1
|
Mayorga-Martino V, Mansurova M, Calla-Quispe E, Ibáñez AJ. Unlocking the Secrets of Insects: The Role of Mass Spectrometry to Understand the Life of Insects. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39679754 DOI: 10.1002/mas.21922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/14/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
Chemical signaling is crucial during the insect lifespan, significantly affecting their survival, reproduction, and ecological interactions. Unfortunately, most chemical signals insects use are impossible for humans to perceive directly. Hence, mass spectrometry has become a vital tool by offering vital insight into the underlying chemical and biochemical processes in various variety of insect activities, such as communication, mate recognition, mating behavior, and adaptation (defense/attack mechanisms), among others. Here, we review different mass spectrometry-based strategies used to gain a deeper understanding of the chemicals involved in shaping the complex behaviors among insects and mass spectrometry-based research in insects that have direct impact in global economic activities.
Collapse
Affiliation(s)
- Vanessa Mayorga-Martino
- Institute for Omics Sciences and Applied Biotechnology (ICOBA PUCP), Pontificia Universidad Católica del Perú, Lima, Peru
- Science Department, Pontificia Universidad Católica del Perú, San Miguel, Lima, Peru
| | - Madina Mansurova
- Institute for Omics Sciences and Applied Biotechnology (ICOBA PUCP), Pontificia Universidad Católica del Perú, Lima, Peru
- Science Department, Pontificia Universidad Católica del Perú, San Miguel, Lima, Peru
| | - Erika Calla-Quispe
- Institute for Omics Sciences and Applied Biotechnology (ICOBA PUCP), Pontificia Universidad Católica del Perú, Lima, Peru
| | - Alfredo J Ibáñez
- Institute for Omics Sciences and Applied Biotechnology (ICOBA PUCP), Pontificia Universidad Católica del Perú, Lima, Peru
- Science Department, Pontificia Universidad Católica del Perú, San Miguel, Lima, Peru
| |
Collapse
|
2
|
Li J, Ni B, Wu Y, Yang Y, Mu D, Wu K, Zhang A, Du Y, Li Q. The cultivable gut bacteria Enterococcus mundtii promotes early-instar larval growth of Conogethes punctiferalis via enhancing digestive enzyme activity. PEST MANAGEMENT SCIENCE 2024; 80:6179-6188. [PMID: 39072862 DOI: 10.1002/ps.8346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Gut bacteria are crucial in influencing insect development and even phenotypic plasticity. The yellow peach moth Conogethes punctiferalis, as a significant borer pest, has been the subject of limited reports regarding the structural and diversification changes in its gut microbiota during feeding, and their potential impacts on the growth and development of the host insects. RESULTS This study, employing 16S rRNA sequencing, demonstrates distinct shifts in the larvae gut microbiome of C. punctiferalis between different feeding stages, highlighting a pronounced diversity in the early-instar with Enterococcus as a predominant genus in laboratory populations. Through in vitro cultivation and sequencing, three bacterial strains - Micrococcus sp., Brevibacterium sp. and Enterococcus mundtii - were isolated and characterized. Bioassays revealed that E. mundtii-infused corn significantly boosts early-instar larval growth, enhancing both body length and weight. Quantitative PCR and spectrophotometry confirmed a higher abundance of E. mundtii in younger larvae, correlating with increased digestive enzyme activity and total protein levels. CONCLUSION This study reveals the heightened gut microbiota diversity in early instars of C. punctiferalis larvae, highlighting that Enterococcus represent a predominant bacteria in laboratory populations. In vitro cultivation and bioassays unequivocally demonstrate the significant role of the cultivable gut bacteria E. mundtii in promoting the growth of early-instar larva. These findings provide a solid theoretical foundation for advancing the comprehension of the intricate interactions between gut microbiota and insect hosts, as well as for the development of eco-friendly pest control technologies based on targeted manipulation of insect gut microbial communities. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiayu Li
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Boqing Ni
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Yanan Wu
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Yueyue Yang
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Dongli Mu
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - KaiNing Wu
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Aihuan Zhang
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Yanli Du
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| | - Qian Li
- College of Bioscience and Resource Environment/Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
3
|
Wu LH, Hu CX, Liu TX. Metagenomic profiling of gut microbiota in Fall Armyworm (Spodoptera frugiperda) larvae fed on different host plants. BMC Microbiol 2024; 24:337. [PMID: 39256682 PMCID: PMC11389342 DOI: 10.1186/s12866-024-03481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The fall armyworm (FAW, Spodoptera frugiperda) is a polyphagous pest known for causing significant crop damage. The gut microbiota plays a pivotal role in influencing the biology, physiology and adaptation of the host. However, understanding of the taxonomic composition and functional characteristics of the gut microbiota in FAW larvae fed on different host plants remains limited. METHODS This study utilized metagenomic sequencing to explore the structure, function and antibiotic resistance genes (ARGs) of the gut microbiota in FAW larvae transferred from an artificial diet to four distinct host plants: maize, sorghum, tomato and pepper. RESULTS The results demonstrated significant variations in gut microbiota structure among FAW larvae fed on different host plants. Firmicutes emerged as the dominant phylum, with Enterococcaceae as the dominant family and Enterococcus as the prominent genus. Notably, Enterococcus casseliflavus was frequently observed in the gut microbiota of FAW larvae across host plants. Metabolism pathways, particularly those related to carbohydrate and amino acid metabolism, played a crucial role in the adaptation of the FAW gut microbiota to different host plants. KEGG orthologs associated with the regulation of the peptide/nickel transport system permease protein in sorghum-fed larvae and the 6-phospho-β-glucosidase gene linked to glycolysis/gluconeogenesis as well as starch and sucrose metabolism in pepper-fed larvae were identified. Moreover, the study identified the top 20 ARGs in the gut microbiota of FAW larvae fed on different host plants, with the maize-fed group exhibiting the highest abundance of vanRC. CONCLUSIONS Our metagenomic sequencing study reveals significant variations in the gut microbiota composition and function of FAW larvae across diverse host plants. These findings underscore the intricate co-evolutionary relationship between hosts and their gut microbiota, suggesting that host transfer profoundly influences the gut microbiota and, consequently, the adaptability and pest management strategies for FAW.
Collapse
Affiliation(s)
- Li-Hong Wu
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, 550025, China
| | - Chao-Xing Hu
- Institute of Entomology, Guizhou University, Guiyang, China.
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China.
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, 550025, China.
| | - Tong-Xian Liu
- Institute of Entomology, Guizhou University, Guiyang, China.
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China.
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
4
|
Wang G, Wang G, Ma Y, Lv Z, You Y, Ma P, Yu Y. Composition and Diversity of Gut Bacterial Community in Different Life Stages of Osmia excavata Alfken (Hymenoptera: Megachilidae). Microorganisms 2024; 12:1709. [PMID: 39203551 PMCID: PMC11357660 DOI: 10.3390/microorganisms12081709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Osmia excavata is an excellent pollinator in nature and plays a vital role in the conservation of agro-ecosystems and food security. Given the important role of the gut bacterial community in host health and regulation of host growth and development, using 16S rRNA gene sequencing data, the present study explored the composition of the gut bacterial community and its diversity at different life stages (eggs, young larvae, old larvae, young pupae, old pupae, and 1-day-old adults in cocoons) of the solitary bee Osmia excavata. The results showed that the core phyla in the gut of O. excavata at different life stages were Proteobacteria, Firmicutes, Bacteroidota, and Actinobacteriota, and the core genera were Sodalis, Tyzzerella, and Ralstonia. The highest intestinal bacterial diversity was found in the Egg period, and the lowest bacterial alpha diversity was found in the 1-day-old Adult period; the bacterial diversity of O. excavata showed a process of decreasing, as it was growing from the Egg period to the 1-day-old Adult period. Our study found that O. excavata undergoes a significant change in the structure of the gut flora when it grows from the young pupae to old pupae stage, a period of growth that coincides with the process of cocooning and isolation from the external environment after food depletion. This suggests that food and environmental factors are key contributors to the structure of the bacterial community in the gut of solitary bees.
Collapse
Affiliation(s)
- Guangzhao Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.W.); (G.W.); (Y.M.); (Y.Y.)
| | - Guiping Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.W.); (G.W.); (Y.M.); (Y.Y.)
| | - Yixiang Ma
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.W.); (G.W.); (Y.M.); (Y.Y.)
| | - Zhaoyun Lv
- Shandong Institute of Sericulture, Yantai 264000, China;
| | - Yinwei You
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.W.); (G.W.); (Y.M.); (Y.Y.)
| | - Pengtao Ma
- School of Life Sciences, Yantai University, Yantai 264005, China;
| | - Yi Yu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (G.W.); (G.W.); (Y.M.); (Y.Y.)
| |
Collapse
|
5
|
Li G, Wu M, Xiao Y, Tong Y, Li S, Qian H, Zhao T. Multi-omics reveals the ecological and biological functions of Enterococcus mundtii in the intestine of lepidopteran insects. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101309. [PMID: 39146704 DOI: 10.1016/j.cbd.2024.101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Insect guts offer unique habitats for microbial colonization, with gut bacteria potentially offering numerous benefits to their hosts. Although Enterococcus has emerged as one of the predominant gut commensal bacteria in insects, its establishment in various niches within the gut has not been characterized well. In this study, Enterococcus mundtii was inoculated into the silkworm (Bombyx mori L.) to investigate its biological functions. Genome-based analysis revealed that its successful colonization is related to adherence genes (ebpA, ebpC, efaA, srtC, and scm). This bacterium did not alter the activities of related metabolic enzymes or the intestinal barrier function. However, significant changes in the gene expressions levels of Att2, CecA, and Lys suggest potential adaptive mechanisms of host immunity to symbiotic E. mundtii. Moreover, 16S metagenomics analysis revealed a significant increase in the relative abundance of E. mundtii in the intestines of silkworms following inoculation. The intestinal microbiome displayed marked heterogeneity, an elevated gut microbiome health index, a reduced microbial dysbiosis index, and low potential pathogenicity in the treatment group. Additionally, E. mundtii enhanced the breakdown of carbohydrates in host intestines. Overall, E. mundtii serves as a beneficial microbe for insects, promoting intestinal homeostasis by providing competitive advantage. This characteristic helps E. mundtii dominate complex microbial environments and remain prevalent across Lepidoptera, likely fostering long-term symbiosis between the both parties. The present study contributes to clarifying the niche of E. mundtii in the intestine of lepidopteran insects and further reveals its potential roles in their insect hosts.
Collapse
Affiliation(s)
- Guannan Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 402760, PR China.
| | - Meihong Wu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 402760, PR China
| | - Yi Xiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 402760, PR China
| | - Yujie Tong
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 402760, PR China
| | - Sheng Li
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 402760, PR China
| | - Heying Qian
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China; The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, PR China
| | - Tianfu Zhao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 402760, PR China.
| |
Collapse
|
6
|
Grundmann CO, Guzman J, Vilcinskas A, Pupo MT. The insect microbiome is a vast source of bioactive small molecules. Nat Prod Rep 2024; 41:935-967. [PMID: 38411238 DOI: 10.1039/d3np00054k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Covering: September 1964 to June 2023Bacteria and fungi living in symbiosis with insects have been studied over the last sixty years and found to be important sources of bioactive natural products. Not only classic producers of secondary metabolites such as Streptomyces and other members of the phylum Actinobacteria but also numerous bacteria from the phyla Proteobacteria and Firmicutes and an impressive array of fungi (usually pathogenic) serve as the source of a structurally diverse number of small molecules with important biological activities including antimicrobial, cytotoxic, antiparasitic and specific enzyme inhibitors. The insect niche is often the exclusive provider of microbes producing unique types of biologically active compounds such as gerumycins, pederin, dinactin, and formicamycins. However, numerous insects still have not been described taxonomically, and in most cases, the study of their microbiota is completely unexplored. In this review, we present a comprehensive survey of 553 natural products produced by microorganisms isolated from insects by collating and classifying all the data according to the type of compound (rather than the insect or microbial source). The analysis of the correlations among the metadata related to insects, microbial partners, and their produced compounds provides valuable insights into the intricate dynamics between insects and their symbionts as well as the impact of their metabolites on these relationships. Herein, we focus on the chemical structure, biosynthesis, and biological activities of the most relevant compounds.
Collapse
Affiliation(s)
| | - Juan Guzman
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University, Giessen, Germany
| | - Mônica Tallarico Pupo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
7
|
Zhang B, Yang W, He Q, Chen H, Che B, Bai X. Analysis of differential effects of host plants on the gut microbes of Rhoptroceros cyatheae. Front Microbiol 2024; 15:1392586. [PMID: 38962140 PMCID: PMC11221597 DOI: 10.3389/fmicb.2024.1392586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
As an indispensable part of insects, intestinal symbiotic bacteria play a vital role in the growth and development of insects and their adaptability. Rhoptroceros cyatheae, the main pest of the relict plant Alsophila spinulosa, poses a serious threat to the development of the A. spinulosa population. In the present study, 16S rDNA and internal transcribed spacer high-throughput sequencing techniques were used to analyze the structure of intestinal microbes and the diversity of the insect feeding on two different plants, as well as the similarities between the intestinal microorganisms of R. cyatheae. The dominant bacteria of leaf endophytes were also compared based on the sequencing data. The results showed that Proteobacteria, Firmicutes, and Actinobacteria were the dominant phyla of intestinal bacteria, and Ascomycota was the dominant phylum of intestinal fungi. Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Methylobacterium-Methylorubrum, and Enterococcus were the dominant genera in the intestine of R. cyatheae feeding on two plants, and the relative abundance was significantly different between the two groups. Candida was the common dominant genus of intestinal fungi in the two groups, and no significant difference was observed in its abundance between the two groups. This showed that compared with the intestinal fungi of R. cyatheae, the abundance of the intestinal bacteria was greatly affected by food. The common core microbiota between the microorganisms in A. spinulosa leaves and the insect gut indicated the presence of a microbial exchange between the two. The network correlation diagram showed that the gut microbes of R. cyatheae feeding on Gymnosphaera metteniana were more closely related to each other, which could help the host to better cope with the adverse external environment. This study provides a theoretical basis for the adaptation mechanism of R. cyatheae and a new direction for the effective prevention and control of R. cyatheae.
