1
|
Himaja K, Veerapandiyan K, Usha B. Aromatase inhibitors identified from Saraca asoca to treat infertility in women with polycystic ovary syndrome via in silico and in vivo studies. J Biomol Struct Dyn 2024:1-16. [PMID: 38315510 DOI: 10.1080/07391102.2024.2310793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a widely occurring metabolic disorder causing infertility in 70%-80% of the affected women. Saraca asoca, an ancient medicinal herb, has been shown to have therapeutic effects against infertility and hormonal imbalance in women. This study was aimed to identify new aromatase inhibitors from S. asoca as an alternative to the commercially available ones via in silico and in vivo approaches. For this, 10 previously reported flavonoids from S. asoca were chosen and the pharmacodynamic and pharmacokinetic properties were predicted using tools like Autodock Vina, GROMACS, Gaussian and ADMETLab. Of the 10, procyanidin B2 and luteolin showed better interaction with higher binding energy when docked against aromatase (3S79) as compared to the commercial inhibitor letrozole. These two compounds showed higher stability in molecular dynamic simulations performed for 100 ns. Molecular mechanics Poisson-Boltzmann surface analysis indicated that these compounds have binding free energy similar to the commercial inhibitor, highlighting their great affinity for aromatase. Density functional theory analysis revealed that both compounds have a good energy gap, and ADMET prediction exhibited the drug-likeness of the two compounds. A dose-dependent administration of these two compounds on zebrafish revealed that both the compounds, at a lower concentration of 50 µg/ml, significantly reduced the aromatase concentration in the ovarian tissues as compared to the untreated control. Collectively, the in silico and in vivo findings recommend that procyanidin B2 and luteolin could be used as potential aromatase inhibitors for overcoming infertility in PCOS patients with estrogen dominance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kuppachi Himaja
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - Kandasamy Veerapandiyan
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - Balasundaram Usha
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India
| |
Collapse
|
2
|
Shen C, Zhu K, Ruan J, Li J, Wang Y, Zhao M, He C, Zuo Z. Screening of potential oestrogen receptor α agonists in pesticides via in silico, in vitro and in vivo methods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116015. [PMID: 33352482 DOI: 10.1016/j.envpol.2020.116015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
In modern agricultural management, the use of pesticides is indispensable. Due to their massive use worldwide, pesticides represent a latent risk to both humans and the environment. In the present study, 1056 frequently used pesticides were screened for oestrogen receptor (ER) agonistic activity by using in silico methods. We found that 72 and 47 pesticides potentially have ER agonistic activity by the machine learning methods random forest (RF) and deep neural network (DNN), respectively. Among endocrine-disrupting chemicals (EDCs), 14 have been reported as EDCs or ER agonists by previous studies. We selected 3 reported and 7 previously unreported pesticides from 76 potential ER agonists to further assess ERα agonistic activity. All 10 selected pesticides exhibited ERα agonistic activity in human cells or zebrafish. In the dual-luciferase reporter gene assays, six pesticides exhibited ERα agonistic activity. Additionally, nine pesticides could induce mRNA expression of the pS2 and NRF1 genes in MCF-7 cells, and seven pesticides could induce mRNA expression of the vtg1 and vtg2 genes in zebrafish. Importantly, the remaining 48 out of 76 potential ER agonists, none of which have previously been reported to have endocrine-disrupting effects or oestrogenic activity, should be of great concern. Our screening results can inform environmental protection goals and play an important role in environmental protection and early warnings to human health.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jinpeng Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jialing Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yi Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Meirong Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
3
|
Costa SR, Velasques RR, Hoff MLM, Souza MM, Sandrini JZ. Characterization of different DNA repair pathways in hepatic cells of Zebrafish (Danio rerio). DNA Repair (Amst) 2019; 83:102695. [DOI: 10.1016/j.dnarep.2019.102695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/15/2019] [Accepted: 08/26/2019] [Indexed: 01/03/2023]
|
4
|
Cocci P, Mosconi G, Palermo FA. Changes in expression of microRNA potentially targeting key regulators of lipid metabolism in primary gilthead sea bream hepatocytes exposed to phthalates or flame retardants. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 209:81-90. [PMID: 30753973 DOI: 10.1016/j.aquatox.2019.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
Metabolism disrupting chemicals (MDCs) belong to the group of endocrine-disrupting chemicals (EDCs) and are known to affect endocrine and metabolic functions of liver. There is growing evidence that MDCs may also act modulating the expression levels of micro ribonucleic acids (miRNAs) and thus affecting post-transcriptional expression of hundreds of target genes. Herein, we used a gilthead sea bream in vitro hepatocyte model for analyzing the effects of an exposure to phthalates (i.e. DiDP) or flame retardants (i.e.TMCP) on the expression levels of three miRNAs (i.e. MiR133, MiR29 and MiR199a) selected on the basis of their regulatory roles in signaling pathways related to lipid metabolism. Following computational identification of genes that are regulated by the selected miRNAs, we identified six miRNA targets to be tested in differential gene expression analysis. To determine whether lipid metabolism was altered we have also measured the intracellular total cholesterol and triglyceride levels. The results of our study show that DiDP/TMCP exposure leads to a general decrease in the expression profiles of each miRNA leading to a corresponding upregulation of almost all their putative targets. In addition, these findings were also associated to a corresponding increased hepatocellular lipid content. The present study thus contributes to support the importance of these small molecules in regulating MDC-induced expression of genes associated with hepatic lipid metabolism and highlights the need for more toxicological studies examining miRNAs transcriptional regulatory networks controlling metabolic alterations in fish.
Collapse
Affiliation(s)
- Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino (MC), Italy
| | - Gilberto Mosconi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino (MC), Italy
| | - Francesco Alessandro Palermo
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino (MC), Italy.
| |
Collapse
|
5
|
Roush KS, Jeffries MKS. Gonadosomatic index as a confounding variable in fish-based screening assays for the detection of anti-estrogens and nonaromatizable androgens. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:603-615. [PMID: 30614037 DOI: 10.1002/etc.4353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/19/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
The presence of reproductive endocrine-disrupting compounds (REDCs) in the environment poses a potential threat to fish and wildlife, because exposures are capable of altering sexual development, reproductive success, and behavior. Fish-based screening assays are often utilized to screen for the presence of REDCs in surface waters and to assess single chemicals for potential endocrine-disrupting activity. In an effort to improve such screening assays, the goal of the present study was to determine whether the gonadosomatic index (GSI) of female fathead minnows (Pimephales promelas), as assessed via external characteristics, influences their response to REDC exposure. Specifically, we sought to determine whether low-GSI females differed from high-GSI females in their responses to the model anti-estrogen fadrozole and the model androgen 17β-trenbolone, and whether there was a preferable classification in the context of REDC screening. Low-GSI females were more sensitive to fadrozole at the lower concentration of fadrozole (5 µg/L) and to the higher concentration of trenbolone (50 ng/L), whereas high-GSI females were more sensitive at the lower concentration of trenbolone (5 ng/L). The differential response of low- and high-GSI females to REDCs indicates that GSI influences exposure outcome, and should subsequently be taken into consideration in the implementation of screening assays, as failure to utilize fish of the appropriate reproductive status may skew the test results. Environ Toxicol Chem 2019;38:603-615. © 2019 SETAC.
