1
|
Matsui T, Hung PH, Mei H, Liu X, Li F, Collins J, Li W, Miller D, Wilson N, Toro E, Taghon GJ, Sherlock G, Levy S. High-throughput DNA engineering by mating bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611066. [PMID: 39282399 PMCID: PMC11398300 DOI: 10.1101/2024.09.03.611066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
To reduce the operational friction and scale DNA engineering, we report here an in vivo DNA assembly technology platform called SCRIVENER (Sequential Conjugation and Recombination for In Vivo Elongation of Nucleotides with low ERrors). SCRIVENER combines bacterial conjugation, in vivo DNA cutting, and in vivo homologous recombination to seamlessly stitch blocks of DNA together by mating E. coli in large arrays or pools. This workflow is simpler, cheaper, and higher throughput than current DNA assembly approaches that require DNA to be moved in and out of cells at different procedural steps. We perform over 5,000 assemblies with two to 13 DNA blocks that range from 240 bp to 8 kb and show that SCRIVENER is capable of assembling constructs as long as 23 kb at relatively high throughput and fidelity. Most SCRIVENER errors are deletions between long interspersed repeats. However, SCRIVENER can overcome these errors by enabling assembly and sequence verification at high replication at a nominal additional cost per replicate. We show that SCRIVENER can be used to build combinatorial libraries in arrays or pools, and that DNA blocks onboarded into the platform can be repurposed and reused with any other DNA block in high throughput without a PCR step. Because of these features, DNA engineering with SCRIVENER has the potential to accelerate design-build-test-learn cycles of DNA products.
Collapse
Affiliation(s)
- Takeshi Matsui
- BacStitch DNA, Inc., Los Altos CA
- SLAC National Accelerator Laboratory, Menlo Park, CA
| | - Po-Hsiang Hung
- BacStitch DNA, Inc., Los Altos CA
- Stanford Department of Genetics, Palo Alto, CA
| | - Han Mei
- BacStitch DNA, Inc., Los Altos CA
- SLAC National Accelerator Laboratory, Menlo Park, CA
- Present address, Asimov, Inc., Boston, MA
| | - Xianan Liu
- SLAC National Accelerator Laboratory, Menlo Park, CA
- Twist Biosciences, Inc., South San Francisco, CA
| | - Fangfei Li
- BacStitch DNA, Inc., Los Altos CA
- Stanford Department of Genetics, Palo Alto, CA
| | | | - Weiyi Li
- SLAC National Accelerator Laboratory, Menlo Park, CA
- Stanford Department of Genetics, Palo Alto, CA
| | - Darach Miller
- BacStitch DNA, Inc., Los Altos CA
- SLAC National Accelerator Laboratory, Menlo Park, CA
| | | | - Esteban Toro
- Twist Biosciences, Inc., South San Francisco, CA
| | | | | | - Sasha Levy
- BacStitch DNA, Inc., Los Altos CA
- SLAC National Accelerator Laboratory, Menlo Park, CA
| |
Collapse
|
2
|
Chen C, Henderson JN, Ruchkin DA, Kirsh JM, Baranov MS, Bogdanov AM, Mills JH, Boxer SG, Fang C. Structural Characterization of Fluorescent Proteins Using Tunable Femtosecond Stimulated Raman Spectroscopy. Int J Mol Sci 2023; 24:11991. [PMID: 37569365 PMCID: PMC10418586 DOI: 10.3390/ijms241511991] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The versatile functions of fluorescent proteins (FPs) as fluorescence biomarkers depend on their intrinsic chromophores interacting with the protein environment. Besides X-ray crystallography, vibrational spectroscopy represents a highly valuable tool for characterizing the chromophore structure and revealing the roles of chromophore-environment interactions. In this work, we aim to benchmark the ground-state vibrational signatures of a series of FPs with emission colors spanning from green, yellow, orange, to red, as well as the solvated model chromophores for some of these FPs, using wavelength-tunable femtosecond stimulated Raman spectroscopy (FSRS) in conjunction with quantum calculations. We systematically analyzed and discussed four factors underlying the vibrational properties of FP chromophores: sidechain structure, conjugation structure, chromophore conformation, and the protein environment. A prominent bond-stretching mode characteristic of the quinoidal resonance structure is found to be conserved in most FPs and model chromophores investigated, which can be used as a vibrational marker to interpret chromophore-environment interactions and structural effects on the electronic properties of the chromophore. The fundamental insights gained for these light-sensing units (e.g., protein active sites) substantiate the unique and powerful capability of wavelength-tunable FSRS in delineating FP chromophore properties with high sensitivity and resolution in solution and protein matrices. The comprehensive characterization for various FPs across a colorful palette could also serve as a solid foundation for future spectroscopic studies and the rational engineering of FPs with diverse and improved functions.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA;
| | - J. Nathan Henderson
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.N.H.); (J.H.M.)
| | - Dmitry A. Ruchkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (D.A.R.); (M.S.B.); (A.M.B.)
| | - Jacob M. Kirsh
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; (J.M.K.); (S.G.B.)
| | - Mikhail S. Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (D.A.R.); (M.S.B.); (A.M.B.)
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Alexey M. Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; (D.A.R.); (M.S.B.); (A.M.B.)
| | - Jeremy H. Mills
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (J.N.H.); (J.H.M.)
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Steven G. Boxer
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; (J.M.K.); (S.G.B.)
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331, USA;
| |
Collapse
|
3
|
Henrickson A, Gorbet GE, Savelyev A, Kim M, Hargreaves J, Schultz SK, Kothe U, Demeler B. Multi-wavelength analytical ultracentrifugation of biopolymer mixtures and interactions. Anal Biochem 2022; 652:114728. [PMID: 35609686 PMCID: PMC10276540 DOI: 10.1016/j.ab.2022.114728] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 11/01/2022]
Abstract
Multi-wavelength analytical ultracentrifugation (MW-AUC) is a recent development made possible by new analytical ultracentrifuge optical systems. MW-AUC extends the basic hydrodynamic information content of AUC and provides access to a wide range of new applications for biopolymer characterization, and is poised to become an essential analytical tool to study macromolecular interactions. It adds an orthogonal spectral dimension to the traditional hydrodynamic characterization by exploiting unique chromophores in analyte mixtures that may or may not interact. Here we illustrate the utility of MW-AUC for experimental investigations where the benefit of the added spectral dimension provides critical information that is not accessible, and impossible to resolve with traditional AUC methods. We demonstrate the improvements in resolution and information content obtained by this technique compared to traditional single- or dual-wavelength approaches, and discuss experimental design considerations and limitations of the method. We further address the advantages and disadvantages of the two MW optical systems available today, and the differences in data analysis strategies between the two systems.
