1
|
Maucourt F, Doumèche B, Nazaret S, Fraissinet-Tachet L. Under explored roles of microbial ligninolytic enzymes in aerobic polychlorinated biphenyl transformation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19071-19084. [PMID: 38372925 DOI: 10.1007/s11356-024-32291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/28/2024] [Indexed: 02/20/2024]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants in the environment that are responsible for many adverse health effects. Bioremediation appears to be a healthy and cost-effective alternative for remediating PCB-contaminated environments. While some microbial species have been observed to be capable of transforming PCBs, only two different microbial pathways (rdh and bph pathways) have been described to be involved in PCB transformations. Ligninolytic enzymes have been observed or are under suspicion in some microbial PCB transformations. However, the role of these promising PCB-transforming enzymes, which are produced by fungi and some aerobic bacteria, is still unclear. The present review describes their role by identifying microbial PCB-transforming species and their reported ligninolytic enzymes whether proven or suspected to be involved in PCB transformations. There are several lines of evidence that ligninolytic enzymes are responsible for PCB transformations such as (1) the ability of purified laccases from Myceliophthora thermophila, Pycnoporus cinnabarinus, Trametes versicolor, Cladosporium sp, and Coprinus cumatus to transform hydroxy-PCBs; (2) the increased production of laccases and peroxidases by many fungi in the presence of PCBs; and (3) the enhanced PCB transformation by Pseudomonas stutzeri and Sinorhizobium meliloti NM after the addition of ligninolytic enzyme enhancers. However, if the involvement of ligninolytic enzymes in PCB transformation is clearly demonstrated in some fungal species, it does not seem to be implicated in all microbial species suggesting other still unknown metabolic pathways involved in PCB transformation and different from the bph and rdh pathways. Therefore, PCB transformation may involve several metabolic pathways, some involving ligninolytic enzymes, bph or rdh genes, and some still unknown, depending on the microbial species. In addition, current knowledge does not fully clarify the role of ligninolytic enzymes in PCB oxidation and dechlorination. Therefore, further studies focusing on purified ligninolytic enzymes are needed to clearly elucidate their role in PCB transformation.
Collapse
Affiliation(s)
- Flavien Maucourt
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-7 69622, Villeurbanne, France
- ENVISOL, 2-4 rue Hector Berlioz, F-38110, La Tour du Pin, France
| | - Bastien Doumèche
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS 5246 ICBMS, F-7 69622, Villeurbanne, France
| | - Sylvie Nazaret
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-7 69622, Villeurbanne, France
| | - Laurence Fraissinet-Tachet
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-7 69622, Villeurbanne, France.
| |
Collapse
|
2
|
Hkiri N, Aounallah F, Fouzai K, Chouchani C, Asses N. Ability of marine-derived fungi isolated from polluted saline environment for enzymatic hydrocarbon remediation. Braz J Microbiol 2023; 54:1983-2000. [PMID: 37402057 PMCID: PMC10485234 DOI: 10.1007/s42770-023-01049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/20/2023] [Indexed: 07/05/2023] Open
Abstract
Marine-derived fungi have attracted much attention due to their ability to present a new biosynthetic diversity. About 50 fungal isolates were obtained from Tunisian Mediterranean seawater and then screened for the presence of lignin-peroxidase (LiP), manganese-dependent peroxidase (MnP), and laccase (Lac) activities. The results obtained from both qualitative and quantitative assays showed that four of marine fungi isolates had a high potential to produce lignin-degrading enzymes. They were characterized taxonomically by a molecular method, based on international spacer (ITS) rDNA sequence analysis, as Chaetomium jodhpurense (MH667651.1), Chaetomium maderasense (MH665977.1), Paraconiothyrium variabile (MH667653.1), and Phoma betae (MH667655.1) which have been reported as producers of ligninolytic enzyme in the literature. The enzymatic activities and culture conditions were optimized using a Fractional Factorial design (2 7- 4). Then, fungal strains were incubated with the addition of 1% of crude oil in 50% of seawater for 25 days to evaluate their abilities to simultaneously degrade hydrocarbon compounds and to produce ligninolytic enzymes. The strain P. variabile exhibited the highest crude oil degradation rate (48.3%). Significant production of ligninolytic enzymes was recorded during the degradation process, which reached 2730 U/L for the MnP, 410 U/L for LiP, and 168.5 U/L for Lac. The FTIR and GC-MS analysis confirmed that the isolates rapidly biodegrade crude oil under ecological and economic conditions.
Collapse
Affiliation(s)
- Neila Hkiri
- LR- Microbial Ecology and Technology, INSAT, University of Carthage, Tunis, Tunisia
- LR- Environmental Sciences and Technologies, University of Carthage, ISSTE, Borj-Cedria, Tunisia
| | - Farah Aounallah
- LR- Microbial Ecology and Technology, INSAT, University of Carthage, Tunis, Tunisia
- LR- Environmental Sciences and Technologies, University of Carthage, ISSTE, Borj-Cedria, Tunisia
| | - Khaoula Fouzai
- LR- Microbial Ecology and Technology, INSAT, University of Carthage, Tunis, Tunisia
- LR- Environmental Sciences and Technologies, University of Carthage, ISSTE, Borj-Cedria, Tunisia
| | - Chedly Chouchani
- LR- Environmental Sciences and Technologies, University of Carthage, ISSTE, Borj-Cedria, Tunisia
| | - Nedra Asses
- LR- Microbial Ecology and Technology, INSAT, University of Carthage, Tunis, Tunisia.
- LR- Environmental Sciences and Technologies, University of Carthage, ISSTE, Borj-Cedria, Tunisia.
| |
Collapse
|
3
|
Maucourt F, Doumèche B, Chapulliot D, Vallon L, Nazaret S, Fraissinet-Tachet L. Polychlorinated Biphenyl Transformation, Peroxidase and Oxidase Activities of Fungi and Bacteria Isolated from a Historically Contaminated Site. Microorganisms 2023; 11:1887. [PMID: 37630447 PMCID: PMC10457763 DOI: 10.3390/microorganisms11081887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Causing major health and ecological disturbances, polychlorinated biphenyls (PCBs) are persistent organic pollutants still recovered all over the world. Microbial PCB biotransformation is a promising technique for depollution, but the involved molecular mechanisms remain misunderstood. Ligninolytic enzymes are suspected to be involved in many PCB transformations, but their assessments remain scarce. To further inventory the capabilities of microbes to transform PCBs through their ligninolytic enzymes, we investigated the role of oxidase and peroxidase among a set of microorganisms isolated from a historically PCB-contaminated site. Among 29 isolated fungi and 17 bacteria, this work reports for the first time the PCB-transforming capabilities from fungi affiliated to Didymella, Dothiora, Ilyonectria, Naganishia, Rhodoturula, Solicoccozyma, Thelebolus and Truncatella genera and bacteria affiliated to Peribacillus frigotolerans, Peribacillus muralis, Bacillus mycoides, Bacillus cereus, Bacillus toyonensis, Pseudarthrobacter sp., Pseudomonas chlororaphis, Erwinia aphidicola and Chryseobacterium defluvii. In the same way, this is the first report of fungal isolates affiliated to the Dothiora maculans specie and Cladosporium genus that displayed oxidase (putatively laccase) and peroxidase activity, respectively, enhanced in the presence of PCBs (more than 4-fold and 20-fold, respectively, compared to controls). Based on these results, the observed activities are suspected to be involved in PCB transformation.
Collapse
Affiliation(s)
- Flavien Maucourt
- Université de Lyon, Universite Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
- ENVISOL, 2-4 Rue Hector Berlioz, F-38110 La Tour du Pin, France
| | - Bastien Doumèche
- Université de Lyon, Universite Claude Bernard Lyon 1, CNRS 5246 ICBMS, F-69622 Villeurbanne, France
| | - David Chapulliot
- Université de Lyon, Universite Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Laurent Vallon
- Université de Lyon, Universite Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Sylvie Nazaret
- Université de Lyon, Universite Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Laurence Fraissinet-Tachet
- Université de Lyon, Universite Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| |
Collapse
|
4
|
Kaleem M, Mumtaz AS, Hashmi MZ, Saeed A, Inam F, Waqar R, Jabeen A. Myco- and phyco-remediation of polychlorinated biphenyls in the environment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13994-14007. [PMID: 36550253 DOI: 10.1007/s11356-022-24902-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Polychlorinated biphenyls (PCBs) are toxic organic compounds and pose serious threats to environment and public health. PCBs still exist in different environments such as air, water, soil, and sediments even on ban. This review summarizes the phyco- and myco-remediation technologies developed to detoxify the PCB-polluted sites. It was found that algae mostly use bioaccumulation to biodegradation strategies to reclaim the environment. As bio-accumulator, Ulva rigida C. Agardh has been best at 25 ng/g dry wt to remove PCBs. Evidently, Anabaena PD-1 is the only known PCB degrading alga and efficiently degrade Aroclor 1254 and dioxin-like PCBs up to 84.4% and 37.4% to 68.4%, respectively. The review suggested that factors such as choice of algal strains, response of microalgae, biomass, the rate of growth, and cost-effective cultivation conditions significantly influence the remediation of PCBs. Furthermore, the Anabaena sp. linA gene of Pseudomonas paucimobilis Holmes UT26 showed enhanced efficiency. Pleurotus ostreatus (Jacq.) P. Kumm is the most efficient PCB degrading fungus, degrading up to 98.4% and 99.6% of PCB in complex and mineral media, respectively. Combine metabolic activities of bacteria and yeast led to the higher detoxification of PCBs. Fungi-algae consortia would be a promising approach in remediation of PCBs. A critical analysis on potentials and limits of PCB treatment through fungal and algal biosystems have been reviewed, and thus, new insights have emerged for possible bioremediation, bioaccumulation, and biodegradation of PCBs.
Collapse
Affiliation(s)
- Muhammad Kaleem
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Abdul Samad Mumtaz
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | | | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, Pakistan
| | - Farooq Inam
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Rooma Waqar
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Amber Jabeen
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| |
Collapse
|
5
|
Biocatalytic Versatilities and Biotechnological Prospects of Laccase for a Sustainable Industry. Catal Letters 2022. [DOI: 10.1007/s10562-022-04134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Yang J, Xu H, Zhao J, Zhang N, Xie J, Jiang J. Isolation of Bacillus sp. with high laccase activity for green biodecolorization of synthetic textile dyes. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:777-786. [PMID: 36038976 DOI: 10.2166/wst.2022.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
New Bacillus sp. strains with spore-laccase activity were isolated from rotten wood and soil samples and were identified as Bacillus sp. FM-78 and Bacillus paramycoides FM-86 by 16S rDNA gene sequence analysis. Both laccases were stable at broad pH range and high temperature. The laccase of strain FM-78 showed preferable activity and stability, with no loss of activity after 7 days incubation at pH 9.0, and 20.36% of its initial activity obtained after 10 h at 80 °C. 1 mmol/L EDTA, NaN3 and SDS resulted in about 46-59% inactivation and strongly inhibition (87.88%) was caused by 1 mmol/L L-cysteine. However, the spore laccase could tolerate towards 0.5 mol/L NaCl as well as 10% of organic solvents. Reactive black 5, reactive blue 19 and crystal violet were decolorized by the spore laccase in the absence of mediator. The decolorization process was efficiently promoted with the presence of acetosyringone, and the color removal ratio was more than 80% in 1 h with the pH values of 6.6 or 9.0. Finally, the above unusual properties of Bacillus sp. spore laccase indicated it as a potential candidate in the dye decolorization in an ecofriendly and cost-effective way.
