1
|
Zheng X, Lin H, Du D, Li G, Alam O, Cheng Z, Liu X, Jiang S, Li J. Remediation of heavy metals polluted soil environment: A critical review on biological approaches. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116883. [PMID: 39173222 DOI: 10.1016/j.ecoenv.2024.116883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/03/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Heavy metals (HMs) pollution is a globally emerging concern. It is difficult to cost-effectively combat such HMs polluted soil environments. The efficient remediation of HMs polluted soil is crucial to protect human health and ecological security that could be carried out by several methods. Amidst, biological remediation is the most affordable and ecological. This review focused on the principles, mechanisms, performances, and influential factors in bioremediation of HMs polluted soil. In microbial remediation, microbes can alter metallic compounds in soils. They transform these compounds into their metabolism through biosorption and bioprecipitation. The secreted microbial enzymes act as transformers and assist in HMs immobilization. The synergistic microbial effect can further improve HMs removal. In bioleaching, the microbial activity can simultaneously produce H2SO4 or organic acids and leach HMs. The production of acids and the metabolism of bacteria and fungi transform metallic compounds to soluble and extractable form. The key bioleaching mechanisms are acidolysis, complexolysis, redoxolysis and bioaccumulation. In phytoremediation, hyperaccumulator plants and their rhizospheric microbes absorb HMs by roots through absorption, cation exchange, filtration, and chemical changes. Then they exert different detoxification mechanisms. The detoxified HMs are then transferred and accumulated in their harvestable tissues. Plant growth-promoting bacteria can promote phytoremediation efficiency; however, use of chelants have adverse effects. There are some other biological methods for the remediation of HMs polluted soil environment that are not extensively practiced. Finally, the findings of this review will assist the practitioners and researchers to select the appropriate bioremediation approach for a specific soil environment.
Collapse
Affiliation(s)
- Xiaojun Zheng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongjun Lin
- Jiangsu Xianghe Agricultural Development Co. LTD, Lianyungang, Jiangsu 222048, China
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of the Environment and Safety Engineering, School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Guanlin Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ohidul Alam
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zheng Cheng
- Jiangsu Xianghe Agricultural Development Co. LTD, Lianyungang, Jiangsu 222048, China
| | - Xinlin Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shan Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Jian Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
2
|
Boorboori MR, Zhang H. The effect of cadmium on soil and plants, and the influence of Serendipita indica (Piriformospora indica) in mitigating cadmium stress. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:426. [PMID: 39316191 DOI: 10.1007/s10653-024-02231-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Due to environmental pollution, the risk of cadmium stress for crops is soaring, so researchers are exploring inexpensive solutions to enhance cultivated crops in contaminated soil. Using microorganisms to reduce cadmium risk has been one of the most effective strategies in recent decades. Serendipita indica (Piriformospora indica) is one of the best endophyte fungi that, in addition to reducing heavy metal stress for crops, can significantly reduce the threat of other abiotic stresses. As part of this research, cadmium in soil has been investigated, as well as its effects on plants' morphophysiological and biochemical characteristics. The present review has also attempted to identify the role of Serendipita indica in improving the growth and performance of crops, as well as its possible effect on reducing the risk of cadmium. The results showed that Serendipita indica enhance the growth and productivity of plants in contaminated environments by improving soil quality, reducing cadmium absorption, improving the activity of antioxidant enzymes and secondary metabolites, raising water and mineral absorption, and altering morphophysiological structures.
Collapse
Affiliation(s)
- Mohammad Reza Boorboori
- College of Environment and Surveying and Mapping Engineering, Suzhou University, Suzhou, 234000, China.
| | - Haiyang Zhang
- College of Environment and Surveying and Mapping Engineering, Suzhou University, Suzhou, 234000, China.
| |
Collapse
|
3
|
Xu Y, Li Y, Xiao Z, Zhang X, Jiao J, Zhang H, Li H, Hu F, Xu L. Endogenous IAA affected fluoranthene accumulation by regulating H +-ATPase and SOD activity in ryegrass. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116315. [PMID: 38614001 DOI: 10.1016/j.ecoenv.2024.116315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/23/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
This study explores the role of endogenous indole-3-acetic acid (IAA) in modulating plant responses to pollution stress and its effect on pollutant accumulation, with a focus on fluoranthene (Flu) in ryegrass. To elucidate the mechanism, we employed an IAA promoter (α-aminobutyric acid [α-AB]) and an IAA inhibitor (naphthylphthalamic acid [NPA]) to regulate IAA levels and analyze Flu uptake characteristics. The experimental setup included a Flu treatment group (ryegrass with Flu addition) and a control group (ryegrass without Flu). Our findings demonstrate that Flu treatment enhanced IAA content and plant growth in ryegrass compared to the control. The Flu+AB treatment further enhanced these effects, while the Flu+NPA treatment exhibited a contrasting trend. Moreover, Flu+AB treatment led to increased Flu accumulation, in contrast to the inhibitory effect observed with Flu+NPA treatment. Flu treatment also enhanced the activities of key antioxidant enzymes (SOD, POD, CAT) and increased soluble sugar and protein levels, indicative of enzymatic and nonenzymatic defense responses, respectively. The Flu+AB treatment amplified these responses, whereas the Flu+NPA treatment attenuated them. Significantly, Flu treatment raised H+-ATPase activity compared to the control, an effect further elevated by Flu+AB treatment and diminished by Flu+NPA treatment. A random forest analysis suggested that Flu accumulation dependency varied under different treatments: it relied more on H+-ATPase activity under Flu+AB treatment and more on SOD activity under Flu+NPA treatment. Additionally, Flu+AB treatment boosted the transpiration rate in ryegrass, thereby increasing the Flu translocation factor, a trend reversed by Flu+NPA treatment. This research highlights crucial factors influencing Flu accumulation in ryegrass, offering potential new avenues for controlling the gathering of contaminants within plant systems.
Collapse
Affiliation(s)
- Yuanzhou Xu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yunyun Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhuoliang Xiao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xinyue Zhang
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jiaguo Jiao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Huijuan Zhang
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Huixin Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Li Xu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China; Sanya Institute of Nanjing Agricultural University, Sanya, People's Republic of China.
| |
Collapse
|
4
|
Fu Q, Hu T, Yang Y, Zhao M. Transcriptome analysis reveals phenanthrene degradation strategy of Pseudomonas stutzeri LH-42. 3 Biotech 2023; 13:65. [PMID: 36718409 PMCID: PMC9883372 DOI: 10.1007/s13205-023-03473-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 01/02/2023] [Indexed: 01/28/2023] Open
Abstract
Toxic polycyclic aromatic hydrocarbons (PAHs) are often released into the environment during the combustion and processing of fossil fuels and are capable of causing significant pollution to people and the environment. One of the representative substances of PAHs is phenanthrene, which is often studied as a model compound for PAHs treatment. In this study, we compared the results of transcriptome analysis of Pseudomonas stutzeri LH-42 in two different culture conditions under phenanthrene-induced culture (test group) and glucose-induced culture (control group), and analysed the key enzymatic mechanisms of Pseudomonas stutzeri LH-42 in the biodegradation of phenanthrene. In our experiments, the transcriptome results showed that a total of 380 genes were more than twofold differentially expressed in the test group, of which 187 genes were significantly up-regulated in expression under Phenanthrene induction. Among the 380 differentially expressed genes, 90 genes were involved in Phenanthrene biodegradation, mainly including genes involved in biometabolism, cellular chemotaxis, substrate transport, signal induction and other related processes. Based on the transcriptome sequence analysis of Pseudomonas stutzeri LH-42 at the time of phenanthrene induction, a total of 25 dioxygenase genes were identified, and the related genes were mainly concentrated in two relatively concentrated clusters of PAHs biodegradation genes. The transcriptome analysis resulted in a complete set of enzyme genes related to the phenanthrene biodegradation pathway. The analysis of key enzymes led to the inference of a possible phenanthrene biodegradation pathway: the salicylic acid degradation pathway. The results of this study provide a theoretical basis for in situ remediation of PAHs-contaminated environments using Pseudomonas stutzeri LH-42. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03473-7.
Collapse
Affiliation(s)
- Qiang Fu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 Hunan China
| | - Tingting Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 Hunan China
| | - Yu Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 Hunan China
| | - Mengshi Zhao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083 Hunan China
| |
Collapse
|
5
|
Gawryluk A, Stępniowska A, Lipińska H. Effect of soil contamination with polycyclic aromatic hydrocarbons from drilling waste on germination and growth of lawn grasses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113492. [PMID: 35395602 DOI: 10.1016/j.ecoenv.2022.113492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
In many studies, grasses were used to increase the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in soil because they are the most common plant species on the ground level and are quite resistant to contamination with these compounds. One of the main failures in PAH remediation in soil using plant species was the negative impact on germination and seedling growth. The objective of this study was to evaluate grass seed germination and seedling growth affected by drill cuttings to determine the resistance of selected grass species to the impact of PAH and their suitability for an effective phytoremediation of soils contaminated with waste that contain compounds from this group. In the study four grass species: tall fescue (Festuca arundinacea), red fescue (Festuca rubra), perennial ryegrass (Lolium perenne) and common meadow-grass (Poa pratensis). The germination energy of all species decreased as the amount of drill cuttings increased. Among the species studied, the highest germination energy and capacity were found in Lolium perenne (54.1 and 73.2 respectively), and the lowest - in Poa pratensis (16.7 and 23.3 respectively). With an increasing amount of drill cuttings, the root and seedling height were decreased. Festuca arundinacea seedlings were distinctly the highest and had the longest roots (96.7 and 52.7, respectively), while Poa pratensis seedlings showed the significantly slowest seedling and root elongation rate (30.4 and 12.4, respectively). However, the strongest decrease in seedling height and root length compared to the control was observed in Festuca rubra. Based on IC50, the greatest tolerance to the addition of drilling waste to the substrate was found for Festuca arundinacea and Festuca rubra. The conducted investigation indicates that Festuca arundinacea and Lolium perenne are grass species that are least sensitive to drilling waste in the substrate because no significant differences were found in root length and seedling height between the control soil and the soil where a PAH dose of 5% and 10% was applied.
Collapse
Affiliation(s)
- Adam Gawryluk
- Department of Grassland and Landscape Shaping, Faculty of Agrobioengineering,University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| | - Anna Stępniowska
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy,University of Life Science in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| | - Halina Lipińska
- Department of Grassland and Landscape Shaping, Faculty of Agrobioengineering,University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| |
Collapse
|
6
|
Li Y, Ma J, Li Y, Xiao C, Shen X, Chen J, Xia X. Nitrogen addition facilitates phytoremediation of PAH-Cd cocontaminated dumpsite soil by altering alfalfa growth and rhizosphere communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150610. [PMID: 34597578 DOI: 10.1016/j.scitotenv.2021.150610] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Thousands of unlined landfills and open dumpsites seriously threatened the safety of soil and groundwater due to leachate leakage with a mass of pollutants, particularly heavy metals, organic contaminants and ammonia. Phytoremediation is widely used in the treatment of cocontaminated soils because it is cost-effective and environmentally friendly. However, the extent to which phytoremediation efficiency and plant physiological responses are affected by the high nitrogen (N) content in such cocontaminated soil is still uncertain. Here, pot experiments were conducted to investigate the effects of N addition on the applicability of legume alfalfa remediation for polycyclic aromatic hydrocarbon‑cadmium (PAHCd) co-/contaminated soil and the corresponding microbial regulation mechanism. The results showed that the PAH dissipation rates and Cd removal rates in the high-contamination groups increased with the external N supply, among which the pyrene dissipation rates in the cocontaminated soil was elevated most significantly, from 78.10% to 87.25%. However, the phytoremediation efficiency weakened in low cocontaminated soil, possibly because the excessive N content had inhibitory effects on the rhizobium Ensifer and restrained alfalfa growth. Furthermore, the relative abundance of PAH-degrading bacteria in the rhizosphere dominated PAH dissipation. As reflected by principal coordinate analysis (PCoA) analysis and hierarchical dendrograms, the microbial community composition changed with N addition, and a more pronounced shift was found in the rhizosphere relative to the endosphere or shoots of alfalfa. This study will provide a theoretical basis for legume plant remediation of dumpsites as well as soil contaminated with multiple pollutants.