Collapse
Affiliation(s)
- Amy Henrickson
- University of Lethbridge, Dept. of Chemistry and Biochemistry, Lethbridge, Alberta, Canada
| | | | - Alexey Savelyev
- University of Montana, Dept. of Chemistry, Missoula, MT, USA
| | - Minji Kim
- Carnegie Mellon University, Dept. of Computer Science, Pittsburgh, PA, USA
| | | | - Sarah K Schultz
- University of Lethbridge, Dept. of Chemistry and Biochemistry, Lethbridge, Alberta, Canada
| | - Ute Kothe
- University of Lethbridge, Dept. of Chemistry and Biochemistry, Lethbridge, Alberta, Canada; University of Manitoba, Department of Chemistry, Winnipeg, Manitoba, Canada
| | - Borries Demeler
- University of Lethbridge, Dept. of Chemistry and Biochemistry, Lethbridge, Alberta, Canada; AUC Solutions, LLC, Houston, TX, USA; University of Montana, Dept. of Chemistry, Missoula, MT, USA.
| |
Collapse
|
4
|
Zhai L, Nakashima R, Shinoda H, Ike Y, Matsuda T, Nagai T. Structure-based analysis and evolution of a monomerized red-colored chromoprotein from the Olindias formosa jellyfish. Protein Sci 2022; 31:e4285. [PMID: 35481635 PMCID: PMC8994484 DOI: 10.1002/pro.4285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/08/2022] [Accepted: 02/13/2022] [Indexed: 11/13/2022]
Abstract
GFP-like chromoproteins (CPs) with non-fluorescence ability have been used as bioimaging probes. Existing CPs have voids in the optical absorption window which limits their extensibility. The development of new CP color is therefore ongoing. Here, we cloned CPs from the jellyfish, Olindias formosa, and developed a completely non-fluorescent monomeric red CP, R-Velour, with an absorption peak at 528 nm. To analyze the photophysical properties from a structural aspect, we determined the crystal structure of R-Velour at a 2.1 Å resolution. R-Velour has a trans-chromophore similar to the green fluorescence protein, Gamillus, derived from the same jellyfish. However, in contrast to the two coplanar chromophoric rings in Gamillus, R-Velour has a large torsion inducing non-fluorescence property. Through site-directed mutagenesis, we surveyed residues surrounding the chromophore and found a key residue, Ser155, which contributes to the generation of four-color variants with the bathochromic and hypsochromic shift of the absorption peak, ranging from 506 to 554 nm. The recently proposed spectrum shift theory, based on the Marcus-Hush model, supports the spectrum shift of these mutants. These findings may support further development of R-Velour variants with useful absorption characteristics for bioimaging, including fluorescence lifetime imaging and photoacoustic imaging.
Collapse
Affiliation(s)
- Le Zhai
- Graduate School of Frontier BioscienceOsaka UniversitySuitaJapan
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
| | - Ryosuke Nakashima
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
| | - Hajime Shinoda
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
| | - Yoshimasa Ike
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
- Department of BiotechnologyGraduate School of Engineering, Osaka UniversitySuitaJapan
| | - Tomoki Matsuda
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
- Department of BiotechnologyGraduate School of Engineering, Osaka UniversitySuitaJapan
| | - Takeharu Nagai
- Graduate School of Frontier BioscienceOsaka UniversitySuitaJapan
- SANKEN (The Institute of Scientific and Industrial Research)Osaka UniversityIbarakiJapan
- Department of BiotechnologyGraduate School of Engineering, Osaka UniversitySuitaJapan
| |
Collapse
|
5
|
Molecular super-gluing: a straightforward tool for antibody labelling and its application to mycotoxin biosensing. Anal Bioanal Chem 2022; 414:5373-5384. [PMID: 34978587 PMCID: PMC9242940 DOI: 10.1007/s00216-021-03841-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 11/29/2022]
Abstract
Mycotoxins are low molecular weight toxic compounds, which can cause severe health problems in animals and humans. Immunoassays allow rapid, simple and cost-effective screening of mycotoxins. Sandwich assays with a direct readout provide great improvement in terms of selectivity and sensitivity, compared to the widely used competitive assay formats, for the analysis of low molecular weight molecules. In this work, we report a non-competitive fluorescence anti-immune complex (IC) immunoassay, based on the specific recognition of HT-2 toxin with a pair of recombinant antibody fragments, namely antigen-binding fragment (Fab) (anti-HT-2 (10) Fab) and single-chain variable fragment (scFv) (anti-IC HT-2 (10) scFv). The SpyTag and SpyCatcher glue proteins were applied for the first time as a bioconjugation tool for the analysis of mycotoxins. To this aim, a SpyTag-mScarlet-I (fluorescent protein) and scFv-SpyCatcher fusion proteins were constructed, produced and fused in situ during the assay by spontaneous Tag-Catcher binding. The assay showed an excellent sensitivity with an EC50 of 4.8 ± 0.4 ng mL−1 and a dynamic range from 1.7 ± 0.3 to 13 ± 2 ng mL−1, an inter-day reproducibility of 8.5% and a high selectivity towards HT-2 toxin without cross-reactivity with other Fusarium toxins. The bioassay was applied to the analysis of the toxin in an oat reference material and in oat samples, with a LOD of 0.6 µg kg−1, and the results were validated by analysing a certificate reference material and by HPLC–MS/MS.