Collapse
Affiliation(s)
- Kyle S Roush
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA
| | | |
Collapse
|
6
|
Sun L, Gu L, Tan H, Liu P, Gao G, Tian L, Chen H, Lu T, Qian H, Fu Z, Pan X. Effects of 17α‑ethinylestradiol on caudal fin regeneration in zebrafish larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:10-22. [PMID: 30390549 DOI: 10.1016/j.scitotenv.2018.10.275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
The ability to restore tissue function and morphology after injury is a key advantage of many fish for a greater chance of survival. The tissue regeneration process is regulated by multiple pathways, and it can therefore be hypothesized that environmental contaminants targeting components of these signaling pathways, may disrupt the fish's capability to repair or regenerate. This could lead to higher mortality and eventually even to a decline in populations. In this study, the effects of 17α‑ethinylestradiol (EE2), a synthetic estrogen, were assessed on the regenerative capacity of larval zebrafish. Zebrafish aged 2 hour post fertilization (hpf) were exposed to 1, 10, or 100 ng/L EE2, and the caudal fins were amputated at 72 hpf. It was found that EE2 exposure significantly inhibited fin regeneration and changed locomotor behavior. The transcription levels for most of the genes involved in the signaling networks regulating the fin regeneration, such as axin2, fgfr1, bmp2b and igf2b, were down-regulated in the amputated fish in response to EE2 exposure, which was in contrast to their increased patterns in the vehicle-exposed control fish. Additionally, the mRNA levels of several immune-related genes, such as il-1β, il-6, il-10 and nf-κb2, were significantly decreased after EE2 exposure, accompanied by a lower density of neutrophils migrated into the wound site. In conclusion, the present study indicated for the first time that estrogenic endocrine disrupting chemicals (EEDCs) could inhibit the regenerative capacity of zebrafish, and this effect was speculated to be mediated through the alteration in regeneration-related signaling pathways and immune competence. This work expands our knowledge of the potential effects of EEDCs on injured aquatic organisms, and highlights the ecotoxicological significance of relationships between regenerative process and endocrine system. This study also implies the potential application of fin regeneration assay for assessing immunotoxicity in ecotoxicological risk assessment.
Collapse
Affiliation(s)
- Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Linqi Gu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Hana Tan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Pan Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Gan Gao
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Li Tian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Hui Chen
- Department of Food Science and Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
7
|
Ma Z, Peng H, Jin Y, Zhang X, Xie X, Jian K, Liu H, Su G, Tang S, Yu H. Multigenerational Effects and Demographic Responses of Zebrafish ( Danio rerio) Exposed to Organo-Bromine Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8764-8773. [PMID: 29984988 DOI: 10.1021/acs.est.8b00569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Long-term exposure to toxic chemicals often has deleterious effects on aquatic organisms. In order to support appropriate environmental management of chemicals, a mathematical model was developed to characterize the effects of chemicals on multigenerational population dynamics in aquatic animals. To parametrize the model, we conducted a multigenerational laboratory toxicity test in zebrafish ( Danio rerio) exposed to 2-bromo-4,6-dinitroaniline (BDNA). Long-term exposure to BDNA considerably reduced the fecundity of adult zebrafish (F0 and F1) and caused deformities in the offspring (F2). Life history data, including changes in fecundity and population growth, were then integrated into the model to predict population dynamics of zebrafish exposed to two novel brominated flame retardants, bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH) and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB). The model predicted that the fecundity of adult zebrafish would be significantly impaired after exposure to 90.36 μM TBPH and 99.16 μM TBB. Thus, prolonged exposure to such levels over multiple generations could result in population extinction within 20 years. Our results provide an intensive temporal perspective to investigate a keystone that connects with individual response to chemicals, population dynamics, and ultimately ecosystem influences.
Collapse
Affiliation(s)
- Zhiyuan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Hui Peng
- Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| | - Yaru Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Xianming Zhang
- Department of Physical and Environmental Sciences , University of Toronto Scarborough , Toronto , Ontario M1C 1A4 , Canada
| | - Xianyi Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Kang Jian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resource, School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resource, School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Song Tang
- National Institute of Environmental Health Chinese Center for Disease Control and Prevention , No.7 Panjiayuan Nanli Chaoyang District , Beijing 100021 , China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
8
|
Molina A, Abril N, Morales-Prieto N, Monterde J, Ayala N, Lora A, Moyano R. Hypothalamic-pituitary-ovarian axis perturbation in the basis of bisphenol A (BPA) reproductive toxicity in female zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:116-124. [PMID: 29549734 DOI: 10.1016/j.ecoenv.2018.03.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 06/08/2023]
Abstract
Thousands of safety-related studies have been published on bisphenol A (BPA), an ubiquitous environmental pollutant with estrogenic activity and many other potential biological effects. In recent years, BPA exposure has been shown to cause anovulation and infertility through irreversible alteration of the hypothalamic-pituitary-gonadal axis in several organisms, including fish and mammals. Recently, the European Chemical Agency classified BPA as a "substance of very high concern" because of its endocrine-disrupting properties, which have serious effects on human health. Given the risk of exposure to BPA as a pollutant in the environment, food, and drinking water, the objective of our study was to assess the effects of this compound on the adeno-hypophysis by means of a histopathological and morphometric study of the gonadotroph cells. In addition, using quantitative real-time PCR (qRT-PCR) assays, we analyzed the changes in the expression of Cyp19b (an aromatase gene). Zebrafish were randomly distributed into five groups: a control group and 4 treated groups which were exposed to different BPA concentrations (1, 10, 100 and 1000 µg/L). The effects of the different doses on Cyp19b mRNA molecules followed a non-monotonic curve, with the 1 and 1000 µg/L doses causing dramatic decreases in the number of Cyp19b transcripts while the doses of 10 and 100 µg/L caused important increases. The consequences might be deregulation of gonadotropic hormones causing degeneration of gonadotropic cells, as observed in BPA treated animals. This is the first study in which the gonadotroph cells have been evaluated using histomorphological endpoints after BPA exposure in zebrafish.
Collapse
Affiliation(s)
- Ana Molina
- Departamento de Farmacología, Toxicología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, 14071 Córdoba, Spain.
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 14071 Córdoba, Spain
| | - Noelia Morales-Prieto
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 14071 Córdoba, Spain
| | - José Monterde
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, Edificio de Sanidad Animal, 14071 Córdoba, Spain
| | - Nahúm Ayala
- Departamento de Farmacología, Toxicología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, 14071 Córdoba, Spain
| | - Antonio Lora
- Departamento de Farmacología, Toxicología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, 14071 Córdoba, Spain
| | - Rosario Moyano
- Departamento de Farmacología, Toxicología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Córdoba, Campus de Rabanales, Edificio Darwin, 14071 Córdoba, Spain
| |
Collapse
|
9
|
Souder JP, Gorelick DA. Quantification of Estradiol Uptake in Zebrafish Embryos and Larvae. Toxicol Sci 2018; 158:465-474. [PMID: 28535311 DOI: 10.1093/toxsci/kfx107] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Zebrafish are a powerful model system to assess the molecular and cellular effects of exposure to toxic chemicals during embryonic development. To study the effects of environmental endocrine disruptors, embryos and larvae are commonly exposed to supraphysiologic concentrations of these compounds in the water, but their bioavailability in zebrafish is largely unknown. One hypothesis is that supraphysiologic concentrations of estrogens in the water are required to achieve physiologic levels in vivo; however, this has not been directly tested. To test this hypothesis, we developed an assay using radiolabeled estradiol ([3H]E2) to measure uptake from water at multiple concentrations and exposure durations in developing zebrafish from 0 to 5 days postfertilization (dpf). We found that [3H]E2 uptake increased with increasing concentration, duration, and developmental stage. Percent uptake from the total volume of treatment solution increased with increasing exposure duration and developmental stage, but remained constant with increasing concentration. We also found that the chorion, an acellular envelope surrounding embryos through 3 dpf, did not substantially affect [3H]E2 uptake. Finally, we found that at 1 dpf, E2 was preferentially taken up by the yolk at multiple exposure durations, while at 2 dpf E2 was preferentially taken up into the embryonic body. Our results support the hypothesis that exposing zebrafish embryos and larvae to supraphysiologic concentrations of estrogens is required to achieve physiologically relevant doses in vivo. The isotopic assay reported here will provide a foundation for determining the uptake of other compounds for teratogenicity, toxicology and drug discovery studies.