Collapse
Affiliation(s)
- Jing Yang
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, PR China E-mail: ; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Hao Xu
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, PR China E-mail: ; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jian Zhao
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, PR China E-mail: ; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Ning Zhang
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, PR China E-mail: ; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jingcong Xie
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, PR China E-mail: ; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, PR China E-mail: ; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| |
Collapse
|
7
|
Rahimi E, Rezaei S, Mohamadnia S, Valizadeh S, Tavakoli O, Faramarzi MA. Bioremoval and Detoxification of Anthracene by a Halophilic Laccase from Alkalibacillus salilacus. IRANIAN JOURNAL OF BIOTECHNOLOGY 2022; 20:e3058. [PMID: 36337065 PMCID: PMC9583820 DOI: 10.30498/ijb.2022.287500.3058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background Polycyclic Aromatic Hydrocarbons (PAHs) as resistant compounds in the environment has received much attention in recent years due to their adverse effects on ecological health. Among the various methods studying the removal of PAHs, enzyme biotechnology is one of the most effective and appropriate method. Objectives In the present study, a halophilic laccase was used for bioremoval of anthracene in the presence of 1-Hydroxybenzotriazole (HBT). Materials and Methods Halophilic laccase from Alkalibacillus salilacus was tested for anthracene degradation. Residual concentration of anthracene at various concentrations of NaCl (0‒4 M), incubation time, pH, solvent, and surfactants in the enzymatic reaction mixtures was determined by HPLC. Results The maximum removal of substrate was achieved after 72 h at 40 °C, pH 8, and NaCl concentration 1.5 M. Besides, the addition of 1% (v/v) ionic and non-ionic surfactants and 25% (v/v) of various organic solvents increased removal efficiency. The kinetic parameters Km and Vmax of the laccase for removing of anthracene were 0.114 μM and 0.546 μmoL. h.-1 mg-1, respectively. Conclusions Laccase showed the maximum removal efficiency of anthracene in the presence of 1-Hydroxybenzotriazole (HBT).
Collapse
Affiliation(s)
- Elaheh Rahimi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14176, Islamic Republic of Iran
| | - Shahla Rezaei
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Islamic Republic of Iran
| | - Sonia Mohamadnia
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14176, Islamic Republic of Iran
| | - Shiler Valizadeh
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14176, Islamic Republic of Iran
| | - Omid Tavakoli
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14176, Islamic Republic of Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Islamic Republic of Iran
| |
Collapse
|
8
|
Chopra NK, Sondhi S. Cloning, expression and characterization of laccase from Bacillus licheniformis NS2324 in E. coli application in dye decolorization. Int J Biol Macromol 2022; 206:1003-1011. [PMID: 35337908 DOI: 10.1016/j.ijbiomac.2022.03.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022]
Abstract
Laccase gene from Bacillus licheniformis NS2324 was cloned and expressed in E. coli by using pUC 18 as cloning vector and pet 15b as expression vector. The purified recombinant laccase (rLacNS2324) showed a molecular mass of 66 KDa. The optimum pH and temperature for rLacNS2324 was found to be pH 8 and 40 °C respectively. The half life of rLacNS2324 at pH 7, 8 and 9 is 24 h. The half life of laccase at 45 °C is 8 h. Laccase activity was increased in the presence of Cu2+ (135.3%), Mn2+ (283.76%), and Co2+ (199.96%) at 5 mM of concentration, but inhibited to 17.01% in the presence of 5 mM Zn2+ ions. rLacNS2324 was found tolerant to NaCl and NaI. Among the inhibitors, it was found to be tolerant to EDTA, however, its activity was inhibited in the presence of sodium azide, dithiothreitol and β-mercapethanol. rLacNS2324 was able to decolorize a bromophenol blue by 85% and phenol red by 75% in 1 h without any mediator. Methylene blue was almost completely degraded (99.28% decolorization) by 10 IUml-1 of laccase at 40 °C, pH 8.0 and in time 4 h. Overall rLacNS2324 showed ability to be used industrially to decolorize dyes in an eco-friendly and cost effective way.
Collapse
Affiliation(s)
- Navleen Kaur Chopra
- Department of Biotechnology, I.K. Gujral Punjab Technical University, Kapurthala 144603, Punjab, India
| | - Sonica Sondhi
- Department of Biotechnology, Chandigarh Group of Colleges, Landran, 140307 Mohali, Punjab, India.
| |
Collapse
|
9
|
Jia Y, Huang Q, Zhu L, Pan C. Characterization of a Recombinant Laccase B from Trametes hirsuta MX2 and Its Application for Decolorization of Dyes. Molecules 2022; 27:1581. [PMID: 35268682 PMCID: PMC8912056 DOI: 10.3390/molecules27051581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Trametes hirsuta is able to secrete laccase isoenzymes including constitutive and inducible forms, and has potential application for bioremediation of environmental pollutants. Here, an inducible group B laccase from T. hirsuta MX2 was heterologously expressed in Pichia pastoris, and its yield reached 2.59 U/mL after 5 days of methanol inducing culture. The optimal pH and temperature of recombinant laccase (rLac1) to 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) were 2.5 and 60 °C, respectively. Metal ions showed different effect on rLac1 which Mg2+, Cu2+, and K+ increased enzyme activity as their concentration increased, whereas Zn2+, Na+, and Fe2+ inhibited enzyme activity as their concentration increased. rLac1 showed good tolerance to organic solvents, and more than 42% of its initial activity remained in 10% organic solvents. Additionally, rLac1 exhibited a more efficient decolorization ability for remazol brilliant blue R (RBBR) than for acid red 1 (AR1), crystal violet (CV), and neutral red (NR). Molecular docking results showed RBBR has a stronger binding affinity with laccase than other dyes by interacting with substrate binding cavity of enzyme. The results indicated rLac1 may be a potential candidate for dye removal from textile wastewater.
Collapse
Affiliation(s)
- Yitong Jia
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (Y.J.); (Q.H.)
| | - Qianqian Huang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (Y.J.); (Q.H.)
| | - Lanlan Zhu
- Science and Technology Service Center of Lin’an, Hangzhou 311300, China
| | - Chengyuan Pan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (Y.J.); (Q.H.)
| |
Collapse
|
10
|
Magnin A, Entzmann L, Pollet E, Avérous L. Breakthrough in polyurethane bio-recycling: An efficient laccase-mediated system for the degradation of different types of polyurethanes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 132:23-30. [PMID: 34304019 DOI: 10.1016/j.wasman.2021.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/16/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Development of green, efficient and profitable recycling processes for plastic material will contribute to reduce the expanding plastic pollution and microplastics accumulation in the environment. Polyurethanes (PU) are versatile polymers with a large range of chemical compositions and structures. This variability increases the complexity of PU waste management. Biological recycling researchers have recently demonstrated great interest in polyethylene terephthalate. The adaptation of this route towards producing polyurethanes requires the discovery of enzymes that are able to depolymerize a large variety of PU. A laccase mediated system (LMS) was tested on four representative PU models, with different structures (foams and thermoplastics), and chemical compositions (polyester- and polyether-based PU). Size exclusion chromatography was performed on the thermoplastics and this revealed a significant reduction in the molar masses after 18 days of incubation at 37 °C. Degradation of foams under the same conditions was demonstrated by microscopy and compression assay for both polyester- and polyether-based PU. This study represents a major breakthrough in PU degradation, as it is the first time that enzymatic degradation has been clearly demonstrated on a polyether-based PU foam. This work is a step forward in the development of a sustainable recycling pathway, adapted to a large variety of PU materials.
Collapse
Affiliation(s)
- Audrey Magnin
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| | - Lisa Entzmann
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| | - Eric Pollet
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.
| |
Collapse
|
11
|
Wang D, Lou J, Xu J, Yuan J, Wang Q, Wang P, Fan X. Degradation of octylphenol polyethoxylates with a long ethoxylate chain using the laccase-mediated systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37781-37792. [PMID: 33723784 DOI: 10.1007/s11356-021-13400-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Alkylphenol polyethoxylates (APEOn) are the second-largest category of commercial nonionic surfactants, which are difficult to degrade naturally in the environment. This study examined the degradation of octylphenol polyethoxylate (OPEOn) by laccase and its laccase-mediated systems. The results showed that OPEOn was poorly degraded by laccase alone. 2, 2'-azino-bis [3-ethylbenzothiazoline-6-sulphonic acid] (ABTS), 1-hydroxybenzotriazole (HBT), and 2, 2, 6, 6-tetramethylpiperidine-1-oxyl (TEMPO) were selected as the redox mediators. Experimental results also indicated that 52.4% of the initial OPEOn amount was degraded by laccase in the presence of TEMPO. The degradation efficiency was analyzed using high-performance liquid chromatography. Furthermore, the structural characteristics of the degradation products were measured using matrix-assisted laser desorption/ionization-time of flight mass spectrometry and nuclear magnetic resonance spectroscopy, and it could be found that the laccase-TEMPO system could gradually shorten the ethoxylate chain by oxidizing the primary hydroxyl group of OPEOn, thereby degrading the OPEOn of the macromolecule into small molecules. The maximum of the ion peak distributions of OPEOn decreased from n = 8 finally down to 3. The novel enzymatic system introduced by this study will become a promising alternative method for high-efficiency APEOn conversion and had great potential value in wastewater treatment.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu AVE, Wuxi, 214122, Jiangsu, China
| | - Jiangfei Lou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu AVE, Wuxi, 214122, Jiangsu, China
| | - Jin Xu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu AVE, Wuxi, 214122, Jiangsu, China
| | - Jiugang Yuan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu AVE, Wuxi, 214122, Jiangsu, China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu AVE, Wuxi, 214122, Jiangsu, China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu AVE, Wuxi, 214122, Jiangsu, China
| | - Xuerong Fan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, 1800 Lihu AVE, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
12
|
Nikolaivits E, Siaperas R, Agrafiotis A, Ouazzani J, Magoulas A, Gioti Α, Topakas E. Functional and transcriptomic investigation of laccase activity in the presence of PCB29 identifies two novel enzymes and the multicopper oxidase repertoire of a marine-derived fungus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145818. [PMID: 33631558 DOI: 10.1016/j.scitotenv.2021.145818] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs), that can be detected in a variety of environments including the human body, adversely affecting global health. Bioremediation is an emerging field for the detoxification and removal of environmental pollutants, with novel biocatalysts appropriate for this task being in high demand. In this study, a biobank of novel fungal strains isolated as symbionts of marine invertebrates was screened for their ability to remove 2,4,5-trichlorobiphenyl (PCB29). The most efficient strains were studied further for their ability to express laccase activity, the most commonly associated extracellular activity involved in the removal of aromatic pollutants and encoded in fungi by the enzymatic class of multicopper oxidases (MCOs). The strain expressing the highest laccase activity, Cladosporium sp. TM138-S3, was cultivated in the presence of copper ions in a 12 L bioreactor and two enzymes exhibiting laccase activity were isolated from the culture broth through ion-exchange chromatography. The two enzymes, Lac1 and Lac2, were biochemically characterized and showed similar characteristics, although an improved ability to remove PCB29 (up to 71.2%) was observed for Lac2 in the presence of mediators. In parallel, we performed RNAseq of the strain growing in presence and absence of PCB29 and reconstructed its transcriptome assembly. Functional annotation allowed identifying the MCO repertoire of the fungus, consisting of 13 enzymes. Phylogenetic analysis of Ascomycete MCOs further allowed classifying these enzymes, revealing the diversity of laccase activities in Cladosporium sp. TM138-S3.