Collapse
|
6
|
Abdelfattah AS, Ahuja S, Akkin T, Allu SR, Brake J, Boas DA, Buckley EM, Campbell RE, Chen AI, Cheng X, Čižmár T, Costantini I, De Vittorio M, Devor A, Doran PR, El Khatib M, Emiliani V, Fomin-Thunemann N, Fainman Y, Fernandez-Alfonso T, Ferri CGL, Gilad A, Han X, Harris A, Hillman EMC, Hochgeschwender U, Holt MG, Ji N, Kılıç K, Lake EMR, Li L, Li T, Mächler P, Miller EW, Mesquita RC, Nadella KMNS, Nägerl UV, Nasu Y, Nimmerjahn A, Ondráčková P, Pavone FS, Perez Campos C, Peterka DS, Pisano F, Pisanello F, Puppo F, Sabatini BL, Sadegh S, Sakadzic S, Shoham S, Shroff SN, Silver RA, Sims RR, Smith SL, Srinivasan VJ, Thunemann M, Tian L, Tian L, Troxler T, Valera A, Vaziri A, Vinogradov SA, Vitale F, Wang LV, Uhlířová H, Xu C, Yang C, Yang MH, Yellen G, Yizhar O, Zhao Y. Neurophotonic tools for microscopic measurements and manipulation: status report. NEUROPHOTONICS 2022; 9:013001. [PMID: 35493335 PMCID: PMC9047450 DOI: 10.1117/1.nph.9.s1.013001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Neurophotonics was launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, Neurophotonics' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.0 is pivoting towards applications of these novel tools in the quest to understand the brain, this status report reviews an extensive and diverse toolkit of novel methods to explore brain function that have emerged from the BRAIN Initiative and related large-scale efforts for measurement and manipulation of brain structure and function. Here, we focus on neurophotonic tools mostly applicable to animal studies. A companion report, scheduled to appear later this year, will cover diffuse optical imaging methods applicable to noninvasive human studies. For each domain, we outline the current state-of-the-art of the respective technologies, identify the areas where innovation is needed, and provide an outlook for the future directions.
Collapse
Affiliation(s)
- Ahmed S. Abdelfattah
- Brown University, Department of Neuroscience, Providence, Rhode Island, United States
| | - Sapna Ahuja
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Taner Akkin
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Srinivasa Rao Allu
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Joshua Brake
- Harvey Mudd College, Department of Engineering, Claremont, California, United States
| | - David A. Boas
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Erin M. Buckley
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University, Department of Pediatrics, Atlanta, Georgia, United States
| | - Robert E. Campbell
- University of Tokyo, Department of Chemistry, Tokyo, Japan
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Anderson I. Chen
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Xiaojun Cheng
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Tomáš Čižmár
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Irene Costantini
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Biology, Florence, Italy
- National Institute of Optics, National Research Council, Rome, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Anna Devor
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Patrick R. Doran
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Mirna El Khatib
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | | | - Natalie Fomin-Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Yeshaiahu Fainman
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Tomas Fernandez-Alfonso
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Christopher G. L. Ferri
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Ariel Gilad
- The Hebrew University of Jerusalem, Institute for Medical Research Israel–Canada, Department of Medical Neurobiology, Faculty of Medicine, Jerusalem, Israel
| | - Xue Han
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Andrew Harris
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | | | - Ute Hochgeschwender
- Central Michigan University, Department of Neuroscience, Mount Pleasant, Michigan, United States
| | - Matthew G. Holt
- University of Porto, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
| | - Na Ji
- University of California Berkeley, Department of Physics, Berkeley, California, United States
| | - Kıvılcım Kılıç
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evelyn M. R. Lake
- Yale School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, United States
| | - Lei Li
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Tianqi Li
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, United States
| | - Philipp Mächler
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Evan W. Miller
- University of California Berkeley, Departments of Chemistry and Molecular & Cell Biology and Helen Wills Neuroscience Institute, Berkeley, California, United States
| | | | | | - U. Valentin Nägerl
- Interdisciplinary Institute for Neuroscience University of Bordeaux & CNRS, Bordeaux, France
| | - Yusuke Nasu
- University of Tokyo, Department of Chemistry, Tokyo, Japan
| | - Axel Nimmerjahn
- Salk Institute for Biological Studies, Waitt Advanced Biophotonics Center, La Jolla, California, United States
| | - Petra Ondráčková
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Francesco S. Pavone
- National Institute of Optics, National Research Council, Rome, Italy
- University of Florence, European Laboratory for Non-Linear Spectroscopy, Department of Physics, Florence, Italy
| | - Citlali Perez Campos
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Darcy S. Peterka
- Columbia University, Zuckerman Mind Brain Behavior Institute, New York, United States
| | - Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | - Francesca Puppo
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Bernardo L. Sabatini
- Harvard Medical School, Howard Hughes Medical Institute, Department of Neurobiology, Boston, Massachusetts, United States
| | - Sanaz Sadegh
- University of California San Diego, Departments of Neurosciences, La Jolla, California, United States
| | - Sava Sakadzic
- Massachusetts General Hospital, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, United States
| | - Shy Shoham
- New York University Grossman School of Medicine, Tech4Health and Neuroscience Institutes, New York, New York, United States
| | - Sanaya N. Shroff
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - R. Angus Silver
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Ruth R. Sims
- Sorbonne University, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Spencer L. Smith
- University of California Santa Barbara, Department of Electrical and Computer Engineering, Santa Barbara, California, United States
| | - Vivek J. Srinivasan
- New York University Langone Health, Departments of Ophthalmology and Radiology, New York, New York, United States
| | - Martin Thunemann
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Lei Tian
- Boston University, Departments of Electrical Engineering and Biomedical Engineering, Boston, Massachusetts, United States
| | - Lin Tian
- University of California Davis, Department of Biochemistry and Molecular Medicine, Davis, California, United States
| | - Thomas Troxler
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Antoine Valera
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Alipasha Vaziri
- Rockefeller University, Laboratory of Neurotechnology and Biophysics, New York, New York, United States
- The Rockefeller University, The Kavli Neural Systems Institute, New York, New York, United States
| | - Sergei A. Vinogradov