Collapse
Affiliation(s)
- Bingchen Zhang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Weicheng Yang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Qinqin He
- Guizhou Chishui Alsophila National Nature Reserve Administration Bureau, Chishui, Guizhou, China
| | - Hangdan Chen
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Bingjie Che
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou, China
| | - Xiaojie Bai
- Guizhou Chishui Alsophila National Nature Reserve Administration Bureau, Chishui, Guizhou, China
| |
Collapse
|
8
|
Zeng Z, Tong X, Yang Y, Zhang Y, Deng S, Zhang G, Dai F. Pediococcus pentosaceus ZZ61 enhances growth performance and pathogenic resistance of silkworm Bombyx mori by regulating gut microbiota and metabolites. BIORESOURCE TECHNOLOGY 2024; 402:130821. [PMID: 38735341 DOI: 10.1016/j.biortech.2024.130821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Probiotics have attracted considerable attention in animal husbandry due to their positive effect on animal growth and health. This study aimed to screen candidate probiotic strain promoting the growth and health of silkworm and reveal the potential mechanisms. A novel probiotic Pediococcus pentosaceus strain (ZZ61) substantially promoted body weight gain, feed efficiency, and silk yield. These effects were likely mediated by changes in the intestinal digestive enzyme activity and nutrient provisioning (e.g., B vitamins) of the host, improving nutrient digestion and assimilation. Additionally, P. pentosaceus produced antimicrobial compounds and increased the antioxidant capacity to protect the host against pathogenic infection. Furthermore, P. pentosaceus affected the gut microbiome and altered the levels of gut metabolites (e.g., glycine and glycerophospholipids), which in turn promotes host nutrition and health. This study contributes to an improved understanding of the interactions between probiotic and host and promotes probiotic utilization in sericulture.
Collapse
Affiliation(s)
- Zhu Zeng
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Yi Yang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Yuli Zhang
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Guangxi Zhuang Autonomous Region, Nanning 530007, China.
| | - Shuwen Deng
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Guizheng Zhang
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Guangxi Zhuang Autonomous Region, Nanning 530007, China.
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
9
|
Oono R, Chou V, Irving M. How do phytophagous insects affect phyllosphere fungi? Tracking fungi from milkweed to monarch caterpillar frass reveals communities dominated by fungal yeast. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13213. [PMID: 38738810 PMCID: PMC11089944 DOI: 10.1111/1758-2229.13213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/26/2023] [Indexed: 05/14/2024]
Abstract
Since a significant proportion of plant matter is consumed by herbivores, a necessary adaptation for many phyllosphere microbes could be to survive through the guts of herbivores. While many studies explore the gut microbiome of herbivores by surveying the microbiome in their frass, few studies compare the phyllosphere microbiome to the gut microbiome of herbivores. High-throughput metabarcode sequencing was used to track the fungal community from milkweed (Asclepias spp.) leaves to monarch caterpillar frass. The most commonly identified fungal taxa that dominated the caterpillar frass after the consumption of leaves were yeasts, mostly belonging to the Basidiomycota phylum. While most fungal communities underwent significant bottlenecks and some yeast taxa increased in relative abundance, a consistent directional change in community structure was not identified from leaf to caterpillar frass. These results suggest that some phyllosphere fungi, especially diverse yeasts, can survive herbivory, but whether herbivory is a key stage of their life cycle remains uncertain. For exploring phyllosphere fungi and the potential coprophilous lifestyles of endophytic and epiphytic fungi, methods that target yeast and Basidiomycota fungi are recommended.
Collapse
Affiliation(s)
- Ryoko Oono
- Department of Ecology, Evolution, and Marine BiologyUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Vanessa Chou
- Department of Ecology, Evolution, and Marine BiologyUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Mari Irving
- Department of Ecology, Evolution, and Marine BiologyUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| |
Collapse
|
10
|
Wang G, Xu S, Chen L, Zhan T, Zhang X, Liang H, Chen B, Peng Y. Gut Microbial Diversity Reveals Differences in Pathogenicity between Metarhizium rileyi and Beauveria bassiana during the Early Stage of Infection in Spodoptera litura Larvae. Microorganisms 2024; 12:1129. [PMID: 38930511 PMCID: PMC11206097 DOI: 10.3390/microorganisms12061129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Beauveria bassiana and Metarhizium rileyi are extensively utilized to investigate fungal pathogenic mechanisms and to develop biological control agents. Notwithstanding, notable distinctions exist in their pathogenicity against the same host insect. This study aimed to elucidate the pathogenic differences between M. rileyi and B. bassiana by examining the impact of various ratios of B. bassiana strain AJS91881 and M. rileyi strain SXBN200920 on fifth instar larvae of Spodoptera litura, focusing on early infection stages and intestinal microbial community structure. The lethal time 50 (LT50) for B. bassiana was significantly lower than that for M. rileyi, indicating greater efficacy. Survival analyses in mixed groups (ratios of 1:9, 1:1, and 9:1 M. rileyi to B. bassiana) consistently demonstrated higher virulence of B. bassiana. Intestinal microbial diversity analysis revealed a significant increase in Achromobacter and Pseudomonas in larvae infected with M. rileyi, whereas Weissella was notably higher in those infected with B. bassiana. Additionally, significant shifts in microbial genera abundances were observed across all mixed infection groups. KEGG pathway enrichment analysis indicated that M. rileyi and B. bassiana employ distinct pathogenic strategies during early infection stages. In vitro tests confirmed the superior growth and stress resistance of B. bassiana compared to M. rileyi, but the antifungal ability of M. rileyi was better than that of B. bassiana. In conclusion, our findings provide preliminary insights into the differential pathogenic behaviors of M. rileyi and B. bassiana during the early infection stages in S. litura larvae, enhancing our understanding of their mechanisms and informing biological pest control strategies in agriculture and forestry.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bin Chen
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (G.W.); (S.X.); (L.C.); (T.Z.); (X.Z.); (H.L.)
| | - Yuejin Peng
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (G.W.); (S.X.); (L.C.); (T.Z.); (X.Z.); (H.L.)
| |
Collapse
|
11
|
Subrahmanyam G, Thirupathaiah Y, Vijay N, Debnath R, Arunkumar KP, Gadwala M, Sangannavar PA, Manthira Moorthy S, Chutia M. Contrasting gut bacteriomes unveiled between wild Antheraea assamensis Helfer (Lepidoptera: Saturniidae) and domesticated Bombyx mori L. (Lepidoptera: Bombycidae) silkworms. Mol Biol Rep 2024; 51:666. [PMID: 38777963 DOI: 10.1007/s11033-024-09629-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Insect gut microbiomes play a fundamental role in various aspects of insect physiology, including digestion, nutrient metabolism, detoxification, immunity, growth and development. The wild Muga silkworm, Antheraea assamensis Helfer holds significant economic importance, as it produces golden silk. METHODS AND RESULTS In the current investigation, we deciphered its intricate gut bacteriome through high-throughput 16S rRNA amplicon sequencing. Further, to understand bacterial community dynamics among silkworms raised under outdoor environmental conditions, we compared its gut bacteriomes with those of the domesticated mulberry silkworm, Bombyx mori L. Most abundant bacterial phyla identified in the gut of A. assamensis were Proteobacteria (78.1%), Bacteroidetes (8.0%) and Firmicutes (6.6%), whereas the most-abundant phyla in B. mori were Firmicutes (49-86%) and Actinobacteria (10-36%). Further, Gammaproteobacteria (57.1%), Alphaproteobacteria (10.47%) and Betaproteobacteria (8.28%) were the dominant bacterial classes found in the gut of A. assamensis. The predominant bacterial families in A. assamensis gut were Enterobacteriaceae (27.7%), Comamonadaceae (9.13%), Pseudomonadaceae (9.08%) Flavobacteriaceae (7.59%) Moraxellaceae (7.38%) Alteromonadaceae (6.8%) and Enterococcaceae (4.46%). In B. mori, the most-abundant bacterial families were Peptostreptococcaceae, Enterococcaceae, Lactobacillaceae and Bifidobacteriaceae, though all showed great variability among the samples. The core gut bacteriome of A. assamensis consisted of Pseudomonas, Acinetobacter, Variovorax, Myroides, Alteromonas, Enterobacter, Enterococcus, Sphingomonas, Brevundimonas, Oleispira, Comamonas, Oleibacter Vagococcus, Aminobacter, Marinobacter, Cupriavidus, Aeromonas, and Bacillus. Comparative gut bacteriome analysis revealed a more complex gut bacterial diversity in wild A. assamensis silkworms than in domesticated B. mori silkworms, which contained a relatively simple gut bacteriome as estimated by OTU richness. Predictive functional profiling of the gut bacteriome suggested that gut bacteria in A. assamensis were associated with a wide range of physiological, nutritional, and metabolic functions, including biodegradation of xenobiotics, lipid, amino acid, carbohydrate metabolism, and biosynthesis of secondary metabolites and amino acids. CONCLUSIONS These results showed great differences in the composition and diversity of gut bacteria between the two silkworm species. Both insect species harbored core bacterial taxa commonly found in insects, but the relative abundance and composition of these taxa varied markedly.
Collapse
Affiliation(s)
- Gangavarapu Subrahmanyam
- Seri-biotech Research Laboratory, Central Silk Board, Ministry of Textiles, Govt. of India, Kodathi, Carmelram Post, Bangalore, Karnataka, 560035, India.
| | - Yeruva Thirupathaiah
- Central Sericultural Research & Training Institute, Central Silk Board, Manandawadi Road, Srirampura, Mysore, Karnataka, 570008, India
| | - N Vijay
- Central Muga Eri Research & Training Institute, Central Silk Board, Ministry of Textiles, Govt. of India, Lahdoigarh, Jorhat, Assam, 785700, India
| | - Rajal Debnath
- Seri-biotech Research Laboratory, Central Silk Board, Ministry of Textiles, Govt. of India, Kodathi, Carmelram Post, Bangalore, Karnataka, 560035, India
| | - K P Arunkumar
- Central Muga Eri Research & Training Institute, Central Silk Board, Ministry of Textiles, Govt. of India, Lahdoigarh, Jorhat, Assam, 785700, India
| | - Mallikarjuna Gadwala
- Central Sericultural Research & Training Institute, Central Silk Board, Manandawadi Road, Srirampura, Mysore, Karnataka, 570008, India
| | - Prashant A Sangannavar
- Central Silk Board, Ministry of Textiles, Govt. of India, B.T.M. Layout, Madivala, Bangalore, Karnataka, 560068, India
| | - S Manthira Moorthy
- Seri-biotech Research Laboratory, Central Silk Board, Ministry of Textiles, Govt. of India, Kodathi, Carmelram Post, Bangalore, Karnataka, 560035, India
| | - Mahananda Chutia
- Muga Eri Silkworm Seed Organization, Central Silk Board, Reshom Nagar, Khanapara, Guwahati, Assam, 781022, India
| |
Collapse
|
12
|
Marulanda-Moreno SM, Saldamando-Benjumea CI, Vivero Gomez R, Cadavid-Restrepo G, Moreno-Herrera CX. Comparative analysis of Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae) corn and rice strains microbiota revealed minor changes across life cycle and strain endosymbiont association. PeerJ 2024; 12:e17087. [PMID: 38623496 PMCID: PMC11017975 DOI: 10.7717/peerj.17087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/20/2024] [Indexed: 04/17/2024] Open
Abstract
Background Spodoptera frugiperda (FAW) is a pest that poses a significant threat to corn production worldwide, causing millions of dollars in losses. The species has evolved into two strains (corn and rice) that differ in their genetics, reproductive isolation, and resistance to insecticides and Bacillus thuringiensis endotoxins. The microbiota plays an important role in insects' physiology, nutrient acquisition, and response to chemical and biological controls. Several studies have been carried out on FAW microbiota from larvae guts using laboratory or field samples and a couple of studies have analyzed the corn strain microbiota across its life cycle. This investigation reveals the first comparison between corn strain (CS) and rice strain (RS) of FAW during different developmental insect stages and, more importantly, endosymbiont detection in both strains, highlighting the importance of studying both FAW populations and samples from different stages. Methods The composition of microbiota during the life cycle of the FAW corn and rice strains was analyzed through high-throughput sequencing of the bacterial 16S rRNA gene using the MiSeq system. Additionally, culture-dependent techniques were used to isolate gut bacteria and the Transcribed Internal Spacer-ITS, 16S rRNA, and gyrB genes were examined to enhance bacterial identification. Results Richness, diversity, and bacterial composition changed significantly across the life cycle of FAW. Most diversity was observed in eggs and males. Differences in gut microbiota diversity between CS and RS were minor. However, Leuconostoc, A2, Klebsiella, Lachnoclostridium, Spiroplasma, and Mucispirilum were mainly associated with RS and Colidextribacter, Pelomonas, Weissella, and Arsenophonus to CS, suggesting that FAW strains differ in several genera according to the host plant. Firmicutes and Proteobacteria were the dominant phyla during FAW metamorphosis. Illeobacterium, Ralstonia, and Burkholderia exhibited similar abundancies in both strains. Enterococcus was identified as a conserved taxon across the entire FAW life cycle. Microbiota core communities mainly consisted of Enterococcus and Illeobacterium. A positive correlation was found between Spiroplasma with RS (sampled from eggs, larvae, pupae, and adults) and Arsenophonus (sampled from eggs, larvae, and adults) with CS. Enterococcus mundtii was predominant in all developmental stages. Previous studies have suggested its importance in FAW response to B. thuringensis. Our results are relevant for the characterization of FAW corn and rice strains microbiota to develop new strategies for their control. Detection of Arsenophonus in CS and Spiroplasma in RS are promising for the improvement of this pest management, as these bacteria induce male killing and larvae fitness reduction in other Lepidoptera species.