Collapse
Affiliation(s)
- Efstratios Nikolaivits
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Romanos Siaperas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Andreas Agrafiotis
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Jamal Ouazzani
- Institut de Chimie des Substances Naturelles, ICSN, CNRS, Gif sur Yvette, France
| | - Antonios Magoulas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Αnastasia Gioti
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece.
| |
Collapse
|
13
|
Šrédlová K, Šírová K, Stella T, Cajthaml T. Degradation Products of Polychlorinated Biphenyls and Their In Vitro Transformation by Ligninolytic Fungi. TOXICS 2021; 9:toxics9040081. [PMID: 33918084 PMCID: PMC8070434 DOI: 10.3390/toxics9040081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 02/08/2023]
Abstract
Metabolites of polychlorinated biphenyls (PCBs)—hydroxylated PCBs (OH-PCBs), chlorobenzyl alcohols (CB-OHs), and chlorobenzaldehydes (CB-CHOs)—were incubated in vitro with the extracellular liquid of Pleurotus ostreatus, which contains mainly laccase and low manganese-dependent peroxidase (MnP) activity. The enzymes were able to decrease the amount of most of the tested OH-PCBs by > 80% within 1 h; the removal of more recalcitrant OH-PCBs was greatly enhanced by the addition of the laccase mediator syringaldehyde. Conversely, glutathione substantially hindered the reaction, suggesting that it acted as a laccase inhibitor. Hydroxylated dibenzofuran and chlorobenzoic acid were identified as transformation products of OH-PCBs. The extracellular enzymes also oxidized the CB-OHs to the corresponding CB-CHOs on the order of hours to days; however, the mediated and nonmediated setups exhibited only slight differences, and the participating enzymes could not be determined. When CB-CHOs were used as the substrates, only partial transformation was observed. In an additional experiment, the extracellular liquid of Irpex lacteus, which contains predominantly MnP, was able to efficiently transform CB-CHOs with the aid of glutathione; mono- and di-chloroacetophenones were detected as transformation products. These results demonstrate that extracellular enzymes of ligninolytic fungi can act on a wide range of PCB metabolites, emphasizing their potential for bioremediation.
Collapse
Affiliation(s)
- Kamila Šrédlová
- Faculty of Science, Institute for Environmental Studies, Charles University, Benátská 2, 12801 Prague 2, Czech Republic; (K.Š.); (K.Š.)
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic;
| | - Kateřina Šírová
- Faculty of Science, Institute for Environmental Studies, Charles University, Benátská 2, 12801 Prague 2, Czech Republic; (K.Š.); (K.Š.)
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic;
| | - Tatiana Stella
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic;
- M3R S.r.l., University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Tomáš Cajthaml
- Faculty of Science, Institute for Environmental Studies, Charles University, Benátská 2, 12801 Prague 2, Czech Republic; (K.Š.); (K.Š.)
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic;
- Correspondence:
| |
Collapse
|
14
|
ElyasiGhahfarokhi A, Hashemi S, Saeedi M, Khanavi M, Faramarzi MA. Phytocatalytic and cytotoxic activity of the purified laccase from bled resin of Pistacia atlantica Desf. Int J Biol Macromol 2021; 176:394-403. [PMID: 33548319 DOI: 10.1016/j.ijbiomac.2021.01.212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 11/28/2022]
Abstract
This study reports an efficient and fast procedure for the purification of laccase (PaL) obtained from the resin of Pistacia atlantica Desf. It was purified by one-step affinity chromatography and showed the specific activity of 393 U/mg with 81.9-fold purification. The molecular weight of PaL was estimated to be approximately 60 kDa using gel electrophoresis SDS-PAGE. Moreover, it depicted diphenolase activity and high affinity towards 2,6-dimethoxy phenol (Km = 10.01 ± 0.5 mM) and syringaldazine (Km = 6.57 ± 0.2 mM) comparing with plant-origin polyphenol oxidases reported in the literature. It should be noted that PaL possessed optimal activity at pH 7.5 and 45 °C. It also remained stable under different conditions of pH (6.5-8.0), temperature (25-45 °C), and when it was exposed to several metal ions. The MTT and flow cytometry assays demonstrated that the enzyme treatment significantly affected growth of HeLa, HepG2, and MDA-MB-231 cells with LC50 values of 4.83 ± 0.02, 61 ± 0.31, and 26.83 ± 0.11 μM after 72 h, respectively. NOVELTY STATEMENT: This is the first attempt to isolate and characterize a new oxidoreductase from the resin of Pistacia atlantica Desf., native species of Iran, to recruit it in cytotoxicity researches. In the purification process by an efficient affinity column (SBA-NH2-GA), the enzyme was eluted promptly with a satisfied yield. The purified laccase exerted higher affinity to diphenolic compounds and pH-thermal stability compared to other plant-derived polyphenol oxidases. The purified enzyme was found to show anti-oxidant capacity and significantly inhibited the growth of cancerous cells in vitro. PaL showed more cytotoxic activity towards HeLa and MDA-MB-231 cells by induction of apoptosis. The cytotoxic activity of the laccase was measured by flow cytometry.
Collapse
Affiliation(s)
- Azam ElyasiGhahfarokhi
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Saba Hashemi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Khanavi
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada.
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran.
| |
Collapse
|
15
|
Song Y, Jiang J, Qin W, Li J, Zhou Y, Gao Y. Enhanced transformation of organic pollutants by mild oxidants in the presence of synthetic or natural redox mediators: A review. WATER RESEARCH 2021; 189:116667. [PMID: 33271411 DOI: 10.1016/j.watres.2020.116667] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/06/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Synthetic or natural mediators (Med) can enhance the transformation of different types of organic pollutants by mild oxidants, which has been extensively studied in literature. This enhancing effect is attributed to the following two steps: (i) mild oxidants react with Med forming Medox with higher reactivity, and then (ii) these organic pollutants are more readily transformed by Medox. The present work reviews the latest findings on the formation of Medox from the reactions of synthetic (i.e., 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonate (ABTS) and 1-hydroxybenzotriazole (HBT)) or natural mediators (i.e., syringaldehyde (SA), acetosyringone (AS), p-coumaric acid, and catechol) with mild oxidants such as laccase, manganese oxidants including permanganate (Mn(VII)) and MnO2, and ferrate (Fe(VI)), as well as the transformation of organic pollutants including phenols, amines, polycyclic aromatic hydrocarbons (PAHs), organic dyes, pulp, and perfluoroalkyl acids (PFAAs) by Medox. First, reaction kinetics and mechanisms of the oxidation of synthetic or natural mediators by these mild oxidants were summarized. Reactivity and pathways of synthetic Medox including ABTS·+, ABTS2+, HBT· or natural Medox including phenoxy radicals and quinone-type compounds reacting with different organic pollutants were then discussed. Finally, the possibilities of engineering applications and new perspectives were assessed on the combinations of different types of mild oxidants with synthetic or natural mediators for the treatment of various organic pollutants.
Collapse
Affiliation(s)
- Yang Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, China.
| | - Wen Qin
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Juan Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, China
| | - Yang Zhou
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, China
| | - Yuan Gao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, China
| |
Collapse
|
16
|
Germain J, Raveton M, Binet MN, Mouhamadou B. Screening and metabolic potential of fungal strains isolated from contaminated soil and sediment in the polychlorinated biphenyl degradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111703. [PMID: 33396034 DOI: 10.1016/j.ecoenv.2020.111703] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Polychlorinated biphenyls (PCBs) are widespread persistent pollutants deleterious for environment and very dangerous for human kind. As the bioremediation of PCB polluted sites by model white-rot fungi is still unsatisfactory, the use of efficient native strains which have the natural capacity to develop on polluted sites may constitute a relevant alternative strategy. In this study, we isolated 12 fungal strains from PCB contaminated soil and sediment, improved the screening method to obtain the most efficient ones in biodegradation and detoxification of PCBs and characterized potential underlying enzymatic activities. Four strains Penicillium chrysogenum, P. citreosulfuratum, P. canescens and Aspergillus jensenii, showed remarkable biodegradation capacities, greater than 70%. The remaining PCB-toxicity of their culture, including that of Trametes versicolor and Acremonium sclerotigenum, which present interesting ecological and metabolic properties, was studied. Only P. canescens was able to significantly reduce the toxicity related to PCBs and their metabolites. The enzymatic activities induced by PCBs were different according to the strains, namely laccases in T. versicolor and peroxidases in Ac. sclerotigenum. Our promising results show that the use of native fungal strains can constitute an effective strategy in the depollution of PCB polluted sites.
