1
|
Shrestha S, Shrestha BK, Tettey-Engmann F, Auniq RBZ, Subedi K, Ghimire S, Desai S, Bhattarai N. Zein-Coated Zn Metal Particles-Incorporated Nanofibers: A Potent Fibrous Platform for Loading and Release of Zn Ions for Wound Healing Application. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49197-49217. [PMID: 39235841 DOI: 10.1021/acsami.4c13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Metal particles incorporated into polymer matrices in various forms and geometries are attractive material platforms for promoting wound healing and preventing infections. However, the fate of these metal particles and their degraded products in the tissue environment are still unknown, as both can produce cytotoxic effects and promote unwanted wound reactions. In this study, we develop biodegradable fibrous biomaterials embedded with metal particles that have an immune activation functions. Initially, biodegradable zinc (Zn) nanoparticles were modified with zein (G), a protein derived from corn. The zein-coated zinc particles (Z-G) were then embedded in polycaprolactone (P) fibers at different weight ratios to create fibrous biomaterials via electrospinning, which were subsequently analyzed for potential wound healing applications. We performed multimodal evaluations of the fibrous scaffolds, examining physicochemical properties such as fiber morphology, mechanical strength, hydrophilicity, degradation, and release of zinc ions (Zn2+), as well as biological properties, including in vitro cell culture studies. We provide evidence that the integration of 2.4 wt % of Z-G particles in polycaprolactone (PCL) nanofibrous scaffolds improved its physicochemical and biological functions. The in vitro cellular response of the scaffolds was evaluated using a series of cytotoxicity assays and immunocytochemistry analyses with three different cell types: mouse-derived fibroblast cell lines (NIH/3T3), human dermal fibroblasts (HDFn), and human umbilical vein endothelial cells (HUVECs). The composite fibrous scaffold exhibited robust activation and proliferation of NIH/3T3 and HDFn cells, along with a significant angiogenic potential in HUVECs. Immunocytochemistry confirmed elevated expression of vimentin and α-smooth muscle actin (α-SMA), suggesting that NIH/3T3 and Haden cells were highly differentiated into myofibroblasts. Additionally, the increased expression of CD31 and VE-cadherin in HUVECs suggests that the scaffold supports tube formation, thereby enhancing neovascularization and promoting an effective immune response. Overall, our findings demonstrate the regenerative potential of the self-enhanced Zn hemostatic bioscaffolds, which deliver both Zn2+ ions and zein proteins to nourish cells. This capability not only modulates cellular activities but also contributes to tissue repair and remodeling, making the scaffolds suitable for wound repair and various bioengineering applications.
Collapse
Affiliation(s)
- Sita Shrestha
- Department of Chemical, Biological and Bioengineering, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
| | - Bishnu Kumar Shrestha
- Department of Chemical, Biological and Bioengineering, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
- Department of Chemistry, North Carolina A&T State University, 1601 E Market St, Greensboro, North Carolina 27411, United States
| | - Felix Tettey-Engmann
- Department of Chemical, Biological and Bioengineering, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
- Department of Industrial and Systems Engineering, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
| | - Reedwan Bin Zafar Auniq
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering (JSNN), North Carolina A&T State University, Greensboro, North Carolina 27401, United States
| | - Kiran Subedi
- Analytical Services Laboratory, College of Agriculture and Environmental Sciences, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
| | - Sanjaya Ghimire
- Department of Chemical, Biological and Bioengineering, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
| | - Salil Desai
- Department of Industrial and Systems Engineering, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
| | - Narayan Bhattarai
- Department of Chemical, Biological and Bioengineering, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
| |
Collapse
|
2
|
Jones Lipinski RA, Stancill JS, Nuñez R, Wynia-Smith SL, Sprague DJ, Nord JA, Bird A, Corbett JA, Smith BC. Zinc-chelating BET bromodomain inhibitors equally target islet endocrine cell types. Am J Physiol Regul Integr Comp Physiol 2024; 326:R515-R527. [PMID: 38618911 PMCID: PMC11381023 DOI: 10.1152/ajpregu.00259.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/19/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