- University of Pennsylvania, Perelman School of Medicine, Department of Biochemistry and Biophysics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, School of Arts and Sciences, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Flavia Vitale
- Center for Neuroengineering and Therapeutics, Departments of Neurology, Bioengineering, Physical Medicine and Rehabilitation, Philadelphia, Pennsylvania, United States
| | - Lihong V. Wang
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Pasadena, California, United States
| | - Hana Uhlířová
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czech Republic
| | - Chris Xu
- Cornell University, School of Applied and Engineering Physics, Ithaca, New York, United States
| | - Changhuei Yang
- California Institute of Technology, Departments of Electrical Engineering, Bioengineering and Medical Engineering, Pasadena, California, United States
| | - Mu-Han Yang
- University of California San Diego, Department of Electrical and Computer Engineering, La Jolla, California, United States
| | - Gary Yellen
- Harvard Medical School, Department of Neurobiology, Boston, Massachusetts, United States
| | - Ofer Yizhar
- Weizmann Institute of Science, Department of Brain Sciences, Rehovot, Israel
| | - Yongxin Zhao
- Carnegie Mellon University, Department of Biological Sciences, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
7
|
Aryal SP, Neupane KR, Masud AA, Richards CI. Characterization of Astrocyte Morphology and Function Using a Fast and Reliable Tissue Clearing Technique. Curr Protoc 2021; 1:e279. [PMID: 34694747 PMCID: PMC8550103 DOI: 10.1002/cpz1.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Astrocytic processes interact with synapses throughout the brain modulating neurotransmitter signaling and synaptic communication. During conditions such as exposure to drugs of abuse and neurological diseases, astrocytes respond by altering their morphological and functional properties. Reactive astrocyte phenotypes exhibit a bushy morphology with altered soma volume and an increased number of processes compared to resting astrocytes. The reactive astrocytic phenotype also overexpresses proteins one of which can be glial fibrillary acidic protein (GFAP). Fluorescence microscopy on thin tissue sections (<20 µm) requires reconstruction, often through multiple sections, to delineate the full astrocytic morphology. In contrast, tissue clearing methods have been developed that enable imaging of larger sections including the whole brain, providing an opportunity to see in-depth changes in single cell structure. In this article, a detailed protocol for studying astrocyte morphology using tissue clearing and subsequent imaging of whole brains as well as region-specific slices is provided. This method is ideal for understanding the effect of different physiological conditions on astrocyte morphology. A standard biochemistry laboratory has the resources to accomplish tissue clearing using this protocol and most universities have the required imaging facilities. Protocols to study brains from both genetically modified mice that contain an astrocyte-specific marker and from wild-type mice using antibody labeling steps after tissue clearing are provided. We also describe general protocols to conduct fluorescence imaging of astrocytes in cleared tissue to characterize their morphology. This protocol could be useful for researchers working in the rapidly growing field of astrocyte biology. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Brain perfusion, fixation, and tissue clearing Alternate Protocol: Clearing brain tissue with passive clarity Basic Protocol 2: Antibody labeling and refractive index matching Basic Protocol 3: Fluorescence imaging and characterization of astrocyte morphology.
Collapse
Affiliation(s)
- Surya P Aryal
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | - Khaga R Neupane
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | - Abdullah A Masud
- Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
8
|
Out-of-Phase Imaging after Optical Modulation (OPIOM) for Multiplexed Fluorescence Imaging Under Adverse Optical Conditions. Methods Mol Biol 2021; 2350:191-227. [PMID: 34331287 DOI: 10.1007/978-1-0716-1593-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluorescence imaging has become a powerful tool for observations in biology. Yet it has also encountered limitations to overcome optical interferences of ambient light, autofluorescence, and spectrally interfering fluorophores. In this account, we first examine the current approaches which address these limitations. Then we more specifically report on Out-of-Phase Imaging after Optical Modulation (OPIOM), which has proved attractive for highly selective multiplexed fluorescence imaging even under adverse optical conditions. After exposing the OPIOM principle, we detail the protocols for successful OPIOM implementation.
Collapse
|
9
|
Structure- and mechanism-guided design of single fluorescent protein-based biosensors. Nat Chem Biol 2021; 17:509-518. [PMID: 33558715 DOI: 10.1038/s41589-020-00718-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/02/2020] [Indexed: 12/22/2022]
Abstract
Intensiometric genetically encoded biosensors, based on allosteric modulation of the fluorescence of a single fluorescent protein, are powerful tools for enabling imaging of neural activities and other cellular biochemical events. The archetypical example of such biosensors is the GCaMP series of Ca2+ biosensors, which have been steadily improved over the past two decades and are now indispensable tools for neuroscience. However, no other biosensors have reached levels of performance, or had revolutionary impacts within specific disciplines, comparable to that of the Ca2+ biosensors. Of the many reasons why this has been the case, a critical one has been a general black-box view of biosensor structure and mechanism. With this Perspective, we aim to summarize what is known about biosensor structure and mechanisms and, based on this foundation, provide guidelines to accelerate the development of a broader range of biosensors with performance comparable to that of the GCaMP series.
Collapse
|
10
|
Kolbe K, Bell AC, Prosser GA, Assmann M, Yang HJ, Forbes HE, Gallucci S, Mayer-Barber KD, Boshoff HI, Barry Iii CE. Development and Optimization of Chromosomally-Integrated Fluorescent Mycobacterium tuberculosis Reporter Constructs. Front Microbiol 2020; 11:591866. [PMID: 33362741 PMCID: PMC7755994 DOI: 10.3389/fmicb.2020.591866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/13/2020] [Indexed: 11/25/2022] Open
Abstract
Mycobacterium tuberculosis resides in the lungs in various lesion types with unique microenvironmental conditions. This diversity is in line with heterogeneous disease progression and divergent drug efficiency. Fluorescent reporter strains can be used to decipher the micromilieu and to guide future treatment regimens. Current reporters using replicating plasmids, however, are not suitable for long-term mouse infections or studies in non-human primates. Using a combination of recombinant DNA and protein optimization techniques, we have developed reporter strains based on integrative plasmids, which exhibit stimulus-response characteristics and fluorescence intensities comparable to those based on replicating plasmids. We successfully applied the concepts by constructing a multi-color reporter strain able to detect simultaneous changes in environmental pH, Mg2+ concentrations, and protein expression levels.