Collapse
Affiliation(s)
- Yijia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, HaiDian District, Beijing 100875, PR China.
| | - Junwei Ma
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, HaiDian District, Beijing 100875, PR China.
| | - Yuqian Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, HaiDian District, Beijing 100875, PR China.
| | - Chen Xiao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, HaiDian District, Beijing 100875, PR China.
| | - Xinyi Shen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, HaiDian District, Beijing 100875, PR China.
| | - Jiajun Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, HaiDian District, Beijing 100875, PR China.
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, HaiDian District, Beijing 100875, PR China.
| |
Collapse
|
7
|
Li L, Zhu P, Wang X, Zhang Z. Phytoremediation effect of Medicago sativa colonized by Piriformospora indica in the phenanthrene and cadmium co-contaminated soil. BMC Biotechnol 2020; 20:20. [PMID: 32345267 PMCID: PMC7187505 DOI: 10.1186/s12896-020-00613-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 04/21/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The coexistence of polycyclic aromatic hydrocarbons (PAHs) and heavy metals has deleterious effects on environmental quality. Few reports have studied the mechanisms of plant inoculation with Piriformospora indica to remediate PAH-metal co-contaminated soil by analyzing the chemical speciation of the contaminants. This study investigated the influence of the inoculation of Medicago sativa with P. indica to remediate soil co-contaminated with phenanthrene (a kind of PAH) and cadmium (a heavy metal) by analyzing plant growth, physiological parameters and chemical speciation in rhizosphere and nonrhizosphere soils. RESULTS The presence of P. indica significantly increased plant tolerance, chlorophyll a, chlorophyll b, maximum quantum efficiency of PSII photochemistry and electron transport rate values in phenanthrene- and/or cadmium-contaminated soil. P. indica inoculation in M. sativa roots increased fluorescein diacetate activities in soils contaminated with phenanthrene, cadmium or both, especially in the nonrhizosphere. The presence of phenanthrene prevented the inoculated plant from accumulating cadmium to some extent, whereas the presence of cadmium did not prevent the degradation of phenanthrene in either the rhizosphere or the nonrhizosphere after P. indica colonization. Although the low bioavailability of cadmium in the rhizosphere restricted its transportation into the stem, P. indica colonization in plants effectively increased cadmium accumulation in roots in soil co-contaminated with cadmium and phenanthrene. CONCLUSIONS In conclusion, this work provides a theoretical basis for the use of P. indica combined with M. sativa for the remediation of PAH-metal co-contaminated soil.
Collapse
Affiliation(s)
- Liang Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China. .,National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, Tianjin, China.
| | - Pengyue Zhu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China.,School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaoyang Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Zhenhua Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| |
Collapse
|
8
|
Xu C, Yang W, Wei L, Huang Z, Wei W, Lin A. Enhanced phytoremediation of PAHs-contaminated soil from an industrial relocation site by Ochrobactrum sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8991-8999. [PMID: 31321730 DOI: 10.1007/s11356-019-05830-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Nowadays, the remediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soil has received wide attention. In this work, Ochrobactrum sp. (PW) was isolated through selective enrichment from PAHs-contaminated soil in coking plant of Beijing, and the effects of PW on phytoremediation of that soil by alfalfa (Medicago sativa L.) and ryegrass (Lolium multiflorum Lam.) were investigated through pot experiments. Plant biomass, peroxidase (POD) activity, malondialdehyde (MDA) contents, soil enzyme activity (polyphenol oxidase and dehydrogenase activity), and residual concentration of PAHs in soils were determined to illustrate the ability of PW for enhancing the degradation of PAHs by plants. The results showed that the fresh weight of ryegrass and alfalfa inoculated with PW was significantly (p < 0.05) increased while the activity of POD and MDA contents were notably (p < 0.05) reduced than that without inoculation. Additionally, PW enhanced the activity of polyphenol oxidase and dehydrogenase in soil significantly (p < 0.05), and further enhanced the degradability of the system to PAHs. Different treatment methods could be ranked by the following order according to the degradability: SP (alfalfa + PW) > RP (ryegrass + PW) > PW (PW) > S (alfalfa) > R (ryegrass). The combined action of PW and alfalfa/ryegrass could accelerate the degradability of PAHs from soil contaminated by coking plants. PW could be used as potential bacteria to promote phytoremediation of the soil contaminated by PAHs.
Collapse
Affiliation(s)
- Congbin Xu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Wenjie Yang
- Chinese Academy for Environmental Planning, Beijing, 100012, People's Republic of China
| | - Lianshuang Wei
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zeyu Huang
- School of International Education, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Wenxia Wei
- Beijing Key Laboratory of Industrial Land Contamination and Remediation, Environmental Protection Research Institute of Light Industry, Beijing, 100089, People's Republic of China.
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
9
|
Oniosun S, Harbottle M, Tripathy S, Cleall P. Plant growth, root distribution and non-aqueous phase liquid phytoremediation at the pore-scale. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 249:109378. [PMID: 31445373 DOI: 10.1016/j.jenvman.2019.109378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 07/09/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
The success of phytoremediation is dependent on the exposure of plants to contaminants, which is controlled by root distribution, physicochemical characteristics, and contaminant behavior in the soil environment. Whilst phytoremediation has been successful in remediating hydrocarbons and other organic contaminants, there is little understanding of the impact of non-aqueous phase liquids (NAPLs) on plant behavior, root architecture and the resulting impact of this on phytoremediation. Light NAPLs (LNAPLs) may be present in pore spaces in the capillary zone as a continuous or semi-continuous phase, or as unconnected ganglia which act as individual contaminant sources. Experimental work with ryegrass (Lolium perenne) grown under hydroponic conditions in idealised pore scale models is presented, exploring how plant growth, root distribution and development, and oil removal are affected through direct physical contact with a model LNAPL (mineral oil). In the presence of low levels of LNAPL, a significant decrease in root length was observed, whilst at higher LNAPL levels root lengths increased due to root diversion and spreading, with evidence of root redistribution in the case of LNAPL contamination across multiple adjacent pores. Changes to root morphology were also observed in the presence of LNAPL with plant roots coarse and crooked compared to long, fine and smooth roots in uncontaminated columns. Root and shoot biomass also appear to be impacted by the LNAPL although the effects are complex, affected by both root diversion and thickening. Substantial levels of LNAPL removal were observed, with roots close to LNAPL sources able to remove dissolved-phase contamination, and root growth through LNAPL sources suggest that direct uptake/degradation is possible.
Collapse
Affiliation(s)
- Sunday Oniosun
- Cardiff School of Engineering, Cardiff University, Queen's Buildings, The Parade, Cardiff, Wales, CF24 3AA, United Kingdom.
| | - Michael Harbottle
- Cardiff School of Engineering, Cardiff University, Queen's Buildings, The Parade, Cardiff, Wales, CF24 3AA, United Kingdom.
| | - Snehasis Tripathy
- Cardiff School of Engineering, Cardiff University, Queen's Buildings, The Parade, Cardiff, Wales, CF24 3AA, United Kingdom.
| | - Peter Cleall
- Cardiff School of Engineering, Cardiff University, Queen's Buildings, The Parade, Cardiff, Wales, CF24 3AA, United Kingdom.
| |
Collapse
|
10
|
Lu C, Hong Y, Liu J, Gao Y, Ma Z, Yang B, Ling W, Waigi MG. A PAH-degrading bacterial community enriched with contaminated agricultural soil and its utility for microbial bioremediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:773-782. [PMID: 31121542 DOI: 10.1016/j.envpol.2019.05.044] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/21/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
A bacterial community was enriched with polycyclic aromatic hydrocarbons (PAHs) polluted soil to better study PAH degradation by indigenous soil bacteria. The consortium degraded more than 52% of low molecular weight and 35% of high molecular weight (HMW) PAHs during 16 days in a soil leachate medium. 16S rRNA gene high-throughput sequencing and quantitative polymerase chain reaction analyses for alpha subunit genes of ring-hydroxylating-dioxygenase (RHDα) suggested that Proteobacteria and Actinobacteria at the phylum level, Pseudomonas, Methylobacillus, Nocardioides, Methylophilaceae, Achromobacter, Pseudoxanthomonas, and Caulobacter at the generic level were involved in PAH degradation and might have the ability to carry RHDα genes (nidA and nahAc). The community was selected and collected according to biomass and RHDα gene contents, and added back to the PAH-polluted soil. The 16 EPA priority PAHs decreased from 95.23 to 23.41 mg kg-1 over 35 days. Compared with soil without the introduction of this bacterial community, adding the community with RHDα genes significantly decreased soil PAH contents, particularly HMW PAHs. The metabolic rate of PAHs in soil was positively correlated with nidA and nahAc gene contents. These results indicate that adding an indigenous bacterial consortium containing RHDα genes to contaminated soil may be a feasible and environmentally friendly method to clean up PAHs in agricultural soil.
Collapse
Affiliation(s)
- Chao Lu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Hong
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhao Ma
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bing Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
11
|
Thomas F, Corre E, Cébron A. Stable isotope probing and metagenomics highlight the effect of plants on uncultured phenanthrene-degrading bacterial consortium in polluted soil. THE ISME JOURNAL 2019; 13:1814-1830. [PMID: 30872807 PMCID: PMC6775975 DOI: 10.1038/s41396-019-0394-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/08/2019] [Accepted: 02/28/2019] [Indexed: 11/09/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous soil pollutants. The discovery that plants can stimulate microbial degradation of PAHs has promoted research on rhizoremediation strategies. We combined DNA-SIP with metagenomics to assess the influence of plants on the identity and metabolic functions of active PAH-degrading bacteria in contaminated soil, using phenanthrene (PHE) as a model hydrocarbon. 13C-PHE dissipation was 2.5-fold lower in ryegrass-planted conditions than in bare soil. Metabarcoding of 16S rDNA revealed significantly enriched OTUs in 13C-SIP incubations compared to 12C-controls, namely 130 OTUs from bare soil and 73 OTUs from planted soil. Active PHE-degraders were taxonomically diverse (Proteobacteria, Actinobacteria and Firmicutes), with Sphingomonas and Sphingobium dominating in bare and planted soil, respectively. Plant root exudates favored the development of PHE-degraders having specific functional traits at the genome level. Indeed, metagenomes of 13C-enriched DNA fractions contained more genes involved in aromatic compound metabolism in bare soil, whereas carbohydrate catabolism genes were more abundant in planted soil. Functional gene annotation allowed reconstruction of complete pathways with several routes for PHE catabolism. Sphingomonadales were the major taxa performing the first steps of PHE degradation in both conditions, suggesting their critical role to initiate in situ PAH remediation. Active PHE-degraders act in a consortium, whereby complete PHE mineralization is achieved through the combined activity of taxonomically diverse co-occurring bacteria performing successive metabolic steps. Our study reveals hitherto underestimated functional interactions for full microbial detoxification in contaminated soils.