Collapse
Affiliation(s)
- Sandra María Marulanda-Moreno
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, sede Medellín, Colombia
| | - Clara Inés Saldamando-Benjumea
- Grupo de Biotecnología Vegetal UNALMED-CIB. Línea en Ecología y Evolución de Insectos, Facultad de Ciencias, Universidad Nacional de Colombia, Medellín, Colombia
| | - Rafael Vivero Gomez
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Universidad Nacional de Colombia, sede Medellín, Colombia
| | - Gloria Cadavid-Restrepo
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, sede Medellín, Colombia
| | - Claudia Ximena Moreno-Herrera
- Grupo de Microbiodiversidad y Bioprospección-Microbiop, Departamento de Biociencias, Facultad de Ciencias, Universidad Nacional de Colombia, sede Medellín, Colombia
| |
Collapse
|
13
|
Lateef AA, Azeez AA, Ren W, Hamisu HS, Oke OA, Asiegbu FO. Bacterial biota associated with the invasive insect pest Tuta absoluta (Meyrick). Sci Rep 2024; 14:8268. [PMID: 38594362 PMCID: PMC11003966 DOI: 10.1038/s41598-024-58753-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Tuta absoluta (the tomato pinworm) is an invasive insect pest with a highly damaging effect on tomatoes causing between 80 and 100% yield losses if left uncontrolled. Resistance to chemical pesticides have been reported in some T. absoluta populations. Insect microbiome plays an important role in the behavior, physiology, and survivability of their host. In a bid to explore and develop an alternative control method, the associated microbiome of this insect was studied. In this study, we unraveled the bacterial biota of T. absoluta larvae and adults by sequencing and analyzing the 16S rRNA V3-V4 gene regions using Illumina NovaSeq PE250. Out of 2,092,015 amplicon sequence variants (ASVs) recovered from 30 samples (15 larvae and 15 adults), 1,268,810 and 823,205 ASVs were obtained from the larvae and adults, respectively. A total of 433 bacterial genera were shared between the adults and larval samples while 264 and 139 genera were unique to the larvae and adults, respectively. Amplicon metagenomic analyses of the sequences showed the dominance of the phylum Proteobacteria in the adult samples while Firmicutes and Proteobacteria dominated in the larval samples. Linear discriminant analysis effect size (LEfSe) comparison revealed the genera Pseudomonas, Delftia and Ralstonia to be differentially enriched in the adult samples while Enterococcus, Enterobacter, Lactococcus, Klebsiella and Wiessella were differentially abundant in the larvae. The diversity indices showed that the bacterial communities were not different between the insect samples collected from different geographical regions. However, the bacterial communities significantly differed based on the sample type between larvae and adults. A co-occurrence network of significantly correlated taxa revealed a strong interaction between the microbial communities. The functional analysis of the microbiome using FAPROTAX showed that denitrification, arsenite oxidation, methylotrophy and methanotrophy as the active functional groups of the adult and larvae microbiomes. Our results have revealed the core taxonomic, functional, and interacting microbiota of T. absoluta and these indicate that the larvae and adults harbor a similar but transitory set of bacteria. The results provide a novel insight and a basis for exploring microbiome-based biocontrol strategy for this invasive insect pest as well as the ecological significance of some of the identified microbiota is discussed.
Collapse
Affiliation(s)
- A A Lateef
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland.
- Department of Plant Biology, University of Ilorin, Kwara State, Ilorin, Nigeria.
| | - A A Azeez
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
- Rainforest Research Station, Forestry Research Institute of Nigeria, Jericho Hill, Ibadan, Nigeria
| | - W Ren
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - H S Hamisu
- National Horticultural Research Institute, Ibadan, Nigeria
| | - O A Oke
- National Horticultural Research Institute, Ibadan, Nigeria
| | - F O Asiegbu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Liu Y, Zhang L, Cai X, Rutikanga A, Qiu B, Hou Y. The Diversity of Wolbachia and Other Bacterial Symbionts in Spodoptera frugiperda. INSECTS 2024; 15:217. [PMID: 38667347 PMCID: PMC11050099 DOI: 10.3390/insects15040217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024]
Abstract
Bacterial symbionts associated with insects can be crucial in insect nutrition, metabolism, immune responses, development, and reproduction. However, the bacterial symbionts of the fall armyworm Spodoptera frugiperda remain unclear. S. frugiperda is an invasive polyphagous pest that severely damages many crops, particularly maize and wheat. Here, we investigated the infection, composition, abundance, and diversity of bacterial symbionts, especially Wolbachia, in different tissues of S. frugiperda female adults. The infection prevalence frequencies of Wolbachia in five provinces of China, namely Pu'er, Yunnan; Nanning, Guangxi; Sanya, Hainan; Yunfu, Guangdong; and Nanping, Fujian, were assessed. The results indicated that Proteobacteria, Firmicutes, and Bacteroidetes were the three most dominant bacterial phyla in S. frugiperda adults. At the genus level, the abundant microbiota, which included Enterobacter and Enterococcus, varied in abundance between tissues of S. frugiperda. Wolbachia was found in the ovaries and salivary glands of S. frugiperda adults, and was present in 33.33% of the Pu'er, Yunnan, 23.33% of the Nanning, Guangxi, and 13.33% of the Sanya, Hainan populations, but Wolbachia was absent in the Yunfu, Guangdong and Nanping, Fujian populations. Further phylogenetic analyses revealed that all of the Wolbachia strains from the different S. frugiperda populations belonged to the supergroup B and were named the wFru strain. Since there were Wolbachia strains inducing cytoplasmic incompatibility in supergroup B, these findings may provide a foundation for developing potential biocontrol techniques against S. frugiperda.
Collapse
Affiliation(s)
- Yuan Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| | - Lina Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.)
| | - Xiangyun Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.)
| | - Alexandre Rutikanga
- College of Agriculture and Animal Husbandry, University of Rwanda, Kigali 999051, Rwanda
| | - Baoli Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Engineering Research Center of Biotechnology for Active Substances, Ministry of Education, Chongqing Normal University, Chongqing 401331, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.)
| |
Collapse
|
15
|
Yin Y, Wang S, Li Y, Yao D, Zhang K, Kong X, Zhang R, Zhang Z. Antagonistic effect of the beneficial bacterium Enterobacter hormaechei against the heavy metal Cu 2+ in housefly larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116077. [PMID: 38335578 DOI: 10.1016/j.ecoenv.2024.116077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Vermicomposting via housefly larvae can be used to efficiently treat manure and regenerate biofertilizer; however, the uptake of heavy metals could negatively influence the growth and development of larvae. Intestinal bacteria play an important role in the development of houseflies, but their effects on resistance to heavy metal damage in houseflies are still poorly understood. In this study, the life history traits and gut microbiota of housefly larvae were evaluated after exposure to an environment with Cu2+ -Enterobacter hormaechei. The data showed that exposure to 300 μg/mL Cu2+ significantly inhibited larval development and locomotor activity and reduced immune capacity. However, dietary supplementation with a Cu2+ -Enterobacter hormaechei mixture resulted in increased body weight and length, and the immune capacity of the larvae returned to normal levels. The abundances of Providencia and Klebsiella increased when larvae were fed Cu2+ -contaminated diets, while the abundances of Enterobacter and Bacillus increased when larvae were exposed to a Cu2+ -Enterobacter hormaechei mixture-contaminated environment. In vitro scanning electron microscopy analysis revealed that Enterobacter hormaechei exhibited obvious adsorption of Cu2+ when cultured in the presence of Cu2+, which reduced the damage caused by Cu2+ to other bacteria in the intestine and protected the larvae from Cu2+ injury. Overall, our results showed that Enterobacter hormaechei can absorb Cu2+ and increase the abundance of beneficial bacteria, thus protecting housefly larvae from damage caused by Cu2+. These results may fill the gaps in our understanding of the interactions between heavy metals and beneficial intestinal bacteria, offering valuable insights into the interplay between housefly larvae and metal contaminants in the environment. This approach could enhance the efficiency of converting manure contaminated with heavy metals to resources using houseflies.
Collapse
Affiliation(s)
- Yansong Yin
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China; Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), No. 619, Changchen Road, Taian 271016, Shandong, China
| | - Shumin Wang
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China; School of Life Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China
| | - Ying Li
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China; Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), No. 619, Changchen Road, Taian 271016, Shandong, China
| | - Dawei Yao
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China; Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University, Jinan, Shandong, China
| | - Kexin Zhang
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China; Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), No. 619, Changchen Road, Taian 271016, Shandong, China
| | - Xinxin Kong
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China; Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), No. 619, Changchen Road, Taian 271016, Shandong, China
| | - Ruiling Zhang
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China; Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), No. 619, Changchen Road, Taian 271016, Shandong, China.
| | - Zhong Zhang
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian 271016, Shandong, China; Weifang Medical University, Weifang 261021, Shandong, China.
| |
Collapse
|
16
|
Cao Q, Zhao Y, Koski TM, Li H, Sun J. Effects of simulated gut pH environment on bacterial composition and pheromone production of Dendroctonus valens. INSECT SCIENCE 2024; 31:225-235. [PMID: 37221982 DOI: 10.1111/1744-7917.13210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 05/25/2023]
Abstract
Bark beetles are an economically and ecologically important insect group, with aggregation behavior and thus host colonization success depends on pheromone-mediated communication. For some species, such as the major invasive forest pest in China, red turpentine beetle (Dendroctonus valens), gut microbiota participates in pheromone production by converting tree monoterpenes into pheromone products. However, how variation in gut microenvironment, such as pH, affects the gut microbial composition, and consequently pheromone production, is unknown. In this study, we fed wild caught D. valens with 3 different pH media (main host diet with natural pH of 4.7; a mildly acidic diet with pH 6 mimicking the beetle gut pH; and highly acidic diet with pH 4), and measured their effects on the gut pH, bacterial community and production of the main aggregation and anti-aggregation pheromone (verbenone). We further tested the verbenone production capacity of 2 gut bacterial isolates in different pH environments (pH 6 and 4). Compared to natural state or main host diet, feeding on less acidic diet (pH 6) diluted the acidity of the gut, whereas feeding on highly acidic diet (pH 4) enhanced it. Both changes in gut pH reduced the abundance of dominant bacterial genera, resulting in decreased verbenone production. Similarly, the highest pheromone conversion rate of the bacterial isolates was observed in pH mimicking the acidity in beetle gut. Taken together, these results indicate that changes in gut pH can affect gut microbiota composition and pheromone production, and may therefore have the potential to affect host colonization behavior.
Collapse
Affiliation(s)
- Qingjie Cao
- College of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Yu Zhao
- College of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Tuuli-Marjaana Koski
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei Province, China
| | - Huiping Li
- College of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei Province, China
| |
Collapse
|
17
|
Shao Y, Mason CJ, Felton GW. Toward an Integrated Understanding of the Lepidoptera Microbiome. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:117-137. [PMID: 37585608 DOI: 10.1146/annurev-ento-020723-102548] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Research over the past 30 years has led to a widespread acceptance that insects establish widespread and diverse associations with microorganisms. More recently, microbiome research has been accelerating in lepidopteran systems, leading to a greater understanding of both endosymbiont and gut microorganisms and how they contribute to integral aspects of the host. Lepidoptera are associated with a robust assemblage of microorganisms, some of which may be stable and routinely detected in larval and adult hosts, while others are ephemeral and transient. Certain microorganisms that populate Lepidoptera can contribute significantly to the hosts' performance and fitness, while others are inconsequential. We emphasize the context-dependent nature of the interactions between players. While our review discusses the contemporary literature, there are major avenues yet to be explored to determine both the fundamental aspects of host-microbe interactions and potential applications for the lepidopteran microbiome; we describe these avenues after our synthesis.
