1
|
Yan D, Matsuda Y. Methyltransferase Domain-Focused Genome Mining for Fungal Polyketide Synthases. SMALL METHODS 2024; 8:e2400107. [PMID: 38644685 PMCID: PMC11579551 DOI: 10.1002/smtd.202400107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/05/2024] [Indexed: 04/23/2024]
Abstract
A comparison of substrate-binding site amino acid residues in the C-methyltransferase (MT) domains of fungal nonreducing polyketide synthases (NR-PKSs) suggests that these residues are correlated with the methylation modes used by the PKSs. A PKS, designated as AsbPKS, with substrate-binding site residues distinct from those of other known PKSs is focused on. The characterization of AsbPKS revealed that it yields an isocoumarin derivative, anhydrosclerotinin B (1), the biosynthesis of which involves a previously unreported methylation pattern. This study demonstrates the utility of MT domain-focused genome mining for the discovery of PKSs with new functions.
Collapse
Affiliation(s)
- Dexiu Yan
- Department of ChemistryCity University of Hong KongTat Chee AvenueKowloonHong Kong SARChina
| | - Yudai Matsuda
- Department of ChemistryCity University of Hong KongTat Chee AvenueKowloonHong Kong SARChina
| |
Collapse
|
2
|
Winkler M, Breuer HG, Schober L. Aldehyde Reductase Activity of Carboxylic Acid Reductases. Chembiochem 2024; 25:e202400121. [PMID: 38349346 DOI: 10.1002/cbic.202400121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/13/2024] [Indexed: 03/09/2024]
Abstract
Carboxylic acid reductase enzymes (CARs) are well known for the reduction of a wide range of carboxylic acids to the respective aldehydes. One of the essential CAR domains - the reductase domain (R-domain) - was recently shown to catalyze the standalone reduction of carbonyls, including aldehydes, which are typically considered to be the final product of carboxylic acid reduction by CAR. We discovered that the respective full-length CARs were equally able to reduce aldehydes. Herein we aimed to shed light on the impact of this activity on aldehyde production and acid reduction in general. Our data explains previously inexplicable results and a new CAR from Mycolicibacterium wolinskyi is presented.
Collapse
Affiliation(s)
- Margit Winkler
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
- acib - Austrian Center of Industrial Biotechnology, Krenngasse 37, 8010, Graz, Austria
| | - Hannah G Breuer
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Lukas Schober
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| |
Collapse
|
3
|
Han H, Yu C, Qi J, Wang P, Zhao P, Gong W, Xie C, Xia X, Liu C. High-efficient production of mushroom polyketide compounds in a platform host Aspergillus oryzae. Microb Cell Fact 2023; 22:60. [PMID: 36998045 PMCID: PMC10064546 DOI: 10.1186/s12934-023-02071-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/24/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Orsellinic acid (2,4-dihydroxy-6-methylbenzoic acid, OA) and its structural analog o-Orsellinaldehyde, have become widely used intermediates in clinical drugs synthesis. Although the research on the biosynthesis of such compounds has made significant progress, due to the lack of suitable hosts, there is still far from the industrial production of such compounds based on synthetic biology. RESULTS With the help of genome mining, we found a polyketide synthase (PKS, HerA) in the genome of the Hericium erinaceus, which shares 60% amino acid sequence homology with ArmB from Armillaria mellea, an identified PKS capable of synthesizing OA. To characterize the function of HerA, we cloned herA and heterologously expressed it in Aspergillus oryzae, and successfully detected the production of OA. Subsequently, the introduction of an incomplete PKS (Pks5) from Ustilago maydis containing only three domains (AMP-ACP-R), which was into herA-containing A. oryzae, the resulted in the production of o-Orsellinaldehyde. Considering the economic value of OA and o-Orsellinaldehyde, we then optimized the yield of these compounds in A. oryzae. The screening showed that when maltose was used as carbon source, the yields of OA and o-Orsellinaldehyde were 57.68 mg/L and 15.71 mg/L respectively, while the yields were 340.41 mg/Kg and 84.79 mg/Kg respectively in rice medium for 10 days. CONCLUSIONS Herein, we successfully expressed the genes of basidiomycetes using A. oryzae heterologous host. As a fungus of ascomycetes, which not only correctly splices genes of basidiomycetes containing multiple introns, but also efficiently produces their metabolites. This study highlights that A. oryzae is an excellent host for the heterologous production of fungal natural products, and has the potential to become an efficient chassis for the production of basidiomycete secondary metabolites in synthetic biology.
Collapse
Affiliation(s)
- Haiyan Han
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Chunyan Yu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Jianzhao Qi
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Pengchao Wang
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Peipei Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China
| | - Wenbing Gong
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Chunliang Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Xuekui Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong, China.
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
4
|
Noriler S, Navarro-Muñoz JC, Glienke C, Collemare J. Evolutionary relationships of adenylation domains in fungi. Genomics 2022; 114:110525. [PMID: 36423773 DOI: 10.1016/j.ygeno.2022.110525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/11/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
Non-ribosomal peptide synthetases (NRPSs) and NRPS-like enzymes are abundant in microbes as they are involved in the production of primary and secondary metabolites. In contrast to the well-studied NRPSs, known to produce non-ribosomal peptides, NRPS-like enzymes exhibit more diverse activities and their evolutionary relationships are unclear. Here, we present the first in-depth phylogenetic analysis of fungal NRPS-like A domains from functionally characterized pathways, and their relationships to characterized A domains found in fungal NRPSs. This study clearly differentiated amino acid reductases, including NRPSs, from CoA/AMP ligases, which could be divided into 10 distinct phylogenetic clades that reflect their conserved domain organization, substrate specificity and enzymatic activity. In particular, evolutionary relationships of adenylate forming reductases could be refined and explained the substrate specificity difference. Consistent with their phylogeny, the deduced amino acid code of A domains differentiated amino acid reductases from other enzymes. However, a diagnostic code was found for α-keto acid reductases and clade 7 CoA/AMP ligases only. Comparative genomics of loci containing these enzymes revealed that they can be independently recruited as tailoring genes in diverse secondary metabolite pathways. Based on these results, we propose a refined and clear phylogeny-based classification of A domain-containing enzymes, which will provide a robust framework for future functional analyses and engineering of these enzymes to produce new bioactive molecules.
Collapse
Affiliation(s)
- Sandriele Noriler
- Postgraduate Program of Microbiology, Parasitology and Pathology, Department of Pathology, Universidade Federal do Parana, Av. Coronel Francisco Heráclito dos Santos, 210, CEP: 81531-970, Curitiba, PR, Brazil
| | - Jorge C Navarro-Muñoz
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, the Netherlands
| | - Chirlei Glienke
- Postgraduate Program of Microbiology, Parasitology and Pathology, Department of Pathology, Universidade Federal do Parana, Av. Coronel Francisco Heráclito dos Santos, 210, CEP: 81531-970, Curitiba, PR, Brazil; Postgraduate Program of Genetics, Department of Genetics, Universidade Federal do Parana, Av. Coronel Francisco Heráclito dos Santos, 210, CEP: 81531-970, Curitiba, PR, Brazil
| | - Jérôme Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, the Netherlands.
| |
Collapse
|
5
|
Winkler M, Ling JG. Biocatalytic carboxylate reduction – recent advances and new enzymes. ChemCatChem 2022. [DOI: 10.1002/cctc.202200441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Margit Winkler
- Technische Universitat Graz Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz AUSTRIA
| | - Jonathan Guyang Ling
- Universiti Kebangsaan Malaysia Fakulti Sains dan Teknologi Department of Biological Sciences and Biotechnology 43600 Bangi MALAYSIA
| |
Collapse
|
6
|
Biosynthesis of Fungal Natural Products Involving Two Separate Pathway Crosstalk. J Fungi (Basel) 2022; 8:jof8030320. [PMID: 35330322 PMCID: PMC8948627 DOI: 10.3390/jof8030320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 01/21/2023] Open
Abstract
Fungal natural products (NPs) usually possess complicated structures, exhibit satisfactory bioactivities, and are an outstanding source of drug leads, such as the cholesterol-lowering drug lovastatin and the immunosuppressive drug mycophenolic acid. The fungal NPs biosynthetic genes are always arranged within one single biosynthetic gene cluster (BGC). However, a rare but fascinating phenomenon that a crosstalk between two separate BGCs is indispensable to some fungal dimeric NPs biosynthesis has attracted increasing attention. The hybridization of two separate BGCs not only increases the structural complexity and chemical diversity of fungal NPs, but also expands the scope of bioactivities. More importantly, the underlying mechanism for this hybridization process is poorly understood and needs further exploration, especially the determination of BGCs for each building block construction and the identification of enzyme(s) catalyzing the two biosynthetic precursors coupling processes such as Diels–Alder cycloaddition and Michael addition. In this review, we summarized the fungal NPs produced by functional crosstalk of two discrete BGCs, and highlighted their biosynthetic processes, which might shed new light on genome mining for fungal NPs with unprecedented frameworks, and provide valuable insights into the investigation of mysterious biosynthetic mechanisms of fungal dimeric NPs which are constructed by collaboration of two separate BGCs.