Inhibition of the bromodomain and extraterminal domain (BET) protein family is a potential strategy to prevent and treat diabetes; however, the clinical use of BET bromodomain inhibitors (BETis) is associated with adverse effects. Here, we explore a strategy for targeting BETis to β cells by exploiting the high-zinc (Zn2+) concentration in β cells relative to other cell types. We report the synthesis of a novel, Zn2+-chelating derivative of the pan-BETi (+)-JQ1, (+)-JQ1-DPA, in which (+)-JQ1 was conjugated to dipicolyl amine (DPA). As controls, we synthesized (+)-JQ1-DBA, a non-Zn2+-chelating derivative, and (-)-JQ1-DPA, an inactive enantiomer that chelates Zn2+. Molecular modeling and biophysical assays showed that (+)-JQ1-DPA and (+)-JQ1-DBA retain potent binding to BET bromodomains in vitro. Cellular assays demonstrated (+)-JQ1-DPA attenuated NF-ĸB target gene expression in β cells stimulated with the proinflammatory cytokine interleukin 1β. To assess β-cell selectivity, we isolated islets from a mouse model that expresses green fluorescent protein in insulin-positive β cells and mTomato in insulin-negative cells (non-β cells). Surprisingly, Zn2+ chelation did not confer β-cell selectivity as (+)-JQ1-DPA was equally effective in both β and α cells; however, (+)-JQ1-DPA was less effective in macrophages, a nonendocrine islet cell type. Intriguingly, the non-Zn2+-chelating derivative (+)-JQ1-DBA displayed the opposite selectivity, with greater effect in macrophages compared with (+)-JQ1-DPA, suggesting potential as a macrophage-targeting molecule. These findings suggest that Zn2+-chelating small molecules confer endocrine cell selectivity rather than β-cell selectivity in pancreatic islets and provide valuable insights and techniques to assess Zn2+ chelation as an approach to selectively target small molecules to pancreatic β cells.NEW & NOTEWORTHY Inhibition of BET bromodomains is a novel potential strategy to prevent and treat diabetes mellitus. However, BET inhibitors have negative side effects. We synthesized a BET inhibitor expected to exploit the high zinc concentration in β cells to accumulate in β cells. We show our inhibitor targeted pancreatic endocrine cells; however, it was less effective in immune cells. A control inhibitor showed the opposite effect. These findings help us understand how to target specific cells in diabetes treatment.
Collapse
Affiliation(s)
- Rachel A Jones Lipinski
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jennifer S Stancill
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Raymundo Nuñez
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Sarah L Wynia-Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Daniel J Sprague
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Joshua A Nord
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Amir Bird
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
3
|
Goldberg JM, Lippard SJ. Mobile zinc as a modulator of sensory perception. FEBS Lett 2023; 597:151-165. [PMID: 36416529 PMCID: PMC10108044 DOI: 10.1002/1873-3468.14544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Mobile zinc is an abundant transition metal ion in the central nervous system, with pools of divalent zinc accumulating in regions of the brain engaged in sensory perception and memory formation. Here, we present essential tools that we developed to interrogate the role(s) of mobile zinc in these processes. Most important are (a) fluorescent sensors that report the presence of mobile zinc and (b) fast, Zn-selective chelating agents for measuring zinc flux in animal tissue and live animals. The results of our studies, conducted in collaboration with neuroscientist experts, are presented for sensory organs involved in hearing, smell, vision, and learning and memory. A general principle emerging from these studies is that the function of mobile zinc in all cases appears to be downregulation of the amplitude of the response following overstimulation of the respective sensory organs. Possible consequences affecting human behavior are presented for future investigations in collaboration with interested behavioral scientists.
Collapse
Affiliation(s)
| | - Stephen J Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
4
|
El Khatib M, Cheprakov AV, Vinogradov SA. Unusual Reactivity and Metal Affinity of Water-Soluble Dipyrrins. Inorg Chem 2022; 61:12746-12758. [PMID: 35917291 PMCID: PMC10178602 DOI: 10.1021/acs.inorgchem.2c01834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dipyrrins are a versatile class of organic ligands capable of fluorogenic complexation of metal ions. The primary goal of our study was to evaluate dipyrrins functionalized with ester and amide groups in 2,2'-positions in sensing applications. While developing the synthesis, we found that 3,3',4,4'-tetraalkyldipyrrins 2,2'-diesters as well as 2,2'-diamides can undergo facile addition of water at the meso-bridge, transforming into colorless meso-hydroxydipyrromethanes. Spectroscopic and computational investigation revealed that this transformation proceeds via dipyrrin cations, which exist in equilibrium with the hydroxydipyrromethanes. While trace amounts of acid favor conversion of dipyrrins to hydroxydipyrromethanes, excess acid shifts the equilibrium toward the cations. Similarly, the presence of Zn2+ facilitates elimination of water from hydroxydipyrromethanes with chromogenic regeneration of the dipyrrin system. In organic solutions in the presence of Zn2+, dipyrrin-2,2'-diesters exist as mixtures of mono-(LZnX) and bis-(L2Zn) complexes. In L2Zn, the dipyrrin ligands are oriented in a nonorthogonal fashion, causing strong exciton coupling. In aqueous solutions, dipyrrins bind Zn2+ in a 1:1 stoichiometry, forming mono-dipyrrinates (LZnX). Unexpectedly, dipyrrins with more electron-rich 2,2'-carboxamide groups revealed ∼20-fold lower affinity for Zn2+ than the corresponding 2,2'-diesters. Density Functional Theory (DFT) calculations with explicit inclusion of water reproduced the observed trends and allowed us to trace the low affinity of the dipyrrin-diamides to the stabilization of the corresponding free bases via hydrogen bonding with water molecules. Overall, our results reveal unusual trends in the reactivity of dipyrrins and provide clues for the design of dipyrrin-based sensors for biological applications.
