromi H Ueda
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Haruka Kawabata
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Hideji Murakoshi
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
22
|
Phanindhar K, Mishra RK. Auxin-inducible degron system: an efficient protein degradation tool to study protein function. Biotechniques 2023; 74:186-198. [PMID: 37191015 DOI: 10.2144/btn-2022-0108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Targeted protein degradation, with its rapid protein depletion kinetics, allows the measurement of acute changes in the cell. The auxin-inducible degron (AID) system, rapidly degrades AID-tagged proteins only in the presence of auxin. The AID system being inducible makes the study of essential genes and dynamic processes like cell differentiation, cell cycle and genome organization feasible. The AID degradation system has been adapted to yeast, protozoans, C. elegans, Drosophila, zebrafish, mouse and mammalian cell lines. Using the AID system, researchers have unveiled novel functions for essential proteins at developmental stages that were previously difficult to investigate due to early lethality. This comprehensive review discusses the development, advancements, applications and drawbacks of the AID system and compares it with other available protein degradation systems.
Collapse
Affiliation(s)
- Kundurthi Phanindhar
- CSIR-Centre for Cellular & Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Rakesh K Mishra
- CSIR-Centre for Cellular & Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- Tata Institute for Genetics & Society (TIGS), Bangalore, 560065, India
| |
Collapse
|
23
|
Mao M, Qian Y, Zhang W, Zhou S, Wang Z, Chen X, Yang Y. Controlling protein stability with SULI, a highly sensitive tag for stabilization upon light induction. Nat Commun 2023; 14:2172. [PMID: 37061509 PMCID: PMC10105765 DOI: 10.1038/s41467-023-37830-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/03/2023] [Indexed: 04/17/2023] Open
Abstract
Optogenetics tools for precise temporal and spatial control of protein abundance are valuable in studying diverse complex biological processes. In the present study, we engineer a monomeric tag of stabilization upon light induction (SULI) for yeast and zebrafish based on a single light-oxygen-voltage domain from Neurospora crassa. Proteins of interest fused with SULI are stable upon light illumination but are readily degraded after transfer to dark conditions. SULI shows a high dynamic range and a high tolerance to fusion at different positions of the target protein. Further studies reveal that SULI-mediated degradation occurs through a lysine ubiquitination-independent proteasome pathway. We demonstrate the usefulness of SULI in controlling the cell cycle in yeast and regulating protein stability in zebrafish, respectively. Overall, our data indicate that SULI is a simple and robust tool to quantitatively and spatiotemporally modulate protein levels for biotechnological or biomedical applications.
Collapse
Affiliation(s)
- Miaowei Mao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yajie Qian
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Wenyao Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Siyu Zhou
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Zefeng Wang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xianjun Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China.
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China.
| |
Collapse
|
24
|
Harmer ZP, McClean MN. Lustro: High-throughput optogenetic experiments enabled by automation and a yeast optogenetic toolkit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536078. [PMID: 37066312 PMCID: PMC10104134 DOI: 10.1101/2023.04.07.536078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Optogenetic systems use genetically-encoded light-sensitive proteins to control cellular processes. This provides the potential to orthogonally control cells with light, however these systems require many design-build-test cycles to achieve a functional design and multiple illumination variables need to be laboriously tuned for optimal stimulation. We combine laboratory automation and a modular cloning scheme to enable high-throughput construction and characterization of optogenetic split transcription factors in Saccharomyces cerevisiae . We expand the yeast optogenetic toolkit to include variants of the cryptochromes and Enhanced Magnets, incorporate these light-sensitive dimerizers into split transcription factors, and automate illumination and measurement of cultures in a 96-well microplate format for high-throughput characterization. We use this approach to rationally design and test an optimized Enhanced Magnet transcription factor with improved light-sensitive gene expression. This approach is generalizable to high-throughput characterization of optogenetic systems across a range of biological systems and applications.
Collapse
|
25
|
Konishi Y, Terai K. In vivo imaging of inflammatory response in cancer research. Inflamm Regen 2023; 43:10. [PMID: 36750856 PMCID: PMC9903460 DOI: 10.1186/s41232-023-00261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
Inflammation can contribute to the development and progression of cancer. The inflammatory responses in the tumor microenvironment are shaped by complex sequences of dynamic intercellular cross-talks among diverse types of cells, and recapitulation of these dynamic events in vitro has yet to be achieved. Today, intravital microscopy with two-photon excitation microscopes (2P-IVM) is the mainstay technique for observing intercellular cross-talks in situ, unraveling cellular and molecular mechanisms in the context of their spatiotemporal dynamics. In this review, we summarize the current state of 2P-IVM with fluorescent indicators of signal transduction to reveal the cross-talks between cancer cells and surrounding cells including both immune and non-immune cells. We also discuss the potential application of red-shifted indicators along with optogenetic tools to 2P-IVM. In an era of single-cell transcriptomics and data-driven research, 2P-IVM will remain a key advantage in delivering the missing spatiotemporal context in the field of cancer research.