Collapse
|
7
|
Tippelt A, Nett M. Saccharomyces cerevisiae as host for the recombinant production of polyketides and nonribosomal peptides. Microb Cell Fact 2021; 20:161. [PMID: 34412657 PMCID: PMC8374128 DOI: 10.1186/s12934-021-01650-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/05/2021] [Indexed: 01/30/2023] Open
Abstract
As a robust, fast growing and genetically tractable organism, the budding yeast Saccharomyces cerevisiae is one of the most widely used hosts in biotechnology. Its applications range from the manufacturing of vaccines and hormones to bulk chemicals and biofuels. In recent years, major efforts have been undertaken to expand this portfolio to include structurally complex natural products, such as polyketides and nonribosomally synthesized peptides. These compounds often have useful pharmacological properties, which make them valuable drugs for the treatment of infectious diseases, cancer, or autoimmune disorders. In nature, polyketides and nonribosomal peptides are generated by consecutive condensation reactions of short chain acyl-CoAs or amino acids, respectively, with the substrates and reaction intermediates being bound to large, multidomain enzymes. For the reconstitution of these multistep catalytic processes, the enzymatic assembly lines need to be functionally expressed and the required substrates must be supplied in reasonable quantities. Furthermore, the production hosts need to be protected from the toxicity of the biosynthetic products. In this review, we will summarize and evaluate the status quo regarding the heterologous production of polyketides and nonribosomal peptides in S. cerevisiae. Based on a comprehensive literature analysis, prerequisites for a successful pathway reconstitution could be deduced, as well as recurring bottlenecks in this microbial host.
Collapse
Affiliation(s)
- Anna Tippelt
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany.
| |
Collapse
|
8
|
Huang X, Men P, Tang S, Lu X. Aspergillus terreus as an industrial filamentous fungus for pharmaceutical biotechnology. Curr Opin Biotechnol 2021; 69:273-280. [PMID: 33713917 DOI: 10.1016/j.copbio.2021.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022]
Abstract
Aspergillus terreus is an important Aspergillus species, which has been applied in the industrial production of the bio-based chemical itaconic acid and the lipid-lowering drug lovastatin. The excellent fermentation capability has been demonstrated in these industrial applications. The genomic information revealed that the outstanding capacity of natural product synthesis by A. terreus remains to be further explored. With advances of the genome mining strategy, the products of several cryptic biosynthetic gene clusters have been discovered recently. In addition, a series of metabolic engineering studies have been performed in the industrial strains of lovastatin and itaconic acid to further improve the production processes. This review presents the current progress and the future outlook in the field of A. terreus biotechnology.
Collapse
Affiliation(s)
- Xuenian Huang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Shandong Energy Institute, No. 189 Songling Road, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, No. 189 Songling Road, Qingdao 266101, China
| | - Ping Men
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shen Tang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | - Xuefeng Lu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Shandong Energy Institute, No. 189 Songling Road, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, No. 189 Songling Road, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Marine Biology and Biotechnology Laboratory, Qingdao National Laboratory for Marine Science and Technology, Wenhai Rd 1, Aoshanwei, Qingdao, China.
| |
Collapse
|
9
|
Liu J, Liu A, Hu Y. Enzymatic dimerization in the biosynthetic pathway of microbial natural products. Nat Prod Rep 2021; 38:1469-1505. [PMID: 33404031 DOI: 10.1039/d0np00063a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Covering: up to August 2020The dramatic increase in the identification of dimeric natural products generated by microorganisms and plants has played a significant role in drug discovery. The biosynthetic pathways of these products feature inherent dimerization reactions, which are valuable for biosynthetic applications and chemical transformations. The extraordinary mechanisms of the dimerization of secondary metabolites should advance our understanding of the uncommon chemical rules for natural product biosynthesis, which will, in turn, accelerate the discovery of dimeric reactions and molecules in nature and provide promising strategies for the total synthesis of natural products through dimerization. This review focuses on the enzymes involved in the dimerization in the biosynthetic pathway of microbial natural products, with an emphasis on cytochrome P450s, laccases, and intermolecular [4 + 2] cyclases, along with other atypical enzymes. The identification, characterization, and catalytic landscapes of these enzymes are also introduced.
Collapse
Affiliation(s)
- Jiawang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | | | | |
Collapse
|
10
|
Enzymology and biosynthesis of the orsellinic acid derived medicinal meroterpenoids. Curr Opin Biotechnol 2020; 69:52-59. [PMID: 33383296 DOI: 10.1016/j.copbio.2020.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/02/2020] [Accepted: 11/30/2020] [Indexed: 01/07/2023]
Abstract
The advent of synthetic biology has yielded fruitful studies on orsellinic acid-derived meroterpenoids, which reportedly possess important biological activities. Genomics and transcriptomics have significantly accelerated the discovery of the biosynthetic genes for orsellinic acid-derived fungal and plant meroterpenoids. Subsequently, a well-developed heterologous host provides a convenient platform to generate a supply of useful natural products. Furthermore, in vitro reconstitution and genome editing tools have been increasingly employed as efficient means to fully understand the enzyme reaction mechanisms. With the knowledge of the biosynthetic machinery, combinatorial and engineered biosyntheses have yielded novel molecules with improved bioactivities. These studies will lay the foundation for the production of meroterpenoids with novel medicinal properties.
Collapse
|
11
|
Uka V, Cary JW, Lebar MD, Puel O, De Saeger S, Diana Di Mavungu J. Chemical repertoire and biosynthetic machinery of the Aspergillus flavus secondary metabolome: A review. Compr Rev Food Sci Food Saf 2020; 19:2797-2842. [PMID: 33337039 DOI: 10.1111/1541-4337.12638] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022]
Abstract
Filamentous fungi represent a rich source of extrolites, including secondary metabolites (SMs) comprising a great variety of astonishing structures and interesting bioactivities. State-of-the-art techniques in genome mining, genetic manipulation, and secondary metabolomics have enabled the scientific community to better elucidate and more deeply appreciate the genetic and biosynthetic chemical arsenal of these microorganisms. Aspergillus flavus is best known as a contaminant of food and feed commodities and a producer of the carcinogenic family of SMs, aflatoxins. This fungus produces many SMs including polyketides, ribosomal and nonribosomal peptides, terpenoids, and other hybrid molecules. This review will discuss the chemical diversity, biosynthetic pathways, and biological/ecological role of A. flavus SMs, as well as their significance concerning food safety and security.