Collapse
|
5
|
Lee S, Xu H, Van Vleck A, Mawla AM, Li AM, Ye J, Huising MO, Annes JP. β-Cell Succinate Dehydrogenase Deficiency Triggers Metabolic Dysfunction and Insulinopenic Diabetes. Diabetes 2022; 71:1439-1453. [PMID: 35472723 PMCID: PMC9233299 DOI: 10.2337/db21-0834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/26/2022] [Indexed: 11/20/2022]
Abstract
Mitochondrial dysfunction plays a central role in type 2 diabetes (T2D); however, the pathogenic mechanisms in pancreatic β-cells are incompletely elucidated. Succinate dehydrogenase (SDH) is a key mitochondrial enzyme with dual functions in the tricarboxylic acid cycle and electron transport chain. Using samples from human with diabetes and a mouse model of β-cell-specific SDH ablation (SDHBβKO), we define SDH deficiency as a driver of mitochondrial dysfunction in β-cell failure and insulinopenic diabetes. β-Cell SDH deficiency impairs glucose-induced respiratory oxidative phosphorylation and mitochondrial membrane potential collapse, thereby compromising glucose-stimulated ATP production, insulin secretion, and β-cell growth. Mechanistically, metabolomic and transcriptomic studies reveal that the loss of SDH causes excess succinate accumulation, which inappropriately activates mammalian target of rapamycin (mTOR) complex 1-regulated metabolic anabolism, including increased SREBP-regulated lipid synthesis. These alterations, which mirror diabetes-associated human β-cell dysfunction, are partially reversed by acute mTOR inhibition with rapamycin. We propose SDH deficiency as a contributing mechanism to the progressive β-cell failure of diabetes and identify mTOR complex 1 inhibition as a potential mitigation strategy.
Collapse
Affiliation(s)
- Sooyeon Lee
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA
| | - Haixia Xu
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA
| | - Aidan Van Vleck
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA
| | - Alex M. Mawla
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA
| | - Albert Mao Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA
| | - Mark O. Huising
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, CA
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA
| | - Justin P. Annes
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA
- Stanford ChEM-H and Diabetes Research Center, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
6
|
Basile G, Qadir MMF, Mauvais-Jarvis F, Vetere A, Shoba V, Modell AE, Pastori RL, Russ HA, Wagner BK, Dominguez-Bendala J. Emerging diabetes therapies: Bringing back the β-cells. Mol Metab 2022; 60:101477. [PMID: 35331962 PMCID: PMC8987999 DOI: 10.1016/j.molmet.2022.101477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Stem cell therapies are finally coming of age as a viable alternative to pancreatic islet transplantation for the treatment of insulin-dependent diabetes. Several clinical trials using human embryonic stem cell (hESC)-derived β-like cells are currently underway, with encouraging preliminary results. Remaining challenges notwithstanding, these strategies are widely expected to reduce our reliance on human isolated islets for transplantation procedures, making cell therapies available to millions of diabetic patients. At the same time, advances in our understanding of pancreatic cell plasticity and the molecular mechanisms behind β-cell replication and regeneration have spawned a multitude of translational efforts aimed at inducing β-cell replenishment in situ through pharmacological means, thus circumventing the need for transplantation. SCOPE OF REVIEW We discuss here the current state of the art in hESC transplantation, as well as the parallel quest to discover agents capable of either preserving the residual mass of β-cells or inducing their proliferation, transdifferentiation or differentiation from progenitor cells. MAJOR CONCLUSIONS Stem cell-based replacement therapies in the mold of islet transplantation are already around the corner, but a permanent cure for type 1 diabetes will likely require the endogenous regeneration of β-cells aided by interventions to restore the immune balance. The promise of current research avenues and a strong pipeline of clinical trials designed to tackle these challenges bode well for the realization of this goal.