Collapse
Affiliation(s)
- Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China;
| | - Charles J Mason
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K. Inouye US Pacific Basin Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Hilo, Hawaii, USA;
| | - Gary W Felton
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
18
|
Haytham H, Kamel C, Wafa D, Salma F, Naima BM, George T, Ameur C, Msaad Guerfali M. Probiotic consortium modulating the gut microbiota composition and function of sterile Mediterranean fruit flies. Sci Rep 2024; 14:1058. [PMID: 38212383 PMCID: PMC10784543 DOI: 10.1038/s41598-023-50679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024] Open
Abstract
The sterile insect technique (SIT) remains a successful approach in managing pest insects. However, the long-term mass rearing and sterilizing radiation associated with SIT have been observed to induce physiological and ecological fitness decline in target insects. This decline may be attributed to various factors, including commensal microbiota dysbiosis, selection procedures, loss of heterozygosity, and other complex interactions.. There is evidence that the bacterial symbiont of insects may play critical roles in digestion, development, reproduction, and behavior. Probiotics are an increasingly common approach for restoring the intestinal microbiota structure and fitness parameters of sterile insects, particularly in the Vienna 8 genetic sexing strain (V8-GSS) of the Mediterranean fruit fly (medfly), Ceratitis capitata. Here, we explore the influence of the previously isolated bacterial strain, Lactococcus lactis, Enterobacter sp., and Klebsiella oxytoca, administration as probiotic consortia (LEK-PC) to the larvae and/or adult diet over the course of 20 rearing generations on fitness parameters. The experiment was carried out in four colonies: a control colony (C), one to which probiotics were not added, one to which probiotics were added to the larval medium (L+), one to which probiotics were added to the adult medium (A+), and one to which probiotics were added to both the larval and adult mediums (AL+). Emergence, flight ability, survival under stress conditions, and mating competitiveness, were all significantly improved by the LEK-PC treatment independently of the administration stage. The intestinal microbiota structure of various medfly V8-GSS colonies also underwent a significant shift, despite the fact that the core microbial community was unaffected by the LEK-PC administration stage, according to 16S metagenomics sequencing. Comparison of the metabolic function prediction and associated carbohydrate enzymes among colonies treated with "LEK-PC" showed an enrichment of metabolic functions related to carbohydrates, amino acids, cofactors, and vitamins metabolism, as well as, glycoside hydrolase enzymes in the AL+ colony compared to the control. This study enriches the knowledge regarding the benefits of probiotic treatment to modulate and restore the intestinal microbiota of C. capitata sterile males for a better effectiveness of the SIT.
Collapse
Affiliation(s)
- Hamden Haytham
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Centre of Nuclear Sciences and Technologies, Sidi Thabet, Tunisia
| | - Charaabi Kamel
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Centre of Nuclear Sciences and Technologies, Sidi Thabet, Tunisia
| | - Djobbi Wafa
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Centre of Nuclear Sciences and Technologies, Sidi Thabet, Tunisia
| | - Fadhel Salma
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Centre of Nuclear Sciences and Technologies, Sidi Thabet, Tunisia
| | - Bel Mokhtar Naima
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, Agrinio, Greece
- Laboratory of Innovative Technology, National School of Applied Sciences of Tangier, Abdelmalek Essâadi University, Tétouan, Morocco
| | - Tsiamis George
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, Agrinio, Greece
| | - Cherif Ameur
- Higher Institute of Biotechnology Sidi Thabet, BVBGR-LR11ES31, University of Manouba, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Meriem Msaad Guerfali
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Centre of Nuclear Sciences and Technologies, Sidi Thabet, Tunisia.
| |
Collapse
|
19
|
Liu Y, Luo R, Bai S, Lemaitre B, Zhang H, Li X. Pathobiont and symbiont contribute to microbiota homeostasis through Malpighian tubules-gut countercurrent flow in Bactrocera dorsalis. THE ISME JOURNAL 2024; 18:wrae221. [PMID: 39530356 PMCID: PMC11697180 DOI: 10.1093/ismejo/wrae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/18/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Host-gut microbiota interactions are more complex than good or bad. Both gut symbiotic bacteria and pathobionts can provide essential functions to their host in one scenario and yet be detrimental to host health in another. So, these gut-dwelling bacteria must be tightly controlled to avoid harmful effects on the host. However, how pathobionts and other symbiotic bacteria coordinate to establish a host immune defense system remains unclear. Here, using a Tephritidae fruit fly Bactrocera dorsalis, we report that both pathobionts and other gut symbiotic bacteria release tyramine, which is recognized by the host insects. These tyramines induce the formation of insect-conserved Malpighian tubules-gut countercurrent flow upon bacterial infection, which requires tyramine receptors and aquaporins. At the same time, pathobionts but not gut symbiotic bacteria induce the generation of reactive oxygen species, which are preserved by the countercurrent flow, promoting bacteria elimination through increasing gut peristalsis. More importantly, our results show that the Malpighian tubules-gut countercurrent flow maintains proper microbiota composition. Our work suggests a model where pathobiont-induced reactive oxygen species are preserved by Malpighian tubules-gut countercurrent flow involving both pathobionts and symbiotic bacteria. Furthermore, our work provides a Malpighian tubules-gut interaction that ensures efficient maintenance of the gut microbiota.
Collapse
Affiliation(s)
- Yanning Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China–Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Rengang Luo
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China–Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Shuai Bai
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China–Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland
| | - Hongyu Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China–Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Xiaoxue Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China–Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| |
Collapse
|
20
|
Xia X, Wang Q, Gurr GM, Vasseur L, Han S, You M. Gut bacteria mediated adaptation of diamondback moth, Plutella xylostella, to secondary metabolites of host plants. mSystems 2023; 8:e0082623. [PMID: 37909778 PMCID: PMC10734469 DOI: 10.1128/msystems.00826-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE In this study, we identify an important role of gut bacteria in mediating the adaptation of diamondback moth (DBM) to plant secondary metabolites. We demonstrate that kaempferol's presence in radish seedlings greatly reduces the fitness of DBM with depleted gut biota. Reinstatement of gut biota, particularly Enterobacter sp. EbPXG5, improved insect performance by degrading kaempferol. This bacterium was common in the larval gut of DBM, lining the epithelium as a protective film. Our work highlights the role of symbiotic bacteria in insect herbivore adaptation to plant defenses and provides a practical and mechanistic framework for developing a more comprehensive understanding of insect-gut microbe-host plant co-evolution.
Collapse
Affiliation(s)
- Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian‐Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Fujian‐Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian‐Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Fujian‐Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Geoff M. Gurr
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian‐Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Graham Centre, Charles Sturt University, Orange, New South Wales, Australia
| | - Liette Vasseur
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian‐Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Shuncai Han
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian‐Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Fujian‐Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian‐Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fuzhou, China
- Fujian‐Taiwan Joint Innovation Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
21
|
Polenogova OV, Klementeva TN, Kabilov MR, Alikina TY, Krivopalov AV, Kruykova NA, Glupov VV. A Diet with Amikacin Changes the Bacteriobiome and the Physiological State of Galleria mellonella and Causes Its Resistance to Bacillus thuringiensis. INSECTS 2023; 14:889. [PMID: 37999088 PMCID: PMC10672437 DOI: 10.3390/insects14110889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Environmental pollution with antibiotics can cause antibiotic resistance in microorganisms, including the intestinal microbiota of various insects. The effects of low-dose aminoglycoside antibiotic (amikacin) on the resident gut microbiota of Galleria mellonella, its digestion, its physiological parameters, and the resistance of this species to bacteria Bacillus thuringiensis were investigated. Here, 16S rDNA analysis revealed that the number of non-dominant Enterococcus mundtii bacteria in the eighteenth generation of the wax moth treated with amikacin was increased 73 fold compared to E. faecalis, the dominant bacteria in the native line of the wax moth. These changes were accompanied by increased activity of acidic protease and glutathione-S-transferase in the midgut tissues of larvae. Ultra-thin section electron microscopy detected no changes in the structure of the midgut tissues. In addition, reduced pupa weight and resistance of larvae to B. thuringiensis were observed in the eighteenth generation of the wax moth reared on a diet with amikacin. We suggest that long-term cultivation of wax moth larvae on an artificial diet with an antibiotic leads to its adaptation due to changes in both the gut microbiota community and the physiological state of the insect organism.
Collapse
Affiliation(s)
- Olga V. Polenogova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630091, Russia; (T.N.K.); (A.V.K.); (N.A.K.); (V.V.G.)
| | - Tatyana N. Klementeva
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630091, Russia; (T.N.K.); (A.V.K.); (N.A.K.); (V.V.G.)
| | - Marsel R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (M.R.K.); (T.Y.A.)
| | - Tatyana Y. Alikina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia; (M.R.K.); (T.Y.A.)
| | - Anton V. Krivopalov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630091, Russia; (T.N.K.); (A.V.K.); (N.A.K.); (V.V.G.)
| | - Natalya A. Kruykova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630091, Russia; (T.N.K.); (A.V.K.); (N.A.K.); (V.V.G.)
| | - Viktor V. Glupov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630091, Russia; (T.N.K.); (A.V.K.); (N.A.K.); (V.V.G.)
| |
Collapse
|
22
|
Wang Y, Gao P, Zheng J, Li H, Meng L, Li B. Effects of parasitism by a parasitoid wasp on the gut microbiota in a predaceous lady beetle host. PEST MANAGEMENT SCIENCE 2023; 79:4501-4507. [PMID: 37418555 DOI: 10.1002/ps.7652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/17/2023] [Accepted: 07/07/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND The gut microbiota has an intimate relationship with insect hosts and this relationship can become complicated with parasitic organisms being involved with the host. To date there has been limited evidence for the relevance of parasitism of the host by parasitoids to host gut microbiota, especially in host insect predators. Here, our study examined gut microbiotas in larvae of the predaceous lady beetle, Coccinella septempunctata, in response to their parasitism by Homalotylus eytelweinii regarding the development progress of offspring parasitoids. RESULTS Overall 58.5% of gut bacterial operational taxonomic units (OTUs) in the parasitized lady beetle were different from those in the unparasitized host. The phylum Proteobacteria abundance increased while Firmicutes decreased in parasitized hosts compared to the unparasitized. The abundance of genus Aeribacillus decreased substantially in the parasitized lady beetle across all stages of the offspring development compared to the unparasitized host. The α-diversity of the gut microbiota in a parasitized lady beetle larva increased at the early stage of offspring parasitoids and then returned over the intermediate and later stages. Analyses of β-diversity indicated that the gut microbial community in a parasitized lady beetle was distinct from that in an unparasitized one and different between early or middle and late stages of offspring parasitoids in parasitized hosts. CONCLUSION Our results provide evidence for the relevance of the gut microbiota to interactions between a lady beetle host and its parasitoid. Our study provides a starting point for further investigations of the role the gut microbiota may play in host-parasitoid interactions. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yansong Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ping Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jie Zheng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hongran Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ling Meng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Baoping Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Gomes AFF, de Almeida LG, Cônsoli FL. Comparative Genomics of Pesticide-Degrading Enterococcus Symbionts of Spodoptera frugiperda (Lepidoptera: Noctuidae) Leads to the Identification of Two New Species and the Reappraisal of Insect-Associated Enterococcus Species. MICROBIAL ECOLOGY 2023; 86:2583-2605. [PMID: 37433981 DOI: 10.1007/s00248-023-02264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
Enterococcus species have been described as core members of the microbial community of Spodoptera frugiperda (Lepidoptera: Noctuidae) and have been previously reported as insecticide degrading agents. This study aimed to investigate the molecular composition of these microbial symbionts of S. frugiperda to better understand their association with the host and their potential for insecticide metabolization. Through phenotypic assays and comparative genomic analyses of several pesticide-degrading Enterococcus isolated from the gut of S. frugiperda larvae, we identified two new species: Enterococcus entomosocium n. sp. and Enterococcus spodopteracolus n. sp. Their identities as new species were confirmed by whole genome alignment, utilizing cut-offs of 95-96% for the average nucleotide identity (ANI) and 70% for the digital DNA: DNA hybridization (dDDH) values. The systematic positioning of these new species within the genus Enterococcus was resolved using genome-based analysis, revealing Enterococcus casseliflavus as a sister group of E. entomosocium n. sp., and Enterococcus mundtii as a sister group of E. spodopteracolus n. sp. Comparative genomic analyses of several isolates of E. entomosocium n. sp. and E. spodopteracolus n. sp. provided a better assessment of the interactions established in the symbiotic association with S. frugiperda and led to the discovery of misidentified new species of Enterococcus associated with insects. Our analyses indicated that the potential of E. entomosocium n. sp. and E. spodopteracolus n. sp. to metabolize different pesticides arises from molecular mechanisms that result in rapid evolution of new phenotypes in response to environmental stressors, in this case, the pesticides their host insect is exposed to.
Collapse
Affiliation(s)
- Ana Flávia Freitas Gomes
- Luiz de Queiroz College of Agriculture, Department of Entomology and Acarology, Insect Interactions Laboratory, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Luís Gustavo de Almeida
- Luiz de Queiroz College of Agriculture, Department of Entomology and Acarology, Insect Interactions Laboratory, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Fernando Luis Cônsoli
- Luiz de Queiroz College of Agriculture, Department of Entomology and Acarology, Insect Interactions Laboratory, University of São Paulo, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
24
|
Upfold J, Rejasse A, Nielsen-Leroux C, Jensen AB, Sanchis-Borja V. The immunostimulatory role of an Enterococcus-dominated gut microbiota in host protection against bacterial and fungal pathogens in Galleria mellonella larvae. FRONTIERS IN INSECT SCIENCE 2023; 3:1260333. [PMID: 38469511 PMCID: PMC10926436 DOI: 10.3389/finsc.2023.1260333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/09/2023] [Indexed: 03/13/2024]
Abstract
Understanding the intricate interplay between the gut microbiota and the immune response in insects is crucial, given its diverse impact on the pathogenesis of various microbial species. The microbiota's modulation of the host immune system is one such mechanism, although its complete impact on immune responses remains elusive. This study investigated the tripartite interaction between the gut microbiota, pathogens, and the host's response in Galleria mellonella larvae reared under axenic (sterile) and conventional (non-sterile) conditions. The influence of the microbiota on host fitness during infections was evaluated via two different routes: oral infection induced by Bacillus thuringiensis subsp. galleriae (Btg), and topical infection induced by Metarhizium robertsii (Mr). We observed that larvae without a microbiota can successfully fulfill their life cycle, albeit with more variation in their developmental time. We subsequently performed survival assays on final-instar larvae, using the median lethal dose (LD50) of Btg and Mr. Our findings indicated that axenic larvae were more vulnerable to an oral infection of Btg; specifically, a dose that was calculated to be half-lethal for the conventional group resulted in a 90%-100% mortality rate in the axenic group. Through a dual-analysis experimental design, we could identify the status of the gut microbiota using 16S rRNA sequencing and assess the level of immune-related gene expression in the same group of larvae at basal conditions and during infection. This analysis revealed that the microbiota of our conventionally reared population was dominated entirely by four Enterococcus species, and these species potentially stimulated the immune response in the gut, due to the increased basal expression of two antimicrobial peptides (AMPs)-gallerimycin and gloverin-in the conventional larvae compared with the axenic larvae. Furthermore, Enterococcus mundtii, isolated from the gut of conventional larvae, showed inhibition activity against Btg in vitro. Lastly, other immune effectors, namely, phenoloxidase activity in the hemolymph and total reactive oxygen/nitrogen species (ROS/RNS) in the gut, were tested to further investigate the extent of the stimulation of the microbiota on the immune response. These findings highlight the immune-modulatory role of the Enterococcus-dominated gut microbiota, an increasingly reported microbiota assemblage of laboratory populations of Lepidoptera, and its influence on the host's response to oral and topical infections.