Collapse
Affiliation(s)
- Jaclyn Paige Souder
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Daniel A Gorelick
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
10
|
Evaluation of toxicological endpoints in female zebrafish after bisphenol A exposure. Food Chem Toxicol 2017; 112:19-25. [PMID: 29258955 DOI: 10.1016/j.fct.2017.12.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/01/2017] [Accepted: 12/15/2017] [Indexed: 11/22/2022]
Abstract
Given the importance of bisphenol A (BPA) as a xenoestrogen and its potential effects on human and animal health, we evaluated BPA exposure's short-term effects on follicular development, yolk protein vitellogenin (VTG) production and aromatase expression in female zebrafish. Histological modifications were observed along with increased presence of atretic follicles. Whole-body VTG concentration increased with the dose of BPA exposure. In contrast, expression of Cyp19a mRNA in the ovaries of BPA-exposed fish exhibited an apparent non-monotonic response curve, marked by downregulation at 1 μg/L BPA, upregulation at 10 μg/L BPA, and a return to downregulation at 100 μg/L BPA and higher doses. Ovaries only exhibited significant increases in follicular atresia and VTG concentration after exposure to 100 μg/L BPA and higher doses. Ovarian histopathology, aromatase Cyp19a transcript levels and whole-body VTG protein abundance may be good biomarkers for early detection of environmental BPA exposure.
Collapse
|
11
|
Cocci P, Capriotti M, Mosconi G, Palermo FA. Effects of endocrine disrupting chemicals on estrogen receptor alpha and heat shock protein 60 gene expression in primary cultures of loggerhead sea turtle (Caretta caretta) erythrocytes. ENVIRONMENTAL RESEARCH 2017; 158:616-624. [PMID: 28719870 DOI: 10.1016/j.envres.2017.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/16/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
The loggerhead turtle (Caretta caretta) can be considered a good indicator species for studying the ecological impact of endocrine disrupting chemicals (EDCs) on wildlife. However, the effect of these environmental pollutants on nuclear steroid hormone signaling has not yet been addressed in sea turtles mainly due to the legal constraints of their endangered status. Here we describe the use of primary erythrocyte cell cultures as in vitro models for evaluating the effects of different EDCs on the expression of estrogen receptor α (ERα). In addition, we evaluated erythrocyte toxicity caused by EDCs using Alamar Blue assay and heat shock proteins 60 (HSP60) expression. Primary cultures of erythrocytes were exposed to increasing concentrations of 4-nonylphenol (4NP), Diisodecyl phthalate (DiDP), Tri-m-cresyl phosphate (TMCP) and Tributyltin (TBT) for 48h. Alamar Blue demonstrated that exposure of erythrocytes to each contaminant for up to 48h led to a significant impairment of cellular metabolic activity at 100μM, with the exception of TBT. Moreover, our data indicate that loggerhead erythrocytes constitutively express ERα and HSP60 at the transcript level and respond to EDCs by up-regulating their expression. In this regard, ERα was up-regulated in a dose-dependent manner after 48h exposure to both 4NP and TMCP. Interestingly, the dosage-dependent effects of DiDP on ERα expression were opposite in comparison to that obtained following exposure to the other tested compounds. This work provides the first indication regarding the potential of primary erythrocytes as study models for evaluating the effects of EDCs on sea turtles.
Collapse
Affiliation(s)
- Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy.
| | - Martina Capriotti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - Gilberto Mosconi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - Francesco Alessandro Palermo
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| |
Collapse
|
12
|
Siegenthaler PF, Zhao Y, Zhang K, Fent K. Reproductive and transcriptional effects of the antiandrogenic progestin chlormadinone acetate in zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 223:346-356. [PMID: 28118999 DOI: 10.1016/j.envpol.2017.01.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/06/2017] [Accepted: 01/15/2017] [Indexed: 06/06/2023]
Abstract
Chlormadinone acetate (CMA) is a frequently used progestin with antiandrogenic activity in humans. Residues may enter the aquatic environment but potential adverse effects in fish are unknown. While our previous work focused on effects of CMA in vitro and in zebrafish eleuthero-embryos, the present study reports on reproductive and transcriptional effects in adult female and male zebrafish (Danio rerio). We performed a reproductive study using breeding groups of zebrafish. After 15 days of pre-exposure, we exposed zebrafish to different measured concentrations between 6.4 and 53,745 ng/L CMA for 21 days and counted produced eggs daily to determine fecundity. Additionally, transcriptional effects of CMA in brains, livers, and gonads were analyzed. CMA induced a slight but statistically significant reduction in fecundity at 65 ng/L and 53,745 ng/L compared to pre-exposure. Furthermore, we observed differential expression for gene transcripts of steroid hormone receptors, genes related to the hypothalamic-pituitary-gonadal axis, and steroidogenesis. In particular, we found a significant decrease of transcript levels of vitellogenin (vtg1) in ovaries and liver, and of cyp2k7 in the liver of males, as well as a significant increase of transcripts of the progesterone receptor (pgr) in testes, and cyp2k1 in the liver of females. The observed effects were weaker than those of other very potent progestins, which is probably related to the lack of interaction of CMA with the zebrafish progesterone receptor.
Collapse
Affiliation(s)
- Patricia Franziska Siegenthaler
- University of Applied Sciences and Arts Northwestern Switzerland, FHNW, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Yanbin Zhao
- University of Applied Sciences and Arts Northwestern Switzerland, FHNW, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Kun Zhang
- University of Applied Sciences and Arts Northwestern Switzerland, FHNW, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, FHNW, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland; Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental System Sciences, CH-8092 Zürich, Switzerland.
| |
Collapse
|
13
|
Cocci P, Capriotti M, Mosconi G, Campanelli A, Frapiccini E, Marini M, Caprioli G, Sagratini G, Aretusi G, Palermo FA. Alterations of gene expression indicating effects on estrogen signaling and lipid homeostasis in seabream hepatocytes exposed to extracts of seawater sampled from a coastal area of the central Adriatic Sea (Italy). MARINE ENVIRONMENTAL RESEARCH 2017; 123:25-37. [PMID: 27855314 DOI: 10.1016/j.marenvres.2016.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/05/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
Recent evidences suggest that the toxicological effects of endocrine disrupting chemicals (EDCs) involve multiple nuclear receptor-mediated pathways, including estrogen receptor (ER) and peroxisome proliferator-activated receptor (PPAR) signaling systems. Thus, our objective in this study was to detect the summated endocrine effects of EDCs with metabolic activity in coastal waters of the central Adriatic Sea by means of a toxicogenomic approach using seabream hepatocytes. Gene expression patterns were also correlated with seawater levels of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs). We found that seawater extracts taken at certain areas induced gene expression profiles of ERα/vitellogenin, PPARα/Stearoyl-CoA desaturase 1A, cytochrome P4501A (CYP1A) and metallothionein. These increased levels of biomarkers responses correlated with spatial distribution of PAHs/PCBs concentrations observed by chemical analysis in the different study areas. Collectively, our data give a snapshot of the presence of complex EDC mixtures that are able to perturb metabolic signaling in coastal marine waters.