Collapse
Affiliation(s)
- Valdet Uka
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.,Division of Pharmacy, Faculty of Medicine, University of Pristina, Pristina, Kosovo
| | - Jeffrey W Cary
- Southern Regional Research Center, USDA-ARS, New Orleans, Louisiana
| | - Matthew D Lebar
- Southern Regional Research Center, USDA-ARS, New Orleans, Louisiana
| | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Sarah De Saeger
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - José Diana Di Mavungu
- Center of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Zheng L, Yang Y, Wang H, Fan A, Zhang L, Li SM. Ustethylin Biosynthesis Implies Phenethyl Derivative Formation in Aspergillus ustus. Org Lett 2020; 22:7837-7841. [DOI: 10.1021/acs.orglett.0c02719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liujuan Zheng
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| | - Yiling Yang
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| | - Haowen Wang
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| | - Aili Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029 Beijing, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources, South China Sea Institute of Oceanology Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch Straße 4, 35037 Marburg, Germany
| |
Collapse
|
13
|
Ran H, Li SM. Fungal benzene carbaldehydes: occurrence, structural diversity, activities and biosynthesis. Nat Prod Rep 2020; 38:240-263. [PMID: 32779678 DOI: 10.1039/d0np00026d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to April 2020Fungal benzene carbaldehydes with salicylaldehydes as predominant representatives carry usually hydroxyl groups, prenyl moieties and alkyl side chains. They are found in both basidiomycetes and ascomycetes as key intermediates or end products of various biosynthetic pathways and exhibit diverse biological and pharmacological activities. The skeletons of the benzene carbaldehydes are usually derived from polyketide pathways catalysed by iterative fungal polyketide synthases. The aldehyde groups are formed by direct PKS releasing, reduction of benzoic acids or oxidation of benzyl alcohols.
Collapse
Affiliation(s)
- Huomiao Ran
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany.
| | | |
Collapse
|
14
|
Huang X, Zhang W, Tang S, Wei S, Lu X. Collaborative Biosynthesis of a Class of Bioactive Azaphilones by Two Separate Gene Clusters Containing Four PKS/NRPSs with Transcriptional Crosstalk in Fungi. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xuenian Huang
- Shandong Provincial Key Laboratory of Synthetic BiologyKey Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road Qingdao 266101 China
| | - Wei Zhang
- Shandong Provincial Key Laboratory of Synthetic BiologyKey Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road Qingdao 266101 China
| | - Shen Tang
- Shandong Provincial Key Laboratory of Synthetic BiologyKey Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road Qingdao 266101 China
- College of Bioscience and BioengineeringJiangxi Agricultural University No. 1101 Zhimin Road Nanchang 330045 China
| | - Suhui Wei
- Shandong Provincial Key Laboratory of Synthetic BiologyKey Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road Qingdao 266101 China
| | - Xuefeng Lu
- Shandong Provincial Key Laboratory of Synthetic BiologyKey Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road Qingdao 266101 China
- Marine Biology and Biotechnology LaboratoryQingdao National Laboratory for Marine Science and Technology No. 1 Wenhai Road, Aoshanwei Qingdao 266101 China
| |
Collapse
|
15
|
Huang X, Zhang W, Tang S, Wei S, Lu X. Collaborative Biosynthesis of a Class of Bioactive Azaphilones by Two Separate Gene Clusters Containing Four PKS/NRPSs with Transcriptional Crosstalk in Fungi. Angew Chem Int Ed Engl 2020; 59:4349-4353. [DOI: 10.1002/anie.201915514] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Xuenian Huang
- Shandong Provincial Key Laboratory of Synthetic BiologyKey Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road Qingdao 266101 China
| | - Wei Zhang
- Shandong Provincial Key Laboratory of Synthetic BiologyKey Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road Qingdao 266101 China
| | - Shen Tang
- Shandong Provincial Key Laboratory of Synthetic BiologyKey Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road Qingdao 266101 China
- College of Bioscience and BioengineeringJiangxi Agricultural University No. 1101 Zhimin Road Nanchang 330045 China
| | - Suhui Wei
- Shandong Provincial Key Laboratory of Synthetic BiologyKey Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road Qingdao 266101 China
| | - Xuefeng Lu
- Shandong Provincial Key Laboratory of Synthetic BiologyKey Laboratory of BiofuelsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences No. 189 Songling Road Qingdao 266101 China
- Marine Biology and Biotechnology LaboratoryQingdao National Laboratory for Marine Science and Technology No. 1 Wenhai Road, Aoshanwei Qingdao 266101 China
| |
Collapse
|
16
|
Ling JG, Mansor MH, Abdul Murad AM, Mohd Khalid R, Quay DHX, Winkler M, Abu Bakar FD. A functionally-distinct carboxylic acid reductase PcCAR4 unearthed from a repertoire of type IV CARs in the white-rot fungus Pycnoporus cinnabarinus. J Biotechnol 2020; 307:55-62. [PMID: 31545972 DOI: 10.1016/j.jbiotec.2019.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 11/29/2022]
Abstract
Carboxylic acid reductases (CARs) are attracting burgeoning attention as biocatalysts for organic synthesis of aldehydes and their follow-up products from economic carboxylic acid precursors. The CAR enzyme class as a whole, however, is still poorly understood. To date, relatively few CAR sequences have been reported, especially from fungal sources. Here, we sought to increase the diversity of the CAR enzyme class. Six new CAR sequences from the white-rot fungus Pycnoporus cinnabarinus were identified from genome-wide mining. Genome and gene clustering analysis suggests that these PcCAR enzymes play different natural roles in Basidiomycete systems, compared to their type II Ascomycete counterparts. The cDNA sequences of all six Pccar genes were deduced and analysis of their corresponding amino acid sequence showed that they encode for proteins of similar properties that possess a conserved modular functional tri-domain arrangement. Phylogenetic analyses showed that all PcCAR enzymes cluster together with the other type IV CARs. One candidate, PcCAR4, was cloned and over-expressed recombinantly in Escherichia coli. Subsequent biotransformation-based screening with a panel of structurally-diverse carboxylic acid substrates suggest that PcCAR4 possessed a more pronounced substrate specificity compared to previously reported CARs, preferring to reduce sterically-rigid carboxylic acids such as benzoic acid. These findings thus present a new functionally-distinct member of the CAR enzyme class.
Collapse
Affiliation(s)
- Jonathan Guyang Ling
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Muhamad Hawari Mansor
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Abdul Munir Abdul Murad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Rozida Mohd Khalid
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Doris Huai Xia Quay
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Margit Winkler
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria; Austrian Centre of Industrial Biotechnology (acib GmbH), Petersgasse 14, 8010 Graz, Austria
| | - Farah Diba Abu Bakar
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
17
|
Hai Y, Jenner M, Tang Y. Complete Stereoinversion of l-Tryptophan by a Fungal Single-Module Nonribosomal Peptide Synthetase. J Am Chem Soc 2019; 141:16222-16226. [PMID: 31573806 DOI: 10.1021/jacs.9b08898] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Single-module nonribosomal peptide synthetases (NRPSs) and NRPS-like enzymes activate and transform carboxylic acids in both primary and secondary metabolism and are of great interest due to their biocatalytic potentials. The single-module NRPS IvoA is essential for fungal pigment biosynthesis. Here, we show that IvoA catalyzes ATP-dependent unidirectional stereoinversion of l-tryptophan to d-tryptophan with complete conversion. While the stereoinversion is catalyzed by the epimerization (E) domain, the terminal condensation (C) domain stereoselectively hydrolyzes d-tryptophanyl-S-phosphopantetheine thioester and thus represents a noncanonical C domain function. Using IvoA, we demonstrate a biocatalytic stereoinversion/deracemization route to access a variety of substituted d-tryptophan analogs in high enantiomeric excess.