Collapse
Affiliation(s)
- Yoshinobu Konishi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kenta Terai
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
26
|
Shen J, Geng L, Li X, Emery C, Kroning K, Shingles G, Lee K, Heyden M, Li P, Wang W. A general method for chemogenetic control of peptide function. Nat Methods 2023; 20:112-122. [PMID: 36481965 PMCID: PMC10069916 DOI: 10.1038/s41592-022-01697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 10/21/2022] [Indexed: 12/13/2022]
Abstract
Natural or engineered peptides serve important biological functions. A general approach to achieve chemical-dependent activation of short peptides will be valuable for spatial and temporal control of cellular processes. Here we present a pair of chemically activated protein domains (CAPs) for controlling the accessibility of both the N- and C-terminal portion of a peptide. CAPs were developed through directed evolution of an FK506-binding protein. By fusing a peptide to one or both CAPs, the function of the peptide is blocked until a small molecule displaces them from the FK506-binding protein ligand-binding site. We demonstrate that CAPs are generally applicable to a range of short peptides, including a protease cleavage site, a dimerization-inducing heptapeptide, a nuclear localization signal peptide, and an opioid peptide, with a chemical dependence up to 156-fold. We show that the CAPs system can be utilized in cell cultures and multiple organs in living animals.
Collapse
Affiliation(s)
- Jiaqi Shen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Lequn Geng
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Xingyu Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Catherine Emery
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Kayla Kroning
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Gwendolyn Shingles
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Kerry Lee
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Heyden
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Peng Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| | - Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
27
|
Vettkötter D, Schneider M, Goulden BD, Dill H, Liewald J, Zeiler S, Guldan J, Ateş YA, Watanabe S, Gottschalk A. Rapid and reversible optogenetic silencing of synaptic transmission by clustering of synaptic vesicles. Nat Commun 2022; 13:7827. [PMID: 36535932 PMCID: PMC9763335 DOI: 10.1038/s41467-022-35324-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Acutely silencing specific neurons informs about their functional roles in circuits and behavior. Existing optogenetic silencers include ion pumps, channels, metabotropic receptors, and tools that damage the neurotransmitter release machinery. While the former hyperpolarize the cell, alter ionic gradients or cellular biochemistry, the latter allow only slow recovery, requiring de novo synthesis. Thus, tools combining fast activation and reversibility are needed. Here, we use light-evoked homo-oligomerization of cryptochrome CRY2 to silence synaptic transmission, by clustering synaptic vesicles (SVs). We benchmark this tool, optoSynC, in Caenorhabditis elegans, zebrafish, and murine hippocampal neurons. optoSynC clusters SVs, observable by electron microscopy. Locomotion silencing occurs with tauon ~7.2 s and recovers with tauoff ~6.5 min after light-off. optoSynC can inhibit exocytosis for several hours, at very low light intensities, does not affect ion currents, biochemistry or synaptic proteins, and may further allow manipulating different SV pools and the transfer of SVs between them.
Collapse
Affiliation(s)
- Dennis Vettkötter
- Buchmann Institute for Molecular Life Sciences, Goethe University, D-60438, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, D-60438, Frankfurt, Germany
| | - Martin Schneider
- Buchmann Institute for Molecular Life Sciences, Goethe University, D-60438, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, D-60438, Frankfurt, Germany
- Max Planck Institute for Neurobiology, D-82152, Martinsried, Germany
| | - Brady D Goulden
- Department of Cell Biology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Holger Dill
- Buchmann Institute for Molecular Life Sciences, Goethe University, D-60438, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, D-60438, Frankfurt, Germany
| | - Jana Liewald
- Buchmann Institute for Molecular Life Sciences, Goethe University, D-60438, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, D-60438, Frankfurt, Germany
| | - Sandra Zeiler
- Buchmann Institute for Molecular Life Sciences, Goethe University, D-60438, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, D-60438, Frankfurt, Germany
| | - Julia Guldan
- Buchmann Institute for Molecular Life Sciences, Goethe University, D-60438, Frankfurt, Germany
- Master Program Interdisciplinary Neurosciences, Department of Biological Sciences, Goethe University, Frankfurt, Germany
| | - Yilmaz Arda Ateş
- Buchmann Institute for Molecular Life Sciences, Goethe University, D-60438, Frankfurt, Germany
- Master Program Interdisciplinary Neurosciences, Department of Biological Sciences, Goethe University, Frankfurt, Germany
| | - Shigeki Watanabe
- Department of Cell Biology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University, D-60438, Frankfurt, Germany.
- Institute of Biophysical Chemistry, Goethe University, D-60438, Frankfurt, Germany.
| |
Collapse
|
28
|
Multamäki E, García de Fuentes A, Sieryi O, Bykov A, Gerken U, Ranzani A, Köhler J, Meglinski I, Möglich A, Takala H. Optogenetic Control of Bacterial Expression by Red Light. ACS Synth Biol 2022; 11:3354-3367. [PMID: 35998606 PMCID: PMC9594775 DOI: 10.1021/acssynbio.2c00259] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 01/24/2023]
Abstract
In optogenetics, as in nature, sensory photoreceptors serve to control cellular processes by light. Bacteriophytochrome (BphP) photoreceptors sense red and far-red light via a biliverdin chromophore and, in response, cycle between the spectroscopically, structurally, and functionally distinct Pr and Pfr states. BphPs commonly belong to two-component systems that control the phosphorylation of cognate response regulators and downstream gene expression through histidine kinase modules. We recently demonstrated that the paradigm BphP from Deinococcus radiodurans exclusively acts as a phosphatase but that its photosensory module can control the histidine kinase activity of homologous receptors. Here, we apply this insight to reprogram two widely used setups for bacterial gene expression from blue-light to red-light control. The resultant pREDusk and pREDawn systems allow gene expression to be regulated down and up, respectively, uniformly under red light by 100-fold or more. Both setups are realized as portable, single plasmids that encode all necessary components including the biliverdin-producing machinery. The triggering by red light affords high spatial resolution down to the single-cell level. As pREDusk and pREDawn respond sensitively to red light, they support multiplexing with optogenetic systems sensitive to other light colors. Owing to the superior tissue penetration of red light, the pREDawn system can be triggered at therapeutically safe light intensities through material layers, replicating the optical properties of the skin and skull. Given these advantages, pREDusk and pREDawn enable red-light-regulated expression for diverse use cases in bacteria.