Collapse
Affiliation(s)
- Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino MC, Italy
| | - Martina Capriotti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino MC, Italy
| | - Gilberto Mosconi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino MC, Italy
| | - Alessandra Campanelli
- National Research Council, Institute of Marine Science CNR-ISMAR, L.go Fiera della Pesca, 2, 60125 Ancona, Italy
| | - Emanuela Frapiccini
- National Research Council, Institute of Marine Science CNR-ISMAR, L.go Fiera della Pesca, 2, 60125 Ancona, Italy
| | - Mauro Marini
- National Research Council, Institute of Marine Science CNR-ISMAR, L.go Fiera della Pesca, 2, 60125 Ancona, Italy
| | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, I-62032 Camerino MC, Italy
| | - Gianni Sagratini
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, I-62032 Camerino MC, Italy
| | - Graziano Aretusi
- Controllo Statistico, Pescara, Italy(1); Marine Protected Area Torre del Cerrano, 64025 Pineto, TE, Italy
| | - Francesco Alessandro Palermo
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino MC, Italy.
| |
Collapse
|
14
|
Wang J, Zhao F, Shan R, Tian H, Wang W, Ru S. Juvenile zebrafish in the vitellogenin blank period as an alternative test organism for evaluation of estrogenic activity of chemicals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:1783-1787. [PMID: 26643213 DOI: 10.1002/etc.3328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/03/2015] [Accepted: 12/07/2015] [Indexed: 06/05/2023]
Abstract
The present study aimed to determine the suitable development period for zebrafish to evaluate estrogenic activities accurately. An enzyme-linked immunosorbent assay was developed and used to detect the vitellogenin (Vtg)-derived yolk proteins and newly produced Vtg, and 9 d to 56 d posthatching was determined as the Vtg-blank period. Juveniles in this period were found to have lower baseline Vtg levels than adult males and were considered an alternative test organism for detecting environmental estrogens. Environ Toxicol Chem 2016;35:1783-1787. © 2015 SETAC.
Collapse
Affiliation(s)
- Jun Wang
- Marine Life Science College, Ocean University of China, Qingdao, China
| | - Fei Zhao
- Marine Life Science College, Ocean University of China, Qingdao, China
| | - Ruihou Shan
- Marine Life Science College, Ocean University of China, Qingdao, China
| | - Hua Tian
- Marine Life Science College, Ocean University of China, Qingdao, China
| | - Wei Wang
- Marine Life Science College, Ocean University of China, Qingdao, China
| | - Shaoguo Ru
- Marine Life Science College, Ocean University of China, Qingdao, China
| |
Collapse
|
15
|
Sun L, Xu W, Peng T, Chen H, Ren L, Tan H, Xiao D, Qian H, Fu Z. Developmental exposure of zebrafish larvae to organophosphate flame retardants causes neurotoxicity. Neurotoxicol Teratol 2016; 55:16-22. [DOI: 10.1016/j.ntt.2016.03.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 03/14/2016] [Accepted: 03/20/2016] [Indexed: 10/22/2022]
|
16
|
Kim BM, Lee MC, Kang HM, Rhee JS, Lee JS. Genomic organization and transcriptional modulation in response to endocrine disrupting chemicals of three vitellogenin genes in the self-fertilizing fish Kryptolebias marmoratus. J Environ Sci (China) 2016; 42:187-195. [PMID: 27090710 DOI: 10.1016/j.jes.2015.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/25/2015] [Accepted: 08/06/2015] [Indexed: 06/05/2023]
Abstract
Vitellogenin (Vtg) is the precursor of egg yolk proteins, and its expression has been used as a reliable biomarker for estrogenic contamination in the aquatic environment. To examine the biomarker potential of the self-fertilizing killifish Kryptolebias marmoratus Vtgs (Km-Vtgs), full genomic DNAs of Km-Vtgs-Aa, Km-Vtgs-Ab, and Km-Vtgs-C were cloned, sequenced, and characterized. Three Vtg genes in K. marmoratus are tandemly placed in a 550 kb section of the same chromosome. In silico analysis of promoter regions revealed that both the Km-Vtgs-Aa and Km-Vtgs-Ab genes had an estrogen response element (ERE), but the Km-Vtgs-C gene did not. However, all three Km-Vtgs genes had several ERE-half sites in their promoter regions. Phylogenetic analysis demonstrated that the three deduced amino acid residues were highly conserved with conventional Vtgs protein, forming distinctive clades within teleost Vtgs. Liver tissue showed the highest expression of Km-Vtg transcripts in all tested tissues (brain/pituitary, eye, gonad, intestine, skin, and muscle) in response to endocrine disrupting chemical (EDC)-exposed conditions. Km-Vtg transcripts were significantly increased in response to 17β-estradiol (E2), tamoxifen (TMX), 4-n-nonylphenol (NP), bisphenol A (BPA), and octylphenol (OP) over 24hr exposure. The Km-Vtg-A gene was highly expressed compared to the control in response to NP and OP. EDC-induced modulatory patterns of Km-Vtg gene expression were different depending on tissue, gender, and isoforms.
Collapse
Affiliation(s)
- Bo-Mi Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min Chul Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
17
|
Palermo FA, Cocci P, Mozzicafreddo M, Arukwe A, Angeletti M, Aretusi G, Mosconi G. Tri- m-cresyl phosphate and PPAR/LXR interactions in seabream hepatocytes: revealed by computational modeling (docking) and transcriptional regulation of signaling pathways. Toxicol Res (Camb) 2016; 5:471-481. [PMID: 30090361 PMCID: PMC6061042 DOI: 10.1039/c5tx00314h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/07/2015] [Indexed: 11/21/2022] Open
Abstract
The interactions between tri-m-cresyl phosphate (TMCP; an organophosphate flame retardant) and peroxisome proliferator activated receptors (PPARs) or liver X receptor α (LXRα) were investigated in seabream hepatocytes. The study was designed to characterize the binding of TMCP to PPARα, PPARγ and LXRα by computational modeling (docking) and transcriptional regulation of signaling pathways. TMCP mainly established a non-polar interaction with each receptor. These findings reflect the hydrophobic nature of this binding site, with fish LXRα showing the highest binding efficiency. Further, we have investigated the ability of TMCP to activate PPAR and LXR controlled transcriptional processes involved in lipid/cholesterol metabolism. TMCP induced the expression of all the target genes measured. All target genes were up-regulated at all exposure doses, except for fatty acid binding protein 7 (FABP7) and carnitine palmitoyltransferase 1B. Collectively, our data indicate that TMCP can affect fatty acid synthesis/uptake and cholesterol metabolism through LXRα and PPARs, together with interactions between these transcription factors in seabream liver.