Collapse
Affiliation(s)
| | - Matthew Jenner
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , United Kingdom.,Warwick Integrative Synthetic Biology (WISB) Centre , University of Warwick , Coventry CV4 7AL , United Kingdom
| | | |
Collapse
|
18
|
Kjærbølling I, Mortensen UH, Vesth T, Andersen MR. Strategies to establish the link between biosynthetic gene clusters and secondary metabolites. Fungal Genet Biol 2019; 130:107-121. [DOI: 10.1016/j.fgb.2019.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/26/2019] [Accepted: 06/02/2019] [Indexed: 01/01/2023]
|
19
|
Zhang JJ, Tang X, Moore BS. Genetic platforms for heterologous expression of microbial natural products. Nat Prod Rep 2019; 36:1313-1332. [PMID: 31197291 PMCID: PMC6750982 DOI: 10.1039/c9np00025a] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Covering: 2005 up to 2019Natural products are of paramount importance in human medicine. Not only are most antibacterial and anticancer drugs derived directly from or inspired by natural products, many other branches of medicine, such as immunology, neurology, and cardiology, have similarly benefited from natural product-based drugs. Typically, the genetic material required to synthesize a microbial specialized product is arranged in a multigene biosynthetic gene cluster (BGC), which codes for proteins associated with molecule construction, regulation, and transport. The ability to connect natural product compounds to BGCs and vice versa, along with ever-increasing knowledge of biosynthetic machineries, has spawned the field of genomics-guided natural product genome mining for the rational discovery of new chemical entities. One significant challenge in the field of natural product genome mining is how to rapidly link orphan biosynthetic genes to their associated chemical products. This review highlights state-of-the-art genetic platforms to identify, interrogate, and engineer BGCs from diverse microbial sources, which can be broken into three stages: (1) cloning and isolation of genomic loci, (2) heterologous expression in a host organism, and (3) genetic manipulation of cloned pathways. In the future, we envision natural product genome mining will be rapidly accelerated by de novo DNA synthesis and refactoring of whole biosynthetic pathways in combination with systematic heterologous expression methodologies.
Collapse
Affiliation(s)
- Jia Jia Zhang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA.
| | - Xiaoyu Tang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA.
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA. and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
20
|
Horvat M, Fritsche S, Kourist R, Winkler M. Characterization of Type IV Carboxylate Reductases (CARs) for Whole Cell-Mediated Preparation of 3-Hydroxytyrosol. ChemCatChem 2019; 11:4171-4181. [PMID: 31681448 PMCID: PMC6813634 DOI: 10.1002/cctc.201900333] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/18/2019] [Indexed: 11/18/2022]
Abstract
Fragrance and flavor industries could not imagine business without aldehydes. Processes for their commercial production raise environmental and ecological concerns. The chemical reduction of organic acids to aldehydes is challenging. To fulfill the demand of a mild and selective reduction of carboxylic acids to aldehydes, carboxylic acid reductases (CARs) are gaining importance. We identified two new subtype IV fungal CARs from Dichomitus squalens CAR (DsCAR) and Trametes versicolor CAR (Tv2CAR) in addition to literature known Trametes versicolor CAR (TvCAR). Expression levels were improved by the co-expression of GroEL-GroES with either the trigger factor or the DnaJ-DnaK-GrpE system. Investigation of the substrate scope of the three enzymes revealed overlapping substrate-specificities. Tv2CAR and DsCAR showed a preferred pH range of 7.0 to 8.0 in bicine buffer. TvCAR showed highest activity at pH 6.5 to 7.5 in MES buffer and slightly reduced activity at pH 6.0 or 8.0. TvCAR appeared to tolerate a wider pH range without significant loss of activity. Type IV fungal CARs optimal temperature was in the range of 25-35 °C. TvCAR showed a melting temperature (Tm) of 55 °C indicating higher stability compared to type III and the other type IV fungal CARs (Tm 51-52 °C). Finally, TvCAR was used as the key enzyme for the bioreduction of 3,4-dihydroxyphenylacetic acid to the antioxidant 3-hydroxytyrosol (3-HT) and gave 58 mM of 3-HT after 24 h, which correlates to a productivity of 0.37 g L-1 h-1.
Collapse
Affiliation(s)
- Melissa Horvat
- acib – Austrian Center of Industrial BiotechnologyPetersgasse 148010GrazAustria
| | - Susanne Fritsche
- acib – Austrian Center of Industrial BiotechnologyPetersgasse 148010GrazAustria
| | - Robert Kourist
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 148010GrazAustria
| | - Margit Winkler
- acib – Austrian Center of Industrial BiotechnologyPetersgasse 148010GrazAustria
- Institute of Molecular BiotechnologyGraz University of TechnologyPetersgasse 148010GrazAustria
| |
Collapse
|
21
|
Tee KL, Xu JH, Wong TS. Protein engineering for bioreduction of carboxylic acids. J Biotechnol 2019; 303:53-64. [PMID: 31325477 DOI: 10.1016/j.jbiotec.2019.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023]
Abstract
Carboxylic acids (CAs) are widespread in Nature. A prominent example is fatty acids, a major constituent of lipids. CAs are potentially economical precursors for bio-based products such as bio-aldehydes and bio-alcohols. However, carboxylate reduction is a challenging chemical transformation due to the thermodynamic stability of carboxylate. Carboxylic acid reductases (CARs), found in bacteria and fungi, offer a good solution to this challenge. These enzymes catalyse the NADPH- and ATP-dependent reduction of aliphatic and aromatic CAs. This review summarised all the protein engineering work that has been done on these versatile biocatalysts to date. The intricate catalytic mechanism and structure of CARs prompted us to first examine their domain architecture to facilitate the subsequent discussion of various protein engineering strategies. This then led to a survey of assays to detect aldehyde formation and to monitor aldenylation activity. Strategies for NADPH and ATP regeneration were also incorporated, as they are deemed vital to developing preparative-scale biocatalytic process and high-throughput screening systems. The objectives of the review are to consolidate CAR engineering research, stimulate interest, discussion or debate, and advance the field of bioreduction.
Collapse
Affiliation(s)
- Kang Lan Tee
- Department of Chemical & Biological Engineering and Advanced Biomanufacturing Centre, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, United Kingdom
| | - Jian-He Xu
- Laboratory of Biocatalysis and Bioprocessing, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Tuck Seng Wong
- Department of Chemical & Biological Engineering and Advanced Biomanufacturing Centre, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, United Kingdom.
| |
Collapse
|
22
|
He Y, Wang B, Chen W, Cox RJ, He J, Chen F. Recent advances in reconstructing microbial secondary metabolites biosynthesis in Aspergillus spp. Biotechnol Adv 2018; 36:739-783. [DOI: 10.1016/j.biotechadv.2018.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 11/28/2022]
|
23
|
Li W, Fan A, Wang L, Zhang P, Liu Z, An Z, Yin WB. Asperphenamate biosynthesis reveals a novel two-module NRPS system to synthesize amino acid esters in fungi. Chem Sci 2018; 9:2589-2594. [PMID: 29719714 PMCID: PMC5897882 DOI: 10.1039/c7sc02396k] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 01/23/2018] [Indexed: 12/18/2022] Open
Abstract
Amino acid esters are a group of structurally diverse natural products with distinct activities. Some are synthesized through an inter-molecular esterification step catalysed by nonribosomal peptide synthetase (NRPS). In bacteria, the formation of the intra-molecular ester bond is usually catalysed by a thioesterase domain of NRPS. However, the mechanism by which fungal NRPSs perform this process remains unclear. Herein, by targeted gene disruption in Penicillium brevicompactum and heterologous expression in Aspergillus nidulans, we show that two NRPSs, ApmA and ApmB, are sufficient for the synthesis of an amino acid ester, asperphenamate. Using the heterologous expression system, we identified that ApmA, with a reductase domain, rarely generates dipeptidyl alcohol. In contrast, ApmB was determined to not only catalyse inter-molecular ester bond formation but also accept the linear dipeptidyl precursor into the NRPS chain. The mechanism described here provides an approach for the synthesis of new small molecules with NRPS as the catalyst. Our study reveals for the first time a two-module NRPS system for the formation of amino acid esters in nature.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Mycology , Institute of Microbiology , Chinese Academy of Sciences , 100101 Beijing , China .