Collapse
Affiliation(s)
- François Thomas
- Université de Lorraine, CNRS, LIEC, 54500, Nancy, France
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680, Roscoff, France
| | - Erwan Corre
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Aurélie Cébron
- Université de Lorraine, CNRS, LIEC, 54500, Nancy, France.
| |
Collapse
|
12
|
Hussain I, Puschenreiter M, Gerhard S, Sani SGAS, Khan WUD, Reichenauer TG. Differentiation between physical and chemical effects of oil presence in freshly spiked soil during rhizoremediation trial. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18451-18464. [PMID: 31044381 PMCID: PMC6570674 DOI: 10.1007/s11356-019-04819-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/07/2019] [Indexed: 05/05/2023]
Abstract
Petroleum contamination and its remediation via plant-based solutions have got increasing attention by environmental scientists and engineers. In the current study, the physiological and growth responses of two diesel-tolerant plant species (tolerance limit: 1500-2000 mg/kg), Italian ryegrass (Lolium multiflorum) and Birdsfoot trefoil (Lotus corniculatus), have been investigated in vegetable oil- and diesel oil-amended soils. A long-term (147-day) greenhouse pot experiment was conducted to differentiate the main focus of the study: physical and chemical effects of oil (vegetable and diesel) in freshly spiked soils via evaluating the plant performance and hydrocarbon degradation. Moreover, plant performance was evaluated in terms of seed germination, plant shoot biomass, physiological parameters, and root biomass. Addition of both diesel oil and vegetable oil in freshly spiked soils showed deleterious effects on seedling emergence, root/shoot biomass, and chlorophyll content of grass and legume plants. Italian ryegrass showed more sensitivity in terms of germination rate to both vegetable and diesel oil as compared to non-contaminated soils while Birdsfoot trefoil reduced the germination rate only in diesel oil-impacted soils. The results of the current study suggest that both physical and chemical effects of oil pose negative effects of plant growth and root development. This observation may explain the phenomenon of reduced plant growth in aged/weathered contaminated soils during rhizoremediation experiments.
Collapse
Affiliation(s)
- Imran Hussain
- AIT Austrian Institute of Technology, Centre for Energy, Environmental Resources and Technologies, Tulln, Austria.
- Department of Molecular Systems Biology, Faculty of Life sciences, University of Vienna, Vienna, Austria.
- Department of Natural Resources and Environmental Engineering, Bioenergy and Environmental Remediation Lab (BERL), Hanyang, South Korea.
| | - Markus Puschenreiter
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Straße 24, A-3430, Tulln, Austria
| | - Soja Gerhard
- AIT Austrian Institute of Technology, Centre for Energy, Environmental Resources and Technologies, Tulln, Austria
| | | | - Waqas-Us-Din Khan
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Thomas G Reichenauer
- AIT Austrian Institute of Technology, Centre for Energy, Environmental Resources and Technologies, Tulln, Austria.
| |
Collapse
|
13
|
Rathna R, Varjani S, Nakkeeran E. Recent developments and prospects of dioxins and furans remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 223:797-806. [PMID: 29986327 DOI: 10.1016/j.jenvman.2018.06.095] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/10/2018] [Accepted: 06/30/2018] [Indexed: 05/18/2023]
Abstract
Rapid urbanization and industrialization of anthropogenic activities have exerted immense pressure on the environment. Polyhalogenated organic compounds, especially dioxins and furans are regarded as ubiquitously persistent environmental pollutants in the ecosystem. The recalcitrant nature of dioxins and furans induce toxicity in both humans and wildlife. Dioxins and furans are generated by defective technological chemical processes that occur during the manufacture of herbicides and pesticides, use of fertilizers, bleaching of paper and wood pulp and incomplete combustion process. However, incineration and incomplete combustion of solid waste are the main cause for the discharge of dioxins and furans to the environment. During incineration and incomplete combustion, noxious flue gas and ashes are released into the atmosphere and contaminate the soil and water systems; thereby affecting the ecology. According to World Health Organization fact sheet 2016, more than 90% of human exposure to dioxins is through the food chain, especially from dairy products, seafood and meat. These pollutants are mutagenic, carcinogenic, immunotoxic and teratogenic for lower and higher forms of life i.e. microorganisms to humans. This review describes the sources of dioxins and furans pollution, hazardous effects on the ecosystem and recent techniques to minimize and treat dioxins and furans contaminants in the environment. This paper also previews the significance of conventional and latest remediation techniques prevailing around the globe for treating dioxins and furans entry into the ecosystem.
Collapse
Affiliation(s)
- Ravichandran Rathna
- Research Laboratory, Department of Biotechnology, Sri Venkateswara College of Engineering (Autonomous), Sriperumbudur Tk, 602 117, Tamil Nadu, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Sector-10A, Gandhinagar, 382 010, Gujarat, India
| | - Ekambaram Nakkeeran
- Research Laboratory, Department of Biotechnology, Sri Venkateswara College of Engineering (Autonomous), Sriperumbudur Tk, 602 117, Tamil Nadu, India.
| |
Collapse
|
14
|
Vasudevan V, Gayathri KV, Krishnan MEG. Bioremediation of a pentacyclic PAH, Dibenz(a,h)Anthracene- A long road to trip with bacteria, fungi, autotrophic eukaryotes and surprises. CHEMOSPHERE 2018; 202:387-399. [PMID: 29579674 DOI: 10.1016/j.chemosphere.2018.03.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/15/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
Dibenz(a,h)Anthracene (DBahA), classified as a probable human carcinogen (B2) is the first Poly Aromatic Hydrocarbons (PAH) to be chemically purified and used for cancer-based studies. Till date, only 30 papers focus on the bioremediation aspects of DBahA out of more than 200 research publications for each of the other 15 priority PAHs. Thus, the review raises an alarm and calls for efficient bioremediation strategies for considerable elimination of this compound from the environment. This article reviews and segregates the available papers on DBahA bioremoval from the beginning till date into bacteria, fungi and plant-mediated remediation and offers suggestions for the most competent and cost-effective modes to bioremove DBahA from the environment. One of the proficient ways to get rid of this PAH could with the use of biosurfactant-enriched bacterial consortium in DBahA polluted environment, which is given considerable importance here. Among the bacterial and fungal microbiomes, unquestionably the former are the beneficiaries which utilize the breakdown products of this PAH metabolized by the latter. Nevertheless, the use of plant communities for efficient DBahA utilization through fibrous root system is also discussed at length. The current status of DBahA as reflected by the publications at https://www.ncbi.nlm.nih.gov and recommendations among the explored groups [bacterial/fungal/plant communities] for better DBahA elimination are pointed out. Finally, the review emphasizes the pros and cons of all the methodologies used for selective/combinatorial removal of DBahA and present the domain to the researchers to carry forward by incorporating their individual ideas.
Collapse
Affiliation(s)
- Vidya Vasudevan
- Department of Biotechnology, Sri Ramachandra Medical College and Research Institute, (Deemed to Be University), Porur, Chennai, 600 116, India
| | - K Veena Gayathri
- Department of Biotechnology, Stella Maris College, Cathedral Road, Chennai, 600 086, India
| | - Mary Elizabeth Gnanambal Krishnan
- Department of Biotechnology, Sri Ramachandra Medical College and Research Institute, (Deemed to Be University), Porur, Chennai, 600 116, India.
| |
Collapse
|
15
|
Panchenko L, Muratova A, Dubrovskaya E, Golubev S, Turkovskaya O. Dynamics of natural revegetation of hydrocarbon-contaminated soil and remediation potential of indigenous plant species in the steppe zone of the southern Volga Uplands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:3260-3274. [PMID: 29147987 DOI: 10.1007/s11356-017-0710-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
The result of monitoring of natural vegetation growing on oil-contaminated (2.0-75.6 g/kg) and uncontaminated (0.04-2.0 g/kg) soils of a petroleum refinery for a period of 13 years is presented. Floristic studies showed that the families Poaceae, Asteraceae, Fabaceae, and eventually Brassicaceae were predominant in the vegetation cover of both types of soils. Over time, the projective vegetation cover of the contaminated sites increased from 46 to 90%; the species diversity increased twofold: in the ecological-cenotic structure of the flora, the number of ruderal plant species decreased; and the number of steppe, i.e., zonal, plant species increased. Using 62 dominant plant species, we conducted a field study of plant characteristics such as resistance to oil pollution, the ability to enrich the rhizosphere soil with microorganisms and bioavailable mineral nitrogen, and reduction of the concentration of petroleum hydrocarbons. The results enable us to characterize the phytoremediation potential (PRP) of the native plants and identify species that, probably, played a key role in the natural restoration of oil-contaminated soils. Statistical analysis showed correlations between the PRP constituents, and the leading role of rhizosphere microorganisms in the rhizodegradation of petroleum hydrocarbons was proven. A conditional value of PRP was proposed which allowed the investigated plants to be ranked in 11 classes. The study of a large sample of plant species showed that some plants held promise for the use in reclamation of soils in arid steppe zone, and that other species can be used for the rehabilitation of saline soils and semideserts.
Collapse
Affiliation(s)
- Leonid Panchenko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, Russia, 410049.
| | - Anna Muratova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, Russia, 410049
| | - Ekaterina Dubrovskaya
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, Russia, 410049
| | - Sergey Golubev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, Russia, 410049
| | - Olga Turkovskaya
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov, Russia, 410049
| |
Collapse
|
16
|
Kaur N, Erickson TE, Ball AS, Ryan MH. A review of germination and early growth as a proxy for plant fitness under petrogenic contamination - knowledge gaps and recommendations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 603-604:728-744. [PMID: 28372821 DOI: 10.1016/j.scitotenv.2017.02.179] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 05/20/2023]
Abstract
Germination-an important stage in the life cycle of plants-is susceptible to the presence of soil contaminants. Since the early 1990s, the use of germination tests to screen multiple plant species to select candidates for phytoremediation has received much attention. This is due to its inexpensive methodology and fast assessment relative to greenhouse or field growth studies. Surprisingly, no comprehensive synthesis is available of these studies in the scientific literature. As more plant species are added to phytoremediation databases, it is important to encapsulate the knowledge thus far and revise protocols. In this review, we have summarised previously-documented effects of petroleum hydrocarbons on germination and seedling growth. The methods and materials of previous studies are presented in tabulated form. Common practice includes the use of cellulose acetate filter paper, plastic Petri dishes, and low numbers of seeds and replicates. A general bias was observed for the screening of cultivated crops as opposed to native species, even though the latter may be better suited to site conditions. The relevance of germination studies as important ecotoxicological tools is highlighted with the proposed use of root imaging software. Screening of novel plant species, particularly natives, is recommended with selection focussed on (i) species phylogeny, (ii) plant morphological and functional traits, and (iii) tolerance towards harsh environmental stresses. Recommendations for standardised protocols for germination and early growth monitoring are made in order to improve the robustness of statistical modelling and species selection in future phytoremediation evaluations and field programs.
Collapse
Affiliation(s)
- Navjot Kaur
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Todd E Erickson
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Kings Park and Botanic Garden, Fraser Ave, Kings Park, WA 6005, Australia
| | - Andrew S Ball
- School of Science, Centre for Environmental Sustainability and Remediation, RMIT University, Plenty Road, Bundoora, Victoria 3083, Australia
| | - Megan H Ryan
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
17
|
Płociniczak T, Fic E, Pacwa-Płociniczak M, Pawlik M, Piotrowska-Seget Z. Improvement of phytoremediation of an aged petroleum hydrocarbon-contaminated soil by Rhodococcus erythropolis CD 106 strain. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:614-620. [PMID: 28103078 DOI: 10.1080/15226514.2016.1278420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The aim of this study was to assess the impact of soil inoculation with the Rhodococcus erythropolis CD 106 strain on the effectiveness of the phytoremediation of an aged hydrocarbon-contaminated [approx. 1% total petroleum hydrocarbon (TPH)] soil using ryegrass (Lolium perenne). The introduction of CD 106 into the soil significantly increased the biomass of ryegrass and the removal of hydrocarbons in planted soil. The fresh weight of the shoots and roots of plants inoculated with CD 106 increased by 49% and 30%, respectively. After 210 days of the experiment, the concentration of TPH was reduced by 31.2%, whereas in the planted, non-inoculated soil, it was reduced by 16.8%. By contrast, the concentration of petroleum hydrocarbon decreased by 18.7% in non-planted soil bioaugmented with the CD 106 strain. The rifampicin-resistant CD 106 strain survived after inoculation into soil and was detected in the soil during the entire experimental period, but the number of CD 106 cells decreased constantly during the enhanced phytoremediation and bioaugmentation experiments. The plant growth-promoting and hydrocarbon-degrading properties of CD 106, which are connected with its long-term survival and limited impact on autochthonous microflora, make this strain a good candidate for improving the phytoremediation efficiency of soil contaminated with hydrocarbons.