Collapse
Affiliation(s)
- Elina Multamäki
- Department
of Anatomy, University of Helsinki, Helsinki 00014, Finland
| | | | - Oleksii Sieryi
- Optoelectronics
and Measurement Techniques, University of
Oulu, Oulu 90014, Finland
| | - Alexander Bykov
- Optoelectronics
and Measurement Techniques, University of
Oulu, Oulu 90014, Finland
| | - Uwe Gerken
- Lehrstuhl
für Spektroskopie weicher Materie, Universität Bayreuth, Bayreuth 95447, Germany
| | | | - Jürgen Köhler
- Lehrstuhl
für Spektroskopie weicher Materie, Universität Bayreuth, Bayreuth 95447, Germany
| | - Igor Meglinski
- Optoelectronics
and Measurement Techniques, University of
Oulu, Oulu 90014, Finland
- College
of Engineering and Physical Sciences, Aston
University, Birmingham B4 7ET, U.K.
| | - Andreas Möglich
- Lehrstuhl
für Biochemie, Photobiochemie, Universität
Bayreuth, Bayreuth 95447, Germany
| | - Heikki Takala
- Department
of Anatomy, University of Helsinki, Helsinki 00014, Finland
- Department
of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Jyvaskyla 40014, Finland
| |
Collapse
|
29
|
Ohlendorf R, Möglich A. Light-regulated gene expression in Bacteria: Fundamentals, advances, and perspectives. Front Bioeng Biotechnol 2022; 10:1029403. [PMID: 36312534 PMCID: PMC9614035 DOI: 10.3389/fbioe.2022.1029403] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous photoreceptors and genetic circuits emerged over the past two decades and now enable the light-dependent i.e., optogenetic, regulation of gene expression in bacteria. Prompted by light cues in the near-ultraviolet to near-infrared region of the electromagnetic spectrum, gene expression can be up- or downregulated stringently, reversibly, non-invasively, and with precision in space and time. Here, we survey the underlying principles, available options, and prominent examples of optogenetically regulated gene expression in bacteria. While transcription initiation and elongation remain most important for optogenetic intervention, other processes e.g., translation and downstream events, were also rendered light-dependent. The optogenetic control of bacterial expression predominantly employs but three fundamental strategies: light-sensitive two-component systems, oligomerization reactions, and second-messenger signaling. Certain optogenetic circuits moved beyond the proof-of-principle and stood the test of practice. They enable unprecedented applications in three major areas. First, light-dependent expression underpins novel concepts and strategies for enhanced yields in microbial production processes. Second, light-responsive bacteria can be optogenetically stimulated while residing within the bodies of animals, thus prompting the secretion of compounds that grant health benefits to the animal host. Third, optogenetics allows the generation of precisely structured, novel biomaterials. These applications jointly testify to the maturity of the optogenetic approach and serve as blueprints bound to inspire and template innovative use cases of light-regulated gene expression in bacteria. Researchers pursuing these lines can choose from an ever-growing, versatile, and efficient toolkit of optogenetic circuits.
Collapse
Affiliation(s)
- Robert Ohlendorf
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Andreas Möglich
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
- Bayreuth Center for Biochemistry and Molecular Biology, Universität Bayreuth, Bayreuth, Germany
- North-Bavarian NMR Center, Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
30
|
Mahrou B, Pirhanov A, Alijanvand MH, Cho YK, Shin YJ. Degradation-driven protein level oscillation in the yeast Saccharomyces cerevisiae. Biosystems 2022; 219:104717. [PMID: 35690291 DOI: 10.1016/j.biosystems.2022.104717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/02/2022]
Abstract
Generating robust, predictable perturbations in cellular protein levels will advance our understanding of protein function and enable the control of physiological outcomes in biotechnology applications. Timed periodic changes in protein levels play a critical role in the cell division cycle, cellular stress response, and development. Here we report the generation of robust protein level oscillations by controlling the protein degradation rate in the yeast Saccharomyces cerevisiae. Using a photo-sensitive degron and red fluorescent proteins as reporters, we show that under constitutive transcriptional induction, repeated triangular protein level oscillations as fast as 5-10 min-scale can be generated by modulating the protein degradation rate. Consistent with oscillations generated though transcriptional control, we observed a continuous decrease in the magnitude of oscillations as the input modulation frequency increased, indicating low-pass filtering of input perturbation. By using two red fluorescent proteins with distinct maturation times, we show that the oscillations in protein level is largely unaffected by delays originating from functional protein formation. Our study demonstrates the potential for repeated control of protein levels by controlling the protein degradation rate without altering the transcription rate.