Collapse
Affiliation(s)
- Katharina Kolbe
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alice C Bell
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Gareth A Prosser
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Drug Discovery Unit, College of Life Sciences, James Black Centre, University of Dundee, Dundee, United Kingdom
| | - Maike Assmann
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Hee-Jeong Yang
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - He Eun Forbes
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Sophia Gallucci
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Helena I Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Clifton E Barry Iii
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
11
|
Ruhlandt D, Andresen M, Jensen N, Gregor I, Jakobs S, Enderlein J, Chizhik AI. Absolute quantum yield measurements of fluorescent proteins using a plasmonic nanocavity. Commun Biol 2020; 3:627. [PMID: 33128009 PMCID: PMC7599333 DOI: 10.1038/s42003-020-01316-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/18/2020] [Indexed: 11/24/2022] Open
Abstract
One of the key photophysical properties of fluorescent proteins that is most difficult to measure is the quantum yield. It describes how efficiently a fluorophore converts absorbed light into fluorescence. Its measurement using conventional methods become particularly problematic when it is unknown how many of the proposedly fluorescent molecules of a sample are indeed fluorescent (for example due to incomplete maturation, or the presence of photophysical dark states). Here, we use a plasmonic nanocavity-based method to measure absolute quantum yield values of commonly used fluorescent proteins. The method is calibration-free, does not require knowledge about maturation or potential dark states, and works on minute amounts of sample. The insensitivity of the nanocavity-based method to the presence of non-luminescent species allowed us to measure precisely the quantum yield of photo-switchable proteins in their on-state and to analyze the origin of the residual fluorescence of protein ensembles switched to the dark state.
Collapse
Affiliation(s)
- Daja Ruhlandt
- Georg-August-University Göttingen, Third Institute of Physics - Biophysics, Göttingen, Germany
| | - Martin Andresen
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Nickels Jensen
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Ingo Gregor
- Georg-August-University Göttingen, Third Institute of Physics - Biophysics, Göttingen, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
- University of Göttingen Medical Faculty, Clinic of Neurology, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells," (MBExC), University of Göttingen, Göttingen, Germany
| | - Jörg Enderlein
- Georg-August-University Göttingen, Third Institute of Physics - Biophysics, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells," (MBExC), University of Göttingen, Göttingen, Germany.
| | - Alexey I Chizhik
- Georg-August-University Göttingen, Third Institute of Physics - Biophysics, Göttingen, Germany.
| |
Collapse
|
12
|
Zhao Y, Zhang W, Zhao Y, Campbell RE, Harrison DJ. A single-phase flow microfluidic cell sorter for multiparameter screening to assist the directed evolution of Ca 2+ sensors. LAB ON A CHIP 2019; 19:3880-3887. [PMID: 31641712 DOI: 10.1039/c9lc00779b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We introduce a single-phase flow microfluidic cell sorter with a two-point detection system capable of two-parameter screening to assist with directed evolution of a fluorescent protein based Ca2+ sensor expressed in bacterial cells. The new cell sorting system utilizes two fluorescence microscopes to obtain signals at two different points along a flow path in which a change in concentration of the analyte, Ca2+, is induced. The two detectors thus determine the magnitude of fluorescence change of the sensor following the reaction, along with the overall brightness of the sensor. A design for a 3D focusing flow was configured to enhance the spatial control of cells and signal pair-matching. The cell sorter screens the sensors at a moderate throughput, 10 cells per s and 105 cells per round, enriching top variants for the subsequent manual screening with higher accuracy. Our new μFACS greatly accelerates the directed evolution of genetically encoded Ca2+ sensors compared to the previous version with single point detection for brightness-based screening. Two rounds of directed evolution led to a variant, named Y-GECO2f, which exhibits a 26% increase in brightness and a greater than 300% larger Ca2+-dependent fluorescence change in vitro relative to the variant before evolution.
Collapse
Affiliation(s)
- Yufeng Zhao
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| | - Wei Zhang
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| | - Yongxin Zhao
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| | - Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada. and Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - D Jed Harrison
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| |
Collapse
|
13
|
Booth DS, Szmidt-Middleton H, King N. Transfection of choanoflagellates illuminates their cell biology and the ancestry of animal septins. Mol Biol Cell 2018; 29:3026-3038. [PMID: 30281390 PMCID: PMC6333174 DOI: 10.1091/mbc.e18-08-0514] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022] Open
Abstract
As the closest living relatives of animals, choanoflagellates offer unique insights into animal origins and core mechanisms underlying animal cell biology. However, unlike traditional model organisms, such as yeast, flies, and worms, choanoflagellates have been refractory to DNA delivery methods for expressing foreign genes. Here we report a robust method for expressing transgenes in the choanoflagellate Salpingoeca rosetta, overcoming barriers that have previously hampered DNA delivery and expression. To demonstrate how this method accelerates the study of S. rosetta cell biology, we engineered a panel of fluorescent protein markers that illuminate key features of choanoflagellate cells. We then investigated the localization of choanoflagellate septins, a family of GTP-binding cytoskeletal proteins that are hypothesized to regulate multicellular rosette development in S. rosetta. Fluorescently tagged septins localized to the basal poles of S. rosetta single cells and rosettes in a pattern resembling septin localization in animal epithelia. The establishment of transfection in S. rosetta and its application to the study of septins represent critical advances in the use of S. rosetta as an experimental model for investigating choanoflagellate cell biology, core mechanisms underlying animal cell biology, and the origin of animals.
Collapse
Affiliation(s)
- David S. Booth
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Heather Szmidt-Middleton
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Nicole King
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
14
|
Holzapfel HY, Stern AD, Bouhaddou M, Anglin CM, Putur D, Comer S, Birtwistle MR. Fluorescence Multiplexing with Spectral Imaging and Combinatorics. ACS COMBINATORIAL SCIENCE 2018; 20:653-659. [PMID: 30339749 PMCID: PMC9827428 DOI: 10.1021/acscombsci.8b00101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ultraviolet-to-infrared fluorescence is a versatile and accessible assay modality but is notoriously hard to multiplex due to overlap of wide emission spectra. We present an approach for fluorescence called multiplexing using spectral imaging and combinatorics (MuSIC). MuSIC consists of creating new independent probes from covalently linked combinations of individual fluorophores, leveraging the wide palette of currently available probes with the mathematical power of combinatorics. Probe levels in a mixture can be inferred from spectral emission scanning data. Theory and simulations suggest MuSIC can increase fluorescence multiplexing ∼4-5 fold using currently available dyes and measurement tools. Experimental proof-of-principle demonstrates robust demultiplexing of nine solution-based probes using ∼25% of the available excitation wavelength window (380-480 nm), consistent with theory. The increasing prevalence of white lasers, angle filter-based wavelength scanning, and large, sensitive multianode photomultiplier tubes make acquisition of such MuSIC-compatible data sets increasingly attainable.