Collapse
Affiliation(s)
- Tomasz Płociniczak
- a Department of Microbiology , University of Silesia , Katowice , Poland
| | - Ewa Fic
- a Department of Microbiology , University of Silesia , Katowice , Poland
| | | | - Małgorzata Pawlik
- a Department of Microbiology , University of Silesia , Katowice , Poland
| | | |
Collapse
|
18
|
Chen X, Liu X, Zhang X, Cao L, Hu X. Phytoremediation effect of Scirpus triqueter inoculated plant-growth-promoting bacteria (PGPB) on different fractions of pyrene and Ni in co-contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2017; 325:319-326. [PMID: 27951500 DOI: 10.1016/j.jhazmat.2016.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/07/2016] [Accepted: 12/03/2016] [Indexed: 05/27/2023]
Abstract
At present, few reveal the mechanism of inoculation plants with PGPB to remediate PAH-metal co-contaminated soil by analyzing the chemical speciations of contaminants. This study investigated the influence of inoculation plants with PGPB on different fractions of pyrene and Ni in rhizospheric and non-rhizospheric soil. The results demonstrated that the addition of PGPB brought the extensive increase of FDA activities in pyrene-Ni co-contaminated soil. PGPB increased the resistance of plants in nickel and pyrene-Ni contaminated soil, but decreased the plant biomass in single pyrene contaminated soil. The addition of PGPB efficiently decreased bioaccessible fractions of pyrene and increased the bioavailability of Ni in both rhizospheric and non-rhizospheric soil. Although inoculation plants with PGPB significantly increased the accumulation of Ni in single Ni and pyrene-Ni co-contaminated soil, the poor bioavailability of Ni in rhizospheric soil still restricted the phytoremediation of the heavy metal. The presence of pyrene hindered the inoculated plant from accumulating Ni to some extent. On the contrary, the presence of Ni significantly promoted the degradation of pyrene in both rhizospheric and non-rhizospheric soil after inoculation plants with PGPB.
Collapse
Affiliation(s)
- Xiao Chen
- Laboratory of environmental remediation, College of environmental and chemical engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoyan Liu
- Laboratory of environmental remediation, College of environmental and chemical engineering, Shanghai University, Shanghai 200444, China.
| | - Xinying Zhang
- Laboratory of environmental remediation, College of environmental and chemical engineering, Shanghai University, Shanghai 200444, China
| | - Liya Cao
- Laboratory of environmental remediation, College of environmental and chemical engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoxin Hu
- Laboratory of environmental remediation, College of environmental and chemical engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
19
|
Cennerazzo J, de Junet A, Audinot JN, Leyval C. Dynamics of PAHs and derived organic compounds in a soil-plant mesocosm spiked with 13C-phenanthrene. CHEMOSPHERE 2017; 168:1619-1627. [PMID: 27939509 DOI: 10.1016/j.chemosphere.2016.11.145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/27/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) are ubiquitous and persistent soil pollutants. Their fate and the influence of the plant rhizosphere on their dynamics has been extensively studied, but studies mainly focused on their dissipation rate. We conducted a plant-soil mesocosm experiment to study the fate and distribution of PAHs or derived compounds in the extractable fraction, the residual soil, the shoot biomass and the root biomass. The experiment was conducted for 21 days using ryegrass and a forest soil spiked with 13C-labeled phenanthrene (PHE), using combined IRMS and NanoSIMS for analyses. Almost 90% of the initial extractable PHE content was dissipated within 3 weeks, but no rhizospheric effect was highlighted on PHE dissipation. More than 40% of 13C-PHE was still in the soil at the end of the experiment, but not as PHE or PAH-derived compounds. Therefore it was under the form of new compounds (metabolites) and/or had been incorporated into the microbial biomass. About 0.36% of the initial 13C-PHE was recovered in the root and shoot tissues, representing similar 13C enrichment (E13C) as in the soil (E13C ≈ 0.04 at.%). Using NanoSIMS, 13C was also localized at the microscale in the roots and their close environment. Global 13C enrichment confirmed the results obtained by IRMS. Some hotspots of 13C enrichment were found, with a high 32S/12C14N ratio. Comparing the ratios, sizes and shapes of these hotspots suggested that they could be bacteria.
Collapse
Affiliation(s)
- Johanne Cennerazzo
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360, Vandœuvre-lès-Nancy, F-54506, France; CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360, Vandœuvre-lès-Nancy, F-54506, France
| | - Alexis de Junet
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360, Vandœuvre-lès-Nancy, F-54506, France; CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360, Vandœuvre-lès-Nancy, F-54506, France.
| | - Jean-Nicolas Audinot
- Advanced Instrumentation for Ion Nano-Analytics, Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 41 rue du Brill, L-4422, Luxembourg
| | - Corinne Leyval
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360, Vandœuvre-lès-Nancy, F-54506, France; CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360, Vandœuvre-lès-Nancy, F-54506, France
| |
Collapse
|
20
|
Kuppusamy S, Thavamani P, Venkateswarlu K, Lee YB, Naidu R, Megharaj M. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions. CHEMOSPHERE 2017; 168:944-968. [PMID: 27823779 DOI: 10.1016/j.chemosphere.2016.10.115] [Citation(s) in RCA: 339] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 05/22/2023]
Abstract
For more than a decade, the primary focus of environmental experts has been to adopt risk-based management approaches to cleanup PAH polluted sites that pose potentially destructive ecological consequences. This focus had led to the development of several physical, chemical, thermal and biological technologies that are widely implementable. Established remedial options available for treating PAH contaminated soils are incineration, thermal conduction, solvent extraction/soil washing, chemical oxidation, bioaugmentation, biostimulation, phytoremediation, composting/biopiles and bioreactors. Integrating physico-chemical and biological technologies is also widely practiced for better cleanup of PAH contaminated soils. Electrokinetic remediation, vermiremediation and biocatalyst assisted remediation are still at the development stage. Though several treatment methods to remediate PAH polluted soils currently exist, a comprehensive overview of all the available remediation technologies to date is necessary so that the right technology for field-level success is chosen. The objective of this review is to provide a critical overview in this respect, focusing only on the treatment options available for field soils and ignoring the spiked ones. The authors also propose the development of novel multifunctional green and sustainable systems like mixed cell culture system, biosurfactant flushing, transgenic approaches and nanoremediation in order to overcome the existing soil- contaminant- and microbial-associated technological limitations in tackling high molecular weight PAHs. The ultimate objective is to ensure the successful remediation of long-term PAH contaminated soils.
Collapse
Affiliation(s)
- Saranya Kuppusamy
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea; Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA5106, Australia.
| | - Palanisami Thavamani
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapur, 515055, India
| | - Yong Bok Lee
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ravi Naidu
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mallavarapu Megharaj
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), PO Box 486, Salisbury South, SA5106, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
21
|
Song M, Yang Y, Jiang L, Hong Q, Zhang D, Shen Z, Yin H, Luo C. Characterisation of the phenanthrene degradation-related genes and degrading ability of a newly isolated copper-tolerant bacterium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:1059-1067. [PMID: 27889087 DOI: 10.1016/j.envpol.2016.11.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/12/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
A copper-tolerant phenanthrene (PHE)-degrading bacterium, strain Sphingobium sp. PHE-1, was newly isolated from the activated sludge in a wastewater treatment plant. Two key genes, ahdA1b-1 encoding polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHDɑ) and xyLE encoding catechol-2,3-dioxygenase (C23O), involved in the PHE metabolism by strain PHE-1 were identified. The PAH-RHD gene cluster showed 96% identity with the same cluster of Sphingomonas sp. P2. Our results indicated the induced transcription of xylE and ahdA1b-1 genes by PHE, simultaneously promoted by Cu(II). For the first time, high concentration of Cu(II) is found to encourage the expression of PAH-RHDɑ and C23O genes during PHE degradation. Applying Sphingomonas PHE-1 in PHE-contaminated soils for bioaugmentation, the abundance of xylE gene was increased by the planting of ryegrass and the presence of Cu(II), which, in turn, benefited ryegrass growth. The best performance of PHE degradation and the highest abundance of xylE genes occurred in PHE-copper co-contaminated soils planted with ryegrass.
Collapse
Affiliation(s)
- Mengke Song
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ying Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Longfei Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing Hong
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Yin
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
22
|
Gkorezis P, Daghio M, Franzetti A, Van Hamme JD, Sillen W, Vangronsveld J. The Interaction between Plants and Bacteria in the Remediation of Petroleum Hydrocarbons: An Environmental Perspective. Front Microbiol 2016; 7:1836. [PMID: 27917161 PMCID: PMC5116465 DOI: 10.3389/fmicb.2016.01836] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/01/2016] [Indexed: 11/24/2022] Open
Abstract
Widespread pollution of terrestrial ecosystems with petroleum hydrocarbons (PHCs) has generated a need for remediation and, given that many PHCs are biodegradable, bio- and phyto-remediation are often viable approaches for active and passive remediation. This review focuses on phytoremediation with particular interest on the interactions between and use of plant-associated bacteria to restore PHC polluted sites. Plant-associated bacteria include endophytic, phyllospheric, and rhizospheric bacteria, and cooperation between these bacteria and their host plants allows for greater plant survivability and treatment outcomes in contaminated sites. Bacterially driven PHC bioremediation is attributed to the presence of diverse suites of metabolic genes for aliphatic and aromatic hydrocarbons, along with a broader suite of physiological properties including biosurfactant production, biofilm formation, chemotaxis to hydrocarbons, and flexibility in cell-surface hydrophobicity. In soils impacted by PHC contamination, microbial bioremediation generally relies on the addition of high-energy electron acceptors (e.g., oxygen) and fertilization to supply limiting nutrients (e.g., nitrogen, phosphorous, potassium) in the face of excess PHC carbon. As an alternative, the addition of plants can greatly improve bioremediation rates and outcomes as plants provide microbial habitats, improve soil porosity (thereby increasing mass transfer of substrates and electron acceptors), and exchange limiting nutrients with their microbial counterparts. In return, plant-associated microorganisms improve plant growth by reducing soil toxicity through contaminant removal, producing plant growth promoting metabolites, liberating sequestered plant nutrients from soil, fixing nitrogen, and more generally establishing the foundations of soil nutrient cycling. In a practical and applied sense, the collective action of plants and their associated microorganisms is advantageous for remediation of PHC contaminated soil in terms of overall cost and success rates for in situ implementation in a diversity of environments. Mechanistically, there remain biological unknowns that present challenges for applying bio- and phyto-remediation technologies without having a deep prior understanding of individual target sites. In this review, evidence from traditional and modern omics technologies is discussed to provide a framework for plant-microbe interactions during PHC remediation. The potential for integrating multiple molecular and computational techniques to evaluate linkages between microbial communities, plant communities and ecosystem processes is explored with an eye on improving phytoremediation of PHC contaminated sites.