Collapse
Affiliation(s)
- Bahareh Mahrou
- Biomedical Engineering Department, University of Connecticut, Storrs, CT, 06269, USA; Electrical Engineering Department, University of Connecticut, Storrs, CT, 06069, USA.
| | - Azady Pirhanov
- Biomedical Engineering Department, University of Connecticut, Storrs, CT, 06269, USA
| | - Moluk Hadi Alijanvand
- Department of Epidemiology and Biostatistics, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Yong Ku Cho
- Biomedical Engineering Department, University of Connecticut, Storrs, CT, 06269, USA; Chemical and Biomolecular Engineering Department, University of Connecticut, Storrs, CT, 06269, USA.
| | - Yong-Jun Shin
- Biomedical Engineering Department, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
31
|
Optogenetic technologies in translational cancer research. Biotechnol Adv 2022; 60:108005. [PMID: 35690273 DOI: 10.1016/j.biotechadv.2022.108005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/07/2022] [Accepted: 06/04/2022] [Indexed: 11/23/2022]
Abstract
Gene and cell therapies are widely recognized as future cancer therapeutics but poor controllability limits their clinical applications. Optogenetics, the use of light-controlled proteins to precisely spatiotemporally regulate the activity of genes and cells, opens up new possibilities for cancer treatment. Light of specific wavelength can activate the immune response, oncolytic activity and modulate cell signaling in tumor cells non-invasively, in dosed manner, with tissue confined action and without side effects of conventional therapies. Here, we review optogenetic approaches in cancer research, their clinical potential and challenges of incorporating optogenetics in cancer therapy. We critically discuss beneficial combinations of optogenetic technologies with therapeutic nanobodies, T-cell activation and CAR-T cell approaches, genome editors and oncolytic viruses. We consider viral vectors and nanoparticles for delivering optogenetic payloads and activating light to tumors. Finally, we highlight herein the prospects for integrating optogenetics into immunotherapy as a novel, fast, reversible and safe approach to cancer treatment.
Collapse
|
32
|
Gramazio S, Trauth J, Bezold F, Essen LO, Taxis C, Spadaccini R. Light-induced fermenter production of derivatives of the sweet protein monellin is maximized in prestationary Saccharomyces cerevisiae cultures. Biotechnol J 2022; 17:e2100676. [PMID: 35481893 DOI: 10.1002/biot.202100676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 04/23/2022] [Indexed: 11/11/2022]
Abstract
Optogenetics has great potential for biotechnology and metabolic engineering due to the cost-effective control of cellular activities. The usage of optogenetics techniques for the biosynthesis of bioactive molecules ensures reduced costs and enhanced regulatory possibilities. This requires development of efficient methods for light-delivery during a production process in a fermenter. Here, we benchmarked the fermenter production of a low-caloric sweetener in Saccharomyces cerevisiae with optogenetic tools against the production in small scale cell culture flasks. An expression system based on the light-controlled interaction between Cry2 and Cib1 was used for sweet-protein production. Optimization of the fermenter process was achieved by increasing the light-flux during the production phase to circumvent shading by yeast cells at high densities. Maximal amounts of the sweet-protein were produced in a pre-stationary growth phase, whereas at later stages, a decay in protein abundance was observable. Our investigation showcases the upscaling of an optogenetic production process from small flasks to a bioreactor. Optogenetic-controlled production in a fermenter is highly cost-effective due to the cheap inducer and therefore a viable alternative to chemicals for a process that requires an induction step. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Simona Gramazio
- Department of Science and Technology, Universita' degli studi del Sannio, Benevento, 82100, Italy
| | - Jonathan Trauth
- Department of Biology/Genetics, Philipps-University Marburg, 35043, Marburg, Germany
| | - Filipp Bezold
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-University Marburg, 35032, Marburg, Germany
| | - Lars-Oliver Essen
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-University Marburg, 35032, Marburg, Germany
| | - Christof Taxis
- Department of Biology/Genetics, Philipps-University Marburg, 35043, Marburg, Germany
| | - Roberta Spadaccini
- Department of Science and Technology, Universita' degli studi del Sannio, Benevento, 82100, Italy
| |
Collapse
|
33
|
Optogenetic tools for microbial synthetic biology. Biotechnol Adv 2022; 59:107953. [DOI: 10.1016/j.biotechadv.2022.107953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/09/2022] [Accepted: 04/04/2022] [Indexed: 12/22/2022]
|
34
|
Hoffman SM, Tang AY, Avalos JL. Optogenetics Illuminates Applications in Microbial Engineering. Annu Rev Chem Biomol Eng 2022; 13:373-403. [PMID: 35320696 DOI: 10.1146/annurev-chembioeng-092120-092340] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Optogenetics has been used in a variety of microbial engineering applications, such as chemical and protein production, studies of cell physiology, and engineered microbe-host interactions. These diverse applications benefit from the precise spatiotemporal control that light affords, as well as its tunability, reversibility, and orthogonality. This combination of unique capabilities has enabled a surge of studies in recent years investigating complex biological systems with completely new approaches. We briefly describe the optogenetic tools that have been developed for microbial engineering, emphasizing the scientific advancements that they have enabled. In particular, we focus on the unique benefits and applications of implementing optogenetic control, from bacterial therapeutics to cybergenetics. Finally, we discuss future research directions, with special attention given to the development of orthogonal multichromatic controls. With an abundance of advantages offered by optogenetics, the future is bright in microbial engineering. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Shannon M Hoffman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA; , ,
| | - Allison Y Tang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA; , ,
| | - José L Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA; , , .,The Andlinger Center for Energy and the Environment, Department of Molecular Biology, and High Meadows Environmental Institute, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
35
|
Engineering eukaryote-like regulatory circuits to expand artificial control mechanisms for metabolic engineering in Saccharomyces cerevisiae. Commun Biol 2022; 5:135. [PMID: 35173283 PMCID: PMC8850539 DOI: 10.1038/s42003-022-03070-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/20/2022] [Indexed: 12/22/2022] Open
Abstract
Temporal control of heterologous pathway expression is critical to achieve optimal efficiency in microbial metabolic engineering. The broadly-used GAL promoter system for engineered yeast (Saccharomyces cerevisiae) suffers from several drawbacks; specifically, unintended induction during laboratory development, and unintended repression in industrial production applications, which decreases overall production capacity. Eukaryotic synthetic circuits have not been well examined to address these problems. Here, we explore a modularised engineering method to deploy new genetic circuits applicable for expanding the control of GAL promoter-driven heterologous pathways in S. cerevisiae. Trans- and cis- modules, including eukaryotic trans-activating-and-repressing mechanisms, were characterised to provide new and better tools for circuit design. A eukaryote-like tetracycline-mediated circuit that delivers stringent repression was engineered to minimise metabolic burden during strain development and maintenance. This was combined with a novel 37 °C induction circuit to relief glucose-mediated repression on the GAL promoter during the bioprocess. This delivered a 44% increase in production of the terpenoid nerolidol, to 2.54 g L-1 in flask cultivation. These negative/positive transcriptional regulatory circuits expand global strategies of metabolic control to facilitate laboratory maintenance and for industry applications.