- Savaid Medical School , University of Chinese Academy of Sciences , Beijing , 100049 , China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , 100050 , China
| | - Aili Fan
- State Key Laboratory of Mycology , Institute of Microbiology , Chinese Academy of Sciences , 100101 Beijing , China .
| | - Long Wang
- State Key Laboratory of Mycology , Institute of Microbiology , Chinese Academy of Sciences , 100101 Beijing , China .
| | - Peng Zhang
- State Key Laboratory of Mycology , Institute of Microbiology , Chinese Academy of Sciences , 100101 Beijing , China .
| | - Zhiguo Liu
- State Key Laboratory of Mycology , Institute of Microbiology , Chinese Academy of Sciences , 100101 Beijing , China .
| | - Zhiqiang An
- Texas Therapeutics Institute , The Brown Foundation Institute of Molecular Medicine , University of Texas Health Science Center at Houston , Houston , Texas 77030 , USA
| | - Wen-Bing Yin
- State Key Laboratory of Mycology , Institute of Microbiology , Chinese Academy of Sciences , 100101 Beijing , China .
- Savaid Medical School , University of Chinese Academy of Sciences , Beijing , 100049 , China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , 100050 , China
| |
Collapse
|
24
|
Stolterfoht H, Steinkellner G, Schwendenwein D, Pavkov-Keller T, Gruber K, Winkler M. Identification of Key Residues for Enzymatic Carboxylate Reduction. Front Microbiol 2018; 9:250. [PMID: 29515539 PMCID: PMC5826065 DOI: 10.3389/fmicb.2018.00250] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/31/2018] [Indexed: 11/21/2022] Open
Abstract
Carboxylate reductases (CARs, E.C. 1.2.1.30) generate aldehydes from their corresponding carboxylic acid with high selectivity. Little is known about the structure of CARs and their catalytically important amino acid residues. The identification of key residues for carboxylate reduction provides a starting point to gain deeper understanding of enzymatic carboxylate reduction. A multiple sequence alignment of CARs with confirmed activity recently identified in our lab and from the literature revealed a fingerprint of conserved amino acids. We studied the function of conserved residues by multiple sequence alignments and mutational replacements of these residues. In this study, single-site alanine variants of Neurospora crassa CAR were investigated to determine the contribution of conserved residues to the function, expressability or stability of the enzyme. The effect of amino acid replacements was investigated by analyzing enzymatic activity of the variants in vivo and in vitro. Supported by molecular modeling, we interpreted that five of these residues are essential for catalytic activity, or substrate and co-substrate binding. We identified amino acid residues having significant impact on CAR activity. Replacement of His 237, Glu 433, Ser 595, Tyr 844, and Lys 848 by Ala abolish CAR activity, indicating their key role in acid reduction. These results may assist in the functional annotation of CAR coding genes in genomic databases. While some other conserved residues decreased activity or had no significant impact, four residues increased the specific activity of NcCAR variants when replaced by alanine. Finally, we showed that NcCAR wild-type and mutants efficiently reduce aliphatic acids.
Collapse
Affiliation(s)
- Holly Stolterfoht
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology, Graz, Austria
| | - Georg Steinkellner
- Austrian Centre of Industrial Biotechnology, Graz, Austria
- Structural Biology, Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Tea Pavkov-Keller
- Austrian Centre of Industrial Biotechnology, Graz, Austria
- Structural Biology, Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Karl Gruber
- Austrian Centre of Industrial Biotechnology, Graz, Austria
- Structural Biology, Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Margit Winkler
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology, Graz, Austria
| |
Collapse
|
25
|
Production of α-keto carboxylic acid dimers in yeast by overexpression of NRPS-like genes from Aspergillus terreus. Appl Microbiol Biotechnol 2018; 102:1663-1672. [PMID: 29305695 DOI: 10.1007/s00253-017-8719-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 01/08/2023]
Abstract
Non-ribosomal peptide synthetases (NRPSs) are key enzymes in microorganisms for the assembly of peptide backbones of biologically and pharmacologically active natural products. The monomodular NRPS-like enzymes comprise often an adenylation (A), a thiolation (T), and a thioesterase (TE) domain. In contrast to the NRPSs, they do not contain any condensation domain and usually catalyze a dimerization of α-keto carboxylic acids and thereby provide diverse scaffolds for further modifications. In this study, we established an expression system for NRPS-like genes in Saccharomyces cerevisiae. By expression of four known genes from Aspergillus terreus, their predicted function was confirmed and product yields of up to 35 mg per liter culture were achieved. Furthermore, expression of ATEG_03090 from the same fungus, encoding for the last uncharacterized NRPS-like enzyme with an A-T-TE domain structure, led to the formation of the benzoquinone derivative atromentin. All the accumulated products were isolated and their structures were elucidated by NMR and MS analyses. This study provides a convenient system for proof of gene function as well as a basis for synthetic biology, since additional genes encoding modification enzymes can be introduced.
Collapse
|
26
|
Ishikawa F, Tanabe G, Kakeya H. Activity-Based Protein Profiling of Non-ribosomal Peptide Synthetases. Curr Top Microbiol Immunol 2018; 420:321-349. [PMID: 30178264 DOI: 10.1007/82_2018_133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-ribosomal peptide (NRP) natural products are one of the most promising resources for drug discovery and development because of their wide-ranging of therapeutic potential, and their behavior as virulence factors and signaling molecules. The NRPs are biosynthesized independently of the ribosome by enzyme assembly lines known as the non-ribosomal peptide synthetase (NRPS) machinery. Genetic, biochemical, and bioinformatics analyses have provided a detailed understanding of the mechanism of NRPS catalysis. However, proteomic techniques for natural product biosynthesis remain a developing field. New strategies are needed to investigate the proteomes of diverse producer organisms and directly analyze the endogenous NRPS machinery. Advanced platforms should verify protein expression, protein folding, and activities and also enable the profiling of the NRPS machinery in biological samples from wild-type, heterologous, and engineered bacterial systems. Here, we focus on activity-based protein profiling strategies that have been recently developed for studies aimed at visualizing and monitoring the NRPS machinery and also for rapid labeling, identification, and biochemical analysis of NRPS enzyme family members as required for proteomic chemistry in natural product sciences.
Collapse
Affiliation(s)
- Fumihiro Ishikawa
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | - Genzoh Tanabe
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Hideaki Kakeya
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan.
| |
Collapse
|
27
|
Carboxylic acid reductase enzymes (CARs). Curr Opin Chem Biol 2017; 43:23-29. [PMID: 29127833 DOI: 10.1016/j.cbpa.2017.10.006] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/02/2017] [Accepted: 10/06/2017] [Indexed: 11/20/2022]
Abstract
Carboxylate reductases (CARs) are emerging as valuable catalysts for the selective one-step reduction of carboxylic acids to their corresponding aldehydes. The substrate scope of CARs is exceptionally broad and offers potential for their application in diverse synthetic processes. Two major fields of application are the preparation of aldehydes as end products for the flavor and fragrance sector and the integration of CARs in cascade reactions with aldehydes as the key intermediates. The latest applications of CARs are dominated by in vivo cascades and chemo-enzymatic reaction sequences. The challenge to fully exploit product selectivity is discussed. Recent developments in the characterization of CARs are summarized, with a focus on aspects related to the domain architecture and protein sequences of CAR enzymes.
Collapse
|
28
|
Stolterfoht H, Schwendenwein D, Sensen CW, Rudroff F, Winkler M. Four distinct types of E.C. 1.2.1.30 enzymes can catalyze the reduction of carboxylic acids to aldehydes. J Biotechnol 2017; 257:222-232. [DOI: 10.1016/j.jbiotec.2017.02.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/08/2017] [Accepted: 02/14/2017] [Indexed: 11/25/2022]
|
29
|
Singh M, Chaudhary S, Sareen D. Non-ribosomal peptide synthetases: Identifying the cryptic gene clusters and decoding the natural product. J Biosci 2017; 42:175-187. [PMID: 28229977 DOI: 10.1007/s12038-017-9663-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) present in bacteria and fungi are the major multi-modular enzyme complexes which synthesize secondary metabolites like the pharmacologically important antibiotics and siderophores. Each of the multiple modules of an NRPS activates a different amino or aryl acid, followed by their condensation to synthesize a linear or cyclic natural product. The studies on NRPS domains, the knowledge of their gene cluster architecture and tailoring enzymes have helped in the in silico genetic screening of the ever-expanding sequenced microbial genomic data for the identification of novel NRPS/PKS clusters and thus deciphering novel non-ribosomal peptides (NRPs). Adenylation domain is an integral part of the NRPSs and is the substrate selecting unit for the final assembled NRP. In some cases, it also requires a small protein, the MbtH homolog, for its optimum activity. The presence of putative adenylation domain and MbtH homologs in a sequenced genome can help identify the novel secondary metabolite producers. The role of the adenylation domain in the NRPS gene clusters and its characterization as a tool for the discovery of novel cryptic NRPS gene clusters are discussed.