Collapse
Affiliation(s)
- Panagiotis Gkorezis
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| | - Matteo Daghio
- Department of Environmental Sciences, University of Milano-BicoccaMilano, Italy
- Department of Biological Sciences, Thompson Rivers University, KamloopsBC, Canada
| | - Andrea Franzetti
- Department of Environmental Sciences, University of Milano-BicoccaMilano, Italy
| | | | - Wouter Sillen
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| |
Collapse
|
23
|
Bacterial Biotransformation of Pentachlorophenol and Micropollutants Formed during Its Production Process. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13111146. [PMID: 27869691 PMCID: PMC5129356 DOI: 10.3390/ijerph13111146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 11/17/2022]
Abstract
Pentachlorophenol (PCP) is a toxic and persistent wood and cellulose preservative extensively used in the past decades. The production process of PCP generates polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) as micropollutants. PCDD/Fs are also known to be very persistent and dangerous for human health and ecosystem functioning. Several physico-chemical and biological technologies have been used to remove PCP and PCDD/Fs from the environment. Bacterial degradation appears to be a cost-effective way of removing these contaminants from soil while causing little impact on the environment. Several bacteria that cometabolize or use these pollutants as their sole source of carbon have been isolated and characterized. This review summarizes current knowledge on the metabolic pathways of bacterial degradation of PCP and PCDD/Fs. PCP can be successfully degraded aerobically or anaerobically by bacteria. Highly chlorinated PCDD/Fs are more likely to be reductively dechlorinated, while less chlorinated PCDD/Fs are more prone to aerobic degradation. The biochemical and genetic basis of these pollutants’ degradation is also described. There are several documented studies of effective applications of bioremediation techniques for the removal of PCP and PCDD/Fs from soil and sediments. These findings suggest that biodegradation can occur and be applied to treat these contaminants.
Collapse
|
24
|
Li W, Wang D, Hu F, Li H, Ma L, Xu L. Exogenous IAA treatment enhances phytoremediation of soil contaminated with phenanthrene by promoting soil enzyme activity and increasing microbial biomass. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:10656-10664. [PMID: 26884240 DOI: 10.1007/s11356-016-6170-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/22/2016] [Indexed: 05/22/2023]
Abstract
In this study, we aimed to confirm that indole-3-acetic acid promotes plant uptake of phenanthrene (PHE), stimulates the activity of soil enzymes or microflora, and thereby accelerates the dissipation of PHE in soil. Four treatments were evaluated: PHE-contaminated soil planted with (1) ryegrass (T0), (2) ryegrass and supplemented with 1 mg kg(-1) indole-3-acetic acid (IAA) (T1), (3) ryegrass and supplemented with 5 mg kg(-1) IAA (T5), and (4) ryegrass and supplemented with 10 mg kg(-1) IAA (T10). After 30 days, PHE concentrations were lower for all treatments and the removal rate was 70.19, 89.17, 91.26, and 97.07 % for T0, T1, T5, and T10, respectively. PHE was only detected in the roots and not in the shoots. IAA facilitated the accumulation of PHE in the roots, and plants subjected to the T10 treatment had the highest levels. Exogenous IAA stimulated soil peroxidase activity in a dose-dependent manner, whereas soil polyphenoloxidase activity was not significantly increased, except in T10. Soil microbial biomass also increased in response to IAA treatment, particularly in T10. Furthermore, phospholipid fatty acid analysis showed that IAA treatment increased microbial biomass and alleviated environmental stress. Gram-positive bacteria are largely responsible for polycyclic aromatic hydrocarbon degradation, and we found that the ratio of gram-positive to gram-negative bacteria in the soil significantly increased as the IAA concentrations increased (P < 0.05). Correlation analysis indicated that the increase in soil microbial biomass, enzyme activity, and plant uptake of PHE promotes removal of PHE from the soil.
Collapse
Affiliation(s)
- Weiming Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Nanjing Scientific Institute of Vegetables and Flowers, Nanjing, 210095, People's Republic of China
| | - Dongsheng Wang
- Nanjing Scientific Institute of Vegetables and Flowers, Nanjing, 210095, People's Republic of China
| | - Feng Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Huixin Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Lili Ma
- Jiangsu Key Laboratory of Environmental Change and Ecological Construction, College of Geographical Science, Nanjing Normal University, Nanjing, 210095, People's Republic of China
| | - Li Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
25
|
Thomas F, Cébron A. Short-Term Rhizosphere Effect on Available Carbon Sources, Phenanthrene Degradation, and Active Microbiome in an Aged-Contaminated Industrial Soil. Front Microbiol 2016; 7:92. [PMID: 26903971 PMCID: PMC4742875 DOI: 10.3389/fmicb.2016.00092] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/18/2016] [Indexed: 11/13/2022] Open
Abstract
Over the last decades, understanding of the effects of plants on soil microbiomes has greatly advanced. However, knowledge on the assembly of rhizospheric communities in aged-contaminated industrial soils is still limited, especially with regard to transcriptionally active microbiomes and their link to the quality or quantity of carbon sources. We compared the short-term (2-10 days) dynamics of bacterial communities and potential PAH-degrading bacteria in bare or ryegrass-planted aged-contaminated soil spiked with phenanthrene, put in relation with dissolved organic carbon (DOC) sources and polycyclic aromatic hydrocarbon (PAH) pollution. Both resident and active bacterial communities (analyzed from DNA and RNA, respectively) showed higher species richness and smaller dispersion between replicates in planted soils. Root development strongly favored the activity of Pseudomonadales within the first 2 days, and of members of Actinobacteria, Caulobacterales, Rhizobiales, and Xanthomonadales within 6-10 days. Plants slowed down the dissipation of phenanthrene, while root exudation provided a cocktail of labile substrates that might preferentially fuel microbial growth. Although the abundance of PAH-degrading genes increased in planted soil, their transcription level stayed similar to bare soil. In addition, network analysis revealed that plants induced an early shift in the identity of potential phenanthrene degraders, which might influence PAH dissipation on the long-term.
Collapse
Affiliation(s)
- François Thomas
- CNRS, LIEC UMR7360, Faculté des Sciences et TechnologiesVandoeuvre-lés-Nancy, France; Université de Lorraine, LIEC UMR7360, Faculté des Sciences et TechnologiesVandoeuvre-lés-Nancy, France
| | - Aurélie Cébron
- CNRS, LIEC UMR7360, Faculté des Sciences et TechnologiesVandoeuvre-lés-Nancy, France; Université de Lorraine, LIEC UMR7360, Faculté des Sciences et TechnologiesVandoeuvre-lés-Nancy, France
| |
Collapse
|
26
|
Plouznikoff K, Declerck S, Calonne-Salmon M. Mitigating Abiotic Stresses in Crop Plants by Arbuscular Mycorrhizal Fungi. BELOWGROUND DEFENCE STRATEGIES IN PLANTS 2016. [DOI: 10.1007/978-3-319-42319-7_15] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
McIntosh P, Kuzovkina YA, Schulthess CP, Guillard K. Breakdown of low-level total petroleum hydrocarbons (TPH) in contaminated soil using grasses and willows. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:656-63. [PMID: 26553847 DOI: 10.1080/15226514.2015.1109598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A phytoremediation study targeting low-level total petroleum hydrocarbons (TPH) was conducted using cool- and warm-season grasses and willows (Salix species) grown in pots filled with contaminated sandy soil from the New Haven Rail Yard, CT. Efficiencies of the TPH degradation were assessed in a 90-day experiment using 20-8.7-16.6 N-P-K water-soluble fertilizer and fertilizer with molasses amendments to enhance phytoremediation. Plant biomass, TPH concentrations, and indigenous microbes quantified with colony-forming units (CFU), were assessed at the end of the study. Switchgrass grown with soil amendments produced the highest aboveground biomass. Bacterial CFU's were in orders of magnitude significantly higher in willows with soil amendments compared to vegetated treatments with no amendments. The greatest reduction in TPH occurred in all vegetated treatments with fertilizer (66-75%) and fertilizer/molasses (65-74%), followed sequentially by vegetated treatments without amendments, unvegetated treatments with amendments, and unvegetated treatments with no amendment. Phytoremediation of low-level TPH contamination was most efficient where fertilization was in combination with plant species. The same level of remediation was achievable through the addition of grasses and/or willow combinations without amendment, or by fertilization of sandy soil.
Collapse
Affiliation(s)
- Patrick McIntosh
- a Department of Plant Science and Landscape of Architecture , University of Connecticut , Storrs , CT , USA
| | - Yulia A Kuzovkina
- a Department of Plant Science and Landscape of Architecture , University of Connecticut , Storrs , CT , USA
| | - Cristian P Schulthess
- a Department of Plant Science and Landscape of Architecture , University of Connecticut , Storrs , CT , USA
| | - Karl Guillard
- a Department of Plant Science and Landscape of Architecture , University of Connecticut , Storrs , CT , USA
| |
Collapse
|
28
|
Leroy MC, Legras M, Marcotte S, Moncond'huy V, Machour N, Le Derf F, Portet-Koltalo F. Assessment of PAH dissipation processes in large-scale outdoor mesocosms simulating vegetated road-side swales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 520:146-153. [PMID: 25813967 DOI: 10.1016/j.scitotenv.2015.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 06/04/2023]
Abstract
Biofilters have been implemented in urban areas due to their ability to improve road runoff quality. However, little is known about the role of soil microorganisms and plants on pollutant remediation in planted swales. Therefore, four large-scale outdoor mesocosms were built and co-contaminated with metals and model polycyclic aromatic hydrocarbons (PAHs) (phenanthrene (Phen), pyrene (Pyr) and benzo[a]pyrene (BaP)), to better understand the complex functioning of swale-like environments. Three macrophyte plant species were tested for enhanced remediation of PAHs: Juncus effusus, Iris pseudacorus, Phalaris arundinacea and a grass mix. Long-term dynamics of PAHs in water outflow and soil was studied. Results showed that only 0.07 to 0.22% of total PAHs were released in water outflow after one year. Two years after contamination, soil sample analyses showed a dissipation of 99.6% for Phen and 99.4% for Pyr whatever the mesocosm considered and ranging from 75.5 to 91% for BaP, depending on plant species. Furthermore, dissipation time-courses may be described by a biphasic process. Experiments showed that the grass mix facilitated BaP long-term biodegradation. Grass appeared also to be the best filter for suspended solids because of its dense rhizosphere, which prevents the transfer of BaP to groundwater.