Collapse
Affiliation(s)
- J Germain
- Laboratoire d'Ecologie Alpine, UMR 5553 CNRS/USMB Université Grenoble Alpes, 38058 Grenoble Cedex 9, France
| | - M Raveton
- Laboratoire d'Ecologie Alpine, UMR 5553 CNRS/USMB Université Grenoble Alpes, 38058 Grenoble Cedex 9, France
| | - M N Binet
- Laboratoire d'Ecologie Alpine, UMR 5553 CNRS/USMB Université Grenoble Alpes, 38058 Grenoble Cedex 9, France
| | - B Mouhamadou
- Laboratoire d'Ecologie Alpine, UMR 5553 CNRS/USMB Université Grenoble Alpes, 38058 Grenoble Cedex 9, France.
| |
Collapse
|
17
|
|
18
|
Henn C, Arakaki RM, Monteiro DA, Boscolo M, da Silva R, Gomes E. Degradation of the Organochlorinated Herbicide Diuron by Rainforest Basidiomycetes. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5324391. [PMID: 33083471 PMCID: PMC7559502 DOI: 10.1155/2020/5324391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 11/17/2022]
Abstract
The main organochlorinated compounds used on agricultural crops are often recalcitrant, affecting nontarget organisms and contaminating rivers or groundwater. Diuron (N-(3,4-dichlorophenyl)-N',N'-dimethylurea) is a chlorinated herbicide widely used in sugarcane plantations. Here, we evaluated the ability of 13 basidiomycete strains of growing in a contaminated culture medium and degrading the xenobiotic. Dissipation rates in culture medium with initial 25 mg/L of diuron ranged from 7.3 to 96.8%, being Pluteus cubensis SXS 320 the most efficient strain, leaving no detectable residues after diuron metabolism. Pycnoporus sanguineus MCA 16 removed 56% of diuron after 40 days of cultivation, producing three metabolites more polar than parental herbicide, two of them identified as being DCPU and DCPMU. Despite of the strong inductive effect of diuron upon laccase synthesis and secretion, the application of crude enzymatic extracts of P. sanguineus did not catalyzed the breakdown of the herbicide in vitro, indicating that diuron biodegradation was not related to this oxidative enzyme.
Collapse
Affiliation(s)
- Caroline Henn
- ITAIPU Binacional, Divisão de Reservatório-MARR.CD, PR, Brazil, Avenida Tancredo Neves, 6731, CEP 85856-970 Foz do Iguaçu, Paraná, Brazil
| | - Ricardo M. Arakaki
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, SP, Brazil, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo CEP 15054-000, Brazil
| | - Diego Alves Monteiro
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, SP, Brazil, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo CEP 15054-000, Brazil
| | - Mauricio Boscolo
- Departamento de Química e Ciências Ambientais, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, SP, Brazil, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo CEP 15054-000, Brazil
| | - Roberto da Silva
- Departamento de Química e Ciências Ambientais, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, SP, Brazil, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo CEP 15054-000, Brazil
| | - Eleni Gomes
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, SP, Brazil, Rua Cristóvão Colombo, 2265, Jardim Nazareth, São José do Rio Preto, São Paulo CEP 15054-000, Brazil
| |
Collapse
|
19
|
Šrédlová K, Škrob Z, Filipová A, Mašín P, Holecová J, Cajthaml T. Biodegradation of PCBs in contaminated water using spent oyster mushroom substrate and a trickle-bed bioreactor. WATER RESEARCH 2020; 170:115274. [PMID: 31751891 DOI: 10.1016/j.watres.2019.115274] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/04/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
Due to their persistence, polychlorinated biphenyls (PCBs) represent a group of important environmental pollutants, but conventional physicochemical decontamination techniques for their removal are usually expensive. The main aim of this work was to develop a cost-effective method for PCB bioremediation, focusing on contaminated water and utilizing the well-known degradation capability of Pleurotus ostreatus (the oyster mushroom). For this purpose, the conditions of several laboratory-scale reactors (working volume 1 L) were optimized. Spent oyster mushroom substrate obtained from a commercial farm was used as a fungal inoculum and growth substrate. The highest degradation efficiency (87%) was recorded with a continuous low-flow setup, which was subsequently scaled up (working volume 500 L) and used for the treatment of 4000 L of real contaminated groundwater containing 0.1-1 μg/L of PCBs. This trickle-bed pilot-scale bioreactor was able to remove 82, 80, 65, and 30-50% of di-, tri-, tetra- and pentachlorinated PCB congeners, respectively. No degradation was observed for hexa- or heptachlorinated congeners. Multiple mono- and dichlorobenzoic acids (CBAs) were identified as transformation products by mass spectrometry, confirming the role of biodegradation in PCB removal. A Vibrio fischeri bioluminescence inhibition test revealed slight ecotoxicity of the primary reactor effluent (sampling after 24 h), which was quickly suppressed once the effluent passed through the reactor for the second time. Moreover, no other effluent exhibited toxicity for the rest of the experiment (71 days in total). Microbial analyses (phospholipid fatty acid analysis and next-generation sequencing) showed that P. ostreatus was able to degrade PCBs in the presence of an abundance of other fungal species as well as aerobic and anaerobic bacteria. Overall, this study proved the suitability of the use of spent oyster mushroom substrate in a bioremediation practice, even for pollutants as recalcitrant as PCBs.
Collapse
Affiliation(s)
- Kamila Šrédlová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Zdena Škrob
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Alena Filipová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Pavel Mašín
- DEKONTA a.s, Volutová 2523, 15800, Prague 5, Czech Republic
| | - Jana Holecová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Tomáš Cajthaml
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| |
Collapse
|
20
|
Shi Z, Jin C, Bai R, Gao Z, Zhang J, Zhu L, Zhao Z, Strathmann TJ. Enhanced Transformation of Emerging Contaminants by Permanganate in the Presence of Redox Mediators. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1909-1919. [PMID: 31886657 DOI: 10.1021/acs.est.9b05711] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, a permanganate/redox mediator system for enhanced transformation of a series of emerging contaminants was evaluated. The presence of various redox mediators (i.e., 1-hydroxybenzotriazole, N-hydroxyphthalimide, violuric acid, syringaldehyde, vanillin, 4-hydroxycoumarin, and p-coumaric acid) accelerated the degradation of bisphenol A (BPA) by Mn(VII). Since 1-hydroxybenzotriazole (HBT) exhibited the highest reactive ability, it was selected to further investigate the reaction mechanisms and quantify the effects of important reaction parameters on Mn(VII)/redox-mediator reactions with BPA and bisphenol AF (BPAF). Interestingly, not only HBT accelerated the degradation of BPA, but also BPA enhanced the decay of HBT. Evidence for the in situ formation of HBT· radicals as the active oxidant responsible for accelerated BPA and BPAF degradation was obtained by radical scavenging experiments and 31P NMR spin trapping techniques. The routes for HBT· radical formation involving Mn(VII) and the electron-transfer pathway from BPA/BPAF to HBT· radicals demonstrate that the Mn(VII)/HBT system was driven by the electron-transfer mechanism. Compared to Mn(VII) alone, the presence of HBT totally inhibited self-coupling of BPA and BPAF and promoted β-scission, hydroxylation, ring opening, and decarboxylation reactions. Moreover, Mn(VII)/HBT is also effective in real waters with the order of river water > wastewater treatment plant (WWTP) effluent > deionized water.
Collapse
Affiliation(s)
- Zhenyu Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology , Chongqing University , Chongqing 400045 , PR China
- Environment Monitoring Center of Jiangsu Province , Nanjing 210036 , PR China
| | - Can Jin
- Key Laboratory of Biomass Energy and Material of Jiangsu Province , Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry , Nanjing 210042 , PR China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry , Chongqing University , Chongqing 401331 , PR China
| | - Zhanqi Gao
- Environment Monitoring Center of Jiangsu Province , Nanjing 210036 , PR China
| | - Jing Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology , Chongqing University , Chongqing 400045 , PR China
| | - Liang Zhu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology , Chongqing University , Chongqing 400045 , PR China
| | - Zhiwei Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology , Chongqing University , Chongqing 400045 , PR China
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering , Colorado School of Mines , 1500 Illinois Street , Golden , Colorado 80401 , United States
| |
Collapse
|
21
|
Extracellular Fungal Peroxidases and Laccases for Waste Treatment: Recent Improvement. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-25506-0_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Bioremediation: New Prospects for Environmental Cleaning by Fungal Enzymes. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-25506-0_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
23
|
Sharma A, Jain KK, Jain A, Kidwai M, Kuhad RC. Bifunctional in vivo role of laccase exploited in multiple biotechnological applications. Appl Microbiol Biotechnol 2018; 102:10327-10343. [PMID: 30406827 DOI: 10.1007/s00253-018-9404-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 12/29/2022]
Abstract
Laccases are multicopper enzymes present in plants, fungi, bacteria, and insects, which catalyze oxidation reactions together with four electron reduction of oxygen to water. Plant, bacterial, and insect laccases have a polymerizing role in nature, implicated in biosynthesis of lignin, melanin formation, and cuticle hardening, respectively. On the other hand, fungal laccases carry out both polymerizing (melanin synthesis and fruit body formation) as well as depolymerizing roles (lignin degradation). This bifunctionality of fungal laccases can be attributed to the presence of multiple isoforms within the same as well as different genus and species. Interestingly, by manipulating culture conditions, these isoforms with their different induction patterns and unique biochemical characteristics can be expressed or over-expressed for a targeted biotechnological application. Consequently, laccases can be considered as one of the most important biocatalyst which can be exploited for divergent industrial applications viz. paper pulp bleaching, fiber modification, dye decolorization, bioremediation as well as organic synthesis. The present review spotlights the role of fungal laccases in various antagonistic applications, i.e., polymerizing and depolymerizing, and co-relating this dual role with potential industrial significance.
Collapse
Affiliation(s)
- Abha Sharma
- Lignocellulose Biotechnology laboratory, Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Kavish Kumar Jain
- Lignocellulose Biotechnology laboratory, Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India
| | - Arti Jain
- Green Chemistry laboratory, Department of Chemistry, University of Delhi, North Campus, New Delhi, 110007, India
| | - Mazahir Kidwai
- Green Chemistry laboratory, Department of Chemistry, University of Delhi, North Campus, New Delhi, 110007, India
| | - R C Kuhad
- Lignocellulose Biotechnology laboratory, Department of Microbiology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
24
|
Luo Q, Liang S, Huang Q. Laccase induced degradation of perfluorooctanoic acid in a soil slurry. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:241-247. [PMID: 30036754 DOI: 10.1016/j.jhazmat.2018.07.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/24/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Perfluorooctanoic acid (PFOA) can induce undesirable effects to humans and animals and has thus attracted much attention from the public and scientific communities in recent years. Extensive studies have been devoted to exploring PFOA degradation in aqueous phase, while information for that in soil is rather limited. Understanding the transformation of PFOA in soil is important in developing strategies to assess and manage its environmental fate. In this study, we have demonstrated that PFOA can be effectively degraded by enzyme catalyzed oxidative humification reactions (ECOHRs) with a natural organic material, soybean meal, as the mediator. In the presence of soybean meal and laccase, PFOA was degraded 24% in water after 36 days, 40% in soil slurry after 140 days. The water extract of soybean meal contained high concentrations of natural organic mediators and multivalent metal ions, both of which were essential to PFOA degradation by ECOHRs. The ECOHR degradation products of PFOA in soil were identified to be partially fluorinated organic compounds, and the molecular features of the products suggest that the degradation mechanism involves free radical chain reaction processes, which was initiated by direct free radical attacks on the CC bonds in perfluoroalkyl acids.