Collapse
Affiliation(s)
- Hadassa Y. Holzapfel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Medical School for International Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’er Sheva, 84105, Israel
| | - Alan D. Stern
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mehdi Bouhaddou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Caitlin M. Anglin
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA
| | - Danielle Putur
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah Comer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marc R. Birtwistle
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA,To whom correspondence should be addressed
| |
Collapse
|
15
|
Zhao Y, Bushey D, Zhao Y, Schreiter ER, Harrison DJ, Wong AM, Campbell RE. Inverse-response Ca 2+ indicators for optogenetic visualization of neuronal inhibition. Sci Rep 2018; 8:11758. [PMID: 30082904 PMCID: PMC6079023 DOI: 10.1038/s41598-018-30080-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/20/2018] [Indexed: 01/30/2023] Open
Abstract
We have developed a series of yellow genetically encoded Ca2+ indicators for optical imaging (Y-GECOs) with inverted responses to Ca2+ and apparent dissociation constants (Kd') ranging from 25 to 2400 nM. To demonstrate the utility of this affinity series of Ca2+ indicators, we expressed the four highest affinity variants (Kd's = 25, 63, 121, and 190 nM) in the Drosophila medulla intrinsic neuron Mi1. Hyperpolarization of Mi1 by optogenetic stimulation of the laminar monopolar neuron L1 produced a decrease in intracellular Ca2+ in layers 8-10, and a corresponding increase in Y-GECO fluorescence. These experiments revealed that lower Kd' was associated with greater increases in fluorescence, but longer delays to reach the maximum signal change due to slower off-rate kinetics.
Collapse
Affiliation(s)
- Yufeng Zhao
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Daniel Bushey
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Yongxin Zhao
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Eric R Schreiter
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, 20147, USA
| | - D Jed Harrison
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Allan M Wong
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, 20147, USA.
| | - Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.
| |
Collapse
|
16
|
Kleeman B, Olsson A, Newkold T, Kofron M, DeLay M, Hildeman D, Grimes HL. A guide to choosing fluorescent protein combinations for flow cytometric analysis based on spectral overlap. Cytometry A 2018; 93:556-562. [PMID: 29533508 PMCID: PMC8008483 DOI: 10.1002/cyto.a.23360] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 02/06/2018] [Accepted: 02/20/2018] [Indexed: 11/11/2022]
Abstract
The advent of facile genome engineering technologies has made the generation of knock-in gene-expression or fusion-protein reporters more tractable. Fluorescent protein labeling of specific genes combined with surface marker profiling can more specifically identify a cell population. However, the question of which fluorescent proteins to utilize to generate reporter constructs is made difficult by the number of candidate proteins and the lack of updated experimental data on newer fluorescent proteins. Compounding this problem, most fluorescent proteins are designed and tested for use in microscopy. To address this, we cloned and characterized the detection sensitivity, spectral overlap, and spillover spreading of 13 monomeric fluorescent proteins to determine utility in multicolor panels. We identified a group of five fluorescent proteins with high signal to noise ratio, minimal spectral overlap, and low spillover spreading making them compatible for multicolor experiments. Specifically, generating reporters with combinations of three of these proteins would allow efficient measurements even at low-level expression. Because the proteins are monomeric, they could function either as gene-expression or as fusion-protein reporters. Additionally, this approach can be generalized as new fluorescent proteins are developed to determine their usefulness in multicolor panels. © 2018 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Benjamin Kleeman
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Andre Olsson
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Tess Newkold
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Matt Kofron
- Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Monica DeLay
- Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - David Hildeman
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - H. Leighton Grimes
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
| |
Collapse
|
17
|
Shinoda H, Ma Y, Nakashima R, Sakurai K, Matsuda T, Nagai T. Acid-Tolerant Monomeric GFP from Olindias formosa. Cell Chem Biol 2018; 25:330-338.e7. [DOI: 10.1016/j.chembiol.2017.12.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/20/2017] [Accepted: 12/05/2017] [Indexed: 02/08/2023]
|
18
|
Frazão B, Campos A, Osório H, Thomas B, Leandro S, Teixeira A, Vasconcelos V, Antunes A. Analysis of Pelagia noctiluca proteome Reveals a Red Fluorescent Protein, a Zinc Metalloproteinase and a Peroxiredoxin. Protein J 2017; 36:77-97. [PMID: 28258523 DOI: 10.1007/s10930-017-9695-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Pelagia noctiluca is the most venomous jellyfish in the Mediterranean Sea where it forms dense blooms. Although there is several published research on this species, until now none of the works has been focused on a complete protein profile of the all body constituents of this organism. Here, we have performed a detailed proteomics characterization of the major protein components expressed by P. noctiluca. With that aim, we have considered the study of jellyfish proteins involved in defense, body constituents and metabolism, and furthered explore the significance and potential application of such bioactive molecules. P. noctiluca body proteins were separated by1D SDS-PAGE and 2DE followed by characterization by nanoLC-MS/MS and MALDI-TOF/TOF techniques. Altogether, both methods revealed 68 different proteins, including a Zinc Metalloproteinase, a Red Fluorescent Protein (RFP) and a Peroxiredoxin. These three proteins were identified for the first time in P. noctiluca. Zinc Metalloproteinase was previously reported in the venom of other jellyfish species. Besides the proteins described above, the other 65 proteins found in P. noctiluca body content were identified and associated with its clinical significance. Among all the proteins identified in this work we highlight: Zinc metalloproteinase, which has a ShK toxin domain and therefore should be implicated in the sting toxicity of P. noctiluca.; the RFP which are a very important family of proteins due to its possible application as molecular markers; and last but not least the discovery of a Peroxiredoxin in this organism makes it a new natural resource of antioxidant and anti-UV radiation agents.