Collapse
Affiliation(s)
- M C Leroy
- UMR CNRS 6014 COBRA, Université de Rouen, IUT d'Evreux, 55 rue Saint Germain, 27000 Evreux, France; Unité Agri'Terr, Esitpa - Ecole d'Ingénieurs en Agriculture, 3 rue du Tronquet, 76134 Mont-Saint-Aignan Cedex, France; INFRA Services, 55b rue Gaston Boulet, 76380 Canteleu, France.
| | - M Legras
- Unité Agri'Terr, Esitpa - Ecole d'Ingénieurs en Agriculture, 3 rue du Tronquet, 76134 Mont-Saint-Aignan Cedex, France.
| | - S Marcotte
- COBRA UMR CNRS 6014, INSA de Rouen, avenue de l'Université, 76800 Saint-Etienne-du-Rouvray, France.
| | - V Moncond'huy
- INFRA Services, 55b rue Gaston Boulet, 76380 Canteleu, France.
| | - N Machour
- UMR CNRS 6014 COBRA, Université de Rouen, IUT d'Evreux, 55 rue Saint Germain, 27000 Evreux, France.
| | - F Le Derf
- UMR CNRS 6014 COBRA, Université de Rouen, IUT d'Evreux, 55 rue Saint Germain, 27000 Evreux, France.
| | - F Portet-Koltalo
- UMR CNRS 6014 COBRA, Université de Rouen, IUT d'Evreux, 55 rue Saint Germain, 27000 Evreux, France.
| |
Collapse
|
29
|
Goulas A, Louvel B, Waterlot C. Analytical method for determining polycyclic aromatic hydrocarbon pollutants using ultrafast liquid chromatography with fluorescence detection and the recent column packed with the new 5 μm Kinetex-C18 core-shell particles. CAN J CHEM 2015. [DOI: 10.1139/cjc-2014-0491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An ultrafast liquid chromatography method with fluorescence detection has been optimized for the determination of 15 polycyclic aromatic hydrocarbons (PAHs) using a recent Kinetex-C18 column (250 mm × 4.6 mm). This column has been recently packed with a new brand of porous shell particles with an average particle size of 5 μm to separate various compounds by liquid chromatography, operating at very low pressure. After optimization of the analytical procedure, the separation of the 15 PAHs in spiked tap water samples was achieved without coeluted products in 21.5 min at 16 °C using an aqueous/acetonitrile mobile phase under gradient concentrations with a very low flow rate (0.7–1.0 mL min−1) and low pressure values (870–1590 psi = 60–110 bar), all of these conditions being interesting from an economic point of view. The synchronization of wavelength time changing and the elution time of each compound was performed to avoid baseline deviation. The validation of the whole of the experimental procedure was conducted taking into consideration the following parameters: calibration curve, linearity, limits of detection and quantification, accuracy, sensitivity, precision, and repeatability of the retention time for each PAH. The proposed analytical procedure presented adequate linearity over a concentration range from 0.025 to 10 μg L−1 with a correlation coefficient better than 0.9980. The repeatability (relative standard deviation in percentage, n = 5) of the retention time for the different PAHs investigated ranged from 0.03% to 0.34% and the limit of detection was under 0.6 μg L−1 for most PAHs (excepted for indeno[1,2,3-c,d]pyrene, limit of detection = 1.71 μg L−1). The intraday and interday precisions were below 4%. The recovery of PAH in spiked tap water samples was variable, ranging from 96% to 109%, with relative standard deviation between 0.2% and 4.8%, depending on PAHs and their concentration levels.
Collapse
Affiliation(s)
- Anaïs Goulas
- Laboratoire Génie Civil et géo-Environnement (LGCgE), ISA Lille – 48 boulevard Vauban – 59046 Lille cedex, France
- Laboratoire Génie Civil et géo-Environnement (LGCgE), ISA Lille – 48 boulevard Vauban – 59046 Lille cedex, France
| | - Brice Louvel
- Laboratoire Génie Civil et géo-Environnement (LGCgE), ISA Lille – 48 boulevard Vauban – 59046 Lille cedex, France
- Laboratoire Génie Civil et géo-Environnement (LGCgE), ISA Lille – 48 boulevard Vauban – 59046 Lille cedex, France
| | - Christophe Waterlot
- Laboratoire Génie Civil et géo-Environnement (LGCgE), ISA Lille – 48 boulevard Vauban – 59046 Lille cedex, France
- Laboratoire Génie Civil et géo-Environnement (LGCgE), ISA Lille – 48 boulevard Vauban – 59046 Lille cedex, France
| |
Collapse
|
30
|
Liao C, Xu W, Lu G, Liang X, Guo C, Yang C, Dang Z. Accumulation of Hydrocarbons by Maize (Zea mays L.) in Remediation of Soils Contaminated with Crude Oil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2015; 17:693-700. [PMID: 25976883 DOI: 10.1080/15226514.2014.964840] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study has investigated the use of screened maize for remediation of soil contaminated with crude oil. Pots experiment was carried out for 60 days by transplanting maize seedlings into spiked soils. The results showed that certain amount of crude oil in soil (≤2 147 mg·kg(-1)) could enhance the production of shoot biomass of maize. Higher concentration (6 373 mg·kg(-1)) did not significantly inhibit the growth of plant maize (including shoot and root). Analysis of plant shoot by GC-MS showed that low molecular weight polycyclic aromatic hydrocarbons (PAHs) were detected in maize tissues, but PAHs concentration in the plant did not increase with higher concentration of crude oil in soil. The reduction of total petroleum hydrocarbon in planted soil was up to 52.21-72.84%, while that of the corresponding controls was only 25.85-34.22% in two months. In addition, data from physiological and biochemical indexes demonstrated a favorable adaptability of maize to crude oil pollution stress. This study suggested that the use of maize (Zea mays L.) was a good choice for remediation of soil contaminated with petroleum within a certain range of concentrations.
Collapse
Affiliation(s)
- Changjun Liao
- a School of Environment and Energy, South China University of Technology , Guangzhou , PR China
| | | | | | | | | | | | | |
Collapse
|
31
|
Kukla M, Płociniczak T, Piotrowska-Seget Z. Diversity of endophytic bacteria in Lolium perenne and their potential to degrade petroleum hydrocarbons and promote plant growth. CHEMOSPHERE 2014; 117:40-6. [PMID: 24954306 DOI: 10.1016/j.chemosphere.2014.05.055] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 05/08/2023]
Abstract
The aim of this study was to assess the ability of twenty-nine endophytic bacteria isolated from the tissues of ryegrass (Lolium perenne L.) to promote plant growth and the degradation of hydrocarbon. Most of the isolates belonged to the genus Pseudomonas and showed multiple plant growth-promoting abilities. All of the bacteria that were tested exhibited the ability to produce indole-3-acetic acid and were sensitive to streptomycin. These strains were capable of phosphate solubilization (62%), cellulolytic enzyme production (62%), a capacity for motility (55%) as well as for the production of siderophore (45%), ammonium (41%) and hydrogen cyanide (38%). Only five endophytes had the emulsification ability that results from the production of biosurfactants. The 1-aminocyclopropane-1-carboxylate deaminase (ACCD) gene (acdS) was found in ten strains. These bacteria exhibited ACCD activities in the range from 1.8 to 56.6 μmol of α-ketobutyrate mg(-1)h(-1), which suggests that these strains may be able to modulate ethylene levels and enhance plant growth. The potential for hydrocarbon degradation was assessed by PCR amplification on the following genes: alkH, alkB, C23O, P450 and pah. The thirteen strains that were tested had the P450 gene but the alkH and pah genes were found only in the Rhodococcus fascians strain (L11). Four endophytic bacteria belonging to Microbacterium sp. and Rhodococcus sp. (L7, S12, S23, S25) showed positive results for the alkB gene.
Collapse
Affiliation(s)
- M Kukla
- Department of Microbiology, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| | - T Płociniczak
- Department of Microbiology, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Z Piotrowska-Seget
- Department of Microbiology, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| |
Collapse
|
32
|
Tara N, Afzal M, Ansari TM, Tahseen R, Iqbal S, Khan QM. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2014; 16:1268-1277. [PMID: 24933917 DOI: 10.1080/15226514.2013.828013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Inoculation of plants with pollutant-degrading and plant growth-promoting microorganisms is a simple strategy to enhance phytoremediation activity. The objective of this study was to determine the effect of inoculation of different bacterial strains, possessing alkane-degradation and 1-amino-cyclopropane-1 -carboxylic acid (ACC) deaminase activity, on plant growth and phytoremediation activity. Carpet grass (Axonopus affinis) was planted in soil spiked with diesel (1% w/w) for 90 days and inoculated with different bacterial strains, Pseudomonas sp. ITRH25, Pantoea sp. BTRH79 and Burkholderia sp. PsJN, individually and in combination. Generally, bacterial application increased total numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere ofcarpet grass, plant biomass production, hydrocarbon degradation and reduced genotoxicity. Bacterial strains possessing different beneficial traits affect plant growth and phytoremediation activity in different ways. Maximum bacterial population, plant biomass production and hydrocarbon degradation were achieved when carpet grass was inoculated with a consortium of three strains. Enhanced plant biomass production and hydrocarbon degradation were associated with increased numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere of carpet grass. The present study revealed that the combined use of different bacterial strains, exhibiting different beneficial traits, is a highly effective strategy to improve plant growth and phytoremediation activity.
Collapse
|
33
|
Gartler J, Wimmer B, Soja G, Reichenauer TG. Effects of rapeseed oil on the rhizodegradation of polyaromatic hydrocarbons in contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2014; 16:671-683. [PMID: 24933877 DOI: 10.1080/15226514.2013.856841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Plants have the ability to promote degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil by supporting PAH degrading microorganisms in the rhizosphere (rhizodegradation). The aim of this study was to evaluate if rapeseed oil increases rhizodegradation because various studies have shown that vegetable oils are able to act as extractants for PAHs in contaminated soils and therefore might increase bioavailability of PAHs for microbial degradation. In this study different leguminous and grass species were tested. The results suggested a significant impact of vegetable oil (1 and 3% w/w) on plant growth (decrease of plant height and biomass). The results of the pot experiment showed a decrease in the PAH content of the soil without amendment of rapeseed oil after six months. In soil amended with 1% and 3% of oil, there was no decrease in PAH content within this period. Although no enhancement of PAH degradation by plants could be measured in the bulk soil of the pot experiments, a rhizobox experiment showed a significant reduction of PAH content in the rhizosphere of alfalfa (Medicago sativa cv. Europe). Our investigations also showed significant differences in the degradation behaviour of the 16 individually analysed PAHs.
Collapse
|
34
|
Xu Z, Wu M, He Y. Toluene biofiltration enhanced by ryegrass. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 90:646-649. [PMID: 23455043 DOI: 10.1007/s00128-013-0973-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/21/2013] [Indexed: 06/01/2023]
Abstract
Toluene biofiltration by microorganisms (an unplanted treatment) and by the combination of ryegrass (Lolium perenne L.) and microorganisms (a planted treatment) was investigated in this study. The results showed that toluene was completely removed by the unplanted and the planted biofilters in less than 0.2 g m⁻³ inlet toluene concentration. Toluene removal capacity for the planted biofilter was significantly higher than that for the unplanted biofilter in the range of 0.2-0.5 g m⁻³ inlet toluene concentration. This study revealed a significant (p < 0.01) increase in the microbial activity in the planted biofilter in comparison with the unplanted biofilter, indicating that ryegrass growing in a biofilter would significantly (p < 0.05) enhance toluene biodegradation.
Collapse
Affiliation(s)
- Zhongjun Xu
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | | | | |
Collapse
|
35
|
Khan S, Afzal M, Iqbal S, Mirza MS, Khan QM. Inoculum pretreatment affects bacterial survival, activity and catabolic gene expression during phytoremediation of diesel contaminated soil. CHEMOSPHERE 2013; 91:663-8. [PMID: 23399305 DOI: 10.1016/j.chemosphere.2013.01.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 05/13/2023]
Abstract
Plant-bacteria partnership is a promising approach for remediating soil contaminated with organic pollutants. The colonization and metabolic activity of an inoculated microorganism depend not only on environmental conditions but also on the physiological condition of the applied microorganisms. This study assessed the influence of different inoculum pretreatments on survival, gene abundance and catabolic gene expression of an applied strain (Pantoea sp. strain BTRH79) in the rhizosphere of ryegrass vegetated in diesel contaminated soil. Maximum bacterium survival, gene abundance and expression were observed in the soil inoculated with bacterial cells that had been pregrown on complex medium, and hydrocarbon degradation and genotoxicity reduction were also high in this soil. These findings propose that use of complex media for growing plant inocula may enhance bacterial survival and colonization and subsequently the efficiency of pollutant degradation.