Collapse
Affiliation(s)
- Francesco Alessandro Palermo
- School of Biosciences and Veterinary Medicine , University of Camerino , Via Gentile III Da Varano , I-62032 Camerino , MC , Italy . ; ; Tel: +39 0737 404920
| | - Paolo Cocci
- School of Biosciences and Veterinary Medicine , University of Camerino , Via Gentile III Da Varano , I-62032 Camerino , MC , Italy . ; ; Tel: +39 0737 404920
| | - Matteo Mozzicafreddo
- School of Biosciences and Veterinary Medicine , University of Camerino , Via Gentile III Da Varano , I-62032 Camerino , MC , Italy . ; ; Tel: +39 0737 404920
| | - Augustine Arukwe
- Department of Biology , Norwegian University of Science and Technology (NTNU) , Høgskoleringen 5 , 7491 Trondheim , Norway
| | - Mauro Angeletti
- School of Biosciences and Veterinary Medicine , University of Camerino , Via Gentile III Da Varano , I-62032 Camerino , MC , Italy . ; ; Tel: +39 0737 404920
| | - Graziano Aretusi
- Controllo Statistico , Pescara , Italy . http://www.controllostatistico.com
- Marine Protected Area Torre del Cerrano , 64025 Pineto , TE , Italy
| | - Gilberto Mosconi
- School of Biosciences and Veterinary Medicine , University of Camerino , Via Gentile III Da Varano , I-62032 Camerino , MC , Italy . ; ; Tel: +39 0737 404920
| |
Collapse
|
18
|
Rodenas MC, Cabas I, Abellán E, Meseguer J, Mulero V, García-Ayala A. Tamoxifen persistently disrupts the humoral adaptive immune response of gilthead seabream (Sparus aurata L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:283-292. [PMID: 26234710 DOI: 10.1016/j.dci.2015.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/22/2015] [Accepted: 06/24/2015] [Indexed: 06/04/2023]
Abstract
There is increasing concern about the possible effect of pharmaceutical compounds may have on the fish immune system. Bath exposition of 17α-ethynylestradiol (EE2), a synthetic estrogen used in oral contraceptives, altered the immune response of the gilthead seabream (Sparus aurata L.), a marine hermaphrodite teleost. Tamoxifen (Tmx) is a selective estrogen-receptor modulator used in hormone replacement therapy, the effects of which are unknown in fish immunity. This study aims to investigate the effects of dietary administration of EE2 (5 μg/g food) and Tmx (100 μg/g food) on the immune response of gilthead seabream, and the capacity of the immune system to recover its functionality after a recovery period. The results show for the first time the reversibility of the effect of EE2 and Tmx on the fish immune response. Tmx promoted a transient alteration in hepatic vitellogenin gene expression of a different magnitude to that produced by EE2. Both, EE2 and Tmx inhibited the induction of interleukin-1β gene expression while reversed the inhibition of ROI production in leukocytes following vaccination. However, none of these effects were observed after ceasing EE2 and Tmx exposure. EE2 and Tmx stimulated the antibody response of vaccinated fish although Tmx, but not EE2, altered the antibody response and modulated the percentage of IgM(+) B lymphocytes of vaccinated fish during the recovery phase. Taken together, our results suggest that EE2 and Tmx might alter the capacity of fish to appropriately respond to infection and show that Tmx has a long-lasting effect on humoral adaptive immunity.
Collapse
Affiliation(s)
- M C Rodenas
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - I Cabas
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - E Abellán
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain
| | - J Meseguer
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - V Mulero
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - A García-Ayala
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain.
| |
Collapse
|
19
|
Xia L, Zheng L, Zhou JL. Transcriptional and morphological effects of tamoxifen on the early development of zebrafish (Danio rerio). J Appl Toxicol 2015; 36:853-62. [PMID: 26584595 DOI: 10.1002/jat.3257] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 09/26/2015] [Accepted: 09/29/2015] [Indexed: 11/10/2022]
Abstract
Tamoxifen is a widely used anticancer drug with both an estrogen agonist and antagonist effect. This study focused on its endocrine disrupting effect, and overall environmental significance. Zebrafish embryos were exposed to different concentrations (0.5, 5, 50 and 500 µg l(-1) ) of tamoxifen for 96 h. The results showed a complex effect of tamoxifen on zebrafish embryo development. For the 500 µg l(-1) exposure group, the heart rate was decreased by 20% and mild defects in caudal fin and skin were observed. Expressions of a series of genes related to endocrine and morphological changes were subsequently tested through quantitative real-time polymerase chain reaction. Bisphenol A as a known estrogen was also tested as an endocrine-related comparison. Among the expression of endocrine-related genes, esr1, ar, cyp19a1b, hsd3b1 and ugt1a1 were all increased by tamoxifen exposure, similar to bisphenol A. The cyp19a1b is a key gene that controls estrogen synthesis. Exposure to 0.5, 5, 50 and 500 µg l(-1) of tamoxifen caused upregulation of cyp19a1b expression to 152%, 568%, 953% and 2024% compared to controls, higher than the effects from the same concentrations of bisphenol A treatment, yet vtg1 was suppressed by 24% from exposure to 500 µg l(-1) tamoxifen. The expression of metabolic-related genes such as cyp1a, cyp1c2, cyp3a65, gpx1a, gstp1, gsr and genes related to observed morphological changes such as krt17 were also found to be upregulated by high concentrations of tamoxifen. These findings indicated the potential environmental effect of tamoxifen on teleost early development. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Liang Xia
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 Zhongshan North Road, Shanghai, 200062, China
| | - Liang Zheng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 Zhongshan North Road, Shanghai, 200062, China
| | - Jun Liang Zhou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 Zhongshan North Road, Shanghai, 200062, China
| |
Collapse
|
20
|
Cocci P, Mosconi G, Arukwe A, Mozzicafreddo M, Angeletti M, Aretusi G, Palermo FA. Effects of Diisodecyl Phthalate on PPAR:RXR-Dependent Gene Expression Pathways in Sea Bream Hepatocytes. Chem Res Toxicol 2015; 28:935-47. [PMID: 25825955 DOI: 10.1021/tx500529x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Evidence that endocrine-disrupting chemicals (EDCs) may target metabolic disturbances, beyond interference with the functions of the endocrine systems has recently accumulated. Among EDCs, phthalate plasticizers like the diisodecyl phthalate (DiDP) are commonly found contaminants of aquatic environments and have been suggested to function as obesogens by activating peroxisome proliferator activated receptors (PPARs), a subset of nuclear receptors (NRs) that act as metabolic sensors, playing pivotal roles in lipid homeostasis. However, little is known about the modulation of PPAR signaling pathways by DiDP in fish. In this study, we have first investigated the ligand binding efficiency of DiDP to the ligand binding domains of PPARs and retinoid-X-receptor-α (RXRα) proteins in fish using a molecular docking approach. Furthermore, in silico predictions were integrated by in vitro experiments to show possible dose-relationship effects of DiDP on PPAR:RXR-dependent gene expression pathways using sea bream hepatocytes. We observed that DiDP shows high binding efficiency with piscine PPARs demonstrating a greater preference for RXRα. Our studies also demonstrated the coordinate increased expression of PPARs and RXRα, as well as their downstream target genes in vitro. Principal component analysis (PCA) showed the strength of relationship between transcription of most genes involved in fatty acid metabolism and PPAR mRNA levels. In particular, fatty acid binding protein (FABP) was highly correlated to all PPARs. The results of this study suggest that DiDP can be considered an environmental stressor that activates PPAR:RXR signaling to promote long-term changes in lipid homeostasis leading to potential deleterious physiological consequences in teleost fish.