Collapse
|
36
|
Optogenetic and Chemical Induction Systems for Regulation of Transgene Expression in Plants: Use in Basic and Applied Research. Int J Mol Sci 2022; 23:ijms23031737. [PMID: 35163658 PMCID: PMC8835832 DOI: 10.3390/ijms23031737] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/01/2023] Open
Abstract
Continuous and ubiquitous expression of foreign genes sometimes results in harmful effects on the growth, development and metabolic activities of plants. Tissue-specific promoters help to overcome this disadvantage, but do not allow one to precisely control transgene expression over time. Thus, inducible transgene expression systems have obvious benefits. In plants, transcriptional regulation is usually driven by chemical agents under the control of chemically-inducible promoters. These systems are diverse, but usually contain two elements, the chimeric transcription factor and the reporter gene. The commonly used chemically-induced expression systems are tetracycline-, steroid-, insecticide-, copper-, and ethanol-regulated. Unlike chemical-inducible systems, optogenetic tools enable spatiotemporal, quantitative and reversible control over transgene expression with light, overcoming limitations of chemically-inducible systems. This review updates and summarizes optogenetic and chemical induction methods of transgene expression used in basic plant research and discusses their potential in field applications.
Collapse
|
37
|
Abstract
Optogenetics combines light and genetics to enable precise control of living cells, tissues, and organisms with tailored functions. Optogenetics has the advantages of noninvasiveness, rapid responsiveness, tunable reversibility, and superior spatiotemporal resolution. Following the initial discovery of microbial opsins as light-actuated ion channels, a plethora of naturally occurring or engineered photoreceptors or photosensitive domains that respond to light at varying wavelengths has ushered in the next chapter of optogenetics. Through protein engineering and synthetic biology approaches, genetically-encoded photoswitches can be modularly engineered into protein scaffolds or host cells to control a myriad of biological processes, as well as to enable behavioral control and disease intervention in vivo. Here, we summarize these optogenetic tools on the basis of their fundamental photochemical properties to better inform the chemical basis and design principles. We also highlight exemplary applications of opsin-free optogenetics in dissecting cellular physiology (designated "optophysiology"), and describe the current progress, as well as future trends, in wireless optogenetics, which enables remote interrogation of physiological processes with minimal invasiveness. This review is anticipated to spark novel thoughts on engineering next-generation optogenetic tools and devices that promise to accelerate both basic and translational studies.
Collapse
Affiliation(s)
- Peng Tan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| |
Collapse
|
38
|
Hunt VM, Chen W. Deciphering the Design Rules of Toehold-Gated sgRNA for Conditional Activation of Gene Expression and Protein Degradation in Mammalian Cells. ACS Synth Biol 2022; 11:397-405. [PMID: 34994551 DOI: 10.1021/acssynbio.1c00479] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new class of toehold-gated gRNAs (thgRNAs) has been created to provide conditional gene regulation via RNA-mediated activation. However, the detailed design principles remain elusive. Here, we presented an investigation into the design rules for conditional gRNAs by systematically varying the toehold, stem, and flexible loop regions of thgRNA for optimal gene activation in HeLa cells. We determined that nonspecific interactions between the toehold region and the flexible loop are the main driver for the background leak observed in the OFF state. By trimming the toehold length from 15 to 5 nt, the improved thgNT-F design led to a 38-fold increase in the activated ON state with no observable background leak. The same design rule was successfully adapted to target two different regions on the mCherry mRNA with the same impressive fold change. Using the thgRNA to direct conditional protein degradation, we showed up to 8-fold knockdown of a reporter protein through activating expression of a bifunctional ubiquibody GS2-IpaH9.8. This new strategy may find many new applications for cell culture control or cell therapy by removing unwanted proteins in an RNA-responsive manner.