Collapse
Affiliation(s)
- Sumia Khan
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | | | | | | | | |
Collapse
|
36
|
Ma TT, Teng Y, Luo YM, Christie P. Legume-grass intercropping phytoremediation of phthalic acid esters in soil near an electronic waste recycling site: a field study. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2013; 15:154-167. [PMID: 23487993 DOI: 10.1080/15226514.2012.687016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A field experiment was conducted to study the phytoremediation of phthalic acid esters (PAEs) by legume (alfalfa, Medicago sativa L.)-grass (perennial ryegrass, Lolium perenne L. and tall fescue, Festuca arundinacea) intercropping in contaminated agricultural soil at one of the largest e-waste recycling sites in China. Two compounds, DEHP and DnBP, were present in the soil and in the shoots of the test plants at much higher concentrations than the other target PAEs studied. Over 80% of 'total' (i.e., all six) PAEs were removed from the soil across all treatments by the end of the experiment. Alfalfa in monoculture removed over 90% of PAEs and alfalfa in the intercrop of the three plant species contained the highest shoot concentration of total PAEs of about 4.7 mg kg(-1) DW (dry weight). Calculation of phytoextraction efficiency indicated that the most effective plant combinations in eliminating soil PAEs were the three-species intercrop (1.78%) and the alfalfa monocrop (1.41%). Phytoremediation with alfalfa was effective in both monoculture and intercropping. High bioconcentration factors (BCFs) indicated the occurrence of significant extraction of PAEs by plants from soil, suggesting that phytoremediation may have potential for the removal of PAEs from contaminated soils.
Collapse
Affiliation(s)
- Ting Ting Ma
- Key Laboratory of Soil Environment and Pollution Remediation of the Chinese Academy of Sciences, Institute of Soil Science, Nanjing, China
| | | | | | | |
Collapse
|
37
|
Khan S, Afzal M, Iqbal S, Khan QM. Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. CHEMOSPHERE 2013; 90:1317-32. [PMID: 23058201 DOI: 10.1016/j.chemosphere.2012.09.045] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 09/08/2012] [Accepted: 09/10/2012] [Indexed: 05/06/2023]
Abstract
Plant-bacteria partnerships have been extensively studied and applied to improve crop yield. In addition to their application in agriculture, a promising field to exploit plant-bacteria partnerships is the remediation of soil and water polluted with hydrocarbons. Application of effective plant-bacteria partnerships for the remediation of hydrocarbons depend mainly on the presence and metabolic activities of plant associated rhizo- and endophytic bacteria possessing specific genes required for the degradation of hydrocarbon pollutants. Plants and their associated bacteria interact with each other whereby plant supplies the bacteria with a special carbon source that stimulates the bacteria to degrade organic contaminants in the soil. In return, plant associated-bacteria can support their host plant to overcome contaminated-induced stress responses, and improve plant growth and development. In addition, plants further get benefits from their associated-bacteria possessing hydrocarbon-degradation potential, leading to enhanced hydrocarbon mineralization and lowering of both phytotoxicity and evapotranspiration of volatile hydrocarbons. A better understanding of plant-bacteria partnerships could be exploited to enhance the remediation of hydrocarbon contaminated soils in conjunction with sustainable production of non-food crops for biomass and biofuel production.
Collapse
Affiliation(s)
- Sumia Khan
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | | | | | | |
Collapse
|
38
|
Xie XM, Liao M, Yang J, Chai JJ, Fang S, Wang RH. Influence of root-exudates concentration on pyrene degradation and soil microbial characteristics in pyrene contaminated soil. CHEMOSPHERE 2012; 88:1190-1195. [PMID: 22520968 DOI: 10.1016/j.chemosphere.2012.03.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 03/20/2012] [Accepted: 03/25/2012] [Indexed: 05/31/2023]
Abstract
The effect of ryegrass (Lolium perenne L.) root-exudates concentration on pyrene degradation and the microbial ecological characteristics in the pyrene contaminated soil was investigated by simulating a gradually reducing concentration of root exudates with the distance away from root surface in the rhizosphere. Results showed that, after the root-exudates were added 15 d, the pyrene residue in contaminated soil responded nonlinearly in the soils with the same pyrene contaminated level as the added root-exudates concentration increased, which decreased first and increased latter with the increase of the added root-exudates concentration. The lowest pyrene concentration appeared when the root exudates concentration of 32.75 mg kg(-1) total organic carbon (TOC) was added. At the same time, changes of microbial biomass carbon (MBC, C(mic)) and microbial quotient (C(mic)/C(org)) were opposite to the trend of pyrene degradation as the added root-exudates concentration increased. Phospholipid fatty acid (PLFA) analysis revealed that bacteria was the dominating microbial community in pyrene contaminated soil, and the changing trends of pyrene degradation and bacteria number were the same. The changing trend of endoenzyme-dehydrogenase activity was in accordance with that of soil microbe, indicating which could reflect the quantitative characteristic of detoxification to pyrene by soil microbe. The changes in the soils microbial community and corresponding microbial biochemistry characteristics were the ecological mechanism influencing pyrene degradation with increasing concentration of the added root-exudates in the pyrene contaminated soil.
Collapse
Affiliation(s)
- Xiao-mei Xie
- Center of Experiment Teaching, College of Environmental and Resource Sciences, Zhejiang University, Yu Hang Tang Road 866, Hangzhou 310058, China
| | | | | | | | | | | |
Collapse
|
39
|
Zhang XY, Liu XY, Liu SS, Liu FH, Chen LS, Xu G, Zhong CL, Su PC, Cao ZN. Response characteristics of Scirpus trioueter and its rhizosphere to pyrene contaminated soils at different growth stages. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2012; 14:691-702. [PMID: 22908637 DOI: 10.1080/15226514.2011.619235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Scirpus triqueter (Triangular club-rush), a typical wetland species, is used to study the response characteristics to pyrene. A pot experiment was conducted to investigate the growth parameters (height, diameter, shoot number, total volume, underground biomass, above-ground biomass and total biomass), and enzymes (catalase and superoxide dismutase) of S. triqueter. The characteristics of soil enzymes (catalase and polyphenol oxidase) and microorganisms (bacteria and fungi) were also assessed after pyrene treatment. Elevated pyrene concentration (80 mgkg(-1)) in the soil reduced the shoot number and biomass significantly, especially at the early growth stage. In root tissue, the enzyme catalase was activated at 80 mgkg(-1) of pyrene. Compared to roots, shoots had higher enzyme activities. Catalase activities in the rhizosphere increased throughout the growth period of S. triqueter. Polyphenol oxidase activities in the rhizosphere were higher than those in the bulk soil and unplanted soil. The populations of bacteria (total bacteria, pyrene-tolerant bacteria, and actinomyces) and fungi decreased under the stress of high pyrene concentration, while that of pyrene-tolerant bacteria increased with the increasing pyrene concentration. The presence of pyrene did not benefit the growth of S. triqueter. S. triqueter and soil enzymes varied within the growth stages. The presence of S. triqueter could improve the activity of soil enzymes and facilitate the propagation of microorganisms which could help eliminate pyrene contamination.
Collapse
Affiliation(s)
- X Y Zhang
- Laboratory of Environmental Remediation, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Razmjoo K, Adavi Z. Assessment of bermudagrass cultivars for phytoremediation of petroleum contaminated soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2012; 14:14-23. [PMID: 22567691 DOI: 10.1080/15226514.2011.560212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phytoremediation is an alternative to other technologies for the clean up of petroleum contaminated soil. Ten vegetatively propagated cultivars of bermudagrass were examined for their potential to reduced oil sludge contaminated in soil and select the most efficient cultivar. Soil was mixed with different rates of oil sludge (0, 10, 20, 30, and 40% (w/w) to obtain 0, 2, 4, 6, and 8% total petroleum hydrocarbons (TPHs). Ten cultivars of bermudagrass were planted in pots filled with respected mixtures of soil and sludge. Shoot and root weights and percent reduction in the contamination level were measured after six months. Shoot weight reduced as contamination level increased. The root weight increased up to 6% TPHs level. As contamination level increased, the percent reduction in contamination increased. Reduction was 37.7, 41.0, 35.0, 34.0, 45.0, 41.3, 34.5, 41.3, 34.5, 41.3, 55.0, and 43.6% under Tifdwarf, Tifgreen, Tifway, ISF1, ISF2, JP1, JP2, and Midlawn, 3200W18-4 and 3200W19-9 at the highest contamination level 3200W18-4 was the most effective cultivar followed by ISF2, 3200W19-9, JPI, and Midlawn, respectively. The results suggested that bermudagrass is an efficient species for phytoremediation of petroleum contaminated soil and the selection for more tolerant and efficient cultivar is possible.
Collapse
Affiliation(s)
- Khorshid Razmjoo
- Department of Agronomy, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| | | |
Collapse
|
41
|
Zhang X, Liu X, Liu S, Liu F, Chen L, Xu G, Zhong C, Su P, Cao Z. Responses of Scirpus triqueter, soil enzymes and microbial community during phytoremediation of pyrene contaminated soil in simulated wetland. JOURNAL OF HAZARDOUS MATERIALS 2011; 193:45-51. [PMID: 21899948 DOI: 10.1016/j.jhazmat.2011.07.094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 06/27/2011] [Accepted: 07/03/2011] [Indexed: 05/31/2023]
Abstract
The aim of this study was to determine the enhancement of Scirpus triqueter in the dissipation of pyrene and the interaction of pyrene with plant, soil enzymes and microbial community. The results indicated that the dissipation ratios of pyrene in the rhizospheric and non-rhizospheric soil were 64.65 ± 3.86% and 54.49 ± 2.74%, respectively, and were higher than that in the unplanted soil (42.60 ± 0.71%) at 80 d after planting S. triqueter. The pyrene was toxic to S. triqueter, as evidenced by growth inhibition in height, diameter, shoot number and biomass during the planting period. The activities of dehydrogenase decreased significantly at the presence of pyrene in soils, and increased remarkably with the introduction of S. triqueter. It was found that the pyrene addition increased the ratios of fungal/total fatty acids and gram-positive/gram-negative, but the presence of S. triqueter decreased the ratios of gram-positive/gram-negative. A larger stress level was found in the pyrene treated soils without S. triqueter. The ratio of aerobic/anaerobic bacteria decreased with increasing pyrene concentration, but increased when S. triqueter was planted. The principal analysis of phospholipid fatty acid signatures revealed that microbial community structures in the rhizospheric and non-rhizospheric soil were similar, but different from those in the unplanted and control soil.
Collapse
Affiliation(s)
- Xinying Zhang
- Laboratory of Environmental Remediation, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yang C, Zhou Q, Wei S, Hu Y, Bao Y. Chemical-assisted phytoremediation of CD-PAHs contaminated soils using Solanum nigrum L. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2011; 13:818-833. [PMID: 21972521 DOI: 10.1080/15226514.2010.532179] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A well-characterized cadmium (Cd) hyperaccumulating plant Solanum nigrum was grown in Cd and polycyclic aromatic hydrocarbons (PAHs) co-contaminated soil that was repeatedly amended with chemicals, including EDTA, cysteine (CY), salicylic acid (Sa), and Tween 80 (TW80), to test individual and combined treatment effects on phytoremediation of Cd-PAHs contaminated soils. Plant growth was negatively affected by exogenous chemicals except for EDTA. S. nigrum could accumulate Cd in tissues without assistant chemicals, while there was no visible effect on the degradation of PAHs. Cysteine had significant effects on phytoextraction of Cd and the highest metal extraction ratio (1.27%) was observed in 0.9 mmol/kg CY treatment. Both salicylic acid and Tween 80 had stimulative effects on the degradation of PAHs and there was the maximal degradation rate (52.6%) of total PAHs while 0.9 mmol/kg Sa was applied. Furthermore, the combined treatment T(0.1EDTA+0.9CY+0.5TW80) and T(0.5EDTA+0.9CY+03Sa) could not only increase the accumulation of Cd in plant tissues, but also promote the degradation of PAHs. These results indicated that S. nigrum might be effective in phytoextracting Cd and enhancing the biodegradation of PAHs in the co-contaminated soils with assistant chemicals.