Collapse
Affiliation(s)
- G Basile
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - M M F Qadir
- Tulane University School of Medicine, New Orleans, LA, USA; Southeast Louisiana Veterans Affairs Medical Center, New Orleans, LA, USA
| | - F Mauvais-Jarvis
- Tulane University School of Medicine, New Orleans, LA, USA; Southeast Louisiana Veterans Affairs Medical Center, New Orleans, LA, USA
| | - A Vetere
- Broad Institute, Cambridge, MA, USA
| | - V Shoba
- Broad Institute, Cambridge, MA, USA
| | | | - R L Pastori
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - H A Russ
- Barbara Davis Center for Diabetes, Colorado University Anschutz Medical Campus, Aurora, CO, USA.
| | | | - J Dominguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
7
|
Wagner BK. Small-molecule discovery in the pancreatic beta cell. Curr Opin Chem Biol 2022; 68:102150. [PMID: 35487100 DOI: 10.1016/j.cbpa.2022.102150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022]
Abstract
The pancreatic beta cell is the only cell type in the body responsible for insulin secretion, and thus plays a unique role in the control of glucose homeostasis. The loss of beta-cell mass and function plays an important role in both type 1 and type 2 diabetes. Thus, using chemical biology to identify small molecules targeting the beta cell could be an important component to developing future therapeutics for diabetes. This strategy provides an attractive path toward increasing beta-cell numbers in vivo. A regenerative strategy involves enhancing proliferation, differentiation, or neogenesis. On the other hand, protecting beta cells from cell death, or improving maturity and function, could preserve beta-cell mass. Here, we discuss the current state of chemical matter available to study beta-cell regeneration, and how they were discovered.
Collapse
Affiliation(s)
- Bridget K Wagner
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
8
|
Asahina K. Induction of Cell Death in Pancreatic Tumors by Zinc and Its Fluorescence Chelator TSQ. Biol Trace Elem Res 2022; 200:1667-1676. [PMID: 34100198 DOI: 10.1007/s12011-021-02770-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/26/2021] [Indexed: 12/29/2022]
Abstract
Pancreatic ductal adenocarcinoma is a devastating cancer and is the fourth-leading cause of cancer death in the USA. Zinc is abundant in the pancreas, but its role in pancreatic cancer remains elusive. The aim of this study is to determine effects of zinc chelators in pancreatic cancer. Pdx1Cre and LSL-KrasG12D mice expressing an oncogenic mutation of KRAS develop pancreatic intraepithelial neoplasia in the pancreas. We found that EPCAM + tumors developed in the mouse pancreas store zinc that is detectable by fluorescence-activated cell sorting using N-(6-methoxy-8-quinolyl)-p-toluenesulfonamide (TSQ), a fluorescence chelator. EPCAM + TSQ + tumor cells isolated from the mouse pancreas formed organoids in matrigel. Upon treatment with N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN), a zinc chelator, the organoids degenerated and its negative effect was rescued by co-treatment with zinc, indicating that zinc is necessary for the growth and survival of tumor organoids. Different from TPEN, TSQ treatment did not affect the organoid growth and survival. Interestingly, co-treatment with TSQ and zinc resulted in strong emission of TSQ fluorescence in the organoid and its degeneration. The combination of zinc with TSQ, but not with TPEN, also induced cell death in PANC-1, a human pancreatic cancer cell line. These results suggest that a TSQ-zinc complex formed in pancreatic tumors induces cell death if zinc is overloaded.
Collapse
Affiliation(s)
- Kinji Asahina
- The Southern California Research Center for ALPD & Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, 1333 San Pablo St., MMR 402, Los Angeles, CA, 90033, USA.