Collapse
Affiliation(s)
- Paolo Cocci
- †School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino (MC), Italy
| | - Gilberto Mosconi
- †School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino (MC), Italy
| | - Augustine Arukwe
- ‡Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Matteo Mozzicafreddo
- †School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino (MC), Italy
| | - Mauro Angeletti
- †School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino (MC), Italy
| | - Graziano Aretusi
- §Controllo Statistico, Pescara, Italy.,⊥Marine Protected Area Torre del Cerrano, 64025 Pineto (TE), Italy
| | - Francesco Alessandro Palermo
- †School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino (MC), Italy
| |
Collapse
|
21
|
Becker RA, Ankley GT, Edwards SW, Kennedy SW, Linkov I, Meek B, Sachana M, Segner H, Van Der Burg B, Villeneuve DL, Watanabe H, Barton-Maclaren TS. Increasing Scientific Confidence in Adverse Outcome Pathways: Application of Tailored Bradford-Hill Considerations for Evaluating Weight of Evidence. Regul Toxicol Pharmacol 2015; 72:514-37. [PMID: 25863193 DOI: 10.1016/j.yrtph.2015.04.004] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/04/2015] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
Abstract
Systematic consideration of scientific support is a critical element in developing and, ultimately, using adverse outcome pathways (AOPs) for various regulatory applications. Though weight of evidence (WoE) analysis has been proposed as a basis for assessment of the maturity and level of confidence in an AOP, methodologies and tools are still being formalized. The Organization for Economic Co-operation and Development (OECD) Users' Handbook Supplement to the Guidance Document for Developing and Assessing AOPs (OECD 2014a; hereafter referred to as the OECD AOP Handbook) provides tailored Bradford-Hill (BH) considerations for systematic assessment of confidence in a given AOP. These considerations include (1) biological plausibility and (2) empirical support (dose-response, temporality, and incidence) for Key Event Relationships (KERs), and (3) essentiality of key events (KEs). Here, we test the application of these tailored BH considerations and the guidance outlined in the OECD AOP Handbook using a number of case examples to increase experience in more transparently documenting rationales for assigned levels of confidence to KEs and KERs, and to promote consistency in evaluation within and across AOPs. The major lessons learned from experience are documented, and taken together with the case examples, should contribute to better common understanding of the nature and form of documentation required to increase confidence in the application of AOPs for specific uses. Based on the tailored BH considerations and defining questions, a prototype quantitative model for assessing the WoE of an AOP using tools of multi-criteria decision analysis (MCDA) is described. The applicability of the approach is also demonstrated using the case example aromatase inhibition leading to reproductive dysfunction in fish. Following the acquisition of additional experience in the development and assessment of AOPs, further refinement of parameterization of the model through expert elicitation is recommended. Overall, the application of quantitative WoE approaches hold promise to enhance the rigor, transparency and reproducibility for AOP WoE determinations and may play an important role in delineating areas where research would have the greatest impact on improving the overall confidence in the AOP.
Collapse
Affiliation(s)
| | - Gerald T Ankley
- US Environmental Protection Agency, Office of Research and Development, Mid-Continent Ecology Division, Duluth, MN, USA
| | - Stephen W Edwards
- US Environmental Protection Agency, Office of Research and Development, Integrated Systems Toxicology Division, Research Triangle Park, NC, USA
| | - Sean W Kennedy
- Environment Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - Igor Linkov
- Environmental Laboratory, Engineer Research and Development Center, US Army Corps of Engineers, Concord, MA, USA
| | - Bette Meek
- University of Ottawa, Ottawa, Ontario, Canada
| | - Magdalini Sachana
- European Commission, Joint Research Centre, Via E. Fermi 2749, 21027, Ispra, Italy
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| | | | - Daniel L Villeneuve
- US Environmental Protection Agency, Office of Research and Development, Mid-Continent Ecology Division, Duluth, MN, USA
| | - Haruna Watanabe
- Center for Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
22
|
Gao S, Wang W, Tian H, Zhang X, Guo L, Ru S. An emerging water contaminant, semicarbazide, exerts an anti-estrogenic effect in zebrafish (Danio rerio). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 93:280-288. [PMID: 24929547 DOI: 10.1007/s00128-014-1305-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/23/2014] [Indexed: 06/03/2023]
Abstract
To determine the endocrine disrupting effect of semicarbazide, an emerging water contaminant, the changes in transcript levels of hepatic estrogen-response genes including vitellogenin-1 (vtg-1), estrogen receptor α (ERα), and estrogen receptor β (ERβ) were measured in male and female zebrafish exposed to semicarbazide with or without exogenous 17β-estradiol (E2). Exposure of male zebrafish to semicarbazide for 96 h or 28 days resulted in no significant induction in hepatic vtg-1, ERα, or ERβ mRNA expression, indicating that semicarbazide has no estrogenic effect. However, a remarkable anti-estrogenic effect of semicarbazide was demonstrated: semicarbazide treatment of female zebrafish for 96 h and 28 days resulted in significant decreases in transcript levels of vtg-1, ERα, and ERβ, as well as decreases in the gonadosomatic index level after 28 days. Moreover, semicarbazide exposure significantly inhibited the induction of vtg-1, ERα and ERβ mRNA by E2 when male zebrafish were co-exposed for 28 days.
Collapse
Affiliation(s)
- Su Gao
- Marine Life Science College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
Sun L, Lin X, Jin R, Peng T, Peng Z, Fu Z. Toxic effects of bisphenol A on early life stages of Japanese medaka (Oryzias latipes). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 93:222-7. [PMID: 24849714 DOI: 10.1007/s00128-014-1298-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 05/10/2014] [Indexed: 05/07/2023]
Abstract
The toxic effects of bisphenol A (BPA) in aquatic organisms have attracted global attention. However, few studies have investigated its effects at the gene transcription level. In this study, we measured the transcriptional response of a set of genes associated with the hypothalamic-pituitary-gonadal axis following BPA exposure during the early life stage of Japanese medaka. Transcription of vitellogenin genes was induced in both sexes, indicating estrogenic disruption. However, changes in transcription of the steroid hormone receptor gene and steroidogenesis-regulating genes suggest that BPA also acts as an androgen receptor antagonist. BPA exposure also decreased the hatchability of medaka embryos and increased the growth of female larvae. These pronounced gender-specific effects observed in this study demonstrate that it is important to identify the sex of fish in the early life stage.
Collapse
Affiliation(s)
- Liwei Sun
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | | | | | | | | | | |
Collapse
|
24
|
Sun L, Jin R, Peng Z, Zhou Q, Qian H, Fu Z. Effects of trilostane and fipronil on the reproductive axis in an early life stage of the Japanese medaka (Oryzias latipes). ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1044-1054. [PMID: 24777665 DOI: 10.1007/s10646-014-1248-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/17/2014] [Indexed: 06/03/2023]
Abstract
Given the critical role of the hypothalamic-pituitary-gonadal (HPG) axis, it is conceivable that perturbations at any point along this axis can potentially affect reproduction in fish and other vertebrates. We investigated the effects of a 3β-hydroxysteroid dehydrogenase (3β-HSD) inhibitor, trilostane (TRI), and a gamma-aminobutyric acid (GABA)-receptor antagonist, fipronil (FIP), on the HPG axis using an early life stage of the Japanese medaka. The newly hatched larvae were exposed to TRI (100, 300 and 1000 μg/L) and FIP (3, 10 and 30 μg/L), respectively, until 28 days post-hatching. Exposure to TRI decreased the body length in males, whereas FIP inhibited growth in both sexes. The induction of steroidogenesis-regulating genes (including 3β-hsd) in males exposed to TRI, accompanied by increased vtg and er transcription, indicating a compensatory response to the presumed 3β-HSD inhibition. These compensatory responses were not observed in TRI-treated females. Regarding FIP exposure, the GABA blocker resulted in the down-regulation of fshr and lhr. A compensatory up-regulation of steroidogenesis-regulating genes partially explained the elevated transcripts of vtg genes in both males and females after FIP exposure. These results suggest that both the inhibition of 3β-HSD and the antagonism of GABA receptors are relevant modes of endocrine disruption that could impact the normal regulation of the HPG axis.