Collapse
Affiliation(s)
- Qi Luo
- Interdisciplinary Toxicology Program, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, USA
| | - Shangtao Liang
- Interdisciplinary Toxicology Program, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, USA
| | - Qingguo Huang
- Interdisciplinary Toxicology Program, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, USA.
| |
Collapse
|
25
|
Immobilizing Laccase on Different Species Wood Biochar to Remove the Chlorinated Biphenyl in Wastewater. Sci Rep 2018; 8:13947. [PMID: 30224733 PMCID: PMC6141527 DOI: 10.1038/s41598-018-32013-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022] Open
Abstract
Biochars produced from two different wood species over a microwave assisted pyrolysis process were used as novel and green-based supports for immobilizing enzyme, laccase in particular. The results obtained from FT-IR, SEM and BET measurements indicated that Maple biochar with honeycomb structure has higher surface area and pore volume than Spruce biochar; and there exist O-H, C-H, C=O and C=C groups in biochars for potential chemical modification. The best laccase immobilization conditions identified from an orthogonal experiment were pH = 3, laccase concentration 16 g/L and contact time 8 h. Under such conditions, the high immobilization yield (64.2%) and amount (11.14 mg/g) of laccase on Maple biochar were achieved, leading to the significantly improved thermal stability of laccase. Moreover, the immobilized laccase is reusable and enhanced the enzymatic degradation of 4-hydroxy-3,5-dichlorobiphenyl (71.4% yield), thus creating a promising and novel type of adsorbent in the removal of polychlorinated biphenyls from wastewater.
Collapse
|
26
|
Barrios-Estrada C, de Jesús Rostro-Alanis M, Muñoz-Gutiérrez BD, Iqbal HMN, Kannan S, Parra-Saldívar R. Emergent contaminants: Endocrine disruptors and their laccase-assisted degradation - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:1516-1531. [PMID: 28915546 DOI: 10.1016/j.scitotenv.2017.09.013] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 02/05/2023]
Abstract
Herein, an effort has been made to highlight the trends of the state-of-the-art of laccase-assisted degradation of emerging contaminants at large and endocrine disruptors in particular. Since first described in the 19th century, laccase has received particular interest for inter- and multidisciplinary investigations due to its uniqueness and remarkable biotechnological applicability. There has always been a paramount concern over the widespread occurrences of various pollutant types, around the globe. Therefore, pollution free processes are gaining ground all over the world. With ever increasing scientific knowledge, socioeconomic awareness, human health-related issues and ecological apprehensions, people are more concerned about the widespread environmental pollutants. In this context, the occurrences of newly identified pollutants so-called "emerging contaminants - ECs" in our main water bodies is of continued and burning concern worldwide. Undoubtedly, various efforts have already been made to tackle this challenging ECs concern though using different approaches including physical and chemical, however, each has considerable limitations. In this review, we present information on how laccase-assisted approach can change this limited tendency of physical and chemical based approaches. A special focus has been given to the laccase-assisted systems including pristine laccase, laccase-mediator catalyzed system and immobilized-laccase catalyzed system that promotes the endocrine disruptors removal. Towards the end, a list of outstanding questions and research gaps are given that can pave the way for future studies.
Collapse
Affiliation(s)
- Carlos Barrios-Estrada
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico
| | - Magdalena de Jesús Rostro-Alanis
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico
| | - Blanca Delia Muñoz-Gutiérrez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| | - Soundarapandian Kannan
- Division of Cancer Nanomedicine laboratory, Department of Zoology, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
27
|
Qiao W, Chu J, Ding S, Song X, Yu L. Characterization of a thermo-alkali-stable laccase from Bacillus subtilis cjp3 and its application in dyes decolorization. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:710-717. [PMID: 28358283 DOI: 10.1080/10934529.2017.1301747] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this work, a novel bacterial strain exhibiting laccase activity was isolated from black liquor and identified as Bacillus subtilis cjp3. The CotA-laccase gene was cloned from strain cjp3 and expressed in Escherichia coli. The purified recombinant laccase has a maximum activity of 7320 U/L, maintaining high stabilities under a wide pH range and high temperature conditions. Nearly no loss of laccase activity was observed even at pH 9.0 after 10 h of incubation. Reactive blue 19, reactive black 5 and indigo carmine could be efficiently decolorized by the purified laccase in the presence of a mediator ABTS. More than 86% of tested dyes were removed in 4 h at pH = 9.0. The recombinant laccase can work well in a broad range of temperatures of 20-80°C(>80% relative activity). These special properties indicated the potential use of the CotA-laccase in treating wastewater containing synthetic dyes.
Collapse
Affiliation(s)
- Weichuan Qiao
- a Department of Environmental Engineering , Nanjing Forestry University , Nanjing , China
| | - Jingping Chu
- a Department of Environmental Engineering , Nanjing Forestry University , Nanjing , China
| | - Shaojun Ding
- b Department of Chemical Engineering , Nanjing Forestry University , Nanjing , China
| | - Xin Song
- c Key Laboratory of Soil Environment and Pollution Remediation , Institute of Soil Science, Chinese Academy of Science , Nanjing , China
| | - Lei Yu
- a Department of Environmental Engineering , Nanjing Forestry University , Nanjing , China
| |
Collapse
|
28
|
Wen B, Baker MR, Zhao H, Cui Z, Li QX. Expression and Characterization of Windmill Palm Tree (Trachycarpus fortunei) Peroxidase by Pichia pastoris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4676-4682. [PMID: 28523913 DOI: 10.1021/acs.jafc.7b00318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Currently, commercial plant peroxidases are all native and are isolated from plants such as horseradish and soybean. No recombinant plant peroxidase products have been available on the commercial market. The gene encoding peroxidase was cloned from windmill palm tree leaves. The codon-optimized gene was transformed into Pichia pastoris for expression. The recombinant windmill palm tree peroxidase (rWPTP) expressed by P. pastoris showed high stability under pH 2-10 and temperatures up to 70 °C to many metallic salts and organic solvents. The substrate specificity of WPTP was determined, and among the substrates tested, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was most suitable for WPTP. The Michaelis constants with the substrates H2O2 and ABTS were 4.6 × 10-4 and 1.6 × 10-4 M, respectively. The rWPTP expressed in P. pastoris may be a suitable enzyme for the biosynthesis of polymers because of its high stability and activity under acidic conditions.
Collapse
Affiliation(s)
- Boting Wen
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa , Honolulu, Hawaii 96822, United States
- College of Agronomy and Biotechnology, China Agricultural University , Beijing, China
| | - Margaret R Baker
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa , Honolulu, Hawaii 96822, United States
| | - Hongwei Zhao
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa , Honolulu, Hawaii 96822, United States
| | - Zongjun Cui
- College of Agronomy and Biotechnology, China Agricultural University , Beijing, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa , Honolulu, Hawaii 96822, United States
| |
Collapse
|
29
|
Luo Q, Wang Z, Feng M, Chiang D, Woodward D, Liang S, Lu J, Huang Q. Factors controlling the rate of perfluorooctanoic acid degradation in laccase-mediator systems: The impact of metal ions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:649-657. [PMID: 28262377 DOI: 10.1016/j.envpol.2017.02.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/11/2016] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
This study investigated the factors that regulated the degradation of perfluorooctanoic acid (PFOA) in laccase-catalyzed oxidative humification reactions with 1-hydroxybenzotriazole (HBT) as a mediator. The reaction rates were examined under conditions with key factors varied, including initial PFOA concentrations, laccase and HBT dosages, and the ionic contents of the reaction solutions. The PFOA degradation followed pseudo-first order kinetics, and the rate constants (k) were similar for the high (100 μmol L-1) and low (1.00 μmol L-1) initial PFOA concentrations, respectively at 0.0040 day-1 (r2 = 0.98) and 0.0042 day-1 (r2 = 0.86) under an optimum reaction condition tested in this study. The metal ions contained in the reaction solution appeared to have a strong impact on PFOA degradation. Differential UV-Vis spectrometry revealed that Cu2+ can complex with PFOA, which plays an essential role to enable PFOA degradation, probably by bridging the negatively charged PFOA and laccase, so that the free radicals of HBT that are released from laccase can reach and react with PFOA. It was also found that Fe3+ plays a similar role as Cu2+ to enable PFOA degradation in the laccase-HBT reaction system. In contrast, Mg2+ and Mn2+ cannot complex with PFOA under the investigated conditions, and do not enable PFOA degradation in the laccase-HBT system. Fluoride and partially fluorinated compounds were detected as PFOA degradation products using ion chromatography and high resolution mass spectrometry. The structures of the products suggest the reaction pathways involving free-radical initiated decarboxylation, rearrangement, and cross-coupling.
Collapse
Affiliation(s)
- Qi Luo
- Interdisciplinary Toxicology Program, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, USA
| | - Zunyao Wang
- School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Mingbao Feng
- School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Dora Chiang
- AECOM Inc., Remediation Technology, Atlanta, GA 30309, USA
| | - David Woodward
- AECOM Inc., Remediation Technology, Mechanicsburg, PA 17055, USA
| | - Shangtao Liang
- Interdisciplinary Toxicology Program, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, USA
| | - Junhe Lu
- College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Qingguo Huang
- Interdisciplinary Toxicology Program, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, USA.
| |
Collapse
|
30
|
Deng J, Wen X, Li J. Fabrication highly dispersed Fe3O4 nanoparticles on carbon nanotubes and its application as a mimetic enzyme to degrade Orange II. ENVIRONMENTAL TECHNOLOGY 2016; 37:2214-2221. [PMID: 26828855 DOI: 10.1080/09593330.2016.1146339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
Fe3O4 nanoparticles were grown in situ on carbon nanotubes (CNTs) by a solvothermal method. The Fe3O4/CNTs composites were characterised by the Brunauer-Emmett-Teller method and transmission electron microscopy. The results indicated that the Fe3O4 nanoparticles were uniformly deposited on CNTs, and the average diameter was approximately 7.0 nm. The Fe3O4/CNTs were applied as an enzyme mimetic to decompose Orange II, and the decomposing conditions were optimised. At 500 mg L(-1) of Fe3O4/CNTs in the presence of 15.0 mmol L(-1) of H2O2, at 30°C, it degraded 94.0% of Orange II (0.25 mmol L(-1), pH = 3.5), showing higher catalytic activity than pure Fe3O4 nanoparticles. The high activity was attributed to the uniform Fe3O4 nanoparticles growing on the side walls of the CNTs and the synergetic effect between Fe3O4 and CNTs. The Fe3O4/CNTs maintained their activity at temperatures as high as 65°C. The Fe3O4/CNTs presented high reusability and stability even after eight uses. These data proved that the Fe3O4/CNTs-catalysed degradation is a promising technique for wastewater treatment. Fe3O4 nanoparticles were grown in situ on carbon nanotubes (CNTs) by a solvothermal method. The Fe3O4/CNTs was applied as a mimetic enzyme to decompose Orange II. The Fe3O4/CNTs were collected after the reaction by applying an external magnetic field and can use repeatedly.