| |
Collapse
|
9
|
Design of 99mTc-labeled zinc-chelating imaging probe for SPECT imaging of the pancreas. Bioorg Med Chem Lett 2021; 52:128385. [PMID: 34592436 DOI: 10.1016/j.bmcl.2021.128385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022]
Abstract
Early and sensitive diagnosis of pancreatic diseases is a contemporary clinical challenge. Zinc level in pancreatic tissue and its secretion in pancreatic juice has long been considered a surrogate marker of pancreatic function. The objective of this study was to design a Zn-chelating imaging probe (ZCIP) which could be labeled with 99mTc radionuclide for imaging of pancreas using single photon emission tomography (SPECT). We synthesized ZCIP as a bifunctional chelate consisting of diethylene triamine pentaacetic acid for 99mTc-chelation at one end and bispicolylethylamine for Zn-complexation at the other end. ZCIP was labeled with 99mTc by standard Sn2+-based reduction method. The 99mTc-labeled ZCIP was studied in normal mice (0.3 mCi) for SPECT imaging. We found that ZCIP consistently labeled with 99mTc radionuclide with over 95% efficiency. Addition of ZCIP altered the spectrum of standard dithizone-Zn complex, indicating its ability to chelate Zn. SPECT data demonstrated the ability of 99mTc-ZCIP to image pancreas with high sensitivity in a non-invasive manner; liver and spleen were the other major organs of 99mTc-ZCIP uptake. Based on these results, we conclude that 99mTc-ZCIP presents as a novel radiotracer for pancreas imaging for diagnosis of diseases such as pancreatitis.
Collapse
|
10
|
Wang P, Karakose E, Choleva L, Kumar K, DeVita RJ, Garcia-Ocaña A, Stewart AF. Human Beta Cell Regenerative Drug Therapy for Diabetes: Past Achievements and Future Challenges. Front Endocrinol (Lausanne) 2021; 12:671946. [PMID: 34335466 PMCID: PMC8322843 DOI: 10.3389/fendo.2021.671946] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/10/2021] [Indexed: 01/02/2023] Open
Abstract
A quantitative deficiency of normally functioning insulin-producing pancreatic beta cells is a major contributor to all common forms of diabetes. This is the underlying premise for attempts to replace beta cells in people with diabetes by pancreas transplantation, pancreatic islet transplantation, and transplantation of beta cells or pancreatic islets derived from human stem cells. While progress is rapid and impressive in the beta cell replacement field, these approaches are expensive, and for transplant approaches, limited by donor organ availability. For these reasons, beta cell replacement will not likely become available to the hundreds of millions of people around the world with diabetes. Since the large majority of people with diabetes have some residual beta cells in their pancreata, an alternate approach to reversing diabetes would be developing pharmacologic approaches to induce these residual beta cells to regenerate and expand in a way that also permits normal function. Unfortunately, despite the broad availability of multiple classes of diabetes drugs in the current diabetes armamentarium, none has the ability to induce regeneration or expansion of human beta cells. Development of such drugs would be transformative for diabetes care around the world. This picture has begun to change. Over the past half-decade, a novel class of beta cell regenerative small molecules has emerged: the DYRK1A inhibitors. Their emergence has tremendous potential, but many areas of uncertainty and challenge remain. In this review, we summarize the accomplishments in the world of beta cell regenerative drug development and summarize areas in which most experts would agree. We also outline and summarize areas of disagreement or lack of unanimity, of controversy in the field, of obstacles to beta cell regeneration, and of challenges that will need to be overcome in order to establish human beta cell regenerative drug therapeutics as a clinically viable class of diabetes drugs.
Collapse
Affiliation(s)
- Peng Wang
- The Diabetes Obesity Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Esra Karakose
- The Diabetes Obesity Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lauryn Choleva
- The Division of Pediatric Endocrinology, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kunal Kumar
- The Drug Discovery Institute, The Department of Pharmacological Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Robert J. DeVita
- The Drug Discovery Institute, The Department of Pharmacological Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Adolfo Garcia-Ocaña
- The Diabetes Obesity Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Andrew F. Stewart
- The Diabetes Obesity Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
11
|
Gendaszewska-Darmach E, Garstka MA, Błażewska KM. Targeting Small GTPases and Their Prenylation in Diabetes Mellitus. J Med Chem 2021; 64:9677-9710. [PMID: 34236862 PMCID: PMC8389838 DOI: 10.1021/acs.jmedchem.1c00410] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
A fundamental role
of pancreatic β-cells to maintain proper
blood glucose level is controlled by the Ras superfamily of small
GTPases that undergo post-translational modifications, including prenylation.
This covalent attachment with either a farnesyl or a geranylgeranyl
group controls their localization, activity, and protein–protein
interactions. Small GTPases are critical in maintaining glucose homeostasis
acting in the pancreas and metabolically active tissues such as skeletal
muscles, liver, or adipocytes. Hyperglycemia-induced upregulation
of small GTPases suggests that inhibition of these pathways deserves
to be considered as a potential therapeutic approach in treating T2D.
This Perspective presents how inhibition of various points in the
mevalonate pathway might affect protein prenylation and functioning
of diabetes-affected tissues and contribute to chronic inflammation
involved in diabetes mellitus (T2D) development. We also demonstrate
the currently available molecular tools to decipher the mechanisms
linking the mevalonate pathway’s enzymes and GTPases with diabetes.