Collapse
Affiliation(s)
- Victoria M Hunt
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
39
|
Bansal A, Shikha S, Zhang Y. Towards translational optogenetics. Nat Biomed Eng 2022; 7:349-369. [PMID: 35027688 DOI: 10.1038/s41551-021-00829-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 10/21/2021] [Indexed: 02/07/2023]
Abstract
Optogenetics is widely used to interrogate the neural circuits underlying disease and has most recently been harnessed for therapeutic applications. The optogenetic toolkit consists of light-responsive proteins that modulate specific cellular functions, vectors for the delivery of the transgenes that encode the light-responsive proteins to targeted cellular populations, and devices for the delivery of light of suitable wavelengths at effective fluence rates. A refined toolkit with a focus towards translational uses would include efficient and safer viral and non-viral gene-delivery vectors, increasingly red-shifted photoresponsive proteins, nanomaterials that efficiently transduce near-infrared light deep into tissue, and wireless implantable light-delivery devices that allow for spatiotemporally precise interventions at clinically relevant tissue depths. In this Review, we examine the current optogenetics toolkit and the most notable preclinical and translational uses of optogenetics, and discuss future methodological and translational developments and bottlenecks.
Collapse
Affiliation(s)
- Akshaya Bansal
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Swati Shikha
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore. .,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore. .,NUS Suzhou Research Institute, Suzhou, Jiangsu, P. R. China.
| |
Collapse
|
40
|
Crncec A, Hochegger H. Degron Tagging Using mAID and SMASh Tags in RPE-1 Cells. Methods Mol Biol 2022; 2415:183-197. [PMID: 34972955 DOI: 10.1007/978-1-0716-1904-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Degron tags allow the precise and well-controlled analysis of essential genes by rapidly inducing degradation of the protein of interest. This is critical when the consequences of loss of gene function needs to be analyzed in a strictly defined time window such as a specific cell cycle phase. We have recently published the successful application of degron tags to analyze cell cycle genes such as CDC6, CCNA2, and CCNB1. A critical aspect of our approach was to combine two tags to generate a synergy in the degradation dynamics. Here we outline our approach and describe some of the essential steps to generate double-degron-tagged genes in RPE-1 cells. Similar procedures can easily be applied to other cell lines.
Collapse
Affiliation(s)
- Adrijana Crncec
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
41
|
Bergs A, Henss T, Glock C, Nagpal J, Gottschalk A. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior. Methods Mol Biol 2022; 2468:89-115. [PMID: 35320562 DOI: 10.1007/978-1-0716-2181-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the past 15 years, optogenetic methods have revolutionized neuroscientific and cell biological research, also in the nematode Caenorhabditis elegans. In this chapter, we give an update about current optogenetic tools and methods to address neuronal activity and inhibition, as well as second messenger signaling, based on microbial rhodopsins. We address channelrhodopsins and variants thereof, which conduct cations or anions, for depolarization and hyperpolarization of the membrane potential. Also, we cover ion pumping rhodopsins, like halorhodopsin, Mac, and Arch. A recent addition to rhodopsin-based optogenetics is voltage imaging tools that allow fluorescent readout of membrane voltage (directly, via fluorescence of the rhodopsin chromophore retinal, or indirectly, via electrochromic FRET). Last, we report on a new addition to the optogenetic toolbox, which is rhodopsin guanylyl cyclases, as well as mutated variants with specificity for cyclic AMP. These can be used to regulate intracellular levels of cGMP and cAMP, which are important second messengers in sensory and other neurons. We further show how they can be combined with cyclic nucleotide-gated channels in two-component optogenetics, for depolarization or hyperpolarization of membrane potential. For all tools, we present protocols for straightforward experimentation to address neuronal activation and inhibition, particularly at the neuromuscular junction, and for combined optogenetic actuation and Ca2+ imaging. We also provide protocols for usage of rhodopsin guanylyl and adenylyl cyclases. Finally, we list a number of points to consider when designing and conducting rhodopsin-based optogenetic experiments.
Collapse
Affiliation(s)
- Amelie Bergs
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Thilo Henss
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
| | - Caspar Glock
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
- Max-Planck-Institute for Brain Research, Frankfurt, Germany
| | - Jatin Nagpal
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.
- Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.
| |
Collapse
|
42
|
Pook B, Goenrich J, Hasenjäger S, Essen LO, Spadaccini R, Taxis C. An Optogenetic Toolbox for Synergistic Regulation of Protein Abundance. ACS Synth Biol 2021; 10:3411-3421. [PMID: 34797069 DOI: 10.1021/acssynbio.1c00350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Optogenetic tools have been proven to be useful in regulating cellular processes via an external signal. Light can be applied with high spatial and temporal precision as well as easily modulated in quantity and quality. Natural photoreceptors of the light oxygen voltage (LOV) domain family have been characterized in depth, especially the LOV2 domain of Avena sativa (As) phototropin 1 and its derivatives. Information on the behavior of LOV2 variants with changes in the photocycle or the light response has been recorded. Here, we applied well-described photocycle mutations on the AsLOV2 domain of a photosensitive transcription factor (psTF) as well as its variant that is part of the photosensitive degron (psd) psd3 in Saccharomyces cerevisiae. In vivo and in vitro measurements revealed that each photoreceptor component of the light-sensitive transcription factor and the psd3 module can be modulated in its light sensitivity by mutations that are known to prolong or shorten the dark-reversion time of AsLOV2. Yet, only two of the mutations showed differences in the in vivo behavior in the context of the psd3 module. For the AsLOV2 domain in the context of the psTF, we observed different characteristics for all four variants. Molecular dynamics simulations showed distinct influences of the shortened Jα helix and the V416L mutation in the context of the psd3 photoreceptor. In conclusion, we demonstrated the tunability of two optogenetic tools with a set of mutations that affect the photocycle of the inherent photoreceptors. As these optogenetic tools are concurrent in their action, pleiotropic effects on target protein abundance are achievable with the simultaneous action of the diverse photoreceptor variants.