Collapse
Affiliation(s)
- Jingheng Deng
- a State Joint Key Laboratory of Environment Simulation and Pollution Control, Department of Environmental Engineering, School of Environment , Tsinghua University , Beijing , People's Republic of China
- b Changsha Research Institute of Mining and Metallurgy , Changsha , People's Republic of China
| | - Xianghua Wen
- a State Joint Key Laboratory of Environment Simulation and Pollution Control, Department of Environmental Engineering, School of Environment , Tsinghua University , Beijing , People's Republic of China
| | - Jiaxi Li
- a State Joint Key Laboratory of Environment Simulation and Pollution Control, Department of Environmental Engineering, School of Environment , Tsinghua University , Beijing , People's Republic of China
- c Development and Reform Commission of Hunan Province , Changsha , People's Republic of China
| |
Collapse
|
31
|
Safary A, Moniri R, Hamzeh-Mivehroud M, Dastmalchi S. A strategy for soluble overexpression and biochemical characterization of halo-thermotolerant Bacillus laccase in modified E. coli. J Biotechnol 2016; 227:56-63. [PMID: 27059481 DOI: 10.1016/j.jbiotec.2016.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/30/2016] [Accepted: 04/05/2016] [Indexed: 02/06/2023]
Abstract
An efficient method was introduced for soluble expression of recombinant laccase (rpCotA(SL-1)) from a newly isolated halo-thermotolerant Bacillus sp. SL-1 in modified Escherichia coli, trxB2/gor2 mutant (Origami™ B (DE3)). The yield of purified soluble laccase in Origami strain under micro-aerobic condition was ∼20mg/L of bacterial culture, showing significant improvement over the laccase produced in E.coli BL21 strain under aerobic condition. The specific activity of 13U/mg for purified laccase produced in micro-aerobic condition was higher than that of 1.07U/mg observed for the purified enzyme obtained in aerobic condition in Origami. The kinetic Km and kcat parameters for laccase-induced oxidation reactions were 46μM and 23s(-1) for ABTS (2,2'-Azino-bis(3-ethylbenzthiazoline-6-sulphonic acid), and 19.6μM and 24s(-1) for SGZ (syringaldazine) substrates, respectively. The rpCotA(SL-1) displayed thermostability at 70°C and tolerance to specified concentrations of NaCl, NaN3, EDTA and SDS as inhibitors. The enzyme was relatively stable in the presence of different concentration of organic solvents, however the residual activity was adversely affected as the dipole moment of the solvents increase. Here we successfully report the production of soluble and functional laccase in Origami at the expression level suitable for industrial application.
Collapse
Affiliation(s)
- Azam Safary
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rezvan Moniri
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran; Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
32
|
Xiao K, Liu H, Dong S, Fan X, Chen Y, Xu H. Interfacial effect of Stropharia rugoso-annulata in liquid medium: interaction of exudates and nickel-quintozene. RSC Adv 2016. [DOI: 10.1039/c6ra14417a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This work investigated the accumulation of Ni and dissipation of PCNB by the mycelia ofS. rugoo-annulata, together with the correlation between cell exudates and contaminants removal in liquid medium.
Collapse
Affiliation(s)
- Kemeng Xiao
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education)
- College of Life Sciences
- Sichuan University
- Chengdu
- China
| | - Hongying Liu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education)
- College of Life Sciences
- Sichuan University
- Chengdu
- China
| | - Shunwen Dong
- Industrial Crop Research Institute of Sichuan Academy of Agricultural Sciences
- Chengdu
- China
| | - Xinzou Fan
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education)
- College of Life Sciences
- Sichuan University
- Chengdu
- China
| | - Yanli Chen
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education)
- College of Life Sciences
- Sichuan University
- Chengdu
- China
| | - Heng Xu
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education)
- College of Life Sciences
- Sichuan University
- Chengdu
- China
| |
Collapse
|
33
|
Chen L, Yi X, Deng F, Fang W, Zhang X, Wang X, Fang Z, Xiao Y. A novel ethanol-tolerant laccase, Tvlac, from Trametes versicolor. Biotechnol Lett 2015; 38:471-6. [PMID: 26553026 DOI: 10.1007/s10529-015-1994-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/03/2015] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To produce and characterize novel laccases with ethanol tolerance from Trametes versicolor using agriculture by-products as energy source. RESULTS Trametes versicolor 1017 produces two laccase isoenzymes with a total activity of 10 U ml(-1) within 8 days when using wheat bran and peanut powder as energy sources in liquid culture medium. A novel isoenzyme, named Tvlac, was identified, purified and characterized. Its optimum pH and temperature were from 4.5 to 5 and 55 to 60 °C, respectively. Its activity was stimulated by ethanol at 10 % (v/v) which increased the V 0. CONCLUSIONS The biochemical properties of Tvlac substantiate the potential of this enzyme for applications under an aqueous ethanol mixture environment.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, Anhui, China
| | - Xiaoming Yi
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, Anhui, China
| | - Fajun Deng
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, Anhui, China
| | - Wei Fang
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, Anhui, China
| | - Xuecheng Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, Anhui, China
| | - Xiaotang Wang
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL, 33199, USA
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China.
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, Anhui, China.
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, Anhui, China
| |
Collapse
|
34
|
Song Y, Jiang J, Ma J, Pang SY, Liu YZ, Yang Y, Luo CW, Zhang JQ, Gu J, Qin W. ABTS as an Electron Shuttle to Enhance the Oxidation Kinetics of Substituted Phenols by Aqueous Permanganate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11764-11771. [PMID: 26378975 DOI: 10.1021/acs.est.5b03358] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, it was, interestingly, found that 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonate (ABTS), a widely used electron shuttle, could greatly accelerate the oxidation of substituted phenols by potassium permanganate (Mn(VII)) in aqueous solutions at pH 5-9. This was attributed to the fact that these substituted phenols could be readily oxidized by the stable radical cation (ABTS(•+)), which was quickly produced from the oxidation of ABTS by Mn(VII). The reaction of Mn(VII) with ABTS exhibited second-order kinetics, with stoichiometries of ∼5:1 at pH 5-6 and ∼3:1 at pH 7-9, and the rate constants varied negligibly from pH 5 to 9 (k = (9.44 ± 0.21) × 10(4) M(-1) s(-1)). Comparatively, the reaction of ABTS(•+) with phenol showed biphasic kinetics. The second-order rate constants for the reactions of ABTS(•+) with substituted phenols obtained in the initial phase were strongly affected by pH, and they were several orders of magnitude higher than those for the reactions of Mn(VII) with substituted phenols at each pH. Good Hammett-type correlations were found for the reactions of ABTS(•+) with undissociated (log(k) = 2.82-4.31σ) and dissociated phenols (log(k) = 7.29-5.90σ). The stoichiometries of (2.2 ± 0.06):1 (ABTS(•+) in excess) and (1.38 ± 0.18):1 (phenol in excess) were achieved in the reaction of ABTS(•+) with phenol, but they exhibited no pH dependency.
Collapse
Affiliation(s)
- Yang Song
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology , Harbin 150090, China
| | - Jin Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology , Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology , Harbin 150090, China
| | - Su-Yan Pang
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, College of Chemical and Environmental Engineering, Harbin University of Science and Technology , Harbin 150040, China
| | - Yong-Ze Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology , Harbin 150090, China
| | - Yi Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology , Harbin 150090, China
| | - Cong-Wei Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology , Harbin 150090, China
| | - Jian-Qiao Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology , Harbin 150090, China
| | - Jia Gu
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology , Harbin 150090, China
| | - Wen Qin
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology , Harbin 150090, China
| |
Collapse
|
35
|
Liu H, Guo S, Jiao K, Hou J, Xie H, Xu H. Bioremediation of soils co-contaminated with heavy metals and 2,4,5-trichlorophenol by fruiting body of Clitocybe maxima. JOURNAL OF HAZARDOUS MATERIALS 2015; 294:121-127. [PMID: 25863026 DOI: 10.1016/j.jhazmat.2015.04.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/19/2015] [Accepted: 04/01/2015] [Indexed: 06/04/2023]
Abstract
Pot experiments were performed to investigate the single effect of 2,4,5-trichlorophenol (TCP) or heavy metals (Cu, Cd, Cu+Cd) and the combined effects of metals-TCP on the growth of Clitocybe maxima together with the accumulation of heavy metals as well as dissipation of TCP. Results showed a negative effect of contaminations on fruiting time and biomass of the mushroom. TCP decreased significantly in soils accounting for 70.66-96.24% of the initial extractable concentration in planted soil and 66.47-91.42% in unplanted soil, which showed that the dissipation of TCP was enhanced with mushroom planting. Higher biological activities (bacterial counts, soil respiration and laccase activity) were detected in planted soils relative to unplanted controls, and the enhanced dissipation of TCP in planted soils might be derived from the increased biological activities. The metals accumulation in mushroom increased with the augment of metal load, and the proportion of acetic acid (HOAc) extractable metal in soils with C. maxima was larger than that in unplanted soils, which may be an explanation of metal uptake by C. maxima. These results suggested that the presence of C. maxima was effective in promoting the bioremediation of soil contaminated with heavy metals and TCP.