Collapse
Affiliation(s)
- Mangal Singh
- Department of Biochemistry, Panjab University, Chandigarh, India
| | | | | |
Collapse
|
30
|
Yin Y, Cai M, Zhou X, Li Z, Zhang Y. Polyketides in Aspergillus terreus: biosynthesis pathway discovery and application. Appl Microbiol Biotechnol 2016; 100:7787-98. [PMID: 27455860 DOI: 10.1007/s00253-016-7733-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/03/2016] [Accepted: 07/07/2016] [Indexed: 01/01/2023]
Abstract
The knowledge of biosynthesis gene clusters, production improving methods, and bioactivity mechanisms is very important for the development of filamentous fungi metabolites. Metabolic engineering and heterologous expression methods can be applied to improve desired metabolite production, when their biosynthesis pathways have been revealed. And, stable supplement is a necessary basis of bioactivity mechanism discovery and following clinical trial. Aspergillus terreus is an outstanding producer of many bioactive agents, and a large part of them are polyketides. In this review, we took polyketides from A. terreus as examples, focusing on 13 polyketide synthase (PKS) genes in A. terreus NIH 2624 genome. The biosynthesis pathways of nine PKS genes have been reported, and their downstream metabolites are lovastatin, terreic acid, terrein, geodin, terretonin, citreoviridin, and asperfuranone, respectively. Among them, lovastatin is a well-known hypolipidemic agent. Terreic acid, terrein, citreoviridin, and asperfuranone show good bioactivities, especially anticancer activities. On the other hand, geodin and terretonin are mycotoxins. So, biosynthesis gene cluster information is important for the production or elimination of them. We also predicted three possible gene clusters that contain four PKS genes by homologous gene alignment with other Aspergillus strains. We think that this is an effective way to mine secondary metabolic gene clusters.
Collapse
Affiliation(s)
- Ying Yin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhiyong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China. .,Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
31
|
Brandenburger E, Braga D, Kombrink A, Lackner G, Gressler J, Künzler M, Hoffmeister D. Multi-genome analysis identifies functional and phylogenetic diversity of basidiomycete adenylate-forming reductases. Fungal Genet Biol 2016; 112:55-63. [PMID: 27457378 DOI: 10.1016/j.fgb.2016.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/08/2016] [Accepted: 07/14/2016] [Indexed: 02/05/2023]
Abstract
Among the invaluable benefits of basidiomycete genomics is the dramatically enhanced insight into the potential capacity to biosynthesize natural products. This study focuses on adenylate-forming reductases, which is a group of natural product biosynthesis enzymes that resembles non-ribosomal peptide synthetases, yet serves to modify one substrate, rather than to condense two or more building blocks. Phylogenetically, these reductases fall in four classes. The phylogeny of Heterobasidion annosum (Russulales) and Serpula lacrymans (Boletales) adenylate-forming reductases was investigated. We identified a previously unrecognized phylogenetic branch within class III adenylate-forming reductases. Three representatives were heterologously produced and their substrate preferences determined in vitro: NPS9 and NPS11 of S. lacrymans preferred l-threonine and benzoic acid, respectively, while NPS10 of H. annosum accepted phenylpyruvic acid best. We also investigated two class IV adenylate-forming reductases of Coprinopsis cinerea, which each were active with l-alanine, l-valine, and l-serine as substrates. Our results show that adenylate-forming reductases are functionally more diverse than previously recognized. As none of the natural products known from the species investigated in this study includes the identified substrates of their respective reductases, our findings may help further explore the diversity of these basidiomycete secondary metabolomes.
Collapse
Affiliation(s)
- Eileen Brandenburger
- Friedrich-Schiller-Universität Jena, Department Pharmaceutical Microbiology at the Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745 Jena, Germany
| | - Daniel Braga
- Friedrich-Schiller-Universität Jena, Department Pharmaceutical Microbiology at the Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745 Jena, Germany
| | - Anja Kombrink
- ETH Zürich, Institute of Microbiology, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Gerald Lackner
- Friedrich-Schiller-Universität Jena, Junior Research Group Synthetic Microbiology at the Hans-Knöll-Institute, Adolf-Reichwein-Strasse 23, 07745 Jena, Germany
| | - Julia Gressler
- Friedrich-Schiller-Universität Jena, Department Pharmaceutical Microbiology at the Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745 Jena, Germany
| | - Markus Künzler
- ETH Zürich, Institute of Microbiology, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Dirk Hoffmeister
- Friedrich-Schiller-Universität Jena, Department Pharmaceutical Microbiology at the Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745 Jena, Germany.
| |
Collapse
|
32
|
Geib E, Gressler M, Viediernikova I, Hillmann F, Jacobsen I, Nietzsche S, Hertweck C, Brock M. A Non-canonical Melanin Biosynthesis Pathway Protects Aspergillus terreus Conidia from Environmental Stress. Cell Chem Biol 2016; 23:587-597. [DOI: 10.1016/j.chembiol.2016.03.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/18/2022]
|
33
|
Baccile JA, Spraker JE, Le HH, Brandenburger E, Gomez C, Bok JW, Macheleidt J, Brakhage AA, Hoffmeister D, Keller NP, Schroeder FC. Plant-like biosynthesis of isoquinoline alkaloids in Aspergillus fumigatus. Nat Chem Biol 2016; 12:419-24. [PMID: 27065235 PMCID: PMC5049701 DOI: 10.1038/nchembio.2061] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 02/22/2016] [Indexed: 01/09/2023]
Abstract
Natural product discovery efforts have focused primarily on microbial biosynthetic gene clusters (BGCs) containing large multi-modular PKSs and NRPSs; however, sequencing of fungal genomes has revealed a vast number of BGCs containing smaller NRPS-like genes of unknown biosynthetic function. Using comparative metabolomics, we show that a BGC in the human pathogen Aspergillus fumigatus named fsq, which contains an NRPS-like gene lacking a condensation domain, produces several novel isoquinoline alkaloids, the fumisoquins. These compounds derive from carbon-carbon bond formation between two amino acid-derived moieties followed by a sequence that is directly analogous to isoquinoline alkaloid biosynthesis in plants. Fumisoquin biosynthesis requires the N-methyltransferase FsqC and the FAD-dependent oxidase FsqB, which represent functional analogs of coclaurine N-methyltransferase and berberine bridge enzyme in plants. Our results show that BGCs containing incomplete NRPS modules may reveal new biosynthetic paradigms and suggest that plant-like isoquinoline biosynthesis occurs in diverse fungi.
Collapse
Affiliation(s)
- Joshua A Baccile
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Joseph E Spraker
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Henry H Le
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Eileen Brandenburger
- Department of Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich Schiller University, Jena, Germany
| | - Christian Gomez
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Jin Woo Bok
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - Juliane Macheleidt
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany.,Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Axel A Brakhage
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany.,Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich Schiller University, Jena, Germany
| | - Nancy P Keller
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
34
|
Li C, Matsuda Y, Gao H, Hu D, Yao XS, Abe I. Biosynthesis of LL-Z1272β: Discovery of a New Member of NRPS-like Enzymes for Aryl-Aldehyde Formation. Chembiochem 2016; 17:904-7. [PMID: 26972702 DOI: 10.1002/cbic.201600087] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Indexed: 01/16/2023]
Abstract
LL-Z1272β (1) is a prenylated aryl-aldehyde produced by several fungi; it also serves as a key pathway intermediate for many fungal meroterpenoids. Despite its importance in the biosynthesis of natural products, the molecular basis for the biosynthesis of 1 has yet to be elucidated. Here we identified the biosynthetic gene cluster for 1 from Stachybotrys bisbyi PYH05-7, and elucidated the biosynthetic route to 1. The biosynthesis involves a polyketide synthase, a prenyltransferase, and a nonribosomal peptide synthetase (NRPS)-like enzyme, which is responsible for the generation of the aldehyde functionality. Interestingly, the NRPS-like enzyme only accepts the farnesylated substrate to catalyze the carboxylate reduction; this represents a new example of a substrate for adenylation domains.