Collapse
Affiliation(s)
- Jennifer Upfold
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Agnès Rejasse
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Annette Bruun Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Vincent Sanchis-Borja
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
25
|
Li S, Yu X, Fan B, Hao D. A gut-isolated Enterococcus strain (HcM7) triggers the expression of antimicrobial peptides that aid resistance to nucleopolyhedrovirus infection of Hyphantria cunea larvae. PEST MANAGEMENT SCIENCE 2023; 79:3529-3537. [PMID: 37198147 DOI: 10.1002/ps.7533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/06/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Commensal microorganisms are widely distributed in insect gut tissues and play important roles in host nutrition, metabolism, reproductive regulation, and especially immune functioning and tolerance to pathogens. Consequently, gut microbiota represent a promising resource for the development of microbial-based products for pest control and management. However, the interactions among host immunity, entomopathogen infections, and gut microbiota remain poorly understood for many arthropod pests. RESULTS We previously isolated an Enterococcus strain (HcM7) from Hyphantria cunea larvae guts that increased the survival rates of larvae challenged with nucleopolyhedrovirus (NPV). Here, we further investigated whether this Enterococcus strain stimulates a protective immune response against NPV proliferation. Infection bioassays demonstrated that re-introduction of the HcM7 strain to germfree larvae preactivated the expression of several antimicrobial peptides (particularly H. cunea gloverin 1, HcGlv1), resulting in the significant repression of virus replication in host guts and hemolymph, and consequently improved host survivorship after NPV infection. Furthermore, silencing of the HcGlv1 gene by RNA interference markedly enhanced the deleterious effects of NPV infection, revealing a role of this gut symbiont-induced gene in host defenses against pathogenic infections. CONCLUSION These results show that some gut microorganisms can stimulate host immune systems, thereby contributing to resistance to entomopathogens. Furthermore, HcM7, as a functional symbiotic bacteria of H. cunea larvae, may be a potential target for increasing the effectiveness of biocontrol agents against this devastating pest. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shouyin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Xiaohang Yu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Binqi Fan
- Forest Station of Shanghai, Shanghai, China
| | - Dejun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
26
|
Castañeda-Molina Y, Marulanda-Moreno SM, Saldamando-Benjumea C, Junca H, Moreno-Herrera CX, Cadavid-Restrepo G. Microbiome analysis of Spodoptera frugiperda (Lepidoptera, Noctuidae) larvae exposed to Bacillus thuringiensis (Bt) endotoxins. PeerJ 2023; 11:e15916. [PMID: 37719127 PMCID: PMC10503500 DOI: 10.7717/peerj.15916] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/27/2023] [Indexed: 09/19/2023] Open
Abstract
Background Spodoptera frugiperda (or fall armyworm, FAW) is a polyphagous pest native to Western Hemisphere and recently discovered in the Eastern Hemisphere. In Colombia, S. frugiperda is recognized as a pest of economic importance in corn. The species has genetically differentiated into two host populations named "corn" and "rice" strains. In 2012, a study made in central Colombia demonstrated that the corn strain is less susceptible to Bacillus thuringiensis (Bt) endotoxins (Cry1Ac and Cry 1Ab) than the rice strain. In this country, Bt transgenic corn has been extensively produced over the last 15 years. Since gut microbiota plays a role in the physiology and immunity of insects, and has been implicated in promoting the insecticidal activity of Bt, in this study an analysis of the interaction between Bt endotoxins and FAW gut microbiota was made. Also, the detection of endosymbionts was performed here, as they might have important implications in the biological control of a pest. Methods The composition and diversity of microbiomes associated with larval specimens of S. frugiperda(corn strain) was investigated in a bioassay based on six treatments in the presence/absence of Bt toxins and antibiotics (Ab) through bacterial isolate analyses and by high throughput sequencing of the bacterial 16S rRNA gene. Additionally, species specific primers were used, to detect endosymbionts from gonads in S. frugiperda corn strain. Results Firmicutes, Proteobacteria and Bacteroidota were the most dominant bacterial phyla found in S. frugiperda corn strain. No significant differences in bacteria species diversity and richness among the six treatments were found. Two species of Enterococcus spp., E. mundtii and E. casseliflavus were detected in treatments with Bt and antibiotics, suggesting that they are less susceptible to both of them. Additionally, the endosymbiont Arsenophonus was also identified on treatments in presence of Bt and antibiotics. The results obtained here are important since little knowledge exists about the gut microbiota on this pest and its interaction with Bt endotoxins. Previous studies made in Lepidoptera suggest that alteration of gut microbiota can be used to improve the management of pest populations, demonstrating the relevance of the results obtained in this work.
Collapse
Affiliation(s)
- Yuliana Castañeda-Molina
- Departamento de Biociencias/Grupo de investigación Microbiodiversidad y Bioprospección/Laboratorio de Biología Celular y Molecular, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia
| | - Sandra María Marulanda-Moreno
- Departamento de Biociencias/Grupo de investigación Microbiodiversidad y Bioprospección/Laboratorio de Biología Celular y Molecular, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia
| | - Clara Saldamando-Benjumea
- Departamento de Biociencias/Grupo de Biotecnologia Vegetal UNALMED-CIB/Laboratorio de Ecología y Evolución de Insectos, Universidad Nacional de Colombia, Medellin, Antioquia, Colombia
| | - Howard Junca
- RG Microbial Ecology: Metabolism, Genomics & Evolution, Div. Ecogenomics & Holobionts, Microbiomas Foundation, Chía, Cundinamarca, Colombia
| | - Claudia Ximena Moreno-Herrera
- Departamento de Biociencias/Grupo de investigación Microbiodiversidad y Bioprospección/Laboratorio de Biología Celular y Molecular, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia
| | - Gloria Cadavid-Restrepo
- Departamento de Biociencias/Grupo de investigación Microbiodiversidad y Bioprospección/Laboratorio de Biología Celular y Molecular, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia
| |
Collapse
|
27
|
Wang Z, Yong H, Zhang S, Liu Z, Zhao Y. Colonization Resistance of Symbionts in Their Insect Hosts. INSECTS 2023; 14:594. [PMID: 37504600 PMCID: PMC10380809 DOI: 10.3390/insects14070594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023]
Abstract
The symbiotic microbiome is critical in promoting insect resistance against colonization by exogenous microorganisms. The mechanisms by which symbionts contribute to the host's immune capacity is referred to as colonization resistance. Symbionts can protect insects from exogenous pathogens through a variety of mechanisms, including upregulating the expression of host immune-related genes, producing antimicrobial substances, and competitively excluding pathogens. Concordantly, insects have evolved fine-tuned regulatory mechanisms to avoid overactive immune responses against symbionts or specialized cells to harbor symbionts. Alternatively, some symbionts have evolved special adaptations, such as the formation of biofilms to increase their tolerance to host immune responses. Here, we provide a review of the mechanisms about colonization resistance of symbionts in their insect hosts. Adaptations of symbionts and their insect hosts that may maintain such symbiotic relationships, and the significance of such relationships in the coevolution of symbiotic systems are also discussed to provide insights into the in-depth study of the contribution of symbionts to host physiology and behavior.
Collapse
Affiliation(s)
- Zhengyan Wang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Hanzi Yong
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Shan Zhang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Zhiyuan Liu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Yaru Zhao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| |
Collapse
|
28
|
Wang X, Wang H, Zeng J, Cui Z, Geng S, Song X, Zhang F, Su X, Li H. Distinct gut bacterial composition in Anoplophora glabripennis reared on two host plants. Front Microbiol 2023; 14:1199994. [PMID: 37405158 PMCID: PMC10315502 DOI: 10.3389/fmicb.2023.1199994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Anoplophora glabripennis (Coleoptera: Cerambycidae: Lamiinae) is an invasive wood borer pest that has caused considerable damage to forests. Gut bacteria are of great importance in the biology and ecology of herbivores, especially in growth and adaptation; however, change in the gut bacterial community of this pest feeding on different hosts is largely unknown. In this study, we investigated the gut bacterial communities of A. glabripennis larvae fed on different preferred hosts, Salix matsudana and Ulmus pumila, using 16S rDNA high-throughput sequencing technology. A total of 15 phyla, 25 classes, 65 orders, 114 families, 188 genera, and 170 species were annotated in the gut of A. glabripennis larvae fed on S. matsudana or U. pumila using a 97% similarity cutoff level. The dominant phyla were Firmicutes and Proteobacteria and the core dominant genera were Enterococcus, Gibbsiella, Citrobacter, Enterobacter, and Klebsiella. There was significantly higher alpha diversity in the U. pumila group than in the S. matsudana group, and principal co-ordinate analysis showed significant differences in gut bacterial communities between the two groups. The genera with significant abundance differences between the two groups were Gibbsiella, Enterobacter, Leuconostoc, Rhodobacter, TM7a, norank, Rhodobacter, and Aurantisolimonas, indicating that the abundance of larval gut bacteria was affected by feeding on different hosts. Further network diagrams showed that the complexity of the network structure and the modularity were higher in the U. pumila group than in the S. matsudana group, suggesting more diverse gut bacteria in the U. pumila group. The dominant role of most gut microbiota was related to fermentation and chemoheterotrophy, and specific OTUs positively correlated with different functions were reported. Our study provides an essential resource for the gut bacteria functional study of A. glabripennis associated with host diet.
Collapse
Affiliation(s)
- Xuefei Wang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Hualing Wang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Urban Forest Health Technology Innovation Center, Baoding, Hebei, China
| | - Jianyong Zeng
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
- Key Laboratory of Forest Germplasm Resources and Protection of Hebei Province, Baoding, Hebei, China
| | - Zezhao Cui
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Shilong Geng
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaofei Song
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Fengjuan Zhang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaoyu Su
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Urban Forest Health Technology Innovation Center, Baoding, Hebei, China
| | - Huiping Li
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Urban Forest Health Technology Innovation Center, Baoding, Hebei, China
| |
Collapse
|
29
|
Huang Q, Shan HW, Chen JP, Wu W. Diversity and Dynamics of Bacterial Communities in the Digestive and Excretory Systems across the Life Cycle of Leafhopper, Recilia dorsalis. INSECTS 2023; 14:545. [PMID: 37367361 DOI: 10.3390/insects14060545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Recilia dorsalis is a notorious rice pest that harbors numerous symbiotic microorganisms. However, the structure and dynamics of bacterial communities in various tissues of R. dorsalis throughout its life cycle remain unclear. In this study, we used high-throughput sequencing technology to analyze the bacterial communities in the digestive, excretory, and reproductive systems of R. dorsalis at different developmental stages. The results showed that the initial microbiota in R. dorsalis mostly originated from vertical transmission via the ovaries. After the second-instar nymphs, the diversity of bacterial communities in the salivary gland and Malpighian tubules gradually decreased, while the midgut remained stable. Principal coordinate analysis revealed that the structure of bacterial communities in R. dorsalis was primarily influenced by the developmental stage, with minimal variation in bacterial species among different tissues but significant variation in bacterial abundance. Tistrella was the most abundant bacterial genus in most developmental stages, followed by Pantoea. The core bacterial community in R. dorsalis continuously enriched throughout development and contributed primarily to food digestion and nutrient supply. Overall, our study enriches our knowledge of the bacterial community associated with R. dorsalis and provides clues for developing potential biological control technologies against this rice pest.
Collapse
Affiliation(s)
- Qiuyan Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hong-Wei Shan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Wei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
30
|
Li Y, Chang L, Xu K, Zhang S, Gao F, Fan Y. Research Progresses on the Function and Detection Methods of Insect Gut Microbes. Microorganisms 2023; 11:1208. [PMID: 37317182 DOI: 10.3390/microorganisms11051208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/20/2023] [Accepted: 04/27/2023] [Indexed: 06/16/2023] Open
Abstract
The insect gut is home to an extensive array of microbes that play a crucial role in the digestion and absorption of nutrients, as well as in the protection against pathogenic microorganisms. The variety of these gut microbes is impacted by factors such as age, diet, pesticides, antibiotics, sex, and caste. Increasing evidence indicates that disturbances in the gut microbiota can lead to compromised insect health, and that its diversity has a far-reaching impact on the host's health. In recent years, the use of molecular biology techniques to conduct rapid, qualitative, and quantitative research on the host intestinal microbial diversity has become a major focus, thanks to the advancement of metagenomics and bioinformatics technologies. This paper reviews the main functions, influencing factors, and detection methods of insect gut microbes, in order to provide a reference and theoretical basis for better research utilization of gut microbes and management of harmful insects.