Collapse
Affiliation(s)
- Hongying Liu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Shanshan Guo
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Kai Jiao
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Junjun Hou
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Han Xie
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Heng Xu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China.
| |
Collapse
|
36
|
Fang Z, Liu X, Chen L, Shen Y, Zhang X, Fang W, Wang X, Bao X, Xiao Y. Identification of a laccase Glac15 from Ganoderma lucidum 77002 and its application in bioethanol production. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:54. [PMID: 25883681 PMCID: PMC4399389 DOI: 10.1186/s13068-015-0235-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/09/2015] [Indexed: 05/24/2023]
Abstract
BACKGROUND Laccases have potential applications in detoxification of lignocellulosic biomass after thermochemical pretreatment and production of value-added products or biofuels from renewable biomass. However, their application in large-scale industrial and environmental processes has been severely thwarted by the high cost of commercial laccases. Therefore, it is necessary to identify new laccases with lower cost but higher activity to detoxify lignocellulosic hydrolysates and better efficiency to produce biofuels such as bioethanol. Laccases from Ganoderma lucidum represent proper candidates in processing of lignocellulosic biomass. RESULTS G. lucidum 77002 produces three laccase isoenzymes with a total laccase activity of 141.1 U/mL within 6 days when using wheat bran and peanut powder as energy sources in liquid culture medium. A new isoenzyme named Glac15 was identified, purified, and characterized. Glac15 possesses an optimum pH of 4.5 to 5.0 and a temperature range of 45°C to 55°C for the substrates tested. It was stable at pH values ranging from 5.0 to 7.0 and temperatures lower than 55°C, with more than 80% activity retained after incubation for 2 h. When used in bioethanol production process, 0.05 U/mL Glac15 removed 84% of the phenolic compounds in prehydrolysate, and the yeast biomass reached 11.81 (optimal density at 600 nm (OD600)), compared to no growth in the untreated one. Addition of Glac15 before cellulase hydrolysis had no significant effect on glucose recovery. However, ethanol yield were improved in samples treated with laccases compared to that in control samples. The final ethanol concentration of 9.74, 10.05, 10.11, and 10.81 g/L were obtained from samples containing only solid content, solid content treated with Glac15, solid content containing 50% prehydrolysate, and solid content containing 50% prehydrolysate treated with Glac15, respectively. CONCLUSIONS The G. lucidum laccase Glac15 has potentials in bioethanol production industry.
Collapse
Affiliation(s)
- Zemin Fang
- />School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601 China
- />Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 111 Jiulong Road, Hefei, Anhui 230601 China
| | - Xiaoman Liu
- />School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601 China
- />Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 111 Jiulong Road, Hefei, Anhui 230601 China
| | - Liyuan Chen
- />The State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, 27 Shanda Nanlu, Jinan, Shandong 250100 China
| | - Yu Shen
- />The State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, 27 Shanda Nanlu, Jinan, Shandong 250100 China
| | - Xuecheng Zhang
- />School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601 China
- />Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 111 Jiulong Road, Hefei, Anhui 230601 China
| | - Wei Fang
- />School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601 China
- />Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 111 Jiulong Road, Hefei, Anhui 230601 China
| | - Xiaotang Wang
- />Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199 USA
| | - Xiaoming Bao
- />The State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, 27 Shanda Nanlu, Jinan, Shandong 250100 China
| | - Yazhong Xiao
- />School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601 China
- />Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, 111 Jiulong Road, Hefei, Anhui 230601 China
| |
Collapse
|
37
|
Peng X, Yuan XZ, Liu H, Zeng GM, Chen XH. Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) by Laccase in Rhamnolipid Reversed Micellar System. Appl Biochem Biotechnol 2015; 176:45-55. [PMID: 25637508 DOI: 10.1007/s12010-015-1508-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/21/2015] [Indexed: 12/01/2022]
Abstract
Rhamnolipid was applied to degrade anthracene and pyrene in reversed micelles. The parameters in degradation were optimized for the purpose of improving degradation rates. The proper amount of rhamnolipid (RL) used for degrading anthracene was 0.065 mM, while 0.075 mM for pyrene. However, reaction time for degrading both anthracene and pyrene was 48 h. The optimum water content, pH, laccase concentration, polycyclic aromatic hydrocarbon (PAH) initial concentration, and volume ratio of n-hexanol to isooctane for both were found out. The highest degradation rates of anthracene and pyrene were 37.52 and 25.58%, respectively. Although the degradation rates were not higher than the results previous literatures reported, this method was of novelty and provided guidance in application in degrading PAHs by reversed micellar system, especially for biosurfactant-based reversed micelles.
Collapse
Affiliation(s)
- Xin Peng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China,
| | | | | | | | | |
Collapse
|
38
|
Wu B, Chen R, Yao Y, Gao N, Zuo L, Xu H. Mycoremediation potential of Coprinus comatus in soil co-contaminated with copper and naphthalene. RSC Adv 2015. [DOI: 10.1039/c5ra12763g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Experiments were conducted to investigate the effects of mycoremediation byCoprinus comatus(C. comatus) on the biochemical properties and lettuce growth in copper and naphthalene (Nap) co-contaminated soil.
Collapse
Affiliation(s)
- Bin Wu
- Key Laboratory for Bio-resources and Eco-environment of Education Ministry
- College of Life Science
- Sichuan University
- Chengdu 610064
- China
| | - Rong Chen
- Key Laboratory for Bio-resources and Eco-environment of Education Ministry
- College of Life Science
- Sichuan University
- Chengdu 610064
- China
| | - Yuan Yao
- Key Laboratory for Bio-resources and Eco-environment of Education Ministry
- College of Life Science
- Sichuan University
- Chengdu 610064
- China
| | - Ni Gao
- Key Laboratory for Bio-resources and Eco-environment of Education Ministry
- College of Life Science
- Sichuan University
- Chengdu 610064
- China
| | - Lei Zuo
- Key Laboratory for Bio-resources and Eco-environment of Education Ministry
- College of Life Science
- Sichuan University
- Chengdu 610064
- China
| | - Heng Xu
- Key Laboratory for Bio-resources and Eco-environment of Education Ministry
- College of Life Science
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
39
|
Martorana A, Vazquez-Duhalt R, Aguila SA, Basosi R, Baratto MC. Spectroscopic characterization of 2,6-dimethoxyphenol radical intermediates in the Coriolopsis gallica laccase-mediator system. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
40
|
Pan K, Zhao N, Yin Q, Zhang T, Xu X, Fang W, Hong Y, Fang Z, Xiao Y. Induction of a laccase Lcc9 from Coprinopsis cinerea by fungal coculture and its application on indigo dye decolorization. BIORESOURCE TECHNOLOGY 2014; 162:45-52. [PMID: 24736211 DOI: 10.1016/j.biortech.2014.03.116] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/17/2014] [Accepted: 03/21/2014] [Indexed: 05/18/2023]
Abstract
A fungal coculture system comprised of Coprinopsis cinerea Okayama 7 (#130) and Gongronella sp. w5 produced 900 times higher laccase activity than that in pure culture. A fungal laccase named Lcc9 was induced from C. cinerea for the first time by coculture. Lcc9 was purified, characterized, and found to have high activity toward phenolic substrates at the optimum pH of 6.5 and temperature of 60°C. The laccase was stable at alkaline pH values, and its activity was not significantly affected by cations and organic solvents. Lcc9 showed decolorization capability toward indigo dye in the presence of 2,2'-azino-bis(3-ethylbenzothazoline-6-sulfonate), with 75% of indigo was decolorized by 50 U/L enzyme after 1h of incubation under optimal catalytic conditions. These results showed that fungal coculture could active silent laccase gene, and the unusual properties make Lcc9 a candidate for specific industrial and environmental applications.
Collapse
Affiliation(s)
- Kai Pan
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Nannan Zhao
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Qiang Yin
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Tianwei Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Xiaolan Xu
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Wei Fang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Yuzhi Hong
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China; Modern Biotechnology Center, Anhui University, Hefei, Anhui 230039, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China.
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China.
| |
Collapse
|
41
|
Comparing the catalytic efficiency of ring substituted 1-hydroxybenzotriazoles as laccase mediators. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.02.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Spulber M, Baumann P, Saxer SS, Pieles U, Meier W, Bruns N. Poly(N-vinylpyrrolidone)-Poly(dimethylsiloxane)-Based Polymersome Nanoreactors for Laccase-Catalyzed Biotransformations. Biomacromolecules 2014; 15:1469-75. [DOI: 10.1021/bm500081j] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mariana Spulber
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Patric Baumann
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Sina S. Saxer
- Institute
of Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse
40, 4132 Muttenz, Switzerland
| | - Uwe Pieles
- Institute
of Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Gründenstrasse
40, 4132 Muttenz, Switzerland
| | - Wolfgang Meier
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Nico Bruns
- Department
of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
- Adolphe
Merkle Institute, University of Fribourg, Rte de l’Ancienne Papeterie, P.O. Box 209, 1723 Marly 1, Switzerland
| |
Collapse
|
43
|
Arakaki RL, Monteiro DA, Boscolo M, Dasilva R, Gomes E. Halotolerance, ligninase production and herbicide degradation ability of basidiomycetes strains. Braz J Microbiol 2014; 44:1207-14. [PMID: 24688513 PMCID: PMC3958189 DOI: 10.1590/s1517-83822014005000014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 04/04/2013] [Indexed: 12/01/2022] Open
Abstract
Fungi have been recently recognized as organisms able to grow in presence of high salt concentration with halophilic and halotolerance properties and their ligninolytic enzyme complex have an unspecific action enabling their use to degradation of a number of xenobiotic compounds. In this work, both the effect of salt and polyols on growth of the basidiomycetes strains, on their ability to produce ligninolytic enzyme and diuron degradation were evaluated. Results showed that the presence of NaCl in the culture medium affected fungal specimens in different ways. Seven out of ten tested strains had growth inhibited by salt while Dacryopinax elegans SXS323, Polyporus sp MCA128 and Datronia stereoides MCA167 fungi exhibited higher biomass production in medium containing 0.5 and 0.6 mol.L−1 of NaCl, suggesting to be halotolerant. Polyols such as glycerol and mannitol added into the culture media improved the biomass and ligninases production by D. elegans but the fungus did not reveal consumption of these polyols from media. This fungus degraded diuron in medium control, in presence of NaCl as well as polyols, produced MnP, LiP and laccase.