Collapse
Affiliation(s)
- Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 4/10, 90-924 Łódź, Poland
| | - Malgorzata A Garstka
- Core Research Laboratory, Department of Endocrinology, Department of Tumor and Immunology, Precision Medical Institute, Western China Science and Technology Innovation Port, School of Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, DaMingGong, Jian Qiang Road, Wei Yang district, Xi'an 710016, China
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego Street 116, 90-924 Łódź, Poland
| |
Collapse
|
12
|
Kumar K, Suebsuwong C, Wang P, Garcia-Ocana A, Stewart AF, DeVita RJ. DYRK1A Inhibitors as Potential Therapeutics for β-Cell Regeneration for Diabetes. J Med Chem 2021; 64:2901-2922. [PMID: 33682417 DOI: 10.1021/acs.jmedchem.0c02050] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
According to the World Health Organization (WHO), 422 million people are suffering from diabetes worldwide. Current diabetes therapies are focused on optimizing blood glucose control to prevent long-term diabetes complications. Unfortunately, current therapies have failed to achieve glycemic targets in the majority of people with diabetes. In this context, regeneration of functional insulin-producing human β-cells in people with diabetes through the use of DYRK1A inhibitor drugs has recently received special attention. Several small molecule DYRK1A inhibitors have been identified that induce human β-cell proliferation in vitro and in vivo. Furthermore, DYRK1A inhibitors have also been shown to synergize β-cell proliferation with other classes of drugs, such as TGFβ inhibitors and GLP-1 receptor agonists. In this perspective, we review the status of DYRK1A as a therapeutic target for β-cell proliferation and provide perspectives on technical and scientific challenges for future translational development.
Collapse
Affiliation(s)
- Kunal Kumar
- Drug Discovery Institute and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Chalada Suebsuwong
- Drug Discovery Institute and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Peng Wang
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Adolfo Garcia-Ocana
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Andrew F Stewart
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Robert J DeVita
- Drug Discovery Institute and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
13
|
Horton TM, Kraemer BR, Annes JP. Protocol for determining zinc-dependent β cell-selective small-molecule delivery in mouse pancreas. STAR Protoc 2021; 2:100263. [PMID: 33490979 PMCID: PMC7806521 DOI: 10.1016/j.xpro.2020.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Targeted drug delivery to pancreatic islet β cells is an unmet clinical need. β cells possess a uniquely high Zn2+ concentration, and integrating Zn2+-binding activity into a small molecule can bias drug accumulation and activity toward β cells. This protocol can be used to evaluate a molecule's capacity to chelate islet Zn2+, accumulate in islets, and stimulate β cell-selective replication in mouse pancreas. One obstacle is establishing an LC-MS/MS-based method for compound measurement. Limitations include target compound ionizability and the time-sensitive nature of some experimental assay steps. For complete details on the use and execution of this protocol, please refer to Horton et al. (2019).
Collapse
Affiliation(s)
- Timothy M. Horton
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Chemistry, Engineering and Medicine for Human Health (ChEM-H) Institute, Stanford University, Stanford, CA 94305, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Benjamin R. Kraemer
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Justin P. Annes
- Chemistry, Engineering and Medicine for Human Health (ChEM-H) Institute, Stanford University, Stanford, CA 94305, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Kahraman S, Manna D, Dirice E, Maji B, Small J, Wagner BK, Choudhary A, Kulkarni RN. Harnessing reaction-based probes to preferentially target pancreatic β-cells and β-like cells. Life Sci Alliance 2021; 4:4/4/e202000840. [PMID: 33514654 PMCID: PMC7898467 DOI: 10.26508/lsa.202000840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/10/2023] Open
Abstract
Highly sensitive approaches to target insulin-expressing cells would allow more effective imaging, sorting, and analysis of pancreatic β-cells. Here, we introduce the use of a reaction-based probe, diacetylated Zinpyr1 (DA-ZP1), to image pancreatic β-cells and β-like cells derived from human pluripotent stem cells. We harness the high intracellular zinc concentration of β-cells to induce a fluorescence signal in cells after administration of DA-ZP1. Given its specificity and rapid uptake by cells, we used DA-ZP1 to purify live stem cell-derived β-like cells as confirmed by immunostaining analysis. We tested the ability of DA-ZP1 to image transplanted human islet grafts and endogenous mouse pancreatic islets in vivo after its systemic administration into mice. Thus, DA-ZP1 enables purification of insulin-secreting β-like cells for downstream applications, such as functional studies, gene-expression, and cell-cell interaction analyses and can be used to label engrafted human islets and endogenous mouse islets in vivo.