Collapse
Affiliation(s)
- Liwei Sun
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
Bhatia H, Kumar A, Du J, Chapman J, McLaughlin MJ. Di-n-butyl phthalate causes antiestrogenic effects in female Murray rainbowfish (Melanotaenia fluviatilis). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:2335-2344. [PMID: 23761113 DOI: 10.1002/etc.2304] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/24/2013] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
Di-n-butyl phthalate (DnBP) is an industrial pollutant with antiandrogenic effects reported in male mammals and fish. Little research has been done on the endocrine effects of DnBP in female fish. The present study investigated the changes in ovarian histology and serum vitellogenin concentrations in adult Murray rainbowfish (Melanotaenia fluviatilis) after exposure to 125 µg/L, 250 µg/L, 500 µg/L, and 1000 µg/L DnBP for 7 d. Treatment at 125 µg/L to 1000 µg/L DnBP for 7 d had no significant effect on the survival, condition factor, gonadosomatic index, hepatosomatic index, and developmental stage of the fish. Based on the histological investigation, the sizes of the previtellogenic oocytes in the fish treated at 250 µg/L to 1000 µg/L were found to be significantly higher than in the corresponding control fish (p ≤ 0.05). The early vitellogenic oocytes in the fish treated at 1000 µg/L were significantly smaller relative to those in the unexposed fish (p ≤ 0.05). Histological changes like chorion folding, shrunken ooplasm, impaired yolk production, granulomatous inflammation, and interstitial fibrosis were observed in the ovaries of the fish treated with DnBP. The circulating levels of plasma vitellogenin were significantly lower in the fish exposed to 500 µg/L and 1000 µg/L DnBP (p ≤ 0.05). These data show that a continuous exposure to subacute concentrations of DnBP for 7 d can cause antiestrogenicity in female adult Murray rainbowfish.
Collapse
Affiliation(s)
- Harpreet Bhatia
- Commonwealth Scientific and Industrial Research Organisation Land and Water, Glen Osmond, Adelaide, South Australia, Australia.
| | | | | | | | | |
Collapse
|
26
|
Tu W, Niu L, Liu W, Xu C. Embryonic exposure to butachlor in zebrafish (Danio rerio): endocrine disruption, developmental toxicity and immunotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 89:189-195. [PMID: 23294635 DOI: 10.1016/j.ecoenv.2012.11.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 11/05/2012] [Accepted: 11/29/2012] [Indexed: 06/01/2023]
Abstract
Butachlor is a chloroacetanilide herbicide widely employed in weeding important crops. Recently, the study of the possible toxic effects of butachlor in non-target organisms has increased substantially. However, the endocrine disruption, developmental toxicity and immunotoxicity effects of butachlor in fish have not been fully investigated in previous studies. In the present study, zebrafish embryos were exposed to a range of butachlor concentrations from 4 to 20 μM to evaluate the embryonic toxicity of butachlor until 84 hours postfertilization (hpf). The results demonstrated that butachlor was highly toxic to zebrafish embryos, hindering the hatching process, resulting in a series of malformations and followed by mortality. The malformations observed included pericardial edema (PE) and yolk sac edema (YSE), which showed concentration-dependent responses. The analysis of endocrine gene transcription indicated that butachlor significantly induced the expression of the estrogen-responsive gene Vtg1 but had no effect on the expression of the ERα gene. The innate immune system appeared to be another possible target of butachlor. At 72 hpf, butachlor significantly up-regulated the innate immune system-related genes, including IL-1β, CC-chem, CXCL-C1c and IL-8. These data suggest that butachlor causes developmental toxicity, endocrine disruption and immune toxicity in the zebrafish embryo. Bidirectional interactions between the endocrine system and the immune system might be present, and further studies are needed to determine these possible pathways.
Collapse
Affiliation(s)
- Wenqing Tu
- Research Center of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | | | | | | |
Collapse
|
27
|
Assay of vtg, ERs and PPARs as endpoint for the rapid in vitro screening of the harmful effect of Di-(2-ethylhexyl)-phthalate (DEHP) and phthalic acid (PA) in zebrafish primary hepatocyte cultures. Toxicol In Vitro 2013; 27:84-91. [DOI: 10.1016/j.tiv.2012.09.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 09/21/2012] [Accepted: 09/27/2012] [Indexed: 01/11/2023]
|
28
|
Laccase-mediated transformations of endocrine disrupting chemicals abolish binding affinities to estrogen receptors and their estrogenic activity in zebrafish. Appl Biochem Biotechnol 2012; 168:864-76. [PMID: 22941308 DOI: 10.1007/s12010-012-9825-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 08/01/2012] [Indexed: 10/27/2022]
Abstract
Endocrine disrupting chemicals (EDCs) are known to mainly affect aquatic organisms, producing negative effects in aquaculture. Transformation of the estrogenic compounds 17β-estradiol (E2), bisphenol-A (BPA), nonylphenol (NP), and triclosan (TCS) by laccase of Coriolopsis gallica was studied. Laccase is able to efficiently transform them into polymers. The estrogenic activity of the EDCs and their laccase transformation products was evaluated in vitro as their affinity for the human estrogen receptor alpha (hERα) and for the ligand binding domain of zebrafish (Danio rerio) estrogen receptor alpha (zfERαLBD). E2, BPA, NP, and TCS showed higher affinity for the zfERαLBD than for hERα. After laccase treatment, no affinity was found, except a marginal affinity of E2 products for the zfERαLBD. Endocrine disruption studies in vivo on zebrafish were performed using the induction of vitellogenin 1 as a biomarker (VTG1 mRNA levels). The use of enzymatic bioreactors, containing immobilized laccase, efficiently eliminates the endocrine activity of BPA and TCS, and significantly reduces the effects of E2. The potential use of enzymatic reactors to eliminate the endocrine activity of EDCs in supply water for aquaculture is discussed.
Collapse
|
29
|
Zang L, Morikane D, Shimada Y, Tanaka T, Nishimura N. A novel protocol for the oral administration of test chemicals to adult zebrafish. Zebrafish 2012; 8:203-10. [PMID: 22181663 DOI: 10.1089/zeb.2011.0726] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A novel protocol using gluten as a carrier material was developed to administer chemicals to adult zebrafish, per os (p.o.). To evaluate the capacity of gluten to retain chemicals, we prepared gluten granules containing eight types of chemicals with different Log P(ow) values and immersed them in water. Less than 5% of chemicals were eluted from gluten granules within 5 min, a standard feeding time for zebrafish. Although retention capability was dependent on the hydrophilicity and hydrophobicity of the chemicals, the gluten granules retained 62%-99% of the total amount of chemical, even after immersion in water for 60 min. Vital staining dyes, such as 4-Di-2-Asp and Nile red, administered p.o., were delivered into the gastrointestinal tract where they were digested and secreted. Subsequently, we conducted a pharmacokinetic study of oral administration of felbinac and confirmed that it was successfully delivered into the blood of zebrafish. This indicates that chemicals administered using gluten granules are satisfactorily absorbed from the digestive tract and delivered into the metabolic system. The absorption, distribution, and pharmacokinetics of chemicals given by oral administration were also compared with those of chemicals given by alternative administration routes such as intraperitoneal injection and exposure to chemical solution.