Collapse
Affiliation(s)
- R L Arakaki
- Laboratório de Bioquímica Aplicada, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho", São José do Rio Preto, SP, Brazil
| | - D A Monteiro
- Laboratório de Bioquímica Aplicada, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho", São José do Rio Preto, SP, Brazil
| | - M Boscolo
- Laboratório de Bioquímica Aplicada, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho", São José do Rio Preto, SP, Brazil
| | - R Dasilva
- Laboratório de Bioquímica Aplicada, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho", São José do Rio Preto, SP, Brazil
| | - E Gomes
- Laboratório de Bioquímica Aplicada, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista "Júlio de Mesquita Filho", São José do Rio Preto, SP, Brazil
| |
Collapse
|
44
|
Guan ZB, Song CM, Zhang N, Zhou W, Xu CW, Zhou LX, Zhao H, Cai YJ, Liao XR. Overexpression, characterization, and dye-decolorizing ability of a thermostable, pH-stable, and organic solvent-tolerant laccase from Bacillus pumilus W3. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.11.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
45
|
Production of the Phanerochaete flavido-alba laccase in Aspergillus niger for synthetic dyes decolorization and biotransformation. World J Microbiol Biotechnol 2013; 30:201-11. [DOI: 10.1007/s11274-013-1440-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
|
46
|
Divya LM, Prasanth GK, Sadasivan C. Potential of the salt-tolerant laccase-producing strain Trichoderma viride Pers. NFCCI-2745 from an estuary in the bioremediation of phenol-polluted environments. J Basic Microbiol 2013; 54:542-7. [PMID: 23712577 DOI: 10.1002/jobm.201200394] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 01/26/2013] [Indexed: 11/09/2022]
Abstract
Industrialization causes the generation of phenolic pollutants in the environment. The ability of laccases to oxidize phenolic compounds and reduce molecular oxygen to water has led to intensive studies on these enzymes. Although salt-tolerant fungi are potential sources of enzymes for industrial applications, they have been inadequately explored for laccase production. This study describes the isolation of a salt- and phenol-tolerant strain of Trichoderma sp. with the ability to produce laccase, and thus with the potential for industrial applications. The coconut husk retting ground in the estuaries of Kerala, India, a saline environment highly polluted with phenolic compounds, was selected for isolating the fungus. Enhanced laccase production was observed at 5-10 ppt salinity. The organism could grow even at 30 ppt salinity with reduced biomass production and laccase secretion. The optimum concentration of different phenolic compounds for enhanced laccase secretion ranged between 20 and 80 mg L(-1) . As the concentration of phenolic compounds increased beyond 200 mg L(-1) , the enzyme activity decreased and was completely inhibited at 800 mg L(-1) . The tolerance of Trichoderma viride Pers. NFCCI-2745 to salinity and various phenolic compounds can be utilized in the bioremediation of highly saline and phenolic compound-rich industrial effluents.
Collapse
Affiliation(s)
- L M Divya
- Department of Biotechnology and Microbiology, Kannur University, Thalassery Campus, Palayad P.O., Kannur, Kerala, India
| | | | | |
Collapse
|
47
|
Addition of maize stalks and soybean oil to a historically PCB-contaminated soil: effect on degradation performance and indigenous microbiota. N Biotechnol 2012; 30:69-79. [DOI: 10.1016/j.nbt.2012.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 07/10/2012] [Accepted: 07/13/2012] [Indexed: 11/21/2022]
|
48
|
Garg N, Bieler N, Kenzom T, Chhabra M, Ansorge-Schumacher M, Mishra S. Cloning, sequence analysis, expression of Cyathus bulleri laccase in Pichia pastoris and characterization of recombinant laccase. BMC Biotechnol 2012; 12:75. [PMID: 23092193 PMCID: PMC3558336 DOI: 10.1186/1472-6750-12-75] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 10/08/2012] [Indexed: 12/03/2022] Open
Abstract
Background Laccases are blue multi-copper oxidases and catalyze the oxidation of phenolic and non-phenolic compounds. There is considerable interest in using these enzymes for dye degradation as well as for synthesis of aromatic compounds. Laccases are produced at relatively low levels and, sometimes, as isozymes in the native fungi. The investigation of properties of individual enzymes therefore becomes difficult. The goal of this study was to over-produce a previously reported laccase from Cyathus bulleri using the well-established expression system of Pichia pastoris and examine and compare the properties of the recombinant enzyme with that of the native laccase. Results In this study, complete cDNA encoding laccase (Lac) from white rot fungus Cyathus bulleri was amplified by RACE-PCR, cloned and expressed in the culture supernatant of Pichia pastoris under the control of the alcohol oxidase (AOX)1 promoter. The coding region consisted of 1,542 bp and encodes a protein of 513 amino acids with a signal peptide of 16 amino acids. The deduced amino acid sequence of the matured protein displayed high homology with laccases from Trametes versicolor and Coprinus cinereus. The sequence analysis indicated the presence of Glu 460 and Ser 113 and LEL tripeptide at the position known to influence redox potential of laccases placing this enzyme as a high redox enzyme. Addition of copper sulfate to the production medium enhanced the level of laccase by about 12-fold to a final activity of 7200 U L-1. The recombinant laccase (rLac) was purified by ~4-fold to a specific activity of ~85 U mg-1 protein. A detailed study of thermostability, chloride and solvent tolerance of the rLac indicated improvement in the first two properties when compared to the native laccase (nLac). Altered glycosylation pattern, identified by peptide mass finger printing, was proposed to contribute to altered properties of the rLac. Conclusion Laccase of C. bulleri was successfully produced extra-cellularly to a high level of 7200 U L-1 in P. pastoris under the control of the AOX1 promoter and purified by a simple three-step procedure to homogeneity. The kinetic parameters against ABTS, Guaiacol and Pyrogallol were similar with the nLac and the rLac. Tryptic finger print analysis of the nLac and the rLac indicated altered glycosylation patterns. Increased thermo-stability and salt tolerance of the rLac was attributed to this changed pattern of glycosylation.
Collapse
Affiliation(s)
- Neha Garg
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi 110016, India
| | | | | | | | | | | |
Collapse
|
49
|
Arboleda C, Cabana H, De Pril E, Jones JP, Jiménez GA, Mejía AI, Agathos SN, Penninckx MJ. Elimination of bisphenol a and triclosan using the enzymatic system of autochthonous colombian forest fungi. ISRN BIOTECHNOLOGY 2012; 2013:968241. [PMID: 25969787 PMCID: PMC4403572 DOI: 10.5402/2013/968241] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/31/2012] [Indexed: 11/23/2022]
Abstract
Bisphenol A (BPA) and triclosan (TCS) are known or suspected potential endocrine disrupting chemicals (EDCs) which may pose a risk to human health and have an environmental impact. Enzyme preparations containing mainly laccases, obtained from Ganoderma stipitatum and Lentinus swartzii, two autochthonous Colombian forest white rot fungi (WRF), previously identified as high enzyme producers, were used to remove BPA and TCS from aqueous solutions. A Box-Behnken factorial design showed that pH, temperature, and duration of treatment were significant model terms for the elimination of BPA and TCS. Our results demonstrated that these EDCs were extensively removed from 5 mg L−1 solutions after a contact time of 6 hours. Ninety-four percent of TCS and 97.8% of BPA were removed with the enzyme solution from G. stipitatum; 83.2% of TCS and 88.2% of BPA were removed with the L. swartzii enzyme solution. After a 6-hour treatment with enzymes from G. stipitatum and L. swartzii, up to 90% of the estrogenic activity of BPA was lost, as shown by the yeast estrogen screen assay. 2,2-Azino-bis-(3-ethylthiazoline-6-sulfonate) (ABTS) was used as a mediator (laccase/mediator system) and significantly improved the laccase catalyzed elimination of BPA and TCS. The elimination of BPA in the absence of a mediator resulted in production of oligomers of molecular weights of 454, 680, and 906 amu as determined by mass spectra analysis. The elimination of TCS in the same conditions produced dimers, trimers, and tetramers of molecular weights of 574, 859, and 1146 amu. Ecotoxicological studies using Daphnia pulex to determine lethal concentration (LC50) showed an important reduction of the toxicity of BPA and TCS solutions after enzymatic treatments. Use of laccases emerges thus as a key alternative in the development of innovative wastewater treatment technologies. Moreover, the exploitation of local biodiversity appears as a potentially promising approach for identifying new efficient strains for biotechnological applications.
Collapse
Affiliation(s)
- Carolina Arboleda
- Biopolymers Group, Faculty of pharmaceutical Chemistry, University of Antioquia, Calle 67 No. 53-108, Antioquia, Colombia ; Laboratory of Microbial Physiology and Ecology, Faculty of Sciences, Université Libre de Bruxelles, Institut de Santé Publique, rue Engeland 642, 1180 Brussels, Belgium
| | - H Cabana
- Unit of Bioengineering, Université Catholique de Louvain, Croix du Sud 2, 1348 Louvain-la-Neuve, Belgium ; Department of Chemical Engineering, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, QC, Canada J1K 2R1 ; Department of Civil Engineering, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, QC, Canada J1K 2R1
| | - E De Pril
- Laboratory of Microbial Physiology and Ecology, Faculty of Sciences, Université Libre de Bruxelles, Institut de Santé Publique, rue Engeland 642, 1180 Brussels, Belgium
| | - J Peter Jones
- Department of Chemical Engineering, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, QC, Canada J1K 2R1
| | - G A Jiménez
- Laboratory of Microbial Physiology and Ecology, Faculty of Sciences, Université Libre de Bruxelles, Institut de Santé Publique, rue Engeland 642, 1180 Brussels, Belgium
| | - A I Mejía
- Biopolymers Group, Faculty of pharmaceutical Chemistry, University of Antioquia, Calle 67 No. 53-108, Antioquia, Colombia ; Group of Taxonomy and Ecology of Colombian Fungi, Institute of Biology, University of Antioquia, Calle 67 No. 53-108, Antioquia, Colombia
| | - S N Agathos
- Unit of Bioengineering, Université Catholique de Louvain, Croix du Sud 2, 1348 Louvain-la-Neuve, Belgium
| | - M J Penninckx
- Laboratory of Microbial Physiology and Ecology, Faculty of Sciences, Université Libre de Bruxelles, Institut de Santé Publique, rue Engeland 642, 1180 Brussels, Belgium
| |
Collapse
|
50
|
Lu L, Zhao M, Wang TN, Zhao LY, Du MH, Li TL, Li DB. Characterization and dye decolorization ability of an alkaline resistant and organic solvents tolerant laccase from Bacillus licheniformis LS04. BIORESOURCE TECHNOLOGY 2012; 115:35-40. [PMID: 21868217 DOI: 10.1016/j.biortech.2011.07.111] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 07/26/2011] [Accepted: 07/28/2011] [Indexed: 05/18/2023]
Abstract
A new bacterial strain exhibiting laccase activity was isolated from forest soil and was identified as Bacillus licheniformis LS04. The spore laccase of B. licheniformis LS04 demonstrated a broad pH range for catalyzing substrates. It was quite stable at high temperature and alkaline pH. There was no loss of laccase activity after 10 days incubation at pH 9.0, and about 16% of the initial activity was detected after 10h at 80°C. In addition, the spore laccase was tolerant towards 1M of NaCl and 30% of organic solvents. Reactive black 5, reactive blue 19 and indigo carmine were decolorized by the spore laccase in the absence of mediator. Meanwhile, the decolorization process was efficiently promoted when acetosyringone was present, with more than 80% of color removal in 1h at pH 6.6 or 9.0. The unusual properties indicated a high potential in industrial applications for this novel spore laccase.
Collapse
Affiliation(s)
- Lei Lu
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | | | | | | | | | | | | |
Collapse
|