Collapse
Affiliation(s)
- Chang Li
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yudai Matsuda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hao Gao
- College of Pharmacy, Jinan University, No.601 Huangpu Avenue, Guangzhou, 510632, China
| | - Dan Hu
- College of Pharmacy, Jinan University, No.601 Huangpu Avenue, Guangzhou, 510632, China
| | - Xin Sheng Yao
- College of Pharmacy, Jinan University, No.601 Huangpu Avenue, Guangzhou, 510632, China.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
35
|
Characterization of the product of a nonribosomal peptide synthetase-like (NRPS-like) gene using the doxycycline dependent Tet-on system in Aspergillus terreus. Fungal Genet Biol 2016; 89:84-88. [DOI: 10.1016/j.fgb.2016.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/07/2016] [Accepted: 01/26/2016] [Indexed: 11/18/2022]
|
36
|
Bond C, Tang Y, Li L. Saccharomyces cerevisiae as a tool for mining, studying and engineering fungal polyketide synthases. Fungal Genet Biol 2016; 89:52-61. [PMID: 26850128 PMCID: PMC4789138 DOI: 10.1016/j.fgb.2016.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/01/2016] [Accepted: 01/09/2016] [Indexed: 12/17/2022]
Abstract
Small molecule secondary metabolites produced by organisms such as plants, bacteria, and fungi form a fascinating and important group of natural products, many of which have shown promise as medicines. Fungi in particular have been important sources of natural product polyketide pharmaceuticals. While the structural complexity of these polyketides makes them interesting and useful bioactive compounds, these same features also make them difficult and expensive to prepare and scale-up using synthetic methods. Currently, nearly all commercial polyketides are prepared through fermentation or semi-synthesis. However, elucidation and engineering of polyketide pathways in the native filamentous fungi hosts are often hampered due to a lack of established genetic tools and of understanding of the regulation of fungal secondary metabolisms. Saccharomyces cerevisiae has many advantages beneficial to the study and development of polyketide pathways from filamentous fungi due to its extensive genetic toolbox and well-studied metabolism. This review highlights the benefits S. cerevisiae provides as a tool for mining, studying, and engineering fungal polyketide synthases (PKSs), as well as notable insights this versatile tool has given us into the mechanisms and products of fungal PKSs.
Collapse
Affiliation(s)
- Carly Bond
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States.
| | - Li Li
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States; Engineering Research Center of Industrial Microbiology (Ministry of Education), College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, China; State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
37
|
Liu J, Zhou Y, Yi T, Zhao M, Xie N, Lei M, Liu Q, Shao Y, Chen F. Identification and role analysis of an intermediate produced by a polygenic mutant of Monascus pigments cluster in Monascus ruber M7. Appl Microbiol Biotechnol 2016; 100:7037-49. [PMID: 26946170 DOI: 10.1007/s00253-016-7397-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/19/2016] [Accepted: 02/12/2016] [Indexed: 01/08/2023]
Abstract
Monascus pigments (Mps) are a group of azaphilonic secondary metabolites produced by Monascus spp. via a polyketide pathway. A mutant deleted an about 30 kb region of Mps gene cluster from Monascus ruber M7 was isolated previously, which produces a high amount of a light yellow pigment. The current study revealed that the mutant named ΔMpigJ-R lost proximate eight genes of the Mps gene cluster in M. ruber M7 through genetic analysis at DNA and RNA levels. The produced light yellow material was identified as a benzaldehyde derivative named as 6-(4-hydroxy-2-oxopentyl)-3-methyl-2, 4-dioxocyclohexane carb-aldehyde (M7PKS-1) by FT-IR, NMR, and MS. The sodium acetate-1-(13)C feeding experiment indicated that M7PKS-1 was a product produced from polyketide pathway. Finally, the feeding of M7PKS-1 helped to induce and regain Mps production of the mutants (ΔMpigA and ΔMpigE) which were previously unable to biosynthesize Mps and proved that M7PKS-1 was an initial intermediate of Mps. The results in this study provide a line of action to unveil Monascus pigments biosynthesis pathway.
Collapse
Affiliation(s)
- Jiao Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Youxiang Zhou
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
| | - Tao Yi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingming Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
| | - Nana Xie
- School of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Ming Lei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingpei Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fusheng Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
38
|
Winkler M, Winkler CK. Trametes versicolor carboxylate reductase uncovered. MONATSHEFTE FUR CHEMIE 2016; 147:575-578. [PMID: 27069283 PMCID: PMC4785219 DOI: 10.1007/s00706-016-1676-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/03/2015] [Indexed: 11/29/2022]
Abstract
Abstract The first carboxylate reductase from Trametes versicolor was identified, cloned, and expressed in Escherichia coli. The enzyme reduces aromatic acids such as benzoic acid and derivatives, cinnamic acid, and 3-phenylpropanoic acid, but also aliphatic acids such as octanoic acid are reduced. Graphical abstract ![]()
Collapse
Affiliation(s)
- Margit Winkler
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | - Christoph K Winkler
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Graz, Austria
| |
Collapse
|
39
|
Luo Y, Li BZ, Liu D, Zhang L, Chen Y, Jia B, Zeng BX, Zhao H, Yuan YJ. Engineered biosynthesis of natural products in heterologous hosts. Chem Soc Rev 2015; 44:5265-90. [PMID: 25960127 PMCID: PMC4510016 DOI: 10.1039/c5cs00025d] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Natural products produced by microorganisms and plants are a major resource of antibacterial and anticancer drugs as well as industrially useful compounds. However, the native producers often suffer from low productivity and titers. Here we summarize the recent applications of heterologous biosynthesis for the production of several important classes of natural products such as terpenoids, flavonoids, alkaloids, and polyketides. In addition, we will discuss the new tools and strategies at multi-scale levels including gene, pathway, genome and community levels for highly efficient heterologous biosynthesis of natural products.
Collapse
Affiliation(s)
- Yunzi Luo
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Guo CJ, Sun WW, Bruno KS, Oakley BR, Keller NP, Wang CCC. Spatial regulation of a common precursor from two distinct genes generates metabolite diversity. Chem Sci 2015; 6:5913-5921. [PMID: 28791090 PMCID: PMC5523082 DOI: 10.1039/c5sc01058f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/12/2015] [Indexed: 12/04/2022] Open
Abstract
We have demonstrated that spatial regulation of the same product from two distinct genes generates metabolite diversity.
In secondary metabolite biosynthesis, core synthetic genes such as polyketide synthase genes usually encode proteins that generate various backbone precursors. These precursors are modified by other tailoring enzymes to yield a large variety of different secondary metabolites. The number of core synthesis genes in a given species correlates, therefore, with the number of types of secondary metabolites the organism can produce. In our study, heterologous expression of all the A. terreus NRPS-like genes showed that two NRPS-like proteins, encoded by atmelA and apvA, release the same natural product, aspulvinone E. In hyphae this compound is converted to aspulvinones whereas in conidia it is converted to melanin. The genes are expressed in different tissues and this spatial control is probably regulated by their own specific promoters. Comparative genomics indicates that atmelA and apvA might share a same ancestral gene and the gene apvA is located in a highly conserved region in Aspergillus species that contains genes coding for life-essential proteins. Our data reveal the first case in secondary metabolite biosynthesis in which the tissue specific production of a single compound directs it into two separate pathways, producing distinct compounds with different functions. Our data also reveal that a single trans-prenyltransferase, AbpB, prenylates two substrates, aspulvinones and butyrolactones, revealing that genes outside of contiguous secondary metabolism gene clusters can modify more than one compound thereby expanding metabolite diversity. Our study raises the possibility of incorporation of spatial, cell-type specificity in expression of secondary metabolites of biological interest and provides new insight into designing and reconstituting their biosynthetic pathways.