Collapse
Affiliation(s)
- Bastian Pook
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-University Marburg, 35032 Marburg, Germany
| | - Juri Goenrich
- Department of Biology/Genetics, Philipps-University Marburg, 35043 Marburg, Germany
| | - Sophia Hasenjäger
- Department of Biology/Genetics, Philipps-University Marburg, 35043 Marburg, Germany
| | - Lars-Oliver Essen
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-University Marburg, 35032 Marburg, Germany
| | - Roberta Spadaccini
- Department of Science and Technology, Università degli Studi del Sannio, 82100 Benevento, Italy
| | - Christof Taxis
- Department of Biology/Genetics, Philipps-University Marburg, 35043 Marburg, Germany
| |
Collapse
|
43
|
Directed evolution approaches for optogenetic tool development. Biochem Soc Trans 2021; 49:2737-2748. [PMID: 34783342 DOI: 10.1042/bst20210700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022]
Abstract
Photoswitchable proteins enable specific molecular events occurring in complex biological settings to be probed in a rapid and reversible fashion. Recent progress in the development of photoswitchable proteins as components of optogenetic tools has been greatly facilitated by directed evolution approaches in vitro, in bacteria, or in yeast. We review these developments and suggest future directions for this rapidly advancing field.
Collapse
|
44
|
Tornabene P, Trapani I, Centrulo M, Marrocco E, Minopoli R, Lupo M, Iodice C, Gesualdo C, Simonelli F, Surace EM, Auricchio A. Inclusion of a degron reduces levelsof undesired inteins after AAV-mediated protein trans-splicing in the retina. Mol Ther Methods Clin Dev 2021; 23:448-459. [PMID: 34786437 PMCID: PMC8571531 DOI: 10.1016/j.omtm.2021.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 12/02/2022]
Abstract
Split intein-mediated protein trans-splicing expands AAV transfer capacity, thus overcoming the limited AAV cargo. However, non-mammalian inteins persist as trans-splicing by-products, and this could raise safety concerns for AAV intein clinical applications. In this study, we tested the ability of several degrons to selectively decrease levels of inteins after protein trans-splicing and found that a version of E. coli dihydrofolate reductase, which we have shortened to better fit into the AAV vector, is the most effective. We show that subretinal administration of AAV intein armed with this short degron is both safe and effective in a mouse model of Stargardt disease (STGD1), which is the most common form of inherited macular degeneration in humans. This supports the use of optimized AAV intein for gene therapy of both STGD1 and other conditions that require transfer of large genes.
Collapse
Affiliation(s)
- Patrizia Tornabene
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Ivana Trapani
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
- Medical Genetics, Department of Translational Medicine, Federico II University, Naples 80131, Italy
| | - Miriam Centrulo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Elena Marrocco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Renato Minopoli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Mariangela Lupo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Carolina Iodice
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Carlo Gesualdo
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania L. Vanvitelli, Naples 80131, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania L. Vanvitelli, Naples 80131, Italy
| | - Enrico M. Surace
- Medical Genetics, Department of Translational Medicine, Federico II University, Naples 80131, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
- Medical Genetics, Department of Advanced Biomedicine, Federico II University, Naples 80131, Italy
- Correspondence: Alberto Auricchio, MD, Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy; Medical Genetics, Department of Translational Medicine, Federico II University, Naples 80131, Italy.
| |
Collapse
|
45
|
Maltan L, Najjar H, Tiffner A, Derler I. Deciphering Molecular Mechanisms and Intervening in Physiological and Pathophysiological Processes of Ca 2+ Signaling Mechanisms Using Optogenetic Tools. Cells 2021; 10:3340. [PMID: 34943850 PMCID: PMC8699489 DOI: 10.3390/cells10123340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Calcium ion channels are involved in numerous biological functions such as lymphocyte activation, muscle contraction, neurotransmission, excitation, hormone secretion, gene expression, cell migration, memory, and aging. Therefore, their dysfunction can lead to a wide range of cellular abnormalities and, subsequently, to diseases. To date various conventional techniques have provided valuable insights into the roles of Ca2+ signaling. However, their limited spatiotemporal resolution and lack of reversibility pose significant obstacles in the detailed understanding of the structure-function relationship of ion channels. These drawbacks could be partially overcome by the use of optogenetics, which allows for the remote and well-defined manipulation of Ca2+-signaling. Here, we review the various optogenetic tools that have been used to achieve precise control over different Ca2+-permeable ion channels and receptors and associated downstream signaling cascades. We highlight the achievements of optogenetics as well as the still-open questions regarding the resolution of ion channel working mechanisms. In addition, we summarize the successes of optogenetics in manipulating many Ca2+-dependent biological processes both in vitro and in vivo. In summary, optogenetics has significantly advanced our understanding of Ca2+ signaling proteins and the used tools provide an essential basis for potential future therapeutic application.