Collapse
Affiliation(s)
- Liqing Zang
- Department of Translational Medical Science, Graduate School of Medicine, Mie University, Mie 514-8507, Japan.
| | | | | | | | | |
Collapse
|
30
|
de Soysa TY, Ulrich A, Friedrich T, Pite D, Compton SL, Ok D, Bernardos RL, Downes GB, Hsieh S, Stein R, Lagdameo MC, Halvorsen K, Kesich LR, Barresi MJF. Macondo crude oil from the Deepwater Horizon oil spill disrupts specific developmental processes during zebrafish embryogenesis. BMC Biol 2012; 10:40. [PMID: 22559716 PMCID: PMC3364156 DOI: 10.1186/1741-7007-10-40] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/04/2012] [Indexed: 11/24/2022] Open
Abstract
Background The Deepwater Horizon disaster was the largest marine oil spill in history, and total vertical exposure of oil to the water column suggests it could impact an enormous diversity of ecosystems. The most vulnerable organisms are those encountering these pollutants during their early life stages. Water-soluble components of crude oil and specific polycyclic aromatic hydrocarbons have been shown to cause defects in cardiovascular and craniofacial development in a variety of teleost species, but the developmental origins of these defects have yet to be determined. We have adopted zebrafish, Danio rerio, as a model to test whether water accumulated fractions (WAF) of the Deepwater Horizon oil could impact specific embryonic developmental processes. While not a native species to the Gulf waters, the developmental biology of zebrafish has been well characterized and makes it a powerful model system to reveal the cellular and molecular mechanisms behind Macondo crude toxicity. Results WAF of Macondo crude oil sampled during the oil spill was used to treat zebrafish throughout embryonic and larval development. Our results indicate that the Macondo crude oil causes a variety of significant defects in zebrafish embryogenesis, but these defects have specific developmental origins. WAF treatments caused defects in craniofacial development and circulatory function similar to previous reports, but we extend these results to show they are likely derived from an earlier defect in neural crest cell development. Moreover, we demonstrate that exposure to WAFs causes a variety of novel deformations in specific developmental processes, including programmed cell death, locomotor behavior, sensory and motor axon pathfinding, somitogenesis and muscle patterning. Interestingly, the severity of cell death and muscle phenotypes decreased over several months of repeated analysis, which was correlated with a rapid drop-off in the aromatic and alkane hydrocarbon components of the oil. Conclusions Whether these teratogenic effects are unique to the oil from the Deepwater Horizon oil spill or generalizable for most crude oil types remains to be determined. This work establishes a model for further investigation into the molecular mechanisms behind crude oil mediated deformations. In addition, due to the high conservation of genetic and cellular processes between zebrafish and other vertebrates, our work also provides a platform for more focused assessment of the impact that the Deepwater Horizon oil spill has had on the early life stages of native fish species in the Gulf of Mexico and the Atlantic Ocean.
Collapse
|
31
|
Vega Orozco A, Daneri C, Anesetti G, Cabrera R, Sosa Z, Rastrilla AM. Involvement of the oestrogenic receptors in superior mesenteric ganglion on the ovarian steroidogenesis in rat. Reproduction 2011; 143:183-93. [PMID: 22080140 DOI: 10.1530/rep-11-0056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oestradiol (E(2)) is a key hormone in the regulation of reproductive processes. The aims of this work were a) to examine the distributions of oestrogen receptor α (ERα) and ERβ in the neurons of the superior mesenteric ganglion (SMG) in the oestrus stage by immunohistochemistry, b) to demonstrate whether E(2) in the SMG modifies progesterone (P(4)), androstenedione (A(2)) and nitrite release in the ovarian compartment on oestrus day and c) to demonstrate whether E(2) in the ganglion modifies the activity and gene expression in the ovary of the steroidogenic enzymes 3β-hydroxysteroid dehydrogenase (3β-HSD) and 20α-hydroxysteroid dehydrogenase (20α-HSD). The ex vivo SMG-ovarian nervous plexus-ovary system was used. E(2), tamoxifen (Txf) and E(2) plus Txf were added in the ganglion to measure ovarian P(4) release, while E(2) alone was added to measure ovarian A(2) and nitrites release. Immunohistochemistry revealed cytoplasmic ERα immunoreactivity only in the neural somas in the SMG. E(2) increased ovarian P(4) and A(2) release at 15, 30 and 60 min but decreased nitrites. The activity and gene expression of 3β-HSD increased, while the activity and gene expression of 20α-HSD did not show changes with respect to the control. Txf in the ganglion diminished P(4) release only at 60 min. E(2) plus Txf in the ganglion reverted the effect of E(2) alone and the inhibitory effect of Txf. The results of this study demonstrate that ERα activation in the SMG has an impact on ovarian steroidogenesis in rats, thus providing evidence for the critical role of peripheral system neurons in the control of ovarian functions under normal and pathological conditions.
Collapse
Affiliation(s)
- Adriana Vega Orozco
- Laboratorio de Biología de la Reproducción (LABIR), Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.
| | | | | | | | | | | |
Collapse
|
32
|
Zucchi S, Oggier DM, Fent K. Global gene expression profile induced by the UV-filter 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) in zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:3086-3096. [PMID: 21601967 DOI: 10.1016/j.envpol.2011.04.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/26/2011] [Accepted: 04/03/2011] [Indexed: 05/30/2023]
Abstract
Residues of the UV-filter 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) are ubiquitously found in aquatic biota but potential adverse effects in fish are fairly unknown. To identify molecular effects and modes of action of EHMC we applied a gene expression profiling in zebrafish using whole genome microarrays. Transcriptome analysis and validation of targeted genes were performed after 14 days of exposure of male zebrafish. Concentrations of 2.2 μg/L and 890 μg/L EHMC lead to alteration of 1096 and 1137 transcripts, respectively, belonging to many pathways. Genes involved in lipid metabolism and estrogenic pathway (vtg1), lipid biosynthesis (ptgds), vitamin A metabolic process (rbp2a), DNA damage and apoptosis (gadd45b), and regulation of cell growth (igfbp1a) were investigated by qRT-PCR analysis in whole body, liver, brain and testis. The analysis showed tissue-specific gene profiles and revealed that EHMC slightly affects the transcription of genes involved in hormonal pathways including vtg1, esr1, esr2b, ar, cyp19b and hsd17β3.
Collapse
Affiliation(s)
- Sara Zucchi
- University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründensrasse 40, CH-4132 Muttenz, Switzerland
| | | | | |
Collapse
|
33
|
Sun L, Shao X, Chi J, Hu X, Jin Y, Fu Z. Transcriptional responses in the brain, liver and gonad of Japanese ricefish (Oryzias latipes) exposed to two anti-estrogens. Comp Biochem Physiol C Toxicol Pharmacol 2011; 153:392-401. [PMID: 21281741 DOI: 10.1016/j.cbpc.2011.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 01/23/2011] [Accepted: 01/24/2011] [Indexed: 11/23/2022]
Abstract
The study of endocrine disruption is being increasingly conducted at the mRNA level of genes, as this approach might yield insight into the modes of action and mechanisms of toxicity. In this study, the transcriptional responses of a set of functionally relevant genes associated with the pathways of the hypothalamic-pituitary-gonadal (HPG; or HPG[L]-liver) axis of Japanese ricefish were examined after treatment with two model anti-estrogens, letrozole (LET) and tamoxifen (TAM), at three concentrations (30, 100 and 300μg/L) for 72h. The results showed that LET and TAM produced distinct expression profiles in a complex tissue- and gender-specific manner, confirming that they exert their anti-estrogenic effects via different molecular mechanisms. For example, the transcriptional levels of hepatic vitellogenin were significantly downregulated in females exposed to either LET or TAM, while they were significantly upregulated in TAM-exposed males and did not exhibit any change in LET-treated males. The expression of genes involved in steroidogenesis was also modulated by these two anti-estrogens in a way that corresponded with their anticipated mode of action. Overall, the data not only provide mechanistic information of anti-estrogenic chemicals but also demonstrate the potential of investigation of gene expression in the HPG(L) axis of model fish for diagnostic and predictive assessments of the risks associated with chemical exposure.
Collapse
Affiliation(s)
- Liwei Sun
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | | | | | | | | | | |
Collapse
|
34
|
Zucchi S, Blüthgen N, Ieronimo A, Fent K. The UV-absorber benzophenone-4 alters transcripts of genes involved in hormonal pathways in zebrafish (Danio rerio) eleuthero-embryos and adult males. Toxicol Appl Pharmacol 2011; 250:137-46. [DOI: 10.1016/j.taap.2010.10.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/30/2010] [Accepted: 10/02/2010] [Indexed: 12/27/2022]
|