Collapse
Affiliation(s)
- Yazi Li
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Liyun Chang
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Ke Xu
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Shuhong Zhang
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Fengju Gao
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Yongshan Fan
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| |
Collapse
|
31
|
Oliveira NC, Rodrigues PAP, Cônsoli FL. Host-Adapted Strains of Spodoptera frugiperda Hold and Share a Core Microbial Community Across the Western Hemisphere. MICROBIAL ECOLOGY 2023; 85:1552-1563. [PMID: 35426077 DOI: 10.1007/s00248-022-02008-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/04/2022] [Indexed: 05/10/2023]
Abstract
The fall armyworm Spodoptera frugiperda is an important polyphagous agricultural pest in the Western Hemisphere and currently invasive to countries of the Eastern Hemisphere. This species has two host-adapted strains named "rice" and "corn" strains. Our goal was to identify the occurrence of core members in the gut bacterial community of fall armyworm larvae from distinct geographical distribution and/or host strain. We used next-generation sequencing to identify the microbial communities of S. frugiperda from corn fields in Brazil, Colombia, Mexico, Panama, Paraguay, and Peru, and rice fields from Panama. The larval gut microbiota of S. frugiperda larvae did not differ between the host strains nor was it affected by the geographical distribution of the populations investigated. Our findings provide additional support for Enterococcus and Pseudomonas as core members of the bacterial community associated with the larval gut of S. frugiperda, regardless of the site of collection or strain. Further investigations are required for a deeper understanding of the nature of this relationship.
Collapse
Affiliation(s)
- Nathalia C Oliveira
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Pedro A P Rodrigues
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Fernando L Cônsoli
- Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
32
|
Cao Q, Koski TM, Li H, Zhang C, Sun J. The effect of inactivation of aldehyde dehydrogenase on pheromone production by a gut bacterium of an invasive bark beetle, Dendroctonus valens. INSECT SCIENCE 2023; 30:459-472. [PMID: 36003004 DOI: 10.1111/1744-7917.13101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/06/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Semiochemical-based management strategies are important for controlling bark beetles, such as invasive Red Turpentine Beetle (Denroctonus valens), the causal agent for mass mortality of pine trees (Pinus spp.) in China. It has been previously shown that the pheromone verbenone regulates the attack density of this beetle in a dose-dependent manner and that the gut bacteria of D. valens are involved in verbenone production. However, molecular functional verification of the role of gut bacteria in the pheromone production of D. valens is still lacking. To better understand the molecular function of gut bacterial verbenone production, we chose a facultative anaerobic gut bacterium (Enterobacter xiangfangensis) of D. valens based on its strong ability to convert cis-verbenol to verbenone, as shown in our previous study, and investigated its transcriptomics in the presence or absence of cis-verbenol under anaerobic conditions (simulating the anoxic environment in the beetle's gut). Based on this transcriptome analysis, aldehyde dehydrogenase (ALDH1) was identified as a putative key gene responsible for verbenone production and was knocked-down by homologous recombination to obtain a mutant E. xiangfangensis strain. Our results show that these mutants had significantly decreased the ability to convert the monoterpene precursor to verbenone compared with the wild-type bacteria, indicating that ALDH1 is primarily responsible for verbenone conversion for this bacterium species. These findings provide further mechanistic evidence of bacterially mediated pheromone production by D. valens, add new perspective for functional studies of gut bacteria in general, and may aid the development of new gene silencing-based pest management strategies.
Collapse
Affiliation(s)
- Qingjie Cao
- College of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Tuuli-Marjaana Koski
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei Province, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huiping Li
- College of Forestry, Hebei Agricultural University, Baoding, Hebei Province, China
| | - Chi Zhang
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jianghua Sun
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei Province, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Han S, Zhou Y, Wang D, Qin Q, Song P, He Y. Effect of Different Host Plants on the Diversity of Gut Bacterial Communities of Spodoptera frugiperda (J. E. Smith, 1797). INSECTS 2023; 14:264. [PMID: 36975949 PMCID: PMC10053068 DOI: 10.3390/insects14030264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Intestinal symbiotic bacteria have formed an interdependent symbiotic relationship with many insect species after long-term coevolution, which plays a critical role in host growth and adaptation. Spodoptera frugiperda (J. E. Smith) is a worldwide significant migratory invasive pest. As a polyphagous pest, S. frugiperda can harm more than 350 plants and poses a severe threat to food security and agricultural production. In this study, 16S rRNA high-throughput sequencing technology was used to analyze the diversity and structure of the gut bacteria of this pest feeding on six diets (maize, wheat, rice, honeysuckle flowers, honeysuckle leaves, and Chinese yam). The results showed that the S. frugiperda fed on rice had the highest bacterial richness and diversity, whereas the larvae fed on honeysuckle flowers had the lowest abundance and diversity of gut bacterial communities. Firmicutes, Actinobacteriota, and Proteobacteria were the most dominant bacterial phyla. PICRUSt2 analysis indicated that most of the functional prediction categories were concentrated in metabolic bacteria. Our results confirmed that the gut bacterial diversity and community composition of S. frugiperda were affected significantly by host diets. This study provided a theoretical basis for clarifying the host adaptation mechanism of S. frugiperda, which also provided a new direction to improve polyphagous pest management strategies.
Collapse
|
34
|
Bai J, Xu Z, Li L, Zhang Y, Diao J, Cao J, Xu L, Ma L. Gut bacterial microbiota of Lymantria dispar asiatica and its involvement in Beauveria bassiana infection. J Invertebr Pathol 2023; 197:107897. [PMID: 36806463 DOI: 10.1016/j.jip.2023.107897] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/31/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
The gut bacterial microbiota of insects has been shown to play essential roles in processes related to physiology, metabolism, and innate immunity. In this study, we firstly performed a broad analysis of the gut bacteria in Lymantria dispar asiatica, one of the most devastating forestry defoliators. We analyzed the bacterial composition among different individuals from lab-reared or wild-collected using 16 s rRNA-sequencing, revealing that the gut bacteria of wild-collected larvae were highly diverse, while lab-reared larvae were only associated with a few genera. We found Lactobacillus sp. present in all the gut samples, which indicates that it is part of the core microbiome in the caterpillar. Further Beauveria bassiana infection-based assays showed that the mortality of non-axenic L. dispar asiatica larvae was significantly higher than that of axenic larvae at 72 h. Moreover, we isolated several bacteria from the hemolymph of the non-axenic larvae infected by B. bassiana, which may be caused by the translocation of gut bacteria from the gut to the hemocoel. Reintroduction of Enterococcus sp., Pseudomonas sp., Enterobacter sp., and Microbacterium sp. into axenic larvae recurred the larval mortality in their non-axenic counterpart. Taken together, our study demonstrates that the gut bacteria of L. dispar asiatica are highly volatile, and different bacteria taxa can promote host infection by entomopathogenic fungus, providing a new strategy for the pest management.
Collapse
Affiliation(s)
- Jianyang Bai
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin 150040, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Zhe Xu
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Lu Li
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yue Zhang
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jian Diao
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jingyu Cao
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
| | - Ling Ma
- Department of Forest Protection, College of Forestry, Northeast Forestry University, Harbin 150040, China; Forest Protection Technology Innovation Center, Harbin, China.
| |
Collapse
|
35
|
Chen H, Hao D, Chen C, Sun Y, Yu X. Effects of midgut bacteria in Hyphantria cunea (Lepidoptera: Erebidae) on nuclear polyhedrosis virus and Bacillus thuringiensis (Bacillales: Bacillaceae). JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:1. [PMID: 36916277 PMCID: PMC10011879 DOI: 10.1093/jisesa/iead009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/05/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Hyphantria cunea Drury (Lepidoptera: Erebidae) is a quarantine pest in China that can cause damage to hundreds of plants. As biological control agents, Nuclear Polyhedrosis Virus (NPV) and Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) (Bt) are commonly used to inhibit the prevalence of H. cunea. To investigate the role of midgut bacteria in the infection of NPV and Bt in H. cunea, we performed a series of tests, including isolating the dominant culturable bacteria in the midgut, eliminating intestinal bacteria, and respectively inoculating the dominant strains with NPV and Bt for bioassay. Two dominant bacteria, Klebsiella oxytoca Lautrop (Enterobacterales: Enterobacteriaceae) and Enterococcus mundtii Collins (Lactobacillales: Enterococcaceae), in the midgut of H. cunea were identified, and a strain of H. cunea larvae without intestinal bacteria was successfully established. In the bioassays of entomopathogen infection, K. oxytoca showed significant synergistic effects with both NPV and Bt on the death of H. cunea. In contrast, E. mundtii played antagonistic effects. This phenomenon may be attributed to the differences in the physico-chemical properties of the two gut bacteria and the alkaline environment required for NPV and Bt to infect the host. It is worth noting that the enhanced insecticidal activity of K. oxytoca on NPV and Bt provides a reference for future biological control of H. cunea by intestinal bacteria.
Collapse
Affiliation(s)
- Hongjian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | | | - Changyu Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yuhang Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaohang Yu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
36
|
Oliveira NCD, Cônsoli FL. Dysbiosis of the larval gut microbiota of Spodoptera frugiperda strains feeding on different host plants. Symbiosis 2023. [DOI: 10.1007/s13199-023-00907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
37
|
Crosstalk between the microbiota and insect postembryonic development. Trends Microbiol 2023; 31:181-196. [PMID: 36167769 DOI: 10.1016/j.tim.2022.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/20/2022] [Accepted: 08/25/2022] [Indexed: 01/27/2023]
Abstract
Insect sequential development evolves from a simple molt towards complete metamorphosis. Like any multicellular host, insects interact with a complex microbiota. In this review, factors driving the microbiota dynamics were pointed out along their development. Special focus was put on tissue renewal, shift in insect ecology, and microbial interactions. Conversely, how the microbiota modulates its host development through nutrient acquisition, hormonal control, and cellular or tissue differentiation was exemplified. Such modifications might have long-term carry-over effects on insect physiology. Finally, remarkable microbe-driven control of insect behaviors along their life cycle was highlighted. Increasing knowledge of those interactions might offer new insights on how insects respond to their environment as well as perspectives on pest- or vector-control strategies.
Collapse
|
38
|
Mazumdar T, Hänniger S, Shukla SP, Murali A, Bartram S, Heckel DG, Boland W. 8-HQA adjusts the number and diversity of bacteria in the gut microbiome of Spodoptera littoralis. Front Microbiol 2023; 14:1075557. [PMID: 36744087 PMCID: PMC9891463 DOI: 10.3389/fmicb.2023.1075557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Quinolinic carboxylic acids are known for their metal ion chelating properties in insects, plants and bacteria. The larval stages of the lepidopteran pest, Spodoptera littoralis, produce 8-hydroxyquinoline-2-carboxylic acid (8-HQA) in high concentrations from tryptophan in the diet. At the same time, the larval midgut is known to harbor a bacterial population. The motivation behind the work was to investigate whether 8-HQA is controlling the bacterial community in the gut by regulating the concentration of metal ions. Knocking out the gene for kynurenine 3-monooxygenase (KMO) in the insect using CRISPR/Cas9 eliminated production of 8-HQA and significantly increased bacterial numbers and diversity in the larval midgut. Adding 8-HQA to the diet of knockout larvae caused a dose-dependent reduction of bacterial numbers with minimal effects on diversity. Enterococcus mundtii dominates the community in all treatments, probably due to its highly efficient iron uptake system and production of the colicin, mundticin. Thus host factors and bacterial properties interact to determine patterns of diversity and abundance in the insect midgut.
Collapse
Affiliation(s)
- Tilottama Mazumdar
- Department of Zoology, Institute of Zoology, Freie Universität Berlin, Berlin, Germany
| | - Sabine Hänniger
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Shantanu P. Shukla
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Aishwarya Murali
- Department of Experimental Toxicology & Ecology, BASF SE, Ludwigshafen am Rhein, Germany
| | - Stefan Bartram
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - David G. Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany,*Correspondence: David G. Heckel, ✉
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
39
|
Wang X, Wang H, Su X, Zhang J, Bai J, Zeng J, Li H. Dynamic changes of gut bacterial communities present in larvae of Anoplophora glabripennies collected at different developmental stages. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21978. [PMID: 36377756 DOI: 10.1002/arch.21978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The Asian long-horned beetle, Anoplophora glabripennies (Motschulsky), is a destructive wood-boring pest that is capable of killing healthy trees. Gut bacteria in the larvae of the wood-boring pest is essential for the fitness of hosts. However, little is known about the structure of the intestinal microbiome of A. glabripennies during larval development. Here, we used Illumina MiSeq high-throughput sequencing technology to analyze the larval intestinal bacterial communities of A. glabripennies at the stages of newly hatched larvae, 1st instar larvae and 4th instar larvae. Significant differences were found in larval gut microbial community structure at different larvae developmental stages. Different dominant genus was detected during larval development. Acinetobacter were dominant in the newly hatched larvae, Enterobacter and Raoultella in the 1st instar larvae, and Enterococcus and Gibbsiella in the 4th instar larvae. The microbial richness in the newly hatched larvae was higher than those in the 1st and 4th instar larvae. Many important functions of the intestinal microbiome were predicted, for example, fermentation and chemoheterotrophy functions that may play an important role in insect growth and development was detected in the bacteria at all tested stages. However, some specific functions are found to be associated with different development stages. Our study provides a theoretical basis for investigating the function of the intestinal symbiosis bacteria of A. glabripennies.