Collapse
Affiliation(s)
- Chuanjie Yang
- Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | | | | | | | | |
Collapse
|
43
|
Dixit P, Mukherjee PK, Sherkhane PD, Kale SP, Eapen S. Enhanced tolerance and remediation of anthracene by transgenic tobacco plants expressing a fungal glutathione transferase gene. JOURNAL OF HAZARDOUS MATERIALS 2011; 192:270-6. [PMID: 21621917 DOI: 10.1016/j.jhazmat.2011.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 05/06/2011] [Accepted: 05/06/2011] [Indexed: 05/22/2023]
Abstract
Plants can be used for remediation of polyaromatic hydrocarbons, which are known to be a major concern for human health. Metabolism of xenobiotic compounds in plants occurs in three phases and glutathione transferases (GST) mediate phase II of xenobiotic transformation. Plants, although have GSTs, they are not very efficient for degradation of exogenous recalcitrant xenobiotics including polyaromatic hydrocarbons. Hence, heterologous expression of efficient GSTs in plants may improve their remediation and degradation potential of xenobiotics. In the present study, we investigated the potential of transgenic tobacco plants expressing a Trichoderma virens GST for tolerance, remediation and degradation of anthracene-a recalcitrant polyaromatic hydrocarbon. Transgenic plants with fungal GST showed enhanced tolerance to anthracene compared to control plants. Remediation of (14)C uniformly labeled anthracene from solutions and soil by transgenic tobacco plants was higher compared to wild-type plants. Transgenic plants (T(0) and T(1)) degraded anthracene to naphthalene derivatives, while no such degradation was observed in wild-type plants. The present work has shown that in planta expression of a fungal GST in tobacco imparted enhanced tolerance as well as higher remediation potential of anthracene compared to wild-type plants.
Collapse
Affiliation(s)
- Prachy Dixit
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | | | | | | |
Collapse
|
44
|
Schwitzguébel JP, Comino E, Plata N, Khalvati M. Is phytoremediation a sustainable and reliable approach to clean-up contaminated water and soil in Alpine areas? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 18:842-856. [PMID: 21465158 DOI: 10.1007/s11356-011-0498-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 03/16/2011] [Indexed: 05/30/2023]
Abstract
BACKGROUND, AIM AND SCOPE Phytoremediation does exploit natural plant physiological processes and can be used to decontaminate agricultural soils, industrial sites, brownfields, sediments and water containing inorganic and organic pollutants or to improve food chain safety by phytostabilisation of toxic elements. It is a low-cost and environment friendly technology targetting removal, degradation or immobilisation of contaminants. The aim of the present review is to highlight some recent advances in phytoremediation in the Alpine context. MAIN FEATURES Case studies are presented where phytoremediation has been or can be successfully applied in Alpine areas to: (1) clean-up industrial wastewater containing sulphonated aromatic xenobiotics released by dye and textile industries; (2) remediate agricultural soils polluted by petroleum hydrocarbons; (3) improve food chain safety in soils contaminated with toxic trace elements (As, Co, Cr and Pb); and (4) treat soils impacted by modern agricultural activities with a special emphasis on phosphate fertilisation. CONCLUSIONS, RECOMMENDATIONS AND PERSPECTIVES Worlwide, including in Alpine areas, the controlled use of appropriate plants is destined to play a major role for remediation and restoration of polluted and degraded ecosystems, monitoring and assessment of environmental quality, prevention of landscape degradation and immobilisation of trace elements. Phytotechnologies do already offer promising approaches towards environmental remediation, human health, food safety and sustainable development for the 21st century in Alpine areas and elsewhere all over the world.
Collapse
|
45
|
Polycyclic Aromatic Hydrocarbons in Water from the Menderes River, Turkey. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011; 86:221-5. [PMID: 21253698 DOI: 10.1007/s00128-011-0199-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 01/11/2011] [Indexed: 12/08/2022]
|
46
|
Abhilash PC, Singh N. Effect of growing Sesamum indicum L. on enhanced dissipation of lindane (1, 2, 3, 4, 5, 6-hexachlorocyclohexane) from soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2010; 12:440-453. [PMID: 21166287 DOI: 10.1080/15226510903213944] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The effect of growing Sesamum indicum L. on the dissipation of lindane (gamma-HCH) was studied in spiked soil. For this, S. indicum was grown with four different concentrations of lindane (5, 10, 15, and 20 microg g(-1)). Plant growth, yield, photosynthetic pigments, soluble protein, microbial biomass carbon, lindane uptake, residual lindane concentration in soil and percentage dissipation of lindane from soil were analyzed at 25, 90, and 124 d. The accumulation of lindane in test plants was linearly related to the soil concentration (r2 = 0.897-0.979). At maturity, the accumulation of lindane in S. indicum grown with four spiked concentrations reached up to 7.98, 13.72, 23.71, and 33.29 microg g(-1) dry matter, respectively. There was a marked difference in the dissipation of lindane in vegetated and non-vegetated soils (p < 0.01). After final harvesting, the residual lindane concentrations in four spiked concentrations were reduced by 77.56, 70.12, 62.51, and 58.7%, respectively. Agronomic practice for the onsite application of this species is discussed. Based on the present study, it was calculated that S. indicum could accumulate 2237-2611 mg lindane per acre after 124 d cultivation. S. indicum could thus be used for the phytoremediation of lindane contaminated soil.
Collapse
Affiliation(s)
- P C Abhilash
- Eco-Auditing Group, National Botanical Research Institute, Council of Scientific & Industrial Research, Lucknow, Uttar Pradesh, India.
| | | |
Collapse
|
47
|
Zhang J, Yin R, Lin X, Liu W, Chen R, Li X. Interactive Effect of Biosurfactant and Microorganism to Enhance Phytoremediation for Removal of Aged Polycyclic Aromatic Hydrocarbons from Contaminated Soils. ACTA ACUST UNITED AC 2010. [DOI: 10.1248/jhs.56.257] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences
- Joint Open Laboratory of Soil and the Environment, Institute of Soil Science and Hongkong Baptist University
| | - Rui Yin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences
- Joint Open Laboratory of Soil and the Environment, Institute of Soil Science and Hongkong Baptist University
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences
- Joint Open Laboratory of Soil and the Environment, Institute of Soil Science and Hongkong Baptist University
| | - Weiwei Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences
- College of Resources and Environmental Sciences, No.6 Tongwei Road, Nanjing Agricultural University
| | - Ruirui Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences
- Joint Open Laboratory of Soil and the Environment, Institute of Soil Science and Hongkong Baptist University
| | - Xuanzhen Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences
- Joint Open Laboratory of Soil and the Environment, Institute of Soil Science and Hongkong Baptist University
| |
Collapse
|
48
|
Gan S, Lau EV, Ng HK. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). JOURNAL OF HAZARDOUS MATERIALS 2009; 172:532-549. [PMID: 19700241 DOI: 10.1016/j.jhazmat.2009.07.118] [Citation(s) in RCA: 388] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 07/28/2009] [Accepted: 07/28/2009] [Indexed: 05/27/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic micropollutants which are resistant to environmental degradation due to their highly hydrophobic nature. Concerns over their adverse health effects have resulted in extensive studies on the remediation of soils contaminated with PAHs. This paper aims to provide a review of the remediation technologies specifically for PAH-contaminated soils. The technologies discussed here include solvent extraction, bioremediation, phytoremediation, chemical oxidation, photocatalytic degradation, electrokinetic remediation, thermal treatment and integrated remediation technologies. For each of these, the theories are discussed in conjunction with comparative evaluation of studies reported in the specialised literature.
Collapse
Affiliation(s)
- S Gan
- Department of Chemical and Environmental Engineering, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| | | | | |
Collapse
|
49
|
Zhou XB, Cébron A, Béguiristain T, Leyval C. Water and phosphorus content affect PAH dissipation in spiked soil planted with mycorrhizal alfalfa and tall fescue. CHEMOSPHERE 2009; 77:709-713. [PMID: 19775720 DOI: 10.1016/j.chemosphere.2009.08.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 08/27/2009] [Accepted: 08/28/2009] [Indexed: 05/28/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) dissipation efficiency can be increased in the plant rhizosphere, but may be affected by various environmental factors. We investigated the effects of the watering regime and phosphorus concentration on PAH dissipation in the rhizosphere of mycorrhizal plants in a pot experiment. Two plant species, alfalfa (Medicago sativa) and tall fescue (Festuca arundinacea), were co-cultured and inoculated with an arbuscular mycorrhizal (AM) fungus (Glomus intraradices) in PAH (phenanthrene (PHE)=500 mg kg(-1), pyrene (PYR)=500 mg kg(-1), dibenzo(a,h)anthracene (DBA)=65 mg kg(-1)) spiked agricultural soil for 6 weeks. Treatments with different phosphorus concentrations and watering regimes were compared. The PHE dissipation reached 90% in all treatments and was not affected by the treatments. The major finding was the significant positive impact of mycorrhizal plants on the dissipation of high molecular weight PAH (DBA) in high-water low-phosphorus treatment. Such an effect was not observed in high-water high-phosphorus and low-water low-phosphorus treatments, where AM colonization was very low. A positive linear relationship was detected between PYR dissipation and the percentage of Gram-positive PAH-ring hydroxylating dioxygenase genes in high-water high-phosphorus treatments, but not in the other two treatments with lower phosphorus concentrations and water contents. Such results indicated that the phosphorus and water regime were important parameters for the dissipation of HMW-PAH.
Collapse
Affiliation(s)
- X B Zhou
- LIMOS, Nancy University, CNRS, BP 70239, 54506 Vandoeuvre-les-Nancy Cedex, France
| | | | | | | |
Collapse
|
50
|
Uhlík O, Jecná K, Leigh MB, Macková M, Macek T. DNA-based stable isotope probing: a link between community structure and function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:3611-3619. [PMID: 18573518 DOI: 10.1016/j.scitotenv.2008.05.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 04/25/2008] [Accepted: 05/07/2008] [Indexed: 05/26/2023]
Abstract
DNA-based molecular techniques permit the comprehensive determination of microbial diversity but generally do not reveal the relationship between the identity and the function of microorganisms. The first direct molecular technique to enable the linkage of phylogeny with function is DNA-based stable isotope probing (DNA-SIP). Applying this method first helped describe the utilization of simple compounds, such as methane, methanol or glucose and has since been used to detect microbial communities active in the utilization of a wide variety of compounds, including various xenobiotics. The principle of the method lies in providing (13)C-labeled substrate to a microbial community and subsequent analyses of the (13)C-DNA isolated from the community. Isopycnic centrifugation permits separating (13)C-labeled DNA of organisms that utilized the substrate from (12)C-DNA of the inactive majority. As the whole metagenome of active populations is isolated, its follow-up analysis provides successful taxonomic identification as well as the potential for functional gene analyses. Because of its power, DNA-SIP has become one of the leading techniques of microbial ecology research. But from other point of view, it is a labor-intensive method that requires careful attention to detail during each experimental step in order to avoid misinterpretation of results.
Collapse
Affiliation(s)
- Ondrej Uhlík
- Institute of Chemical Technology Prague, Department of Biochemistry and Microbiology, Technicka 3, 166 28 Prague 6, Czech Republic
| | | | | | | | | |
Collapse
|