Collapse
Affiliation(s)
- Sevim Kahraman
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Debasish Manna
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, USA
| | - Ercument Dirice
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Basudeb Maji
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, USA
| | - Jonnell Small
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Chemical Biology Program, Harvard University, Cambridge, MA, USA
| | - Bridget K Wagner
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA .,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA, USA.,Chemical Biology Program, Harvard University, Cambridge, MA, USA
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
John AD, Ragavee A, Selvaraj AD. Protective role of biosynthesised zinc oxide nanoparticles on pancreatic beta cells: an in vitro and in vivo approach. IET Nanobiotechnol 2020; 14:756-760. [PMID: 33399105 PMCID: PMC8676548 DOI: 10.1049/iet-nbt.2020.0084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/30/2020] [Accepted: 05/13/2020] [Indexed: 11/19/2022] Open
Abstract
Sulphonylureas are extensively used in the treatment of type II diabetes; however, these drugs have complications of hypoglycaemia and weight gain. The current study aims at developing a potent antidiabetic drug that has lesser side effects and better management of its associated conditions. Zinc oxide nanoparticles (ZnO NPs) were synthesised using Syzygium cumini seed extract with an average size of 18.92 nm. In vitro studies on rat insulinoma (RIN-5F) cells revealed that cells treated with synthesised ZnO NPs showed a dose-dependent increase in insulin secretion. Streptozotocin-fructose-induced type II diabetic rats treated with ZnO NPS exhibited a significant reduction (p < 0.01) in the blood glucose levels, total cholesterol, triglycerides, and low-density lipoprotein levels and increase (p < 0.01) in serum insulin and liver antioxidant enzyme levels proclaiming its role as a hypoglycaemic and hypolipidaemic drug. Treatment of ZnO NPs in diabetic rats exhibited an increased number of beta cells which was responsible for its increased insulin levels and reduced glucose levels. From the overall observations, biosynthesised ZnO NPs exhibited an efficacious hypoglycaemic effect in diabetic rats, so it can be suggested as a potent antidiabetic drug.
Collapse
Affiliation(s)
- Arul Daniel John
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Ambalavanan Ragavee
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Asha Devi Selvaraj
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India.
| |
Collapse
|
16
|
Huey J, Keutler K, Schultz C. Chemical Biology Toolbox for Studying Pancreatic Islet Function - A Perspective. Cell Chem Biol 2020; 27:1015-1031. [PMID: 32822616 DOI: 10.1016/j.chembiol.2020.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/10/2020] [Accepted: 07/28/2020] [Indexed: 01/14/2023]
Abstract
The islets of Langerhans represent one of the many complex endocrine organs in mammals. Traditionally, islet function is studied by a mixture of physiological, cell biological, and molecular biological methods. Recently, novel techniques stemming from the ever-increasing toolbox provided by chemical laboratories have been added to the repertoire. Many emerging techniques will soon be available to manipulate and monitor islet function at the single-cell level and potentially in intact model animals, as well as in isolated human islets. Here, we review the most current small-molecule-based and genetically encoded molecular tool sets available to study islet function. We provide an outlook regarding future tool developments that will impact islet research, with a special focus on the interplay between different islet cell types.
Collapse
Affiliation(s)
- Julia Huey
- Program in Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97210, USA; Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97210, USA
| | - Kaya Keutler
- Program in Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97210, USA; Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97210, USA
| | - Carsten Schultz
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97210, USA.
| |
Collapse
|
17
|
Sever D, Grapin-Botton A. Regeneration of the pancreas: proliferation and cellular conversion of surviving cells. Curr Opin Genet Dev 2020; 64:84-93. [PMID: 32721583 DOI: 10.1016/j.gde.2020.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/18/2022]
Abstract
The most common pancreas-related disorders are diabetes, pancreatitis and different types of pancreatic cancers. Diabetes is a chronic condition which results from insufficient functional β-cell mass, either as a result of an autoimmune destruction of insulin producing β-cells, or as their death or de-differentiation following years of hyperactivity to compensate for insulin resistance. Chronic pancreatitis leads to cell death and can develop into diabetes or pancreatic cancer. To stimulate regeneration in such pathologies, it is of high importance to evaluate the endogenous regeneration capacity of the pancreas, to understand the conditions needed to trigger it, and to investigate the cellular and molecular regenerative responses. This short review focuses on observations made in the last 2 years on the mechanisms enhancing pancreatic cell proliferation, notably new combinations of pharmacological agents, as well as those triggering cellular conversion.