Collapse
Affiliation(s)
- XueFei Wang
- College of Forestry, Hebei Agricultural University, Hebei, China
| | - HuaLing Wang
- College of Forestry, Hebei Agricultural University, Hebei, China
- Hebei Urban Forest Health Technology Innovation Center, Hebei, China
| | - XiaoYu Su
- College of Forestry, Hebei Agricultural University, Hebei, China
- Hebei Urban Forest Health Technology Innovation Center, Hebei, China
| | - Jie Zhang
- College of Forestry, Hebei Agricultural University, Hebei, China
| | - JiaWei Bai
- College of Forestry, Hebei Agricultural University, Hebei, China
| | - JianYong Zeng
- College of Forestry, Hebei Agricultural University, Hebei, China
- Key Laboratory of Forest Germplasm Resources and Protection of Hebei Province, Hebei, China
| | - HuiPing Li
- College of Forestry, Hebei Agricultural University, Hebei, China
- Hebei Urban Forest Health Technology Innovation Center, Hebei, China
| |
Collapse
|
40
|
Juottonen H, Moghadam NN, Murphy L, Mappes J, Galarza JA. Host's genetic background determines the outcome of reciprocal faecal transplantation on life-history traits and microbiome composition. Anim Microbiome 2022; 4:67. [PMID: 36564793 PMCID: PMC9789590 DOI: 10.1186/s42523-022-00210-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Microbes play a role in their host's fundamental ecological, chemical, and physiological processes. Host life-history traits from defence to growth are therefore determined not only by the abiotic environment and genotype but also by microbiota composition. However, the relative importance and interactive effects of these factors may vary between organisms. Such connections remain particularly elusive in Lepidoptera, which have been argued to lack a permanent microbiome and have microbiota primarily determined by their diet and environment. We tested the microbiome specificity and its influence on life-history traits of two colour genotypes of the wood tiger moth (Arctia plantaginis) that differ in several traits, including growth. All individuals were grown in the laboratory for several generations with standardized conditions. We analyzed the bacterial community of the genotypes before and after a reciprocal frass (i.e., larval faeces) transplantation and followed growth rate, pupal mass, and the production of defensive secretion. RESULTS After transplantation, the fast-growing genotype grew significantly slower compared to the controls, but the slow-growing genotype did not change its growth rate. The frass transplant also increased the volume of defensive secretions in the fast-growing genotype but did not affect pupal mass. Overall, the fast-growing genotype appeared more susceptible to the transplantation than the slow-growing genotype. Microbiome differences between the genotypes strongly suggest genotype-based selective filtering of bacteria from the diet and environment. A novel cluster of insect-associated Erysipelotrichaceae was exclusive to the fast-growing genotype, and specific Enterococcaceae were characteristic to the slow-growing genotype. These Enterococcaceae became more prevalent in the fast-growing genotype after the transplant, which suggests that a slower growth rate is potentially related to their presence. CONCLUSIONS We show that reciprocal frass transplantation can reverse some genotype-specific life-history traits in a lepidopteran host. The results indicate that genotype-specific selective filtering can fine-tune the bacterial community at specific life stages and tissues like the larval frass, even against a background of a highly variable community with stochastic assembly. Altogether, our findings suggest that the host's genotype can influence its susceptibility to being colonized by microbiota, impacting key life-history traits.
Collapse
Affiliation(s)
- Heli Juottonen
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Neda N. Moghadam
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Liam Murphy
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Johanna Mappes
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland ,grid.7737.40000 0004 0410 2071Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikki Biocenter 3, 00014 Helsinki, Finland
| | - Juan A. Galarza
- grid.9681.60000 0001 1013 7965Department of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland ,grid.7737.40000 0004 0410 2071Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikki Biocenter 3, 00014 Helsinki, Finland
| |
Collapse
|
41
|
Yang Y, Liu X, Guo J, Xu H, Liu Y, Lu Z. Gut bacterial communities and their assembly processing in Cnaphalocrocis medinalis from different geographic sources. Front Microbiol 2022; 13:1035644. [PMID: 36590437 PMCID: PMC9797858 DOI: 10.3389/fmicb.2022.1035644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction The insect gut harbors numerous microorganisms that may have functions in development and reproduction, digestion, immunity and protection, and detoxification. Recently, the influence factors on gut microbiota were evaluated in the rice leaffolder Cnaphalocrocis medinalis, a widespread insect pest in paddy fields. However, the relationship between gut microbiota composition and geography is poorly understood in C. medinalis. Methods To reveal the patterns of C. medinalis gut bacterial communities across geographic sources and the ecological processes driving the patterns, C. medinalis were sampled from six geographic sources in China, Thailand, and Vietnam in 2016, followed by gut bacterial 16S ribosomal RNA gene sequencing. Results A total of 22 bacterial phyla, 56 classes, 84 orders, 138 families, 228 genera, and 299 species were generated in C. medinalis from six geographic sources. All alpha diversity indices differed among the samples from different geographic sources. Analysis of similarity (ANOSIM) and permutational multivariate analysis of variance (PERMANOVA) both revealed significant differences in the gut microbiota of C. medinalis from six geographic sources. A total of 94 different taxa were screened as indicators for the gut microbiota of C. medinalis from six geographic sources by linear discriminant analysis effect size (LEfSe). The gene ontology (GO) pathways of the gut microbiota in C. medinalis differed among geographic sources. In total, the bacterial communities within geographic sources were mainly determined by stochastic processes, and those between geographic sources were mainly determined by deterministic processes. Discussion This study elucidates that geography plays a crucial role in shaping the gut microbiota of C. medinalis. Thus, it enriches our knowledge of gut bacteria in C. medinalis and sheds light on the mechanisms underlying C. medinalis gut microbial shifts across geography.
Collapse
Affiliation(s)
- Yajun Yang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaogai Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,College of Plant Protection, Southwest University, Chongqing, China
| | - Jiawen Guo
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yinghong Liu
- College of Plant Protection, Southwest University, Chongqing, China,*Correspondence: Yinghong Liu,
| | - Zhongxian Lu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,Zhongxian Lu,
| |
Collapse
|
42
|
Jia S, Zhang J, Li X, He Y, Yu T, Zhao C, Song C. Intestinal Microflora Characteristics of Antheraea pernyi (Lepidoptera: Saturniidae) Larvae With Vomit Disease. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1859-1868. [PMID: 36124625 DOI: 10.1093/jee/toac142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Antheraea pernyi Guérin-Méneville (Lepidoptera: Saturniidae) is of high economic value as a source of silk, food, and bioactive substances with medicinal properties. A. pernyi larvae are prone to A. pernyi vomit disease (AVD), which results in substantial economic losses during cultivation; however, the relationship between AVD and A. pernyi gut microbiota remains unclear. Here, we investigated the bacterial community in the midgut and feces of A. pernyi larvae with and without AVD using 16S rRNA gene sequencing with Illumina MiSeq technology. Compared with healthy larvae, intestinal bacterial diversity and community richness increased and decreased in larvae with mild and severe AVD, respectively. In addition, the proportion of gut Enterobacter Hormaeche and Edwards(Enterobacteriales: Enterobacteriaceae) and Enterococcus Thiercelin and Jouhaud (Lactobacillales: Enterococcaceae) was higher and lower, respectively, in larvae with mild AVD than those in healthy larvae. A. pernyi vomit disease infection significantly increased the genera with abundance <1%. In the gut of larvae with severe AVD, the proportion of Turicibacter Bosshard et al. (Erysipelotrichales: Turicibacteraceae) increased significantly to 81.53-99.92%, whereas that of Enterobacter decreased compared with healthy larvae. However, the diversity of fecal bacteria was similar between healthy larvae and those with mild AVD. Overall, the findings demonstrate that intestinal microflora in A. pernyi larvae are altered by AVD infection and may cause secondary bacterial infection. This is the first report of the presence of Turicibacter in the intestinal tract of lepidopterans.
Collapse
Affiliation(s)
- Shu Jia
- Sericultural Research Institute of Liaoning Province, Fengcheng 118100, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Juntao Zhang
- Sericultural Research Institute of Liaoning Province, Fengcheng 118100, China
| | - Xisheng Li
- Sericultural Research Institute of Liaoning Province, Fengcheng 118100, China
| | - Yingzi He
- Sericultural Research Institute of Liaoning Province, Fengcheng 118100, China
| | - Tinghong Yu
- Sericultural Research Institute of Liaoning Province, Fengcheng 118100, China
| | - Chong Zhao
- Sericultural Research Institute of Liaoning Province, Fengcheng 118100, China
| | - Ce Song
- Sericultural Research Institute of Liaoning Province, Fengcheng 118100, China
| |
Collapse
|
43
|
Windfelder AG, Müller FHH, Mc Larney B, Hentschel M, Böhringer AC, von Bredow CR, Leinberger FH, Kampschulte M, Maier L, von Bredow YM, Flocke V, Merzendorfer H, Krombach GA, Vilcinskas A, Grimm J, Trenczek TE, Flögel U. High-throughput screening of caterpillars as a platform to study host-microbe interactions and enteric immunity. Nat Commun 2022; 13:7216. [PMID: 36433960 PMCID: PMC9700799 DOI: 10.1038/s41467-022-34865-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Mammalian models of human disease are expensive and subject to ethical restrictions. Here, we present an independent platform for high-throughput screening, using larvae of the tobacco hornworm Manduca sexta, combining diagnostic imaging modalities for a comprehensive characterization of aberrant phenotypes. For validation, we use bacterial/chemical-induced gut inflammation to generate a colitis-like phenotype and identify significant alterations in morphology, tissue properties, and intermediary metabolism, which aggravate with disease progression and can be rescued by antimicrobial treatment. In independent experiments, activation of the highly conserved NADPH oxidase DUOX, a key mediator of gut inflammation, leads to similar, dose-dependent alterations, which can be attenuated by pharmacological interventions. Furthermore, the developed platform could differentiate pathogens from mutualistic gastrointestinal bacteria broadening the scope of applications also to microbiomics and host-pathogen interactions. Overall, larvae-based screening can complement mammals in preclinical studies to explore innate immunity and host-pathogen interactions, thus representing a substantial contribution to improve mammalian welfare.
Collapse
Affiliation(s)
- Anton G Windfelder
- Institute of Zoology and Developmental Biology; Cellular Recognition and Defense Processes, Justus Liebig University Giessen, Giessen, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Laboratory of Experimental Radiology, Justus Liebig University Giessen, Giessen, Germany
| | - Frank H H Müller
- Radiology and Nuclear Medicine Ludwigshafen, Ludwigshafen, Germany
| | - Benedict Mc Larney
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Anna Christina Böhringer
- Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Siegen, Germany
| | | | - Florian H Leinberger
- Institute of Zoology and Developmental Biology; Cellular Recognition and Defense Processes, Justus Liebig University Giessen, Giessen, Germany
| | - Marian Kampschulte
- Laboratory of Experimental Radiology, Justus Liebig University Giessen, Giessen, Germany
| | - Lorenz Maier
- Department of Nuclear Medicine, Inselspital Bern, Bern, Switzerland
| | - Yvette M von Bredow
- Institute of Zoology and Developmental Biology; Cellular Recognition and Defense Processes, Justus Liebig University Giessen, Giessen, Germany
| | - Vera Flocke
- Experimental Cardiovascular Imaging, Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans Merzendorfer
- Department of Chemistry and Biology, School of Science and Technology, University of Siegen, Siegen, Germany
| | - Gabriele A Krombach
- Department of Diagnostic and Interventional Radiology, University-Hospital Giessen, Giessen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Institute for Insect Biotechnology, Department of Applied Entomology, Justus Liebig University Giessen, Giessen, Germany
| | - Jan Grimm
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pharmacology Department, Weill Cornell Medical College, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Weill Cornell Medical Center, New York, NY, USA
| | - Tina E Trenczek
- Institute of Zoology and Developmental Biology; Cellular Recognition and Defense Processes, Justus Liebig University Giessen, Giessen, Germany.
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
44
|
Yong D, Li Y, Gong K, Yu Y, Zhao S, Duan Q, Ren C, Li A, Fu J, Ni J, Zhang Y, Li R. Biocontrol of strawberry gray mold caused by Botrytis cinerea with the termite associated Streptomyces sp. sdu1201 and actinomycin D. Front Microbiol 2022; 13:1051730. [PMID: 36406410 PMCID: PMC9674021 DOI: 10.3389/fmicb.2022.1051730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Strawberry gray mold caused by Botrytis cinerea is one of the most severe diseases in pre- and post-harvest periods. Although fungicides have been an effective way to control this disease, they can cause serious “3R” problems (Resistance, Resurgence and Residue). In this study, Streptomyces sp. sdu1201 isolated from the hindgut of the fungus-growing termite Odontotermes formosanus revealed significant antifungal activity against B. cinerea. Four compounds (1–4) were isolated from Streptomyces sp. sdu1201 and further identified as actinomycins by the HRMS and 1D NMR data. Among them, actinomycin D had the strongest inhibitory activity against B. cinerea with the EC50 value of 7.65 μg mL−1. The control effect of actinomycin D on strawberry gray mold was also tested on fruits and leaves in vitro, and its control efficiency on leaves was 78.77% at 3 d. Moreover, actinomycin D can also inhibit the polarized growth of germ tubes of B. cinerea. Therefore, Streptomyces sp. sdu1201 and actinomycin D have great potential to gray mold as biocontrol agents.