Collapse
Affiliation(s)
- Bárbara Frazão
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Alexandre Campos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Hugo Osório
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Benjamin Thomas
- Proteomics Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Sérgio Leandro
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, 2520-641, Peniche, Portugal
| | - Alexandre Teixeira
- Department of Human Genetics, National Health Institute Dr. Ricardo Jorge, 1649-016, Lisbon, Portugal
- Department of Genetics, Faculty of Medical Sciences, Human Molecular Genetics Research Center (CIGMH), Universidade Nova de Lisboa, 1349-008, Lisbon, Portugal
| | - Vitor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
19
|
Wiens MD, Shen Y, Li X, Salem MA, Smisdom N, Zhang W, Brown A, Campbell RE. A Tandem Green-Red Heterodimeric Fluorescent Protein with High FRET Efficiency. Chembiochem 2016; 17:2361-2367. [PMID: 27781394 DOI: 10.1002/cbic.201600492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Indexed: 12/28/2022]
Abstract
The tetrameric red fluorescent protein from Discosoma sp. coral (DsRed) has previously been engineered to produce dimeric and monomeric fluorescent variants with excitation and emission profiles that span the visible spectrum. The brightest of the effectively monomeric DsRed variants is tdTomato-a tandem fusion of a dimeric DsRed variant. Here we describe the engineering of brighter red (RRvT), green (GGvT), and green-red heterodimeric (GRvT) tdTomato variants. GRvT exhibited 99 % intramolecular FRET efficiency, resulting in long Stokes shift red fluorescence. These new variants could prove useful for multicolor live-cell imaging applications.
Collapse
Affiliation(s)
- Matthew D Wiens
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Yi Shen
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Xi Li
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - M Alaraby Salem
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Nick Smisdom
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
- Present address: Faculty of Medicine and Life Sciences, Universiteit Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Wei Zhang
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Alex Brown
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Robert E Campbell
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
20
|
Regan L, Caballero D, Hinrichsen MR, Virrueta A, Williams DM, O'Hern CS. Protein design: Past, present, and future. Biopolymers 2016; 104:334-50. [PMID: 25784145 DOI: 10.1002/bip.22639] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/05/2015] [Accepted: 03/07/2015] [Indexed: 01/16/2023]
Abstract
Building on the pioneering work of Ho and DeGrado (J Am Chem Soc 1987, 109, 6751-6758) in the late 1980s, protein design approaches have revealed many fundamental features of protein structure and stability. We are now in the era that the early work presaged - the design of new proteins with practical applications and uses. Here we briefly survey some past milestones in protein design, in addition to highlighting recent progress and future aspirations.
Collapse
Affiliation(s)
- Lynne Regan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT.,Department of Chemistry, Yale University, New Haven, CT.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT
| | - Diego Caballero
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT.,Department of Physics, Yale University, New Haven, CT
| | - Michael R Hinrichsen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | - Alejandro Virrueta
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT.,Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT
| | - Danielle M Williams
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | - Corey S O'Hern
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT.,Department of Physics, Yale University, New Haven, CT.,Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT.,Department of Applied Physics, Yale University, New Haven, CT
| |
Collapse
|
21
|
Engineering Dark Chromoprotein Reporters for Photoacoustic Microscopy and FRET Imaging. Sci Rep 2016; 6:22129. [PMID: 26926390 PMCID: PMC4772073 DOI: 10.1038/srep22129] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/01/2016] [Indexed: 12/14/2022] Open
Abstract
A subset of the family of fluorescent proteins are the non-fluorescent chromoproteins which are promising probe molecules for use in photoacoustic imaging and as acceptor chromophores in Förster resonance energy transfer (FRET)-based biosensors. Typical approaches for fluorescent protein optimization by screening of large libraries of variants cannot be effectively applied to chromoproteins due to their characteristic lack of fluorescence. To address this challenge, we have developed a directed evolution method to iteratively screen large libraries of protein variants on the basis of their photoacoustic signal levels. By applying this procedure to the promising Ultramarine and cjBlue chromoprotein templates, we were able to identify improved variants with a 02–04 fold increase in photoacoustic signal-to-noise ratio after only a few evolutionary steps. These improved variants enable more accurate spectral de-mixing and localization of protein-producing bacteria in vivo and serve as effective FRET acceptors for both fluorescence- and photoacoustic-based detection of protease activity.
Collapse
|
22
|
Sandhya S, Mudgal R, Kumar G, Sowdhamini R, Srinivasan N. Protein sequence design and its applications. Curr Opin Struct Biol 2016; 37:71-80. [PMID: 26773478 DOI: 10.1016/j.sbi.2015.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/07/2015] [Accepted: 12/15/2015] [Indexed: 01/14/2023]
Abstract
Design of proteins has far-reaching potentials in diverse areas that span repurposing of the protein scaffold for reactions and substrates that they were not naturally meant for, to catching a glimpse of the ephemeral proteins that nature might have sampled during evolution. These non-natural proteins, either in synthesized or virtual form have opened the scope for the design of entities that not only rival their natural counterparts but also offer a chance to visualize the protein space continuum that might help to relate proteins and understand their associations. Here, we review the recent advances in protein engineering and design, in multiple areas, with a view to drawing attention to their future potential.