Collapse
Affiliation(s)
- Dror Sever
- The Novo Nordisk Foundation Center for Stem Cell Biology, Blegdamsvej, 3B 2200 Copenhagen, Denmark.
| | - Anne Grapin-Botton
- The Novo Nordisk Foundation Center for Stem Cell Biology, Blegdamsvej, 3B 2200 Copenhagen, Denmark; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 1307 Dresden, Germany.
| |
Collapse
|
18
|
Lee M, Maji B, Manna D, Kahraman S, Elgamal RM, Small J, Kokkonda P, Vetere A, Goldberg JM, Lippard SJ, Kulkarni RN, Wagner BK, Choudhary A. Native Zinc Catalyzes Selective and Traceless Release of Small Molecules in β-Cells. J Am Chem Soc 2020; 142:6477-6482. [PMID: 32175731 PMCID: PMC7146867 DOI: 10.1021/jacs.0c00099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
The loss of insulin-producing β-cells
is the central pathological
event in type 1 and 2 diabetes, which has led to efforts to identify
molecules to promote β-cell proliferation, protection, and imaging.
However, the lack of β-cell specificity of these molecules jeopardizes
their therapeutic potential. A general platform for selective release
of small-molecule cargoes in β-cells over other islet cells ex vivo or other cell-types in an organismal context will
be immensely valuable in advancing diabetes research and therapeutic
development. Here, we leverage the unusually high Zn(II) concentration
in β-cells to develop a Zn(II)-based prodrug system to selectively
and tracelessly deliver bioactive small molecules and fluorophores
to β-cells. The Zn(II)-targeting mechanism enriches the inactive
cargo in β-cells as compared to other pancreatic cells; importantly,
Zn(II)-mediated hydrolysis triggers cargo activation. This prodrug
system, with modular components that allow for fine-tuning selectivity,
should enable the safer and more effective targeting of β-cells.
Collapse
Affiliation(s)
- Miseon Lee
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Basudeb Maji
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
| | - Debasish Manna
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
| | - Sevim Kahraman
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts 02215, United States.,Harvard Stem Cell InstituteHarvard Medical School, Cambridge, Massachusetts 02138, United States
| | - Ruth M Elgamal
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
| | - Jonnell Small
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Chemical Biology Program, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Praveen Kokkonda
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Amedeo Vetere
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Jacob M Goldberg
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Stephen J Lippard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts 02215, United States.,Harvard Stem Cell InstituteHarvard Medical School, Cambridge, Massachusetts 02138, United States
| | - Bridget K Wagner
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States.,Chemical Biology Program, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
19
|
Allegretti PA, Horton TM, Abdolazimi Y, Moeller HP, Yeh B, Caffet M, Michel G, Smith M, Annes JP. Generation of highly potent DYRK1A-dependent inducers of human β-Cell replication via Multi-Dimensional compound optimization. Bioorg Med Chem 2020; 28:115193. [PMID: 31757680 PMCID: PMC6941846 DOI: 10.1016/j.bmc.2019.115193] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/20/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023]
Abstract
Small molecule stimulation of β-cell regeneration has emerged as a promising therapeutic strategy for diabetes. Although chemical inhibition of dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) is sufficient to enhance β-cell replication, current lead compounds have inadequate cellular potency for in vivo application. Herein, we report the clinical stage anti-cancer kinase inhibitor OTS167 as a structurally novel, remarkably potent DYRK1A inhibitor and inducer of human β-cell replication. Unfortunately, OTS167's target promiscuity and cytotoxicity curtails utility. To tailor kinase selectivity towards DYRK1A and reduce cytotoxicity we designed a library of fifty-one OTS167 derivatives based upon a modeled structure of the DYRK1A-OTS167 complex. Indeed, derivative characterization yielded several leads with exceptional DYRK1A inhibition and human β-cell replication promoting potencies but substantially reduced cytotoxicity. These compounds are the most potent human β-cell replication-promoting compounds yet described and exemplify the potential to purposefully leverage off-target activities of advanced stage compounds for a desired application.
Collapse
Affiliation(s)
- Paul A Allegretti
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Timothy M Horton
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Yassan Abdolazimi
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA
| | - Hannah P Moeller
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA
| | - Benjamin Yeh
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA
| | - Matthew Caffet
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Guillermina Michel
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA
| | - Mark Smith
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Justin P Annes
- Department of Medicine and Division of Endocrinology, Stanford University, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|