Collapse
Affiliation(s)
- Chun-Jun Guo
- Department of Pharmacology and Pharmaceutical Sciences , School of Pharmacy , University of Southern California , Los Angeles , CA 90089 , USA .
| | - Wei-Wen Sun
- Department of Pharmacology and Pharmaceutical Sciences , School of Pharmacy , University of Southern California , Los Angeles , CA 90089 , USA .
| | - Kenneth S Bruno
- Chemical and Biological Process Development Group , Energy and Environment Directorate , Pacific Northwest National Laboratory , Richland , WA 99352 , USA
| | - Berl R Oakley
- Department of Molecular Biosciences , University of Kansas , Lawrence , KS 66045 , USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology , University of Wisconsin-Madison , Madison , WI 53706 , USA
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences , School of Pharmacy , University of Southern California , Los Angeles , CA 90089 , USA . .,Department of Chemistry , College of Letters, Arts, and Sciences , University of Southern California , Los Angeles , CA 90089 , USA
| |
Collapse
|
41
|
Kalb D, Lackner G, Rappe M, Hoffmeister D. Activity of α-Aminoadipate Reductase Depends on the N-Terminally Extending Domain. Chembiochem 2015; 16:1426-30. [DOI: 10.1002/cbic.201500190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Indexed: 12/22/2022]
|
42
|
Exploring the synthetic applicability of a new carboxylic acid reductase from Segniliparus rotundus DSM 44985. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.01.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Macheleidt J, Scherlach K, Neuwirth T, Schmidt-Heck W, Straßburger M, Spraker J, Baccile JA, Schroeder FC, Keller NP, Hertweck C, Heinekamp T, Brakhage AA. Transcriptome analysis of cyclic AMP-dependent protein kinase A-regulated genes reveals the production of the novel natural compound fumipyrrole by Aspergillus fumigatus. Mol Microbiol 2015; 96:148-62. [PMID: 25582336 DOI: 10.1111/mmi.12926] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2015] [Indexed: 01/31/2023]
Abstract
Aspergillus fumigatus is an opportunistic human pathogenic fungus causing life-threatening infections in immunocompromised patients. Adaptation to different habitats and also virulence of the fungus depends on signal perception and transduction by modules such as the cyclic AMP-dependent protein kinase A (PKA) pathway. Here, by transcriptome analysis, 632 differentially regulated genes of this important signaling cascade were identified, including 23 putative transcriptional regulators. The highest upregulated transcription factor gene was located in a previously unknown secondary metabolite gene cluster, which we named fmp, encoding an incomplete non-ribosomal peptide synthetase, FmpE. Overexpression of the regulatory gene fmpR using the Tet(On) system led to the specific expression of the other six genes of the fmp cluster. Metabolic profiling of wild type and fmpR overexpressing strain by HPLC-DAD and HPLC-HRESI-MS and structure elucidation by NMR led to identification of 5-benzyl-1H-pyrrole-2-carboxylic acid, which we named fumipyrrole. Fumipyrrole was not described as natural product yet. Chemical synthesis of fumipyrrole confirmed its structure. Interestingly, deletion of fmpR or fmpE led to reduced growth and sporulation of the mutant strains. Although fmp cluster genes were transcribed in infected mouse lungs, deletion of fmpR resulted in wild-type virulence in a murine infection model.
Collapse
Affiliation(s)
- Juliane Macheleidt
- Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745, Jena, Germany; Institute for Microbiology, Friedrich Schiller University, 07745, Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Guo CJ, Wang CCC. Recent advances in genome mining of secondary metabolites in Aspergillus terreus. Front Microbiol 2014; 5:717. [PMID: 25566227 PMCID: PMC4274970 DOI: 10.3389/fmicb.2014.00717] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 12/01/2014] [Indexed: 11/23/2022] Open
Abstract
Filamentous fungi are rich resources of secondary metabolites (SMs) with a variety of interesting biological activities. Recent advances in genome sequencing and techniques in genetic manipulation have enabled researchers to study the biosynthetic genes of these SMs. Aspergillus terreus is the well-known producer of lovastatin, a cholesterol-lowering drug. This fungus also produces other SMs, including acetylaranotin, butyrolactones, and territram, with interesting bioactivities. This review will cover recent progress in genome mining of SMs identified in this fungus. The identification and characterization of the gene cluster for these SMs, as well as the proposed biosynthetic pathways, will be discussed in depth.
Collapse
Affiliation(s)
- Chun-Jun Guo
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California Los Angeles, CA, USA
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California Los Angeles, CA, USA ; Department of Chemistry, College of Letters, Arts, and Sciences, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
45
|
Abstract
The Pictet-Spengler (PS) reaction constructs plant alkaloids such as morphine and camptothecin, but it has not yet been noticed in the fungal kingdom. Here, a silent fungal Pictet-Spenglerase (FPS) gene of Chaetomium globosum 1C51 residing in Epinephelus drummondhayi guts is described and ascertained to be activable by 1-methyl-L-tryptophan (1-MT). The activated FPS expression enables the PS reaction between 1-MT and flavipin (fungal aldehyde) to form "unnatural" natural products with unprecedented skeletons, of which chaetoglines B and F are potently antibacterial with the latter inhibiting acetylcholinesterase. A gene-implied enzyme inhibition (GIEI) strategy has been introduced to address the key steps for PS product diversifications. In aggregation, the work designs and validates an innovative approach that can activate the PS reaction-based fungal biosynthetic machinery to produce unpredictable compounds of unusual and novel structure valuable for new biology and biomedicine.
Collapse
|
46
|
Functional and phylogenetic divergence of fungal adenylate-forming reductases. Appl Environ Microbiol 2014; 80:6175-83. [PMID: 25085485 DOI: 10.1128/aem.01767-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A key step in fungal L-lysine biosynthesis is catalyzed by adenylate-forming L-α-aminoadipic acid reductases, organized in domains for adenylation, thiolation, and the reduction step. However, the genomes of numerous ascomycetes and basidiomycetes contain an unexpectedly large number of additional genes encoding similar but functionally distinct enzymes. Here, we describe the functional in vitro characterization of four reductases which were heterologously produced in Escherichia coli. The Ceriporiopsis subvermispora serine reductase Nps1 features a terminal ferredoxin-NADP+ reductase (FNR) domain and thus belongs to a hitherto undescribed class of fungal multidomain enzymes. The second major class is characterized by the canonical terminal short-chain dehydrogenase/reductase domain and represented by Ceriporiopsis subvermispora Nps3 as the first biochemically characterized L-α-aminoadipic acid reductase of basidiomycete origin. Aspergillus flavus l-tyrosine reductases LnaA and LnbA are members of a distinct phylogenetic clade. Phylogenetic analysis supports the view that fungal adenylate-forming reductases are more diverse than previously recognized and belong to four distinct classes.
Collapse
|
47
|
Lazarus CM, Williams K, Bailey AM. Reconstructing fungal natural product biosynthetic pathways. Nat Prod Rep 2014; 31:1339-47. [DOI: 10.1039/c4np00084f] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular biology plays a vital role in contemporary natural product research. Responding to developments in whole genome sequencing, heterologous expression systems are being refined to accommodate whole fungal biosynthetic pathways.
Collapse
Affiliation(s)
- C. M. Lazarus
- School of Biological Sciences
- University of Bristol
- Bristol, UK
| | - K. Williams
- School of Chemistry
- University of Bristol
- Bristol BS8 1TS, UK
| | - A. M. Bailey
- School of Biological Sciences
- University of Bristol
- Bristol, UK
| |
Collapse
|