Collapse
Affiliation(s)
- Daojing Yong
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Qingdao Zhongda Agritech Co., Ltd., Qingdao, China
| | - Yue Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Kai Gong
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yingying Yu
- Qingdao Zhongda Agritech Co., Ltd., Qingdao, China
| | - Shuai Zhao
- Qingdao Zhongda Agritech Co., Ltd., Qingdao, China
| | - Qiong Duan
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Cailing Ren
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jun Fu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jinfeng Ni
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- *Correspondence: Jinfeng Ni,
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Youming Zhang,
| | - Ruijuan Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Ruijuan Li,
| |
Collapse
|
45
|
Xu X, De Mandal S, Wu H, Zhu S, Kong J, Lin S, Jin F. Effect of Diet on the Midgut Microbial Composition and Host Immunity of the Fall Armyworm, Spodoptera frugiperda. BIOLOGY 2022; 11:1602. [PMID: 36358303 PMCID: PMC9687563 DOI: 10.3390/biology11111602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 09/08/2024]
Abstract
The fall armyworm (Spodoptera frugiperda, J.E. Smith) is one of the most important agricultural pests in the world and causes serious damage to many significant crops. Insect gut microbiota plays a vital role in host immunity, digestion, and development, helping the higher organism colonize in a new environment. However, the effects of different diets on midgut microbial composition and host immunity in S. frugiperda remain unclear. So far, no reports have compared the gut microbiota of fall armyworm reared using an artificial diet compared to corn leaf in Guangzhou, China. High-throughput 16S rRNA sequencing technology was applied to gain insight into the composition of the gut microbiota of S. frugiperda feeding on corn leaf (field diet) and on a starch-rich artificial diet (lab diet). The fall armyworm gut microbiota was dominated by the bacterial phyla Firmicutes and Proteobacteria. Despite the difference in diet, the core bacterial community was represented by the genus Enterococcus. However, the bacterial community is dominated by a few phylotypes, namely operational taxonomical units 1 (OTU1) (Enterococcus casseliflavus), OTU3 (Enterobacteriaceae), OTU2 (Weissella), and OTU4 (Clostridium), accounting for 97.43% of the total OTUs in the complete dataset. A significant difference was identified in the bacterial communities between the "lab diet" and the "field diet" groups. OTU1 and OTU2 were significantly higher in the "field diet" group, whereas OTU3 and OTU4 were higher in the "lab diet" group. A phylogenetic investigation of the communities by reconstruction of unobserved states (PICRUSt) predicted functional analysis indicates the presence of several genes associated with plant biomass degradation. Importantly, antibiotic-mediated perturbation of the midgut microbial community significantly impacts the expression profile of the important immune genes of the host. Furthermore, the oral reintroduction of gut bacterial isolates (E. mundtii and E. gallinarum) significantly enhances host resistance to AcMNPV infection. Taken together, our results indicate that diet composition is an important driver in shaping insect gut microbiome and immune gene expression, ultimately playing an important role in the pest defense system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fengliang Jin
- Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
46
|
IJdema F, De Smet J, Crauwels S, Lievens B, Van Campenhout L. Meta-analysis of larvae of the black soldier fly (Hermetia illucens) microbiota based on 16S rRNA gene amplicon sequencing. FEMS Microbiol Ecol 2022; 98:fiac094. [PMID: 35977400 PMCID: PMC9453823 DOI: 10.1093/femsec/fiac094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/16/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Black soldier fly larvae (BSFL) belong to the most widely reared insects as an alternative protein source at industrial scale. Bacteria in the larval gut can provide benefits for the animal, though some bacteria can also be pathogenic for the insect. Accurate characterization of the BSFL microbiota is important for the production of BSFL in terms of yield and microbiological safety. In this study, 16S ribosomal RNA gene sequence data sets from 11 studies were re-analysed to gain better insights in the BSFL gut microbiota, potential factors that influence their composition, and differences between the gut and the whole larvae microbiota. A core gut microbiota was found consisting of members of Enterococcus, Klebsiella, Morganella, Providencia, and Scrofimicrobium. Further, the factors 'Study', 'Age' and 'Feed' (i.e. rearing substrate of the larvae) significantly affected the microbiota gut composition. When compared to whole larvae, a significantly lower diversity was found for gut samples, suggesting that the larvae harboured additional microbes on their cuticle or in the insect body. Universal choices in insect sample type, primer selection and bio-informatics analysis pipeline can strengthen future meta-analyses and improve our understanding of the BSFL gut microbiota towards the optimization of insect rearing conditions and substrates.
Collapse
Affiliation(s)
- Freek IJdema
- CLMT Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (MS), KU Leuven, B-3001, Campus Geel, Geel, B-2440, Belgium
- KU Leuven, Leuven Food Science and Nutrition Research Centre (LFoRCe), Leuven, B-3001, Belgium
| | - Jeroen De Smet
- CLMT Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (MS), KU Leuven, B-3001, Campus Geel, Geel, B-2440, Belgium
- KU Leuven, Leuven Food Science and Nutrition Research Centre (LFoRCe), Leuven, B-3001, Belgium
| | - Sam Crauwels
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M²S), KU Leuven, Leuven, B-3001, Belgium
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M²S), KU Leuven, Leuven, B-3001, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, B-3001, Belgium
| | - Leen Van Campenhout
- CLMT Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (MS), KU Leuven, B-3001, Campus Geel, Geel, B-2440, Belgium
- KU Leuven, Leuven Food Science and Nutrition Research Centre (LFoRCe), Leuven, B-3001, Belgium
| |
Collapse
|
47
|
Zhang J, Gao S, Zheng F, Wang N. Intestinal Bacterial Diversity and Functional Analysis of Three Lepidopteran Corn Ear Worm Larvae. INSECTS 2022; 13:740. [PMID: 36005365 PMCID: PMC9409944 DOI: 10.3390/insects13080740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Insects, as the most abundant animal group on earth, and their symbionts help their hosts to adapt to various environments. Conogethes punctiferalis, Ostrinia furnacalis and Helicoverpa armigera are three main pests co-occurring in the ear stage of corn, which significantly affect the yield and quality of corn. The purpose of this study was to compare the diversity and function of the intestinal bacteria of the three co-occurring lepidopteran pests, C. punctiferalis, O. furnacalis and H. armigera, and to explore the reason of their prevalence from the microbiota's view. Our results showed the difference of diversity and abundance of the gut bacteria of three co-occurring lepidopteran pests at the ear stage. Proteobacteria and Firmicutes were the dominant phyla, and the Enterobacteriaceae and Enterococcaceae were the dominant families in the three pests. Compared with the other two pests, Bacteroidetes was found much more in C. punctiferalis. In addition, C. punctiferalis showed more correlation and similarity in bacteria composition with corn endophytic bacteria, as well as had obvious advantages in metabolic, environmental information processing, cellular processes and organic systems function pathways. Our findings may provide insight into the prevalence of corn earworm larvae from the perspective of gut microbiota and function prediction.
Collapse
|
48
|
Gohl P, LeMoine C, Cassone B. Diet and ontogeny drastically alter the larval microbiome of the invertebrate model Galleria mellonella. Can J Microbiol 2022; 68:594-604. [PMID: 35863073 DOI: 10.1139/cjm-2022-0058] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Larvae of the greater wax moth (Galleria mellonella) are an emerging animal model to study the innate immune response and biodegradation of plastic polymers. Both of these complex biological processes are likely impacted by the plasticity of host-microbe interactions, which remains understudied in lepidopterans. Consequently we carried out 16S rRNA sequencing to explore the effect diet (natural, artificial) has on the bacterial assemblages of G. mellonella in different tissues (gut, fat bodies, silk glands) throughout development (eggs, six instar stages, adults). The microbiome was rich in diversity, with Proteobacteria and Firmicutes being the most represented phyla. Contrary to other lepidopterans, G. mellonella appears to possess a resident microbiome dominated by Ralstonia. As larvae progress through development, the bacterial assemblages become increasingly shaped by the caterpillar's diet. In particular, a number of bacteria genera widely associated with the G. mellonella microbiome (e.g., Enterococcus and Enterbacter) were significantly enriched on an artificial diet. Overall these results indicate that the G. mellonella microbiome is not as simplistic and homogenous as previously described. Rather, its bacterial communities are drastically affected by both diet and ontogeny, which should be taken into consideration in future studies planning to use G. mellonella as model species.
Collapse
Affiliation(s)
- Patrick Gohl
- Brandon University Faculty of Science, 414985, Brandon, Manitoba, Canada;
| | - Christophe LeMoine
- Brandon University Faculty of Science, 414985, Brandon, Manitoba, Canada;
| | - Bryan Cassone
- Brandon University, 1916, Brandon, Manitoba, Canada;
| |
Collapse
|
49
|
The Impact of Environmental Habitats and Diets on the Gut Microbiota Diversity of True Bugs (Hemiptera: Heteroptera). BIOLOGY 2022; 11:biology11071039. [PMID: 36101420 PMCID: PMC9312191 DOI: 10.3390/biology11071039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary There is a wide variety of insects in the suborder Heteroptera (true bugs), with various feeding habits and living habitats. Microbes that live inside insect guts play critical roles in aspects of host nutrition, physiology, and behavior. However, most studies have focused on herbivorous stink bugs of the infraorder Pentatomomorpha and the gut microbiota associated with the megadiverse heteropteran lineages, and the implications of ecological and diet variance have been less studied. Here, we investigated the gut microbial biodiversity of 30 species of true bugs representative of different ecological niches and diets. Proteobacteria and Firmicutes dominated all samples. True bugs that live in aquatic environments had a variety of bacterial taxa that were not present in their terrestrial counterparts. Carnivorous true bugs had distinct gut microbiomes compared to herbivorous species. In particular, assassin bugs of the family Reduviidae had a characteristic gut microbiota consisting mainly of Enterococcus and different species of Proteobacteria, implying a specific association between the gut bacteria and the host. These findings reveal that the environmental habitats and diets synergistically contributed to the diversity of the gut bacterial community of true bugs. Abstract Insects are generally associated with gut bacterial communities that benefit the hosts with respect to diet digestion, limiting resource supplementation, pathogen defense, and ecological niche expansion. Heteroptera (true bugs) represent one of the largest and most diverse insect lineages and comprise species consuming different diets and inhabiting various ecological niches, even including underwater. However, the bacterial symbiotic associations have been characterized for those basically restricted to herbivorous stink bugs of the infraorder Pentatomomorpha. The gut microbiota associated with the megadiverse heteropteran lineages and the implications of ecological and diet variance remain largely unknown. Here, we conducted a bacterial 16S rRNA amplicon sequencing of the gut microbiota across 30 species of true bugs representative of different ecological niches and diets. It was revealed that Proteobacteria and Firmicute were the predominant bacterial phyla. Environmental habitats and diets synergistically contributed to the diversity of the gut bacterial community of true bugs. True bugs living in aquatic environments harbored multiple bacterial taxa that were not present in their terrestrial counterparts. Carnivorous true bugs possessed distinct gut microbiota compared to phytophagous species. Particularly, assassin bugs of the family Reduviidae possessed a characterized gut microbiota predominantly composed of one Enterococcus with different Proteobacteria, implying a specific association between the gut bacteria and host. Overall, our findings highlight the importance of the comprehensive surveillance of gut microbiota association with true bugs for understanding the molecular mechanisms underpinning insect–bacteria symbiosis.
Collapse
|
50
|
Zhao M, Lin X, Guo X. The Role of Insect Symbiotic Bacteria in Metabolizing Phytochemicals and Agrochemicals. INSECTS 2022; 13:insects13070583. [PMID: 35886759 PMCID: PMC9319143 DOI: 10.3390/insects13070583] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary To counter plant chemical defenses and exposure to agrochemicals, herbivorous insects have developed several adaptive strategies to guard against the ingested detrimental substances, including enhancing detoxifying enzyme activities, avoidance behavior, amino acid mutation of target sites, and lower penetration through a thicker cuticle. Insect microbiota play important roles in many aspects of insect biology and physiology. To better understand the role of insect symbiotic bacteria in metabolizing these detrimental substances, we summarize the research progress on the function of insect bacteria in metabolizing phytochemicals and agrochemicals, and describe their future potential application in pest management and protection of beneficial insects. Abstract The diversity and high adaptability of insects are heavily associated with their symbiotic microbes, which include bacteria, fungi, viruses, protozoa, and archaea. These microbes play important roles in many aspects of the biology and physiology of insects, such as helping the host insects with food digestion, nutrition absorption, strengthening immunity and confronting plant defenses. To maintain normal development and population reproduction, herbivorous insects have developed strategies to detoxify the substances to which they may be exposed in the living habitat, such as the detoxifying enzymes carboxylesterase, glutathione-S-transferases (GSTs), and cytochrome P450 monooxygenases (CYP450s). Additionally, insect symbiotic bacteria can act as an important factor to modulate the adaptability of insects to the exposed detrimental substances. This review summarizes the current research progress on the role of insect symbiotic bacteria in metabolizing phytochemicals and agrochemicals (insecticides and herbicides). Given the importance of insect microbiota, more functional symbiotic bacteria that modulate the adaptability of insects to the detrimental substances to which they are exposed should be identified, and the underlying mechanisms should also be further studied, facilitating the development of microbial-resource-based pest control approaches or protective methods for beneficial insects.
Collapse
Affiliation(s)
| | | | - Xianru Guo
- Correspondence: ; Tel.: +86-0371-63558170
| |
Collapse
|