Collapse
Affiliation(s)
- Sankaran Sandhya
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Richa Mudgal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India; IISc Mathematics Initiative, Indian Institute of Science, Bangalore 560 012, India
| | - Gayatri Kumar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences-TIFR, UAS-GKVK Campus, Bangalore 560065, India
| | | |
Collapse
|
23
|
Pletnev S, Shcherbakova DM, Subach OM, Pletneva NV, Malashkevich VN, Almo SC, Dauter Z, Verkhusha VV. Orange fluorescent proteins: structural studies of LSSmOrange, PSmOrange and PSmOrange2. PLoS One 2014; 9:e99136. [PMID: 24960050 PMCID: PMC4068994 DOI: 10.1371/journal.pone.0099136] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/08/2014] [Indexed: 11/22/2022] Open
Abstract
A structural analysis of the recently developed orange fluorescent proteins with novel phenotypes, LSSmOrange (λex/λem at 437/572 nm), PSmOrange (λex/λem at 548/565 nm and for photoconverted form at 636/662 nm) and PSmOrange2 (λex/λem at 546/561 nm and for photoconverted form at 619/651 nm), is presented. The obtained crystallographic structures provide an understanding of how the ensemble of a few key mutations enabled special properties of the orange FPs. While only a single Ile161Asp mutation, enabling excited state proton transfer, is critical for LSSmOrange, other substitutions provide refinement of its special properties and an exceptional 120 nm large Stokes shift. Similarly, a single Gln64Leu mutation was sufficient to cause structural changes resulting in photoswitchability of PSmOrange, and only one additional substitution (Phe65Ile), yielding PSmOrange2, was enough to greatly decrease the energy of photoconversion and increase its efficiency of photoswitching. Fluorescence of photoconverted PSmOrange and PSmOrange2 demonstrated an unexpected bathochromic shift relative to the fluorescence of classic red FPs, such as DsRed, eqFP578 and zFP574. The structural changes associated with this fluorescence shift are of considerable value for the design of advanced far-red FPs. For this reason the chromophore transformations accompanying photoconversion of the orange FPs are discussed.
Collapse
Affiliation(s)
- Sergei Pletnev
- Leidos Biomedical Research Inc., Basic Research Program, Argonne, Illinois, United States of America
- Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, Illinois, United States of America
| | - Daria M. Shcherbakova
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Oksana M. Subach
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Nano, Bio, Information and Cognitive Technologies, Moscow Institute of Physics and Technology, Moscow, Russian Federation
| | - Nadya V. Pletneva
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir N. Malashkevich
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Zbigniew Dauter
- Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, Illinois, United States of America
| | - Vladislav V. Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
24
|
Zhao Y, Abdelfattah AS, Zhao Y, Ruangkittisakul A, Ballanyi K, Campbell RE, Harrison DJ. Microfluidic cell sorter-aided directed evolution of a protein-based calcium ion indicator with an inverted fluorescent response. Integr Biol (Camb) 2014; 6:714-25. [PMID: 24840546 DOI: 10.1039/c4ib00039k] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We demonstrate a simple, low cost and disposable microfluidic fluorescence activated cell sorting system (μFACS) for directed evolution of fluorescent proteins (FP) and FP-based calcium ion (Ca(2+)) indicators. The system was employed to pre-screen libraries of up to 10(6) variants of a yellow FP-based Ca(2+) indicator (Y-GECO) with throughput up to 300 cells per s. Compared to traditional manual screening of FP libraries, this system accelerated the discovery of improved variants and saved considerable time and effort during the directed evolution of Y-GECO. Y-GECO1, the final product of the μFACS-aided directed evolution, has a unique fluorescence hue that places it in the middle of the spectral gap that separates the currently available green and orange FP-based Ca(2+) indicators, exhibits bright fluorescence in the resting (Ca(2+) free) state, and gives a large response to intracellular Ca(2+) fluctuations in live cells.
Collapse
Affiliation(s)
- Yongxin Zhao
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada.
| | | | | | | | | | | | | |
Collapse
|
25
|
Ai HW, Baird MA, Shen Y, Davidson MW, Campbell RE. Engineering and characterizing monomeric fluorescent proteins for live-cell imaging applications. Nat Protoc 2014; 9:910-28. [DOI: 10.1038/nprot.2014.054] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Pasin F, Kulasekaran S, Natale P, Simón-Mateo C, García JA. Rapid fluorescent reporter quantification by leaf disc analysis and its application in plant-virus studies. PLANT METHODS 2014; 10:22. [PMID: 25053970 PMCID: PMC4105834 DOI: 10.1186/1746-4811-10-22] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/02/2014] [Indexed: 05/12/2023]
Abstract
BACKGROUND Fluorescent proteins are extraordinary tools for biology studies due to their versatility; they are used extensively to improve comprehension of plant-microbe interactions. The viral infection process can easily be tracked and imaged in a plant with fluorescent protein-tagged viruses. In plants, fluorescent protein genes are among the most commonly used reporters in transient RNA silencing and heterologous protein expression assays. Fluorescence intensity is used to quantify fluorescent protein accumulation by image analysis or spectroscopy of protein extracts; however, these methods might not be suitable for medium- to large-scale comparisons. RESULTS We report that laser scanners, used routinely in proteomic studies, are suitable for quantitative imaging of plant leaves that express different fluorescent protein pairs. We developed a microtiter plate fluorescence spectroscopy method for direct quantitative comparison of fluorescent protein accumulation in intact leaf discs. We used this technique to measure a fluorescent reporter in a transient RNA silencing suppression assay, and also to monitor early amplification dynamics of a fluorescent protein-labeled potyvirus. CONCLUSIONS Laser scanners allow dual-color fluorescence imaging of leaf samples, which might not be acquired in standard stereomicroscope devices. Fluorescence microtiter plate analysis of intact leaf discs can be used for rapid, accurate quantitative comparison of fluorescent protein accumulation.
Collapse
Affiliation(s)
- Fabio Pasin
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Satish Kulasekaran
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Paolo Natale
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Carmen Simón-Mateo
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | | |
Collapse
|
27
|
Whittredge PB, Taraska JW. Bridging the spectral gap in fluorescent proteins through directed evolution. CHEMISTRY & BIOLOGY 2013; 20:1203-5. [PMID: 24210004 PMCID: PMC3856577 DOI: 10.1016/j.chembiol.2013.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fluorescent proteins are used as noninvasive tags for protein trafficking, structure, and action. In this issue of Chemistry & Biology, Hoi and colleagues present a new optimized zFP538 yellow fluorescent protein called mPapaya1 that is bright, monomeric, and an excellent fusion partner for cellular proteins.
Collapse
Affiliation(s)
- Paul B. Whittredge
- Laboratory of Molecular Biophysics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Justin W. Taraska
- Laboratory of Molecular Biophysics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|