Collapse
Affiliation(s)
| | | | | | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria; (L.M.); (H.N.); (A.T.)
| |
Collapse
|
46
|
Gondal MN, Chaudhary SU. Navigating Multi-Scale Cancer Systems Biology Towards Model-Driven Clinical Oncology and Its Applications in Personalized Therapeutics. Front Oncol 2021; 11:712505. [PMID: 34900668 PMCID: PMC8652070 DOI: 10.3389/fonc.2021.712505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022] Open
Abstract
Rapid advancements in high-throughput omics technologies and experimental protocols have led to the generation of vast amounts of scale-specific biomolecular data on cancer that now populates several online databases and resources. Cancer systems biology models built using this data have the potential to provide specific insights into complex multifactorial aberrations underpinning tumor initiation, development, and metastasis. Furthermore, the annotation of these single- and multi-scale models with patient data can additionally assist in designing personalized therapeutic interventions as well as aid in clinical decision-making. Here, we have systematically reviewed the emergence and evolution of (i) repositories with scale-specific and multi-scale biomolecular cancer data, (ii) systems biology models developed using this data, (iii) associated simulation software for the development of personalized cancer therapeutics, and (iv) translational attempts to pipeline multi-scale panomics data for data-driven in silico clinical oncology. The review concludes that the absence of a generic, zero-code, panomics-based multi-scale modeling pipeline and associated software framework, impedes the development and seamless deployment of personalized in silico multi-scale models in clinical settings.
Collapse
Affiliation(s)
- Mahnoor Naseer Gondal
- Biomedical Informatics Research Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Safee Ullah Chaudhary
- Biomedical Informatics Research Laboratory, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
47
|
Lindner F, Diepold A. Optogenetics in bacteria - applications and opportunities. FEMS Microbiol Rev 2021; 46:6427354. [PMID: 34791201 PMCID: PMC8892541 DOI: 10.1093/femsre/fuab055] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Optogenetics holds the promise of controlling biological processes with superb temporal and spatial resolution at minimal perturbation. Although many of the light-reactive proteins used in optogenetic systems are derived from prokaryotes, applications were largely limited to eukaryotes for a long time. In recent years, however, an increasing number of microbiologists use optogenetics as a powerful new tool to study and control key aspects of bacterial biology in a fast and often reversible manner. After a brief discussion of optogenetic principles, this review provides an overview of the rapidly growing number of optogenetic applications in bacteria, with a particular focus on studies venturing beyond transcriptional control. To guide future experiments, we highlight helpful tools, provide considerations for successful application of optogenetics in bacterial systems, and identify particular opportunities and challenges that arise when applying these approaches in bacteria.
Collapse
Affiliation(s)
- Florian Lindner
- Max-Planck-Institute for Terrestrial Microbiology, Department of Ecophysiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Andreas Diepold
- Max-Planck-Institute for Terrestrial Microbiology, Department of Ecophysiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany.,SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany
| |
Collapse
|
48
|
Nakanishi H. Protein-Based Systems for Translational Regulation of Synthetic mRNAs in Mammalian Cells. Life (Basel) 2021; 11:life11111192. [PMID: 34833067 PMCID: PMC8621430 DOI: 10.3390/life11111192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Synthetic mRNAs, which are produced by in vitro transcription, have been recently attracting attention because they can express any transgenes without the risk of insertional mutagenesis. Although current synthetic mRNA medicine is not designed for spatiotemporal or cell-selective regulation, many preclinical studies have developed the systems for the translational regulation of synthetic mRNAs. Such translational regulation systems will cope with high efficacy and low adverse effects by producing the appropriate amount of therapeutic proteins, depending on the context. Protein-based regulation is one of the most promising approaches for the translational regulation of synthetic mRNAs. As synthetic mRNAs can encode not only output proteins but also regulator proteins, all components of protein-based regulation systems can be delivered as synthetic mRNAs. In addition, in the protein-based regulation systems, the output protein can be utilized as the input for the subsequent regulation to construct multi-layered gene circuits, which enable complex and sophisticated regulation. In this review, I introduce what types of proteins have been used for translational regulation, how to combine them, and how to design effective gene circuits.
Collapse
Affiliation(s)
- Hideyuki Nakanishi
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
49
|
Pérez ALA, Piva LC, Fulber JPC, de Moraes LMP, De Marco JL, Vieira HLA, Coelho CM, Reis VCB, Torres FAG. Optogenetic strategies for the control of gene expression in yeasts. Biotechnol Adv 2021; 54:107839. [PMID: 34592347 DOI: 10.1016/j.biotechadv.2021.107839] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022]
Abstract
Optogenetics involves the use of light to control cellular functions and has become increasingly popular in various areas of research, especially in the precise control of gene expression. While this technology is already well established in neurobiology and basic research, its use in bioprocess development is still emerging. Some optogenetic switches have been implemented in yeasts for different purposes, taking advantage of a wide repertoire of biological parts and relatively easy genetic manipulation. In this review, we cover the current strategies used for the construction of yeast strains to be used in optogenetically controlled protein or metabolite production, as well as the operational aspects to be considered for the scale-up of this type of process. Finally, we discuss the main applications of optogenetic switches in yeast systems and highlight the main advantages and challenges of bioprocess development considering future directions for this field.
Collapse
Affiliation(s)
- Ana Laura A Pérez
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Luiza C Piva
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Julia P C Fulber
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Lidia M P de Moraes
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Janice L De Marco
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Hugo L A Vieira
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Cintia M Coelho
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Viviane C B Reis
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Fernando A G Torres
- Instituto de Ciências Biológicas, Departamento de Biologia Celular, Bloco K, 1° andar, Universidade de Brasília, Brasília 70910-900, Brazil.
| |
Collapse
|
50
|
Kapitonova MA, Shadrina OA, Korolev SP, Gottikh MB. Main Approaches to Controlled Protein Degradation in the Cell. Mol Biol 2021. [DOI: 10.1134/s0026893321030067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|